51
|
Chemogenetic activation of VGLUT3-expressing neurons decreases movement. Eur J Pharmacol 2022; 935:175298. [PMID: 36198338 DOI: 10.1016/j.ejphar.2022.175298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the storage of glutamate into secretory vesicles. The VGLUT3 isoform is mainly expressed in neurons that secrete other classical neurotransmitters, including the cholinergic interneurons in the striatum, and VGLUT3-expressing neurons often secrete two distinct neurotransmitters. VGLUT3 is discretely distributed throughout the brain and is found in subpopulations of spinal cord interneurons, in subset of neurons in the dorsal root ganglion, and in Merkel cells. Mice with a global loss of VGLUT3 are hyperactive and the modulation of specific VGLUT3-expressing circuits can lead to changes in movement. In this study, we tested the hypothesis that increased activity of VGLUT3-expressing neurons is associated with decreased movement. Using a mouse line expressing excitatory designer receptor exclusively activated by designer drugs (hM3Dq-DREADD) on VGLUT3-expressing neurons, we showed that activation of hM3Dq signalling acutely decreased locomotor activity. This decreased locomotion was likely not due to circuit changes mediated by glutamate nor acetylcholine released from VGLUT3-expressing neurons, as activation of hM3Dq signalling in mice that do not release glutamate or acetylcholine from VGLUT3-expressing neurons also decreased locomotor activity. This suggests that other neurotransmitters are likely driving this hypoactive phenotype. We used these mouse lines to compare the effects of DREADD agonists in vivo. We observed that clozapine-N-oxide (CNO), clozapine, compound 21 and perlapine show small differences in the speed at which they prompt behavioural responses but the four of them are selective DREADD ligands.
Collapse
|
52
|
Decourt C, Connolly GADP, Ancel C, Inglis MA, Anderson GM. Agouti-related peptide neuronal silencing overcomes delayed puberty in neonatally underfed male mice. J Neuroendocrinol 2022; 34:e13190. [PMID: 36306199 PMCID: PMC9788270 DOI: 10.1111/jne.13190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Agouti-related peptide (AgRP) neurons are thought to indirectly regulate the activity of hypothalamic gonadotrophin-releasing hormone neurons which control fertility. AgRP neurons also drive caloric intake and are modulated by metabolically-relevant hormones, providing a link to the hypothalamic-pituitary-gonadal axis. In mice expressing Cre-dependant designer receptors (DREADDs) in AgRP neurons, we activated or silenced these neurons in vivo using the synthetic ligand clozapine-N-oxide (CNO) to observe the effect of AgRP neuron activity on timing of puberty. To validate these animals, we chronically treated both stimulatory (hM3Dq) and inhibitory (hM4Di) DREADD × AgRP-Cre mice with CNO, observing a pronounced increase and decrease of food intake, respectively, consistent with the known orexigenic effects of these neurons. RNAscope was performed to visually confirm the activation of AgRP neurons. Puberty onset was assessed in males and females. There was no effect on preputial separation in males or vaginal opening and first oestrus in females after CNO treatment from day 26 to 30 to chronically modulate AgRP neurons. Next, to determine whether the delay in puberty onset occurring in response to neonatal underfeeding could be overcome by inhibiting AgRP neuronal activity, mice were raised in large (neonatally underfed) or normal litter sizes. The delay in puberty from underfeeding was completely reversed in CNO-treated AgRP-hM4Di male mice. These data highlight the inhibitory role of AgRP neurons to delay puberty onset when undernutrition occurs during the neonatal period, at least in male mice. TRAIL REGISTRATION NUMBER: JNE-22-0081-OA.R2.
Collapse
Affiliation(s)
| | - George A. D. P. Connolly
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Caroline Ancel
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Megan A. Inglis
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| | - Greg M. Anderson
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago School of Biomedical SciencesDunedinNew Zealand
| |
Collapse
|
53
|
Da Prato LC, Zayan U, Abdallah D, Point V, Schaller F, Pallesi-Pocachard E, Montheil A, Canaan S, Gaiarsa JL, Muscatelli F, Matarazzo V. Early life oxytocin treatment improves thermo-sensory reactivity and maternal behavior in neonates lacking the autism-associated gene Magel2. Neuropsychopharmacology 2022; 47:1901-1912. [PMID: 35396500 PMCID: PMC9485246 DOI: 10.1038/s41386-022-01313-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
Atypical responses to sensory stimuli are considered as a core aspect and early life marker of autism spectrum disorders (ASD). Although recent findings performed in mouse ASD genetic models report sensory deficits, these were explored exclusively during juvenile or adult period. Whether sensory dysfunctions might be present at the early life stage and rescued by therapeutic strategy are fairly uninvestigated. Here we found that under cool environment neonatal mice lacking the autism-associated gene Magel2 present pup calls hypo-reactivity and are retrieved with delay by their wild-type dam. This neonatal atypical sensory reactivity to cool stimuli was not associated with autonomic thermoregulatory alteration but with a deficit of the oxytocinergic system. Indeed, we show in control neonates that pharmacogenetic inactivation of hypothalamic oxytocin neurons mimicked atypical thermosensory reactivity found in Magel2 mutants. Furthermore, pharmacological intranasal administration of oxytocin to Magel2 neonates was able to rescue both the atypical thermosensory response and the maternal pup retrieval. This preclinical study establishes for the first-time early life impairments in thermosensory integration and suggest a therapeutic potential benefit of intranasal oxytocin treatment on neonatal atypical sensory reactivity for autism.
Collapse
Affiliation(s)
| | - Ugo Zayan
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | - Dina Abdallah
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | - Vanessa Point
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, CNRS, LISM, IMM, Marseille, France
| | - Fabienne Schaller
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | | | - Aurélie Montheil
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | - Stéphane Canaan
- grid.5399.60000 0001 2176 4817Aix-Marseille Univ, CNRS, LISM, IMM, Marseille, France
| | - Jean-Luc Gaiarsa
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | - Françoise Muscatelli
- grid.461865.80000 0001 1486 4553Aix Marseille Univ, INSERM, INMED, Marseille, France
| | | |
Collapse
|
54
|
Wenker IC, Boscia AR, Lewis C, Tariq A, Miralles R, Hanflink JC, Saraf P, Patel MK. Forebrain epileptiform activity is not required for seizure-induced apnea in a mouse model of Scn8a epilepsy. Front Neural Circuits 2022; 16:1002013. [PMID: 36160949 PMCID: PMC9490431 DOI: 10.3389/fncir.2022.1002013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8-17% of patients with epilepsy. Although the mechanisms of SUDEP are essentially unknown, one proposed mechanism is respiratory arrest initiated by a convulsive seizure. In mice, we have previously observed that extended apnea occurs during the tonic phase of seizures. Although often survived, tonic seizures became fatal when breathing did not immediately recover postictally. We also found that respiratory muscles were tonically contracted during the apnea, suggesting that muscle contraction could be the cause of apnea. In the present study, we tested the hypothesis that pyramidal neurons of the motor cortex drive motor units during the tonic phase, which produces apnea. Mice harboring the patient-derived N1768D point mutation of an Scn8a allele were crossed with transgenic mice such that inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) receptors were selectively expressed in excitatory forebrain neurons. We then triggered audiogenic and hippocampal (HC) stimulated seizures under control conditions and when excitatory forebrain neurons were inhibited with the synthetic ligand Clozapine-N-Oxide (CNO). We found that inhibition with CNO was sufficient to increase seizure threshold of HC stimulated, but not audiogenic, seizures. In addition, regardless of seizure type, CNO nearly eliminated epileptiform activity that occurred proximal to the tonic phase; however, the seizure behaviors, notably the tonic phase and concomitant apnea, were unchanged. We interpret these results to indicate that while cortical neurons are likely critical for epileptogenesis and seizure initiation, the behavioral manifestations of tonic seizures are generated by neural circuitry in the mid- and/or hindbrain.
