51
|
Few WP, Zakon HH. Sex differences in and hormonal regulation of Kv1 potassium channel gene expression in the electric organ: molecular control of a social signal. Dev Neurobiol 2007; 67:535-49. [PMID: 17443807 DOI: 10.1002/dneu.20305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electric fish communicate with electric organ (EO) discharges (EODs) that are sexually dimorphic, hormone-sensitive, and often individually distinct. The cells of the EO (electrocytes) of the weakly electric fish Sternopygus possess delayed rectifying K+ currents that systematically vary in their activation and deactivation kinetics, and this precise variation in K+ current kinetics helps shape sex and individual differences in the EOD. Because members of the Kv1 subfamily produce delayed rectifier currents, we cloned a number of genes in the Kv1 subfamily from the EO of Sternopygus. Using our sequences and those from genome databases, we found that in teleost fish Kv1.1 and Kv1.2 exist as duplicate pairs (Kv1.1a&b, Kv1.2a&b) whereas Kv1.3 does not. Using real-time quantitative RT-PCR, we found that Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO is higher in high EOD frequency females (which have fast EO K+ currents) than in low EOD frequency males (which have slow EO K+ currents). Systemic treatment with dihydrotestosterone decreased Kv1.1a and Kv1.2a, but not Kv1.2b, expression in the EO, whereas treatment with human chorionic gonadotropin (hCG) increased Kv1.2a but not Kv1.1a or Kv1.2b expression in the EO. Thus, systematic variation in the ratios of Kv1 channels expressed in the EO is correlated with individual differences in and sexual dimorphism of a communication signal.
Collapse
Affiliation(s)
- W Preston Few
- Section of Neurobiology and Institute for Neuroscience, University of Texas, Austin, Texas 78712, USA.
| | | |
Collapse
|
52
|
Cao XJ, Shatadal S, Oertel D. Voltage-sensitive conductances of bushy cells of the Mammalian ventral cochlear nucleus. J Neurophysiol 2007; 97:3961-75. [PMID: 17428908 DOI: 10.1152/jn.00052.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bushy cells in the ventral cochlear nucleus convey firing of auditory nerve fibers to neurons in the superior olivary complex that compare the timing and intensity of sounds at the two ears and enable animals to localize sound sources in the horizontal plane. Three voltage-sensitive conductances allow bushy cells to convey acoustic information with submillisecond temporal precision. All bushy cells have a low-voltage-activated, alpha-dendrotoxin (alpha-DTX)-sensitive K(+) conductance (g(KL)) that was activated by depolarization past -70 mV, was half-activated at -39.0 +/- 1.7 (SE) mV, and inactivated approximately 60% over 5 s. Maximal g(KL) varied between 40 and 150 nS (mean: 80.8 +/- 16.7 nS). An alpha-DTX-insensitive, tetraethylammonium (TEA)-sensitive, K(+) conductance (g(KH)) was activated at voltages positive to -40 mV, was half-activated at -18.1 +/- 3.8 mV, and inactivated by 90% over 5 s. Maximal g(KH) varied between 35 and 80 nS (mean: 58.2 +/- 6.5 nS). A ZD7288-sensitive, mixed cation conductance (g(h)) was activated by hyperpolarization greater than -60 mV and half-activated at -83.1 +/- 1.1 mV. Maximum g(h) ranged between 14.5 and 56.6 nS (mean: 30.0 +/- 5.5 nS). 8-Br-cAMP shifted the voltage sensitivity of g(h) positively. Changes in temperature stably altered the steady-state magnitude of I(h). Both g(KL) and g(KH) contribute to repolarizing action potentials and to sharpening synaptic potentials. Those cells with the largest g(h) and the largest g(KL) fired least at the onset of a depolarization, required the fastest depolarizations to fire, and tended to be located nearest the nerve root.
