51
|
Lin EJD, Sainsbury A, Lee NJ, Boey D, Couzens M, Enriquez R, Slack K, Bland R, During MJ, Herzog H. Combined deletion of Y1, Y2, and Y4 receptors prevents hypothalamic neuropeptide Y overexpression-induced hyperinsulinemia despite persistence of hyperphagia and obesity. Endocrinology 2006; 147:5094-101. [PMID: 16873543 DOI: 10.1210/en.2006-0097] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuropeptide Y (NPY) is a key regulator of energy homeostasis and is implicated in the development of obesity and type 2 diabetes. Whereas it is known that hypothalamic administration of exogenous NPY peptides leads to increased body weight gain, hyperphagia, and many hormonal and metabolic changes characteristic of an obesity syndrome, the Y receptor(s) mediating these effects is disputed and unclear. To investigate the role of different Y receptors in the NPY-induced obesity syndrome, we used recombinant adeno-associated viral vector to overexpress NPY in mice deficient of selective single or multiple Y receptors (including Y1, Y2, and Y4). Results from this study demonstrated that long-term hypothalamic overexpression of NPY lead to marked hyperphagia, hypogonadism, body weight gain, enhanced adipose tissue accumulation, hyperinsulinemia, and other hormonal changes characteristic of an obesity syndrome. NPY-induced hyperphagia, hypogonadism, and obesity syndrome persisted in all genotypes studied (Y1(-/-), Y2(-/-), Y2Y4(-/-), and Y1Y2Y4(-/-) mice). However, triple deletion of Y1, Y2, and Y4 receptors prevented NPY-induced hyperinsulinemia. These findings suggest that Y1, Y2, and Y4 receptors under this condition are not crucially involved in NPY's hyperphagic, hypogonadal, and obesogenic effects, but they are responsible for the central regulation of circulating insulin levels by NPY.
Collapse
Affiliation(s)
- En-Ju D Lin
- Neuroscience Research Program, The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Gamble KL, Paul KN, Karom MC, Tosini G, Albers HE. Paradoxical effects of NPY in the suprachiasmatic nucleus. Eur J Neurosci 2006; 23:2488-94. [PMID: 16706855 DOI: 10.1111/j.1460-9568.2006.04784.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) is synchronized by the 24 h, light : dark cycle, and is reset by photic and non-photic cues. The acute effects of light in the SCN include the increase of mRNA levels of the circadian clock gene Per1 and a dramatic reduction of pineal melatonin. Neuropeptide Y (NPY), which appears to mediate the phase-resetting effects of non-photic stimuli, prevents the ability of light, and stimuli that mimic light, to phase shift the circadian clock when injected into the SCN. The purpose of the present study was to determine if NPY inhibits the ability of light to suppress pineal melatonin. Surprisingly, NPY injected into the SCN of hamsters mimicked the effects of light by suppressing pineal melatonin levels. To confirm that NPY inhibited the effects of light on the induction of Per1 mRNA levels, Per1 mRNA levels in the SCN were measured in these same animals. NPY significantly reduced Per1 mRNA levels induced by the light pulse. The suppression of melatonin by NPY appears to be mediated by the same subtype of NPY receptors in the SCN that mediate the modulation of phase shifts. Injection of Y5 receptor agonists mimicked the effects of NPY on pineal melatonin, while injection of a Y2 agonist did not. Thus, these data are the first to demonstrate the paradoxical effects of NPY within the SCN. NPY mimics the effects of light on pineal melatonin and inhibits the effects of light on the induction of Per1 mRNA.