Collapse
|
55
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
56
|
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain. Neurosci Bull 2022; 39:368-378. [PMID: 35976535 PMCID: PMC10043090 DOI: 10.1007/s12264-022-00937-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 10/15/2022] Open
Abstract
Chronic pain relief remains an unmet medical need. Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis. Particularly, microglia play a crucial role in the development of chronic pain. To better understand the microglial contribution to chronic pain, specific regional and temporal manipulations of microglia are necessary. Recently, two new approaches have emerged that meet these demands. Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs (DREADDs) specifically in microglia. Similarly, optogenetic tools allow for microglial manipulation via the activation of artificially expressed, light-sensitive proteins. Chemo- and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain. This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders.
Collapse
|
57
|
Kosten L, Emmi SA, Missault S, Keliris GA. Combining magnetic resonance imaging with readout and/or perturbation of neural activity in animal models: Advantages and pitfalls. Front Neurosci 2022; 16:938665. [PMID: 35911983 PMCID: PMC9334914 DOI: 10.3389/fnins.2022.938665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
One of the main challenges in brain research is to link all aspects of brain function: on a cellular, systemic, and functional level. Multimodal neuroimaging methodology provides a continuously evolving platform. Being able to combine calcium imaging, optogenetics, electrophysiology, chemogenetics, and functional magnetic resonance imaging (fMRI) as part of the numerous efforts on brain functional mapping, we have a unique opportunity to better understand brain function. This review will focus on the developments in application of these tools within fMRI studies and highlight the challenges and choices neurosciences face when designing multimodal experiments.
Collapse
Affiliation(s)
- Lauren Kosten
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Serena Alexa Emmi
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Foundation for Research & Technology – Hellas, Heraklion, Greece
| |
Collapse
|
58
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
59
|
Liu Y, Xing H, Ernst AF, Liu C, Maugee C, Yokoi F, Lakshmana M, Li Y. Hyperactivity of Purkinje cell and motor deficits in C9orf72 knockout mice. Mol Cell Neurosci 2022; 121:103756. [PMID: 35843530 PMCID: PMC10369482 DOI: 10.1016/j.mcn.2022.103756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
A hexanucleotide (GGGGCC) repeat expansion in the first intron of the C9ORF72 gene is the most frequently reported genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The cerebellum has not traditionally been thought to be involved in the pathogenesis of C9ORF72-associated ALS/FTD, but recent evidence suggested a potential role. C9ORF72 is highly expressed in the cerebellum. Decreased C9ORF72 transcript and protein levels were detected in the postmortem cerebellum, suggesting a loss-of-function effect of C9ORF72 mutation. This study investigated the role of loss of C9ORF72 function using a C9orf72 knockout mouse line. C9orf72 deficiency led to motor impairment in rotarod, beam-walking, paw-print, open-field, and grip-strength tests. Purkinje cells are the sole output neurons in the cerebellum, and we next determined their involvement in the motor phenotypes. We found hyperactivity of Purkinje cells in the C9orf72 knockout mouse accompanied by a significant increase of the large-conductance calcium-activated potassium channel (BK) protein in the cerebellum. The link between BK and Purkinje cell firing was demonstrated by the acute application of the BK activator that increased the firing frequency of the Purkinje cells ex vivo. In vivo chemogenetic activation of Purkinje cells in wild-type mice led to similar motor deficits in rotarod and beam-walking tests. Our results highlight that C9ORF72 loss alters the activity of the Purkinje cell and potentially the pathogenesis of the disease. Manipulating the Purkinje cell firing or cerebellar output may contribute to C9ORF72-associated ALS/FTD treatment.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Alexis F Ernst
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Canna Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Christian Maugee
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Madepalli Lakshmana
- Department of Immunology and Nano-Medicine, The Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
60
|
Rawat R, Tunc-Ozcan E, McGuire TL, Peng CY, Kessler JA. Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice. Nat Commun 2022; 13:2650. [PMID: 35551462 PMCID: PMC9098911 DOI: 10.1038/s41467-022-30386-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Ketamine treatment decreases depressive symptoms within hours, but the mechanisms mediating these rapid antidepressant effects are unclear. Here, we demonstrate that activity of adult-born immature granule neurons (ABINs) in the mouse hippocampal dentate gyrus is both necessary and sufficient for the rapid antidepressant effects of ketamine. Ketamine treatment activates ABINs in parallel with its behavioral effects in both stressed and unstressed mice. Chemogenetic inhibition of ABIN activity blocks the antidepressant effects of ketamine, indicating that this activity is necessary for the behavioral effects. Conversely, chemogenetic activation of ABINs without any change in neuron numbers mimics both the cellular and the behavioral effects of ketamine, indicating that increased activity of ABINs is sufficient for rapid antidepressant effects. These findings thus identify a specific cell population that mediates the antidepressant actions of ketamine, indicating that ABINs can potentially be targeted to limit ketamine's side effects while preserving its therapeutic efficacy.
Collapse
Affiliation(s)
- Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
61
|
Li YD, Luo YJ, Chen ZK, Quintanilla L, Cherasse Y, Zhang L, Lazarus M, Huang ZL, Song J. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci 2022; 25:630-645. [PMID: 35524139 PMCID: PMC9287980 DOI: 10.1038/s41593-022-01065-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Adult hippocampal neurogenesis plays a critical role in memory and emotion processing, and this process is dynamically regulated by neural circuit activity. However, it remains unknown whether manipulation of neural circuit activity can achieve sufficient neurogenic effects to modulate behavior. Here we report that chronic patterned optogenetic stimulation of supramammillary nucleus (SuM) neurons in the mouse hypothalamus robustly promotes neurogenesis at multiple stages, leading to increased production of neural stem cells and behaviorally relevant adult-born neurons (ABNs) with enhanced maturity. Functionally, selective manipulation of the activity of these SuM-promoted ABNs modulates memory retrieval and anxiety-like behaviors. Furthermore, we show that SuM neurons are highly responsive to environmental novelty (EN) and are required for EN-induced enhancement of neurogenesis. Moreover, SuM is required for ABN activity-dependent behavioral modulation under a novel environment. Our study identifies a key hypothalamic circuit that couples novelty signals to the production and maturation of ABNs, and highlights the activity-dependent contribution of circuit-modified ABNs in behavioral regulation.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ze-Ka Chen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luis Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Libo Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Genescu I, Aníbal-Martínez M, Kouskoff V, Chenouard N, Mailhes-Hamon C, Cartonnet H, Lokmane L, Rijli FM, López-Bendito G, Gambino F, Garel S. Dynamic interplay between thalamic activity and Cajal-Retzius cells regulates the wiring of cortical layer 1. Cell Rep 2022; 39:110667. [PMID: 35417707 PMCID: PMC9035679 DOI: 10.1016/j.celrep.2022.110667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development. Prenatal thalamic waves of activity regulate CRc density in L1 Prenatal and postnatal CRc manipulations alter specific interneuron populations Postnatal CRc shape L5 apical dendrite structural and functional properties Early sensory activity selectively regulates L5 basal dendrite spine formation
Collapse
Affiliation(s)
- Ioana Genescu
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Mar Aníbal-Martínez
- Instituto de Neurosciencias de Alicante, Universidad Miguel Hernandez, Sant Joan d'Alacant, Spain
| | - Vladimir Kouskoff
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Nicolas Chenouard
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Caroline Mailhes-Hamon
- Acute Transgenesis Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4056 Basel, Switzerland
| | | | - Frédéric Gambino
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS UMR 5297, 33000 Bordeaux, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Collège de France, 75005 Paris, France.
| |
Collapse
|
63
|
Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat Commun 2022; 13:1652. [PMID: 35351896 PMCID: PMC8964770 DOI: 10.1038/s41467-022-29231-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2022] [Indexed: 01/05/2023] Open
Abstract
AbstractObesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte Gq signaling in vitro and in vivo (in mice). Activation of this pathway by a Gq-coupled designer receptor or by an agonist acting on an endogenous adipocyte Gq-coupled receptor (CysLT2 receptor) greatly improved glucose and lipid homeostasis in obese mice or in mice with adipocyte insulin receptor deficiency. Our findings identify adipocyte Gq signaling as an essential regulator of whole-body glucose and lipid homeostasis and should inform the development of novel classes of GPCR-based antidiabetic drugs.