Collapse
Affiliation(s)
- Xiao-Jie Cao
- Dept. of Physiology, University of Wisconsin School of Medicine, 1300 University Ave., Madison, WI 53706, USA
| | | | | |
Collapse
|
53
|
Howard MA, Burger RM, Rubel EW. A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents. J Neurosci 2007; 27:2112-23. [PMID: 17314306 PMCID: PMC6673544 DOI: 10.1523/jneurosci.5266-06.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mature nucleus magnocellularis (NM) neurons, the avian homolog of bushy cells of the mammalian anteroventral cochlear nucleus, maintain high [Cl-]i and depolarize in response to GABA. Depolarizing GABAergic postsynaptic potentials (GPSPs) activate both the synaptic conductance and large outward currents, which, when coupled together, inhibit spikes via shunting and spike threshold accommodation. We studied the maturation of the synaptic and voltage-dependent components of inhibition in embryonic NM neurons using whole-cell and gramicidin-perforated patch-clamp techniques to measure Cl- reversal potential, GABAergic synaptic responses, and voltage-dependent outward currents. We found that GABA enhanced excitability in immature NM neurons, undergoing a switch to inhibitory between embryonic day 14 (E14) and E18. Low-voltage-activated Kv1-type (dendrotoxin-I sensitive) K+ currents increased in amplitude between E14 and E18, whereas Cl- reversal potential and synaptic conductances remained relatively stable during this period. GABA was rendered inhibitory because of this increase in low-voltage activated outward currents. GPSPs summed with other inputs to increase spike probability at E14. GPSPs shunted spikes at E18, but blocking Kv1 channels transformed this inhibition to excitation, similar to E14 neurons. Subthreshold depolarizing current steps, designed to activate outward currents similar to depolarizing GPSPs, enhanced excitability at E14 but inhibited spiking in E18 neurons. Blocking Kv1 channels reversed this effect, rendering current steps excitatory. We present the novel finding that the developmental transition of GABAergic processing from increasing neuronal excitability to inhibiting spiking can depend on changes in the expression of voltage-gated channels rather than on a change in Cl- reversal potential.
Collapse
Affiliation(s)
- MacKenzie A. Howard
- Department of Physiology and Biophysics and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195
| | - R. Michael Burger
- Department of Physiology and Biophysics and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195
| | - Edwin W Rubel
- Department of Physiology and Biophysics and Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|
54
|
Trellakis S, Lautermann J, Lehnerdt G. Lidocaine: neurobiological targets and effects on the auditory system. PROGRESS IN BRAIN RESEARCH 2007; 166:303-22. [DOI: 10.1016/s0079-6123(07)66028-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Wang Y, Manis PB. Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss. J Assoc Res Otolaryngol 2006; 7:412-24. [PMID: 17066341 PMCID: PMC1785302 DOI: 10.1007/s10162-006-0052-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 07/27/2006] [Indexed: 11/30/2022] Open
Abstract
The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (g (KLV)) on the spike latency by using dynamic clamp. Alteration in g (KLV) had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.
Collapse
Affiliation(s)
- Yong Wang
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, 1115 Bioinformatics Building, CB#7070, Chapel Hill, NC 27599-7070, USA.
| | | |
Collapse
|
56
|
Holt AG, Asako M, Duncan RK, Lomax CA, Juiz JM, Altschuler RA. Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus. Hear Res 2006; 216-217:146-53. [PMID: 16650703 PMCID: PMC4581595 DOI: 10.1016/j.heares.2006.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/22/2006] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Two-pore domain potassium channels (K(2PD)+) play an important role in setting resting membrane potential by regulating background leakage of potassium ions, which in turn controls neuronal excitability. To determine whether these channels contribute to activity-dependent plasticity following deafness, we used quantitative real-time PCR to examine the expression of 10 K(2PD)+ subunits in the rat cochlear nucleus at 3 days, 3 weeks and 3 months after bilateral cochlear ablation. There was a large sustained decrease in the expression of TASK-5, a subunit that is predominantly expressed in auditory brain stem neurons, and in the TASK-1 subunit which is highly expressed in several types of cochlear nucleus neurons. TWIK-1 and THIK-2 also showed significant decreases in expression that were maintained across all time points. TWIK-2, TREK-1 and TREK-2 showed no significant change in expression at 3 days but showed large decreases at 3 weeks and 3 months following deafness. TRAAK and TASK-3 subunits showed significant decreases at 3 days and 3 weeks following deafness, but these differences were no longer significant at 3 months. Dramatic changes in expression of K(2PD)+ subunits suggest these channels may play a role in deafness-associated changes in the excitability of cochlear nucleus neurons.