Collapse
Affiliation(s)
- Karen L Gamble
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
53
|
Stanić D, Brumovsky P, Fetissov S, Shuster S, Herzog H, Hökfelt T. Characterization of neuropeptide Y2 receptor protein expression in the mouse brain. I. Distribution in cell bodies and nerve terminals. J Comp Neurol 2006; 499:357-90. [PMID: 16998904 DOI: 10.1002/cne.21046] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid peptide, mediates biological effects by activating Y1, Y2, Y5, and y6 receptors. NPY neurons innervate many brain regions, including the hypothalamus, where NPY is involved in regulation of a broad range of homeostatic functions. We examined, by immunohistochemistry with tyramide signal amplification, the expression of the NPY Y2 receptor (Y2R) in the mouse brain with a newly developed rabbit polyclonal antibody. Y2R immunoreactivity was specific with its absence in Y2R knockout (KO) mice and in adjacent sections following preadsorption with the immunogenic peptide (10(-5) M). Y2R-positive processes were located in many brain regions, including the olfactory bulb, some cortical areas, septum, basal forebrain, nucleus accumbens, amygdala, hippocampus, hypothalamus, substantia nigra compacta, locus coeruleus, and solitary tract nucleus. However, colchicine treatment was needed to detect Y2R-like immunoreactivity in cell bodies in many, but not all, areas. The densest distributions of cell bodies were located in the septum basal forebrain, including the bed nucleus, and amygdala, with lower density in the anterior olfactory nucleus, nucleus accumbens, caudal striatum, CA1, CA2, and CA3 hippocampal fields, preoptic nuclei lateral hypothalamus, and A13 DA cells. The widespread distribution of Y2R-positive cell bodies and fibers suggests that NPY signaling through the Y2R is common in the mouse brain. Localization of the Y2R suggests that it is mostly presynaptic, a view supported by its frequent absence in cell bodies in the normal mouse and its dramatic increase in cell bodies of colchicine-treated mice.
Collapse
Affiliation(s)
- Davor Stanić
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
55
|
Ghamari-Langroudi M, Colmers WF, Cone RD. PYY3-36 inhibits the action potential firing activity of POMC neurons of arcuate nucleus through postsynaptic Y2 receptors. Cell Metab 2005; 2:191-9. [PMID: 16154101 DOI: 10.1016/j.cmet.2005.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/21/2005] [Accepted: 08/09/2005] [Indexed: 11/20/2022]
Abstract
Intracerebroventricular administration of gut peptide PYY3-36 stimulates food intake. In contrast, peripheral administration inhibits food intake, suggesting that the peptide has the opposite effect by virtue of accessing a unique subset of brain sites. A previous study suggested that peripheral PYY3-36 activates anorexigenic POMC neurons in the arcuate nucleus, and this was proposed to be the mechanism underlying the peptide's anorexigenic activity. Here, we demonstrate in an electrophysiological slice preparation that, in contrast to the original model, PYY3-36 potently and reversibly inhibits POMC neurons via postsynaptic Y2 receptors. These data show a complex role for Y2 receptors in regulation of the NPY/POMC circuitry, as they are present as inhibitory receptors on both the orexigenic NPY neurons as well as the anorexigenic POMC neurons. Secondly, these data argue against a direct role of POMC neurons in mediating the anorexigenic response to administration of peripheral PYY3-36.
Collapse
Affiliation(s)
- Masoud Ghamari-Langroudi
- Vollum Institute and Center for the Study of Weight Regulation and Associated Disorders, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
56
|
Park S, Peng XD, Frohman LA, Kineman RD. Expression analysis of hypothalamic and pituitary components of the growth hormone axis in fasted and streptozotocin-treated neuropeptide Y (NPY)-intact (NPY+/+) and NPY-knockout (NPY-/-) mice. Neuroendocrinology 2005; 81:360-71. [PMID: 16244497 DOI: 10.1159/000089101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 08/29/2005] [Indexed: 01/08/2023]
Abstract
In the fasted and the streptozotocin (STZ)-induced diabetic male rat, hypothalamic growth hormone (GH)-releasing hormone (GHRH) mRNA levels, and pulsatile GH release are decreased. These changes are believed to be due to a rise in hypothalamic neuropeptide Y (NPY) that inhibits GHRH expression. To directly test if NPY is required for metabolic regulation of hypothalamic neuropeptides important in GH secretion, NPY, GHRH and somatostatin (SRIH) mRNA levels were determined in fasted (48 h) and STZ-treated wild-type (NPY(+/+)) and NPY-knockout (NPY(-/-)) mice by ribonuclease protection assay. In addition, pituitary receptor mRNA levels for GHRH (GHRH-R), ghrelin (GHS-R) and SRIH (sst2) were assessed by RT-PCR. Under fed conditions the GH axis of NPY(+/+) and NPY(-/-) did not differ. In the NPY(+/+) mouse, fasting resulted in a 23% weight loss and >250% increase in NPY mRNA accompanied by a significant reduction in both GHRH and SRIH mRNA. These changes were