Collapse
|
64
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
65
|
Li AA, Wang F, Wu S, Zhang X. Emergence of probabilistic representation in the neural network of primary visual cortex. iScience 2022; 25:103975. [PMID: 35310336 PMCID: PMC8924637 DOI: 10.1016/j.isci.2022.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
During the early development of the mammalian visual system, the distribution of neuronal preferred orientations in the primary visual cortex (V1) gradually shifts to match major orientation features of the environment, achieving its optimal representation. By combining computational modeling and electrophysiological recording, we provide a circuit plasticity mechanism that underlies the developmental emergence of such matched representation in the visual cortical network. Specifically, in a canonical circuit of densely-interconnected pyramidal cells and inhibitory parvalbumin-expressing (PV+) fast-spiking interneurons in V1 layer 2/3, our model successfully simulates the experimental observations and further reveals that the nonuniform inhibition plays a key role in shaping the network representation through spike timing-dependent plasticity. The experimental results suggest that PV + interneurons in V1 are capable of providing nonuniform inhibition shortly after vision onset. Our study elucidates a circuit mechanism for acquisition of prior knowledge of environment for optimal inference in sensory neural systems Computational and experimental methods are combined to representation in mice V1 Nonuniform inhibition plays a key role in shaping the network representation PV + interneurons provide nonuniform inhibition shortly after vision onset
Collapse
Affiliation(s)
- Ang A Li
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Fengchao Wang
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Si Wu
- Academy for Advanced Interdisciplinary Studies, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China.,School of Psychology and Cognitive Sciences, Peking University, Beijing, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
66
|
Császár E, Lénárt N, Cserép C, Környei Z, Fekete R, Pósfai B, Balázsfi D, Hangya B, Schwarcz AD, Szabadits E, Szöllősi D, Szigeti K, Máthé D, West BL, Sviatkó K, Brás AR, Mariani JC, Kliewer A, Lenkei Z, Hricisák L, Benyó Z, Baranyi M, Sperlágh B, Menyhárt Á, Farkas E, Dénes Á. Microglia modulate blood flow, neurovascular coupling, and hypoperfusion via purinergic actions. J Exp Med 2022; 219:e20211071. [PMID: 35201268 PMCID: PMC8932534 DOI: 10.1084/jem.20211071] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Microglia, the main immunocompetent cells of the brain, regulate neuronal function, but their contribution to cerebral blood flow (CBF) regulation has remained elusive. Here, we identify microglia as important modulators of CBF both under physiological conditions and during hypoperfusion. Microglia establish direct, dynamic purinergic contacts with cells in the neurovascular unit that shape CBF in both mice and humans. Surprisingly, the absence of microglia or blockade of microglial P2Y12 receptor (P2Y12R) substantially impairs neurovascular coupling in mice, which is reiterated by chemogenetically induced microglial dysfunction associated with impaired ATP sensitivity. Hypercapnia induces rapid microglial calcium changes, P2Y12R-mediated formation of perivascular phylopodia, and microglial adenosine production, while depletion of microglia reduces brain pH and impairs hypercapnia-induced vasodilation. Microglial actions modulate vascular cyclic GMP levels but are partially independent of nitric oxide. Finally, microglial dysfunction markedly impairs P2Y12R-mediated cerebrovascular adaptation to common carotid artery occlusion resulting in hypoperfusion. Thus, our data reveal a previously unrecognized role for microglia in CBF regulation, with broad implications for common neurological diseases.
Collapse
Affiliation(s)
- Eszter Császár
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Diána Balázsfi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D. Schwarcz
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Szabadits
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Domokos Máthé
- Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | | | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Ana Rita Brás
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Schools of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Jean-Charles Mariani
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Andrea Kliewer
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Zsolt Lenkei
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université de Paris, Paris, France
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- “Momentum” Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
67
|
Ruiz-Tejada A, Neisewander J, Katsanos CS. Regulation of Voluntary Physical Activity Behavior: A Review of Evidence Involving Dopaminergic Pathways in the Brain. Brain Sci 2022; 12:brainsci12030333. [PMID: 35326289 PMCID: PMC8946175 DOI: 10.3390/brainsci12030333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Physical activity leads to well-established health benefits. Current efforts to enhance physical activity have targeted mainly socioeconomic factors. However, despite these efforts, only a small number of adults engage in regular physical activity to the point of meeting current recommendations. Evidence collected in rodent models and humans establish a strong central nervous system component that regulates physical activity behavior. In particular, dopaminergic pathways in the central nervous system are among the best-characterized biological mechanisms to date with respect to regulating reward, motivation, and habit formation, which are critical for establishing regular physical activity. Herein, we discuss evidence for a role of brain dopamine in the regulation of voluntary physical activity behavior based on selective breeding and pharmacological studies in rodents, as well as genetic studies in both rodents and humans. While these studies establish a role of dopamine and associated mechanisms in the brain in the regulation of voluntary physical activity behavior, there is clearly need for more research on the underlying biology involved in motivation for physical activity and the formation of a physical activity habit. Such knowledge at the basic science level may ultimately be translated into better strategies to enhance physical activity levels within the society.