Collapse
MESH Headings
- Animals
- Cochlear Nucleus/cytology
- Cochlear Nucleus/physiopathology
- DNA, Complementary/chemistry
- Deafness/pathology
- Deafness/physiopathology
- Evoked Potentials, Auditory, Brain Stem
- Male
- Neuronal Plasticity/physiology
- Potassium Channels, Tandem Pore Domain/chemistry
- Potassium Channels, Tandem Pore Domain/genetics
- Potassium Channels, Tandem Pore Domain/metabolism
- Potassium Channels, Tandem Pore Domain/physiology
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Avril Genene Holt
- Kresge Hearing Research Institute, Department of Otolaryngology, Head and Neck Surgery, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Buras ED, Holt AG, Griffith RD, Asako M, Altschuler RA. Changes in glycine immunoreactivity in the rat superior olivary complex following deafness. J Comp Neurol 2006; 494:179-89. [PMID: 16304686 PMCID: PMC4455963 DOI: 10.1002/cne.20795] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The balance between inhibitory and excitatory amino acid neurotransmitters contributes to the control of normal functioning of the auditory brainstem. Changes in the level of neuronal activity within the auditory brainstem pathways influence the balance between inhibition and excitation. Activity-dependent plasticity in the auditory pathways can be studied by creating a large decrease in activity through peripheral deafening. Deafness-related decreases in GABA have previously been shown in the inferior colliculus. However, glycine is a more prevalent inhibitory transmitter in the mature superior olivary complex (SOC). The present study therefore examined if there were deafness-related changes in glycine in the SOC using postembedding immunocytochemistry. Animals were bilaterally deafened by an intrascalar injection of neomycin. Five nuclei in the SOC, the lateral superior olive (LSO), superior paraolivary nucleus (SPoN), and the medial, lateral, and ventral nuclei of the trapezoid body (MNTB, LNTB, and VNTB) were examined 14 days following the deafening and compared to normal hearing age-matched controls. The LSO and SPoN were divided into high and low frequency regions. The number of glycine immunoreactive puncta on the somata of principal cells showed significant decreases in all regions assessed, with changes ranging from 50% in the VNTB to 23% in the LSO.
Collapse
Affiliation(s)
- Eric D. Buras
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Avril Genene Holt
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Correspondence to: Avril Genene Holt, KHRI, Department of Otolaryngology, The University of Michigan, 1301 East Ann St., Ann Arbor, MI 48109-0506.
| | - Ronald D. Griffith
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Mikiya Asako
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Otolaryngology, Kansai Medical University, Osaka 570-8506, Japan
| | - Richard A. Altschuler
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
58
|
Wang Y, Luksch H, Brecha NC, Karten HJ. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 2006; 494:7-35. [PMID: 16304683 DOI: 10.1002/cne.20821] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cholinergic division of the avian nucleus isthmi, the homolog of the mammalian nucleus parabigeminalis, is composed of the pars parvocellularis (Ipc) and pars semilunaris (SLu). Ipc and SLu were studied with in vivo and in vitro tracing and intracellular filling methods. 1) Both nuclei have reciprocal homotopic connections with the ipsilateral optic tectum. The SLu connection is more diffuse than that of Ipc. 2) Tectal inputs to Ipc and SLu are Brn3a-immunoreactive neurons in the inner sublayer of layer 10. Tectal neurons projecting on Ipc possess "shepherd's crook" axons and radial dendritic fields in layers 2-13. 3) Neurons in the mid-portion of Ipc possess a columnar spiny dendritic field. SLu neurons have a large, nonoriented spiny dendritic field. 4) Ipc terminals form a cylindrical brush-like arborization (35-50 microm wide) in layers 2-10, with extremely dense boutons in layers 3-6, and a diffuse arborization in layers 11-13. SLu neurons terminate in a wider column (120-180 microm wide) lacking the dust-like boutonal features of Ipc and extend in layers 4c-13 with dense arborizations in layers 4c, 6, and 9-13. 5) Ipc and SLu contain specialized fast potassium ion channels. We propose that dense arborizations of Ipc axons may be directed to the distal dendritic bottlebrushes of motion detecting tectal ganglion cells (TGCs). They may provide synchronous activation of a group of adjacent bottlebrushes of different TGCs of the same type via their intralaminar processes, and cross channel activation of different types of TGCs within the same column of visual space.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, 92093-0608, USA
| | | | | | | |
Collapse
|
59
|