associated with increases in pituitary expression of GHRH-R and GHS-R and a concomitant suppression of sst2. In the NPY(-/-) mouse, fasting also resulted in a 23% weight loss and comparable changes in GHRH-R and sst2, but failed to alter GHRH, SRIH and GHS-R mRNA levels. Fasting resulted in an overall increase in circulating GH, which reached significance in the fasted NPY(-/-) mouse. Induction of diabetes in NPY(+/+) mice, using a single, high-dose, STZ injection (150 mg/kg), resulted in modest weight loss (5%), and a 158% increase NPY expression which was associated with reciprocal changes in pituitary GHS-R and sst2 expression, similar to that observed in the fasted state, but no change in hypothalamic GHRH or SRIF expression was observed. Induction of diabetes in NPY(+/+) and NPY(-/-) mice, using a multiple, low-dose, STZ paradigm (5 consecutive daily injections of 40 mg/kg), did not alter body weight, hypothalamic neuropeptide expression or pituitary receptor expression, with the exception that sst2 mRNA levels were suppressed and GH levels did rise in the NPY(-/-) mouse. These observations demonstrate that NPY is not required for basal regulation of the GH axis, but is required for fasting-induced suppression of GHRH and SRIH expression, as well as fasting-induced augmentation of pituitary GHS-R mRNA. In contrast to the rat, fasting clearly did not suppress circulating GH levels in mice, but resulted in an overall rise in mean GH levels, similar to that observed in other mammalian species. The fact that many of the fasting-induced changes in the GH axis were observed in the high-dose STZ-treated mice, but were not observed in the multiple, low-dose paradigm, suggests STZ-mediated modulation of GH axis function is dependent on the severity of the catabolic state and not hyperglycemia.
Collapse
Affiliation(s)
- Seungjoon Park
- Section of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, 820 Damen Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Obesity is quickly becoming one of the most common and debilitating disorders of the developed world. More than 60% of American adults are now overweight or obese, predisposing them to a host of chronic diseases. To understand the etiology of obesity, and to discover new therapies for obesity, we must understand the components of energy balance. In simple terms, energy intake (feeding) must equal energy expenditure (physical activity, basal metabolism and adaptive thermogenesis) for body weight homeostasis. To maintain homeostasis, neurocircuitry must sense both immediate nutritional status and the amount of energy stored in adipose tissue, and must be able to provide appropriate output to balance energy intake and energy expenditure. The brain receives various signals that carry information about nutritional and metabolic status including neuropeptide PYY(3-36), ghrelin, cholecystokinin, leptin, glucose and insulin. Circulating satiety signals access the brain either by "leakage" across circumventricular organs or transport across the blood-brain barrier. Signals can also activate sensory vagal terminals that innervate the whole gastrointestinal tract.
Collapse
Affiliation(s)
- Erin E Jobst
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health Sciences University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
58
|
Fetissov SO, Kopp J, Hökfelt T. Distribution of NPY receptors in the hypothalamus. Neuropeptides 2004; 38:175-88. [PMID: 15337370 DOI: 10.1016/j.npep.2004.05.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptide Y (NPY) neurons abundantly innervate the hypothalamus, where NPY is involved in the regulation and integration of a broad range of homeostatic functions. In order to understand NPY-mediated behavioral, autonomic and neuroendocrine effects, it is important to characterize in detail the distribution of the hypothalamic NPY receptors. In this review, we briefly summarize the origin of NPY and its two related peptides, peptide YY and pancreatic polypeptide in the hypothalamus. Moreover, based on the results obtained with histological techniques such as in situ hybridization, immunohistochemistry and ligand binding, we summarize data on the hypothalamic distribution of the known NPY receptors, the Y1 Y2, Y4 and Y5 receptors as best characterized to date. These NPY receptors are found with individual distribution patterns in many hypothalamic neurons including neuroendocrine motoneurons, magnocellular neurosecretory neurons and numerous neurons connecting the hypothalamus with the limbic and the autonomic nervous systems. The histochemical analyses allow characterization of coexisting molecules and in this way definition of the neurochemistry of NPY circuitries. By showing coexistence of various NPY receptors they provide a morphological basis for in vitro studies showing heterodimerization of NPY receptors. The NPY neurons and their circuitries underlie the integrative role of NPY as a pleiotropic neuropeptide in the regulation of homeostasis.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| | | | | |
Collapse
|