Collapse
|
68
|
Hilgen G, Kartsaki E, Kartysh V, Cessac B, Sernagor E. A novel approach to the functional classification of retinal ganglion cells. Open Biol 2022; 12:210367. [PMID: 35259949 PMCID: PMC8905177 DOI: 10.1098/rsob.210367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinal neurons are remarkedly diverse based on structure, function and genetic identity. Classifying these cells is a challenging task, requiring multimodal methodology. Here, we introduce a novel approach for retinal ganglion cell (RGC) classification, based on pharmacogenetics combined with immunohistochemistry and large-scale retinal electrophysiology. Our novel strategy allows grouping of cells sharing gene expression and understanding how these cell classes respond to basic and complex visual scenes. Our approach consists of several consecutive steps. First, the spike firing frequency is increased in RGCs co-expressing a certain gene (Scnn1a or Grik4) using excitatory DREADDs (designer receptors exclusively activated by designer drugs) in order to single out activity originating specifically from these cells. Their spike location is then combined with post hoc immunostaining, to unequivocally characterize their anatomical and functional features. We grouped these isolated RGCs into multiple clusters based on spike train similarities. Using this novel approach, we were able to extend the pre-existing list of Grik4-expressing RGC types to a total of eight and, for the first time, we provide a phenotypical description of 13 Scnn1a-expressing RGCs. The insights and methods gained here can guide not only RGC classification but neuronal classification challenges in other brain regions as well.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Health and Life Sciences, Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Evgenia Kartsaki
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Viktoriia Kartysh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), 1090 Vienna, Austria,Research Centre for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Bruno Cessac
- Université Côte d'Azur, Inria, Biovision team and Neuromod Institute, 06902 Sophia Antipolis Cedex, France
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
69
|
Daimon CM, Hentges ST. Inhibition of POMC neurons in mice undergoing activity-based anorexia selectively blunts food anticipatory activity without affecting body weight or food intake. Am J Physiol Regul Integr Comp Physiol 2022; 322:R219-R227. [PMID: 35043681 PMCID: PMC8858678 DOI: 10.1152/ajpregu.00313.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anorexia nervosa (AN) is a debilitating eating disorder characterized by severely restricted eating and significant body weight loss. In addition, many individuals also report engaging in excessive exercise. Previous research using the activity-based anorexia (ABA) model has implicated the hypothalamic proopiomelanocortin (POMC) system. Using the ABA model, Pomc mRNA has been shown to be transiently elevated in both male and female rodents undergoing ABA. In addition, the POMC peptide β-endorphin appears to contribute to food anticipatory activity (FAA), a characteristic of ABA, as both deletion and antagonism of the µ opioid receptor (MOR) that β-endorphin targets, results in decreased FAA. The role of β-endorphin in reduced food intake in ABA is unknown and POMC neurons release multiple transmitters in addition to β-endorphin. In the current study, we set out to determine whether targeted inhibition of POMC neurons themselves rather than their peptide products would lessen the severity of ABA. Inhibition of POMC neurons during ABA via chemogenetic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology resulted in reduced FAA in both male and female mice with no significant changes in body weight or food intake. The selective reduction in FAA persisted even in the face of concurrent chemogenetic inhibition of additional cell types in the hypothalamic arcuate nucleus. The results suggest that POMC neurons could be contributing preferentially to excessive exercise habits in patients with AN. Furthermore, the results also suggest that metabolic control during ABA appears to take place via a POMC neuron-independent mechanism.
Collapse
Affiliation(s)
- Caitlin M. Daimon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T. Hentges
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
70
|
Leitch B. The Impact of Glutamatergic Synapse Dysfunction in the Corticothalamocortical Network on Absence Seizure Generation. Front Mol Neurosci 2022; 15:836255. [PMID: 35237129 PMCID: PMC8882758 DOI: 10.3389/fnmol.2022.836255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy affecting 10–18% of all children with epilepsy. It is genetic in origin and the result of dysfunction within the corticothalamocortical (CTC) circuitry. Network dysfunction may arise from multifactorial mechanisms in patients from different genetic backgrounds and thus account for the variability in patient response to currently available anti-epileptic drugs; 30% of children with absence seizures are pharmaco-resistant. This review considers the impact of deficits in AMPA receptor-mediated excitation of feed-forward inhibition (FFI) in the CTC, on absence seizure generation. AMPA receptors are glutamate activated ion channels and are responsible for most of the fast excitatory synaptic transmission throughout the CNS. In the stargazer mouse model of absence epilepsy, the genetic mutation is in stargazin, a transmembrane AMPA receptor trafficking protein (TARP). This leads to a defect in AMPA receptor insertion into synapses in parvalbumin-containing (PV+) inhibitory interneurons in the somatosensory cortex and thalamus. Mutation in the Gria4 gene, which encodes for the AMPA receptor subunit GluA4, the predominant AMPA receptor subunit in cortical and thalamic PV + interneurons, also leads to absence seizures. This review explores the impact of glutamatergic synapse dysfunction in the CTC network on absence seizure generation. It also discusses the cellular and molecular mechanisms involved in the pathogenesis of childhood absence epilepsy.
Collapse
|
71
|
Lopez-Rojas J, de Solis CA, Leroy F, Kandel ER, Siegelbaum SA. A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory. Neuron 2022; 110:1559-1572.e4. [PMID: 35180391 PMCID: PMC9081137 DOI: 10.1016/j.neuron.2022.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022]
Abstract
The hippocampus is essential for different forms of declarative memory, including social memory, the ability to recognize and remember a conspecific. Although recent studies identify the importance of the dorsal CA2 region of the hippocampus in social memory storage, little is known about its sources of social information. Because CA2, like other hippocampal regions, receives its major source of spatial and non-spatial information from the medial and lateral subdivisions of entorhinal cortex (MEC and LEC), respectively, we investigated the importance of these inputs for social memory. Whereas MEC inputs to CA2 are dispensable, the direct inputs to CA2 from LEC are both selectively activated during social exploration and required for social memory. This selective behavioral role of LEC is reflected in the stronger excitatory drive it provides to CA2 compared with MEC. Thus, a direct LEC → CA2 circuit is tuned to convey social information that is critical for social memory.
Collapse
Affiliation(s)
- Jeffrey Lopez-Rojas
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| | - Christopher A de Solis
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA
| | - Felix Leroy
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA; Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, Spain
| | - Eric R Kandel
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Steven A Siegelbaum
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
72
|
Newmaster KT, Kronman FA, Wu YT, Kim Y. Seeing the Forest and Its Trees Together: Implementing 3D Light Microscopy Pipelines for Cell Type Mapping in the Mouse Brain. Front Neuroanat 2022; 15:787601. [PMID: 35095432 PMCID: PMC8794814 DOI: 10.3389/fnana.2021.787601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of diverse neuronal and non-neuronal cell types with complex regional connectivity patterns that create the anatomical infrastructure underlying cognition. Remarkable advances in neuroscience techniques enable labeling and imaging of these individual cell types and their interactions throughout intact mammalian brains at a cellular resolution allowing neuroscientists to examine microscopic details in macroscopic brain circuits. Nevertheless, implementing these tools is fraught with many technical and analytical challenges with a need for high-level data analysis. Here we review key technical considerations for implementing a brain mapping pipeline using the mouse brain as a primary model system. Specifically, we provide practical details for choosing methods including cell type specific labeling, sample preparation (e.g., tissue clearing), microscopy modalities, image processing, and data analysis (e.g., image registration to standard atlases). We also highlight the need to develop better 3D atlases with standardized anatomical labels and nomenclature across species and developmental time points to extend the mapping to other species including humans and to facilitate data sharing, confederation, and integrative analysis. In summary, this review provides key elements and currently available resources to consider while developing and implementing high-resolution mapping methods.