Scott LL, Mathews PJ, Golding NL. Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 2006; 25:7887-95. [PMID: 16135745 PMCID: PMC6725447 DOI: 10.1523/jneurosci.1016-05.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammals, principal neurons of the medial superior olive (MSO) exhibit biophysical specializations that enable them to detect sound localization cues with microsecond precision. In the present study, we used whole-cell patch recordings to examine the development of the intrinsic electrical properties of these neurons in brainstem slices from postnatal day 14 (P14) to P38 gerbils. In the week after hearing onset (P14-P21), we observed dramatic reductions in somatic EPSP duration, input resistance, and membrane time constant. Surprisingly, somatically recorded action potentials also dramatically declined in amplitude over a similar period (38 +/- 3 to 17 +/- 2 mV; tau = 5.2 d). Simultaneous somatic and dendritic patch recordings revealed that these action potentials were initiated in the axon, which primarily emerged from the soma. In older gerbils, the rapid speed of membrane voltage changes and the attenuation of action potential amplitudes were mediated extensively by low voltage-activated potassium channels containing the Kv1.1 subunit. In addition, whole-cell voltage-clamp recordings revealed that these potassium channels increase nearly fourfold from P14 to P23 and are thus a major component of developmental changes in excitability. Finally, the electrophysiological features of principal neurons of the medial nucleus of the trapezoid body did not change after P14, indicating that posthearing regulation of intrinsic membrane properties is not a general feature of all time-coding auditory neurons. We suggest that the striking electrical segregation of the axon from the soma and dendrites of MSO principal neurons minimizes spike-induced distortion of synaptic potentials and thus preserves the accuracy of binaural comparisons.
Collapse
Affiliation(s)
- Luisa L Scott
- Institute for Neuroscience, University of Texas, Austin, Texas 78712-0248, USA
| | | | | |
Collapse
|
60
|
Walmsley B, Berntson A, Leao RN, Fyffe REW. Activity-dependent regulation of synaptic strength and neuronal excitability in central auditory pathways. J Physiol 2006; 572:313-21. [PMID: 16469782 PMCID: PMC1779684 DOI: 10.1113/jphysiol.2006.104851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neural activity plays an important role in regulating synaptic strength and neuronal membrane properties. Attempts to establish guiding rules for activity-dependent neuronal changes have led to such concepts as homeostasis of cellular activity and Hebbian reinforcement of synaptic strength. However, it is clear that there are diverse effects resulting from activity changes, and that these changes depend on the experimental preparation, and the developmental stage of the neural circuits under study. In addition, most experimental evidence on activity-dependent regulation comes from reduced preparations such as neuronal cultures. This review highlights recent results from studies of the intact mammalian auditory system, where changes in activity have been shown to produce alterations in synaptic and membrane properties at the level of individual neurons, and changes in network properties, including the formation of tonotopic maps.
Collapse
Affiliation(s)
- Bruce Walmsley
- John Curtin School of Medical Research, Australian National University, Canberra, ACT.
| | | | | | | |
Collapse
|
61
|
Trellakis S, Benzenberg D, Urban BW, Friederich P. Differential Lidocaine Sensitivity of Human Voltage-gated Potassium Channels Relevant to the Auditory System. Otol Neurotol 2006; 27:117-23. [PMID: 16371858 DOI: 10.1097/01.mao.0000186443.11832.8a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Lidocaine may lead to an alteration in the processing of hearing as observed during tinnitus by inhibiting voltage-gated potassium channels at clinically relevant concentrations. BACKGROUND Recent molecular evidence suggests that the voltage-gated potassium channels Kv 3.1 and Kv 1.1 play an important functional role in the auditory system. Lidocaine is known to influence the auditory system and may thus exert pharmacological effects on these human potassium channels. METHODS Patch-clamp recordings were performed on the pharmacologic action of lidocaine on Kv 3.1 channels natively expressed in SH-SY5Y cells and Kv 1.1 channels expressed in HEK 293 cells. RESULTS Lidocaine reversibly inhibited Kv 3.1 and Kv 1.1 channels in a concentration-dependent manner. The half-maximal inhibitory concentration for conductance block was 607 micromol/L for Kv 3.1 (n=47) and 4,550 micromol/L for Kv 1.1 channels (n=56), respectively. The Hill coefficients were 0.9 and 0.8. Conductance block was voltage dependent for Kv 3.1 but not for Kv 1.1 channels. The midpoint of current activation of both channels was shifted to hyperpolarized potentials. At free plasma concentrations determined during suppression (0.5-1 mg/L; 1.75-3.5 micromol/L) or induction (>1-2 mg/L; >3.5-7 micromol/L) of tinnitus Kv 3.1 and K v1.1 channels would be suppressed by at most 1.5 to 2%. CONCLUSION Human Kv 3.1 and Kv 1.1 channels exhibited different sensitivities to the inhibitory action of lidocaine. The small effect at clinically relevant concentrations suggests that the physiologic roles of Kv 3.1 and Kv 1.1 channels in auditory neurons seem not to be impaired during the therapeutic or diagnostic application of lidocaine in the auditory system.