Collapse
Affiliation(s)
- Kyra T Newmaster
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Fae A Kronman
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yuan-Ting Wu
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
73
|
Wess J. In Vivo Metabolic Roles of G Proteins of the Gi Family Studied With Novel Mouse Models. Endocrinology 2022; 163:6453469. [PMID: 34871353 PMCID: PMC8691396 DOI: 10.1210/endocr/bqab245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors (GPCRs) are the target of ~30% to 35% of all US Food and Drug Administration-approved drugs. The individual members of the GPCR superfamily couple to 1 or more functional classes of heterotrimeric G proteins. The physiological outcome of activating a particular GPCR in vivo depends on the pattern of receptor distribution and the type of G proteins activated by the receptor. Based on the structural and functional properties of their α-subunits, heterotrimeric G proteins are subclassified into 4 major families: Gs, Gi/o, Gq/11, and G12/13. Recent studies with genetically engineered mice have yielded important novel insights into the metabolic roles of Gi/o-type G proteins. For example, recent data indicate that Gi signaling in pancreatic α-cells plays a key role in regulating glucagon release and whole body glucose homeostasis. Receptor-mediated activation of hepatic Gi signaling stimulates hepatic glucose production, suggesting that inhibition of hepatic Gi signaling could prove clinically useful to reduce pathologically elevated blood glucose levels. Activation of adipocyte Gi signaling reduces plasma free fatty acid levels, thus leading to improved insulin sensitivity in obese, glucose-intolerant mice. These new data suggest that Gi-coupled receptors that are enriched in metabolically important cell types represent potential targets for the development of novel drugs useful for the treatment of type 2 diabetes and related metabolic disorders.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0810, USA
- Correspondence: Jürgen Wess, PhD, Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIH-NIDDK, Bldg. 8A, Room B1A-05, 8 Center Drive MSC 0810, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
74
|
Defaye M, Abdullah NS, Iftinca M, Hassan A, Agosti F, Zhang Z, Cumenal M, Zamponi GW, Altier C. Gut-innervating TRPV1+ Neurons Drive Chronic Visceral Pain via Microglial P2Y12 Receptor. Cell Mol Gastroenterol Hepatol 2021; 13:977-999. [PMID: 34954381 PMCID: PMC8867057 DOI: 10.1016/j.jcmgh.2021.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic abdominal pain is a common symptom of inflammatory bowel diseases (IBDs). Peripheral and central mechanisms contribute to the transition from acute to chronic pain during active disease and clinical remission. Lower mechanical threshold and hyperexcitability of visceral afferents induce gliosis in central pain circuits, leading to persistent visceral hypersensitivity (VHS). In the spinal cord, microglia, the immune sentinels of the central nervous system, undergo activation in multiple models of VHS. Here, we investigated the mechanisms of microglia activation to identify centrally acting analgesics for chronic IBD pain. METHODS Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) expressed in transient receptor potential vanilloid member 1-expressing visceral neurons that sense colonic inflammation, we tested whether neuronal activity was indispensable to control microglia activation and VHS. We then investigated the neuron-microglia signaling system involved in visceral pain chronification. RESULTS We found that chemogenetic inhibition of transient receptor potential vanilloid member 1+ visceral afferents prevents microglial activation in the spinal cord and subsequent VHS in colitis mice. In contrast, chemogenetic activation, in the absence of colitis, enhanced microglial activation associated with VHS. We identified a purinergic signaling mechanism mediated by neuronal adenosine triphosphate (ATP) and microglial P2Y12 receptor, triggering VHS in colitis. Inhibition of P2RY12 prevented microglial reactivity and chronic VHS post-colitis. CONCLUSIONS Overall, these data provide novel insights into the central mechanisms of chronic visceral pain and suggest that targeting microglial P2RY12 signaling could be harnessed to relieve pain in patients with IBD who are in remission.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melissa Cumenal
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Calgary, Alberta, Canada,Inflammation Research Network-Snyder Institute for Chronic Diseases, Calgary, Alberta, Canada,Alberta Children's Hospital Research Institute, Cumming School of Medicine, Calgary, Alberta, Canada,Correspondence Address correspondence to: Christophe Altier, PhD, Associate Professor, Canada Research Chair in Inflammatory Pain, Department of Physiology & Pharmacology, Inflammation Research Network, Snyder Institute for Chronic Diseases, University of Calgary, HS 1665, 3330 Hospital Dr NW, Calgary, AB, T2N4N1 Canada. tel: (403) 220-7549.
| |
Collapse
|
75
|
Tunc-Ozcan E, Brooker SM, Bonds JA, Tsai YH, Rawat R, McGuire TL, Peng CY, Kessler JA. Hippocampal BMP signaling as a common pathway for antidepressant action. Cell Mol Life Sci 2021; 79:31. [PMID: 34936033 PMCID: PMC8740160 DOI: 10.1007/s00018-021-04026-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA.
| | - Sarah M Brooker
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Jacqueline A Bonds
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| |
Collapse
|
76
|
Metz MJ, Daimon CM, King CM, Rau AR, Hentges ST. Individual arcuate nucleus proopiomelanocortin neurons project to select target sites. Am J Physiol Regul Integr Comp Physiol 2021; 321:R982-R989. [PMID: 34755553 PMCID: PMC8714814 DOI: 10.1152/ajpregu.00169.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) are a diverse group of neurons that project widely to different brain regions. It is unknown how this small population of neurons organizes its efferent projections. In this study, we hypothesized that individual ARH POMC neurons exclusively innervate select target regions. To investigate this hypothesis, we first verified that only a fraction of ARH POMC neurons innervate the lateral hypothalamus (LH), the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray (PAG), or the ventral tegmental area (VTA) using the retrograde tracer cholera toxin B (CTB). Next, two versions of CTB conjugated to distinct fluorophores were injected bilaterally into two of the regions such that PVN and VTA, PAG and VTA, or LH and PVN received tracers simultaneously. These pairs of target sites were chosen based on function and location. Few individual ARH POMC neurons projected to two brain regions at once, suggesting that there are ARH POMC neuron subpopulations organized by their efferent projections. We also investigated whether increasing the activity of POMC neurons could increase the number of ARH POMC neurons labeled with CTB, implying an increase in new synaptic connections to downstream regions. However, chemogenetic enhancement of POMC neuron activity did not increase retrograde tracing of CTB back to ARH POMC neurons from either the LH, PVN, or VTA. Overall, subpopulations of ARH POMC neurons with distinct efferent projections may serve as a way for the POMC population to organize its many functions.
Collapse
Affiliation(s)
- Marissa J Metz
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Connie M King
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Andrew R Rau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
77
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
78
|
Liu L, Dattaroy D, Simpson KF, Barella LF, Cui Y, Xiong Y, Jin J, König GM, Kostenis E, Roman JC, Kaestner KH, Doliba NM, Wess J. α-cell Gq signaling is critical for maintaining euglycemia. JCI Insight 2021; 6:152852. [PMID: 34752420 PMCID: PMC8783673 DOI: 10.1172/jci.insight.152852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining euglycemia. New insights into the signaling pathways that control glucagon secretion may stimulate the development of novel therapeutic agents. In this study, we investigated the potential regulation of α cell function by G proteins of the Gq family. The use of a chemogenetic strategy allowed us to selectively activate Gq signaling in mouse α cells in vitro and in vivo. Acute stimulation of α cell Gq signaling led to elevated plasma glucagon levels, accompanied by increased insulin release and improved glucose tolerance. Moreover, chronic activation of this pathway greatly improved glucose tolerance in obese mice. We also identified an endogenous Gq-coupled receptor (vasopressin 1b receptor; V1bR) that was enriched in mouse and human α cells. Agonist-induced activation of the V1bR strongly stimulated glucagon release in a Gq-dependent fashion. In vivo studies indicated that V1bR-mediated glucagon release played a key role in the counterregulatory hyperglucagonemia under hypoglycemic and glucopenic conditions. These data indicate that α cell Gq signaling represents an important regulator of glucagon secretion, resulting in multiple beneficial metabolic effects. Thus, drugs that target α cell–enriched Gq-coupled receptors may prove useful to restore euglycemia in various pathophysiological conditions.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Diptadip Dattaroy
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Katherine F Simpson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Luiz F Barella
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Yinghong Cui
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| | - Yan Xiong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jefferey C Roman
- Institute of Diabetes, Obesity, and Metabolism, The University of Pennsylvania, Philadelphia, United States of America
| | - Klaus H Kaestner
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadeplhia, United States of America
| | - Nicolai M Doliba
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, The University of Pennsylvania, Philadeplhia, United States of America
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States of America
| |
Collapse
|
79
|
Wan J, Wang J, Wagner LE, Wang OH, Gui F, Chen J, Zhu X, Haddock AN, Edenfield BH, Haight B, Mukhopadhyay D, Wang Y, Yule DI, Bi Y, Ji B. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight 2021; 6:132585. [PMID: 34314386 PMCID: PMC8492327 DOI: 10.1172/jci.insight.132585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Hyperstimulation of the cholecystokinin 1 receptor (CCK1R), a G protein-coupled receptor (GPCR), in pancreatic acinar cells is commonly used to induce pancreatitis in rodents. Human pancreatic acinar cells lack CCK1R but express cholinergic receptor muscarinic 3 (M3R), another GPCR. To test whether M3R activation is involved in pancreatitis, a mutant M3R was conditionally expressed in pancreatic acinar cells in mice. This mutant receptor loses responsiveness to its native ligand, acetylcholine, but can be activated by an inert small molecule, clozapine-N-oxide (CNO). Intracellular calcium and amylase were elicited by CNO in pancreatic acinar cells isolated from mutant M3R mice but not WT mice. Similarly, acute pancreatitis (AP) could be induced by a single injection of CNO in the transgenic mice but not WT mice. Compared with the cerulein-induced AP, CNO caused more widespread acinar cell death and inflammation. Furthermore, chronic pancreatitis developed at 4 weeks after 3 episodes of CNO-induced AP. In contrast, in mice with 3 recurrent episodes of cerulein-included AP, pancreas histology was restored in 4 weeks. Furthermore, the M3R antagonist ameliorated the severity of cerulein-induced AP in WT mice. We conclude that M3R activation can cause the pathogenesis of pancreatitis. This model may provide an alternative approach for pancreatitis research.