Collapse
Affiliation(s)
- Sokratis Trellakis
- Department of Otorhinolaryngology, University of Essen, University of Bonn, Hamburg, Germany.
| | | | | | | |
Collapse
|
62
|
Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, Fyffe REW, Walmsley B. Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J Physiol 2005; 571:563-78. [PMID: 16373385 PMCID: PMC1805808 DOI: 10.1113/jphysiol.2005.098780] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is an orderly topographic arrangement of neurones within auditory brainstem nuclei based on sound frequency. Previous immunolabelling studies in the medial nucleus of the trapezoid body (MNTB) have suggested that there may be gradients of voltage-gated currents underlying this tonotopic arrangement. Here, our electrophysiological and immunolabelling results demonstrate that underlying the tonotopic organization of the MNTB is a combination of medio-lateral gradients of low-and high-threshold potassium currents and hyperpolarization-activated cation currents. Our results also show that the intrinsic membrane properties of MNTB neurones produce a topographic gradient of time delays, which may be relevant to sound localization, following previous demonstrations of the importance of the timing of inhibitory input from the MNTB to the medial superior olive (MSO). Most importantly, we demonstrate that, in the MNTB of congenitally deaf mice, which exhibit no spontaneous auditory nerve activity, the normal tonotopic gradients of neuronal properties are absent. Our results suggest an underlying mechanism for the observed topographic gradient of neuronal firing properties in the MNTB, show that an intrinsic neuronal mechanism is responsible for generating a topographic gradient of time-delays, and provide direct evidence that these gradients rely on spontaneous auditory nerve activity during development.
Collapse
Affiliation(s)
- Richardson N Leao
- Synapse and Hearing Laboratory, Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, PO Box 334, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Kuba H, Yamada R, Fukui I, Ohmori H. Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 2005; 25:1924-34. [PMID: 15728832 PMCID: PMC6726073 DOI: 10.1523/jneurosci.4428-04.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaural time difference (ITD) is a cue for localizing a sound source along the horizontal plane and is first determined in the nucleus laminaris (NL) in birds. Neurons in NL are tonotopically organized, such that ITDs are processed separately at each characteristic frequency (CF). Here, we investigated the excitability and coincidence detection of neurons along the tonotopic axis in NL, using a chick brainstem slice preparation. Systematic changes with CF were observed in morphological and electrophysiological properties of NL neurons. These properties included the length of dendrites, the input capacitance, the conductance of hyperpolarization-activated current, and the EPSC time course. In contrast to these gradients, the conductance of low-threshold K+ current and the expression of Kv1.2 channel protein were maximal in the central (middle-CF) region of NL. As a result, the middle-CF neuron had the smallest input resistance and membrane time constant, and consequently the fastest EPSP, and exhibited the most accurate coincidence detection. The specialization of middle-CF neurons as coincidence detectors may account for the high resolution of sound-source localization in the middle-frequency range observed in avians.
Collapse
Affiliation(s)
- Hiroshi Kuba
- Department of Physiology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
64
|
McKay BE, Molineux ML, Mehaffey WH, Turner RW. Kv1 K+ channels control Purkinje cell output to facilitate postsynaptic rebound discharge in deep cerebellar neurons. J Neurosci 2005; 25:1481-92. [PMID: 15703402 PMCID: PMC6725987 DOI: 10.1523/jneurosci.3523-04.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purkinje cells (PCs) generate the sole output of the cerebellar cortex and govern the timing of action potential discharge from neurons of the deep cerebellar nuclei (DCN). Here, we examine how voltage-gated Kv1 K+ channels shape intrinsically generated and synaptically controlled behaviors of PCs and address how the timing of DCN neuron output is modulated by manipulating PC Kv1 channels. Kv1 channels were studied in cerebellar slices at physiological temperatures with Kv1-specific toxins. Outside-out voltage-clamp recordings indicated that Kv1 channels are present in both somatic and dendritic membranes and are activated by Na+ spike-clamp commands. Whole-cell current-clamp recordings revealed that Kv1 K+ channels maintain low frequencies of Na+ spike and Ca-Na burst output, regulate the duration of plateau potentials, and set the threshold for Ca2+ spike discharge. Kv1 channels shaped the characteristics of climbing fiber (CF) responses evoked by extracellular stimulation or intracellular simulated EPSCs. In the presence of Kv1 toxins, CFs discharged spontaneously at approximately 1 Hz. Finally, "Kv1-intact" and "Kv1-deficient" PC tonic and burst outputs were converted to stimulus protocols and used as patterns to stimulate PC axons and synaptically activate DCN neurons. We found that the Kv1-intact patterns facilitated short-latency and high-frequency DCN neuron rebound discharges, whereas DCN neuron output timing was markedly disrupted by the Kv1-deficient stimulus protocols. Our results suggest that Kv1 K+ channels are critical for regulating the excitability of PCs and CFs and optimize the timing of PC outputs to generate appropriate discharge patterns in postsynaptic DCN neurons.
Collapse
Affiliation(s)
- Bruce E McKay
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
65
|
Moody WJ, Bosma MM. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol Rev 2005; 85:883-941. [PMID: 15987798 DOI: 10.1152/physrev.00017.2004] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
At specific stages of development, nerve and muscle cells generate spontaneous electrical activity that is required for normal maturation of intrinsic excitability and synaptic connectivity. The patterns of this spontaneous activity are not simply immature versions of the mature activity, but rather are highly specialized to initiate and control many aspects of neuronal development. The configuration of voltage- and ligand-gated ion channels that are expressed early in development regulate the timing and waveform of this activity. They also regulate Ca2+influx during spontaneous activity, which is the first step in triggering activity-dependent developmental programs. For these reasons, the properties of voltage- and ligand-gated ion channels expressed by developing neurons and muscle cells often differ markedly from those of adult cells. When viewed from this perspective, the reasons for complex patterns of ion channel emergence and regression during development become much clearer.
Collapse
Affiliation(s)
- William J Moody
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
66
|
Cao XJ, Oertel D. Temperature Affects Voltage-Sensitive Conductances Differentially in Octopus Cells of the Mammalian Cochlear Nucleus. J Neurophysiol 2005; 94:821-32. [PMID: 15800074 DOI: 10.1152/jn.01049.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temperature is an important physiological variable the influence of which on macroscopic electrophysiological measurements in slices is not well documented. We show that each of three voltage-sensitive conductances of octopus cells of the mammalian ventral cochlear nucleus (VCN) is affected differently by changes in temperature. As expected, the kinetics of the currents were faster at higher than at lower temperature. Where they could be measured, time constants of activation, deactivation, and inactivation had Q10 values between 1.8 and 4.6. The magnitude of the peak conductances was differentially affected by temperature. While the peak magnitude of the high-voltage-activated K+ conductance, gKH, was unaffected by changes in temperature, the peak of the low-voltage-activated K+ conductance, gKL, was reduced by half when the temperature was lowered from 33 to 23°C ( Q10 = 2). Changing the temperature changed the kinetics and the magnitude of the hyperpolarization-activated mixed cation conductance, gh, but the changes in magnitude were transient. The voltage sensitivity of the three conductances was unaffected by temperature. The action of temperature on these conductances is reflected in the resting potentials and in the shapes of action potentials.