Collapse
Affiliation(s)
- Jianhua Wan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Oliver H. Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Fu Gui
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ashley N. Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Brian Haight
- Prodo Laboratories Inc., Aliso Viejo, California, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
80
|
Advances in Gene Delivery Methods to Label and Modulate Activity of Upper Motor Neurons: Implications for Amyotrophic Lateral Sclerosis. Brain Sci 2021; 11:brainsci11091112. [PMID: 34573134 PMCID: PMC8471472 DOI: 10.3390/brainsci11091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The selective degeneration of both upper motor neurons (UMNs) and lower motor neurons (LMNs) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). Unlike the simple organisation of LMNs in the brainstem and spinal cord, UMNs are embedded in the complex cytoarchitecture of the primary motor cortex, which complicates their identification. UMNs therefore remain a challenging neuronal population to study in ALS research, particularly in the early pre-symptomatic stages of animal models. A better understanding of the mechanisms that lead to selective UMN degeneration requires unequivocal visualization and cellular identification of vulnerable UMNs within the heterogeneous cortical neuronal population and circuitry. Here, we review recent novel gene delivery methods developed to cellularly identify vulnerable UMNs and modulate their activity in various mouse models. A critical overview of retrograde tracers, viral vectors encoding reporter genes and transgenic reporter mice used to visualize UMNs in mouse models of ALS is provided. Functional targeting of UMNs in vivo with the advent of optogenetic and chemogenetic technology is also discussed. These exciting gene delivery techniques will facilitate improved anatomical mapping, cell-specific gene expression profiling and targeted manipulation of UMN activity in mice. These advancements in the field pave the way for future work to uncover the precise role of UMNs in ALS and improve future therapeutic targeting of UMNs.
Collapse
|
81
|
Panthi S, Leitch B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front Cell Neurosci 2021; 15:688905. [PMID: 34122016 PMCID: PMC8193234 DOI: 10.3389/fncel.2021.688905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Parvalbumin-expressing (PV+) interneurons are a subset of GABAergic inhibitory interneurons that mediate feed-forward inhibition (FFI) within the cortico-thalamocortical (CTC) network of the brain. The CTC network is a reciprocal loop with connections between cortex and thalamus. FFI PV+ interneurons control the firing of principal excitatory neurons within the CTC network and prevent runaway excitation. Studies have shown that generalized spike-wave discharges (SWDs), the hallmark of absence seizures on electroencephalogram (EEG), originate within the CTC network. In the stargazer mouse model of absence epilepsy, reduced FFI is believed to contribute to absence seizure genesis as there is a specific loss of excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at synaptic inputs to PV+ interneurons within the CTC network. However, the degree to which this deficit is directly related to seizure generation has not yet been established. Using chemogenetics and in vivo EEG recording, we recently demonstrated that functional silencing of PV+ interneurons in either the somatosensory cortex (SScortex) or the reticular thalamic nucleus (RTN) is sufficient to generate absence-SWDs. Here, we used the same approach to assess whether activating PV+ FFI interneurons within the CTC network during absence seizures would prevent or reduce seizures. To target these interneurons, mice expressing Cre recombinase in PV+ interneurons (PV-Cre) were bred with mice expressing excitatory Gq-DREADD (hM3Dq-flox) receptors. An intraperitoneal dose of pro-epileptic chemical pentylenetetrazol (PTZ) was used to induce absence seizure. The impact of activation of FFI PV+ interneurons during seizures was tested by focal injection of the “designer drug” clozapine N-oxide (CNO) into either the SScortex or the RTN thalamus. Seizures were assessed in PVCre/Gq-DREADD animals using EEG/video recordings. Overall, DREADD-mediated activation of PV+ interneurons provided anti-epileptic effects against PTZ-induced seizures. CNO activation of FFI either prevented PTZ-induced absence seizures or suppressed their severity. Furthermore, PTZ-induced tonic-clonic seizures were also reduced in severity by activation of FFI PV+ interneurons. In contrast, administration of CNO to non-DREADD wild-type control animals did not afford any protection against PTZ-induced seizures. These data demonstrate that FFI PV+ interneurons within CTC microcircuits could be a potential therapeutic target for anti-absence seizure treatment in some patients.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
82
|
Ozawa A, Arakawa H. Chemogenetics drives paradigm change in the investigation of behavioral circuits and neural mechanisms underlying drug action. Behav Brain Res 2021; 406:113234. [PMID: 33741409 PMCID: PMC8110310 DOI: 10.1016/j.bbr.2021.113234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Recent developments in chemogenetic approaches to the investigation of brain function have ushered in a paradigm change in the strategy for drug and behavior research and clinical drug-based medications. As the nature of the drug action is based on humoral regulation, it is a challenge to identify the neuronal mechanisms responsible for the expression of certain targeted behavior induced by drug application. The development of chemogenetic approaches has allowed researchers to control neural activities in targeted neurons through a toolbox, including engineered G protein-coupled receptors or ligand-gated ion channels together with exogenously inert synthetic ligands. This review provides a brief overview of the chemogenetics toolbox with an emphasis on the DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) technique used in rodent models, which is applicable to the investigation of how specific neural circuits regulate behavioral processes. The use of chemogenetics has had a significant impact on basic neuroscience for a better understanding of the relationships between brain activity and the expression of behaviors with cell- and circuit-specific orders. Furthermore, chemogenetics is potentially a useful tool to deconstruct the neuropathological mechanisms of mental diseases and its regulation by drug, and provide us with transformative therapeutics with medication. We also review recent findings in the use of chemogenetic techniques to uncover functional circuit connections of serotonergic neurons in rodent models.
Collapse
Affiliation(s)
- Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, USA
| | - Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, Mito, Ibaraki, Japan; Department of Systems Physiology, University of Ryukyus, Faculty of Medicine, Nakagami District, Okinawa, Japan.
| |
Collapse
|
83
|
Devi S, Alexandre YO, Loi JK, Gillis R, Ghazanfari N, Creed SJ, Holz LE, Shackleford D, Mackay LK, Heath WR, Sloan EK, Mueller SN. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 2021; 54:1219-1230.e7. [PMID: 33915109 DOI: 10.1016/j.immuni.2021.03.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of β-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.
Collapse
Affiliation(s)
- Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Ryan Gillis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052 Australia
| | - Nazanin Ghazanfari
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sarah J Creed
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052 Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - David Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052 Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, 3000, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052 Australia; Division of Surgery, Peter MacCallum Cancer Center, Victoria, 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia; The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
84
|
Disruption of neonatal Purkinje cell function underlies injury-related learning deficits. Proc Natl Acad Sci U S A 2021; 118:2017876118. [PMID: 33688045 PMCID: PMC7980280 DOI: 10.1073/pnas.2017876118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Injury to the cerebellum during late fetal and early postnatal life is associated with long-term motor and cognitive deficits. It is thought that injury at this stage of development results in delayed maturation of neural circuitry, causing altered behavior at later stages. This study identifies the neural basis of locomotor learning deficits in the cerebellum using a clinically relevant model of neonatal brain injury. By combining fiber-optic-enabled Purkinje cell activity measurement during locomotor behavior, we provide evidence for long-term changes in neuronal responses during learning. By artificially reducing Purkinje cell function during the neonatal stage, we observed similarly altered physiological responses as those seen in injury. Our findings indicate that injury-related inhibition of developing Purkinje cells causes long-term locomotor dysfunction. It is hypothesized that perinatal cerebellar injury leads to long-term functional deficits due to circuit dysmaturation. Using a novel integration of GCaMP6f fiber photometry with automated measurement of cerebellar behavior using the ErasmusLadder, we causally link cerebellar injury to altered Purkinje cell responses during maladaptive behavior. Chemogenetic inhibition of neonatal Purkinje cells is sufficient to phenocopy the effects of perinatal cerebellar injury. Our results uncover a direct link between perinatal cerebellar injury and activity-dependent maturation of cerebellar cortex.
Collapse
|
85
|
Meister J, Wang L, Pydi SP, Wess J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. J Neurochem 2021; 158:603-620. [PMID: 33540469 DOI: 10.1111/jnc.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
86
|
Sabatini PV, Frikke-Schmidt H, Arthurs J, Gordian D, Patel A, Rupp AC, Adams JM, Wang J, Beck Jørgensen S, Olson DP, Palmiter RD, Myers MG, Seeley RJ. GFRAL-expressing neurons suppress food intake via aversive pathways. Proc Natl Acad Sci U S A 2021; 118:e2021357118. [PMID: 33593916 PMCID: PMC7923658 DOI: 10.1073/pnas.2021357118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The TGFβ cytokine family member, GDF-15, reduces food intake and body weight and represents a potential treatment for obesity. Because the brainstem-restricted expression pattern of its receptor, GDNF Family Receptor α-like (GFRAL), presents an exciting opportunity to understand mechanisms of action for area postrema neurons in food intake; we generated GfralCre and conditional GfralCreERT mice to visualize and manipulate GFRAL neurons. We found infection or pathophysiologic states (rather than meal ingestion) stimulate GFRAL neurons. TRAP-Seq analysis of GFRAL neurons revealed their expression of a wide range of neurotransmitters and neuropeptides. Artificially activating GfralCre -expressing neurons inhibited feeding, decreased gastric emptying, and promoted a conditioned taste aversion (CTA). GFRAL neurons most strongly innervate the parabrachial nucleus (PBN), where they target CGRP-expressing (CGRPPBN) neurons. Silencing CGRPPBN neurons abrogated the aversive and anorexic effects of GDF-15. These findings suggest that GFRAL neurons link non-meal-associated pathophysiologic signals to suppress nutrient uptake and absorption.
Collapse
Affiliation(s)
- Paul V Sabatini
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Joe Arthurs
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98115
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Desiree Gordian
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Anita Patel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Alan C Rupp
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Jessica M Adams
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Jine Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- College of Medical Science, China Three Gorges University, 43002 Yichang, China
| | | | - David P Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98115
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
87
|
Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, Xie M, Zhou L, Qu W, Wu LJ. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun 2021; 92:78-89. [PMID: 33221486 PMCID: PMC7897256 DOI: 10.1016/j.bbi.2020.11.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia play an important role in the central sensitization and chronic pain. However, a direct connection between microglial function and pain development in vivo remains incompletely understood. To address this issue, we applied chemogenetic approach by using CX3CR1creER/+:R26LSL-hM4Di/+ transgenic mice to enable expression of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (Gi DREADD) in microglia. We found that microglial Gi DREADD activation inhibited spinal nerve transection (SNT)-induced microglial reactivity as well as chronic pain in both male and female mice. Gi DREADD activation downregulated the transcription factor interferon regulatory factor 8 (IRF8) and its downstream target pro-inflammatory cytokine interleukin 1 beta (IL-1β). Using in vivo spinal cord recording, we found that activation of microglial Gi DREADD attenuated synaptic transmission following SNT. Our results demonstrate that microglial Gi DREADD reduces neuroinflammation, synaptic function and neuropathic pain after SNT. Thus, chemogenetic approaches provide a potential opportunity for interrogating microglial function and neuropathic pain treatment.
Collapse
Affiliation(s)
- Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong U. Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin Liu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08854 USA
| | - Tingjun Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dale B. Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lijun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
88
|
Nasteska D, Fine NHF, Ashford FB, Cuozzo F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce A, Bakhti M, Rutter GA, Fiancette R, Nano R, Piemonti L, Lickert H, Zhou Q, Akerman I, Hodson DJ. PDX1 LOW MAFA LOW β-cells contribute to islet function and insulin release. Nat Commun 2021; 12:674. [PMID: 33514698 PMCID: PMC7846747 DOI: 10.1038/s41467-020-20632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Aisha Dahir
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Peter W J Dawson
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Yu-Chiang Lai
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Reproduction, and Digestion, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Remi Fiancette
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
89
|
Fleury Curado T, Pho H, Freire C, Amorim MR, Bonaventura J, Kim LJ, Lee R, Cabassa ME, Streeter SR, Branco LG, Sennes LU, Fishbein K, Spencer RG, Schwartz AR, Brennick MJ, Michaelides M, Fuller DD, Polotsky VY. Designer Receptors Exclusively Activated by Designer Drugs Approach to Treatment of Sleep-disordered Breathing. Am J Respir Crit Care Med 2021; 203:102-110. [PMID: 32673075 DOI: 10.1164/rccm.202002-0321oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.