Collapse
Affiliation(s)
- Xiao-Jie Cao
- Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
67
|
Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol 2005; 94:1814-24. [PMID: 15901757 PMCID: PMC1941703 DOI: 10.1152/jn.00374.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Age-related hearing loss (AHL) typically starts from high-frequency regions of the cochlea and over time invades lower-frequency regions. During this progressive hearing loss, sound-evoked activity in spiral ganglion cells is reduced. DBA mice have an early onset of AHL. In this study, we examined synaptic transmission at the endbulb of Held synapse between auditory nerve fibers and bushy cells in the anterior ventral cochlear nucleus (AVCN). Synaptic transmission in hearing-impaired high-frequency areas of the AVCN was altered in old DBA mice. The spontaneous miniature excitatory postsynaptic current (mEPSC) frequency was substantially reduced (about 60%), and mEPSCs were significantly slower (about 115%) and smaller (about 70%) in high-frequency regions of old (average age 45 days) DBA mice compared with tonotopically matched regions of young (average age 22 days) DBA mice. Moreover, synaptic release probability was about 30% higher in high-frequency regions of young DBA than that in old DBA mice. Auditory nerve-evoked EPSCs showed less rectification in old DBA mice, suggesting recruitment of GluR2 subunits into the AMPA receptor complex. No similar age-related changes in synaptic release or EPSCs were found in age-matched, normal hearing young and old CBA mice. Taken together, our results suggest that auditory nerve activity plays a critical role in maintaining normal synaptic function at the endbulb of Held synapse after the onset of hearing. Auditory nerve activity regulates both presynaptic (release probability) and postsynaptic (receptor composition and kinetics) function at the endbulb synapse after the onset of hearing.
Collapse
Affiliation(s)
- Yong Wang
- 1115 Bioinformatics Bldg, CB#7070, Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina 27599-7070, USA.
| | | |
Collapse
|
68
|
Burger RM, Cramer KS, Pfeiffer JD, Rubel EW. Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. J Comp Neurol 2005; 481:6-18. [PMID: 15558730 DOI: 10.1002/cne.20334] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The avian auditory brainstem displays parallel processing, a fundamental feature of vertebrate sensory systems. Nuclei specialized for temporal processing are largely separate from those processing other aspects of sound. One possible exception to this parallel organization is the inhibitory input provided by the superior olivary nucleus (SON) to nucleus angularis (NA), nucleus magnocellularis (NM), and nucleus laminaris (NL) and contralateral SON (SONc). We sought to determine whether single SON neurons project to multiple targets or separate neuronal populations project independently to individual target nuclei. We introduced two different fluorescent tracer molecules into pairs of target nuclei and quantified the extent to which retrogradely labeled SON neurons were double labeled. A large proportion of double-labeled SON somata were observed in all cases in which injections were made into any pair of ipsilateral targets (NA and NM, NA and NL, or NM and NL), suggesting that many individual SON neurons project to multiple targets. In contrast, when injections involved the SONc and any or all of the ipsilateral targets, double labeling was rare, suggesting that contralateral and ipsilateral targets are innervated by distinct populations of SON neurons arising largely from regionally segregated areas of SON. Therefore, at the earliest stages of auditory processing, there is interaction between pathways specialized to process temporal cues and those that process other acoustic features. We present a conceptual model that incorporates these results and suggest that SON circuitry, in part, functions to offset interaural intensity differences in interaural time difference processing.
Collapse
Affiliation(s)
- R Michael Burger
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington 98195-7923, USA
| | | | | | | |
Collapse
|
69
|
Fukui I, Ohmori H. Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis. J Neurosci 2005; 24:7514-23. [PMID: 15329398 PMCID: PMC6729654 DOI: 10.1523/jneurosci.0566-04.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nucleus magnocellularis (NM) is a division of the avian cochlear nucleus that extracts the timing of auditory signals. We compared the membrane excitability and synaptic transmission along the tonotopic axis of NM. Neurons expressed a Kv1.1 potassium channel mRNA and protein predominantly in the high characteristic frequency (CF) region of NM. In contrast, the expression of Kv1.2 mRNA did not change tonotopically. Neurons also showed tonotopic gradients in resting potential, spike threshold, amplitude, and membrane rectification. All neurons were sensitive to 100 nm dendrotoxin, but the effects were most significant in the high CF neurons. The EPSC recorded by minimal stimulation of auditory nerve fibers (ANFs) was 13 times larger in high CF neurons than in low CF neurons. Moreover, EPSCs were generated in an all-or-none manner in the high CF neurons when stimulus intensity was increased, whereas EPSCs were graded in the low CF neurons, indicating multiple axonal inputs. ANF synaptic terminals were visualized by DiI. ANF formed enfolding end-bulbs of Held around the cell body in the high and middle CF region but not in the low CF region. These observations indicate coordinated gradients of neuronal properties both presynaptically and postsynaptically along the tonotopic axis. Such specializations may be suitable for extracting and preserving the timing information of auditory signals over a wide range of acoustic frequencies.
Collapse
Affiliation(s)
- Iwao Fukui
- Department of Physiology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | |
Collapse
|