Collapse
Affiliation(s)
- Thomaz Fleury Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Dental School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, and
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luiz G Branco
- Dental School of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Luiz U Sennes
- Department of Otolaryngology, University of São Paulo, São Paulo, Brazil
| | - Kenneth Fishbein
- Departament of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Richard G Spencer
- Departament of Psychobiology, Federal University of São Paulo, São Paulo, Brazil
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Michael J Brennick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, and
| | - David D Fuller
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
90
|
Longueville S, Nakamura Y, Brami-Cherrier K, Coura R, Hervé D, Girault JA. Long-lasting tagging of neurons activated by seizures or cocaine administration in Egr1-CreER T2 transgenic mice. Eur J Neurosci 2020; 53:1450-1472. [PMID: 33226686 DOI: 10.1111/ejn.15060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Permanent tagging of neuronal ensembles activated in specific experimental situations is an important objective to study their properties and adaptations. In the context of learning and memory, these neurons are referred to as engram neurons. Here, we describe and characterize a novel mouse line, Egr1-CreERT2 , which carries a transgene in which the promoter of the immediate early gene Egr1 drives the expression of the CreERT2 recombinase that is only active in the presence of tamoxifen metabolite, 4-hydroxy-tamoxifen (4-OHT). Egr1-CreERT2 mice were crossed with various reporter mice, Cre-dependently expressing a fluorescent protein. Without tamoxifen or 4-OHT, no or few tagged neurons were observed. Epileptic seizures induced by pilocarpine or pentylenetetrazol in the presence of tamoxifen or 4-OHT elicited the persistent tagging of many neurons and some astrocytes in the dentate gyrus of hippocampus, where Egr1 is transiently induced by seizures. One week after cocaine and 4-OHT administration, these mice displayed a higher number of tagged neurons in the dorsal striatum than saline/4-OHT controls, with differences between reporter lines. Cocaine-induced tagging required ERK activation and tagged neurons were more likely than others to exhibit ERK phosphorylation or Fos induction after a second injection. Interestingly neurons tagged in saline-treated mice also had an increased propensity to express Fos, suggesting the existence of highly responsive striatal neurons susceptible to be re-activated by cocaine repeated administration, which may contribute to the behavioral adaptations. Our report validates a novel transgenic mouse model for permanently tagging activated neurons and studying long-term alterations of Egr1-expressing cells.
Collapse
Affiliation(s)
- Sophie Longueville
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Yuki Nakamura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Karen Brami-Cherrier
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Renata Coura
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France.,Sciences and Engineering Faculty, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
91
|
Soto PL. Single‐case experimental designs for behavioral neuroscience. J Exp Anal Behav 2020; 114:447-467. [DOI: 10.1002/jeab.633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Paul L. Soto
- Department of Psychology Louisiana State University
| |
Collapse
|
92
|
Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov ME, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat Biotechnol 2020; 39:368-377. [PMID: 33106681 PMCID: PMC7956128 DOI: 10.1038/s41587-020-0710-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared fluorescent proteins, we engineered a near-infrared FRET-based genetically encoded calcium indicator (iGECI). iGECI exhibits high brightness, high photostability, and up to 600% increase in fluorescence response to calcium. In dissociated neurons, iGECI detects spontaneous neuronal activity, and electrically and optogenetically induced firing. We validated iGECI performance up to a depth of almost 400 μm in acute brain slices using one-photon light-sheet imaging. Applying hybrid photoacoustic and fluorescence microscopy, we simultaneously monitored neuronal and hemodynamic activities in the mouse brain through an intact skull, with ~3 μm lateral and ~25–50 μm axial resolution. Using two-photon imaging, we detected evoked and spontaneous neuronal activity in the mouse visual cortex, with fluorescence changes of up to 25%. iGECI allows biosensors and optogenetic actuators to be multiplexed without spectral crosstalk.
Collapse
Affiliation(s)
- Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Autonomous Therapeutics, Inc., New York, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Ernesto Canton-Josh
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Manish Kumar
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuan Li
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Department of Radiology and Optical Imaging Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
93
|
Tran FH, Spears SL, Ahn KJ, Eisch AJ, Yun S. Does chronic systemic injection of the DREADD agonists clozapine-N-oxide or Compound 21 change behavior relevant to locomotion, exploration, anxiety, and depression in male non-DREADD-expressing mice? Neurosci Lett 2020; 739:135432. [PMID: 33080350 DOI: 10.1016/j.neulet.2020.135432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are chemogenetic tools commonly-used to manipulate brain activity. The most widely-used synthetic DREADD ligand, clozapine-N-oxide (CNO), is back-metabolized to clozapine which can itself activate endogenous receptors. Studies in non-DREADD-expressing rodents suggest CNO or a DREADD agonist that lacks active metabolites, such as Compound 21 (C21), change rodent behavior (e.g. decrease locomotion), but chronic injection of CNO does not change locomotion. However, it is unknown if chronic CNO changes behaviors relevant to locomotion, exploration, anxiety, and depression, or if chronic C21 changes any aspect of mouse behavior. Here non-DREADD-expressing mice received i.p. Vehicle (Veh), CNO, or C21 (1 mg/kg) 5 days/week for 16 weeks and behaviors were assessed over time. Veh, CNO, and C21 mice had similar weight gain over the 16-week-experiment. During the 3rd injection week, CNO and C21 mice explored more than Veh mice in a novel context and had more open field center entries; however, groups were similar in other measures of locomotion and anxiety. During the 14th-16th injection weeks, Veh, CNO, and C21 mice had similar locomotion and anxiety-like behaviors. We interpret these data as showing chronic Veh, CNO, and C21 injections given to male non-DREADD-expressing mice largely lack behavioral effects. These data may be helpful for behavioral neuroscientists when study design requires repeated injection of these DREADD agonists.
Collapse
Affiliation(s)
- Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA.
| | - Stella L Spears
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA; University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kyung J Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA.
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
94
|
Developmental Phase Transitions in Spatial Organization of Spontaneous Activity in Postnatal Barrel Cortex Layer 4. J Neurosci 2020; 40:7637-7650. [PMID: 32887743 DOI: 10.1523/jneurosci.1116-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Spatially-organized spontaneous activity is a characteristic feature of developing mammalian sensory systems. However, the transitions of spontaneous-activity spatial organization during development and related mechanisms remain largely unknown. We reported previously that layer 4 (L4) glutamatergic neurons in the mouse barrel cortex exhibit spontaneous activity with a patchwork-type pattern at postnatal day (P)5, which is during barrel formation. In the current work, we revealed that spontaneous activity in mouse barrel-cortex L4 glutamatergic neurons exhibits at least three phases during the first two weeks of postnatal development. Phase I activity has a patchwork-type pattern and is observed not only at P5, but also P1, before barrel formation. Phase II is found at P9, by which time barrel formation is completed, and exhibits broadly synchronized activity across barrel borders. Phase III emerges around P11 when L4-neuron activity is desynchronized. The Phase I activity, but not Phase II or III activity, is blocked by thalamic inhibition, demonstrating that the Phase I to II transition is associated with loss of thalamic dependency. Dominant-negative (DN)-Rac1 expression in L4 neurons hampers the Phase II to III transition. It also suppresses developmental increases in spine density and excitatory synapses of L4 neurons in the second postnatal week, suggesting that Rac1-mediated synapse maturation could underlie the Phase II to III transition. Our findings revealed the presence of distinct mechanisms for Phase I to II and Phase II to III transition. They also highlighted the role of a small GTPase in the developmental desynchronization of cortical spontaneous activity.SIGNIFICANCE STATEMENT Developing neocortex exhibits spatially-organized spontaneous activity, which plays a critical role in cortical circuit development. The features of spontaneous-activity spatial organization and the mechanisms underlying its changes during development remain largely unknown. In the present study, using two-photon in vivo imaging, we revealed three phases (Phases I, II, and III) of spontaneous activity in barrel-cortex layer 4 (L4) glutamatergic neurons during the first two postnatal weeks. We also demonstrated the presence of distinct mechanisms underlying phase transitions. Phase I to II shift arose from the switch in the L4-neuron driving source, and Phase II to III transition relied on L4-neuron Rac1 activity. These results provide new insights into the principles of developmental transitions of neocortical spontaneous-activity spatial patterns.
Collapse
|
95
|
Critical role of GRP receptor-expressing neurons in the spinal transmission of imiquimod-induced psoriatic itch. Neuropsychopharmacol Rep 2020. [PMID: 32584520 DOI: 10.3760/cma.j.cn131073.20200218.00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Ample evidence indicates that gastrin-releasing peptide receptor (GRPR)-expressing neurons play a critical role in the transmission of acute itch. However, the pathophysiology of spinal mechanisms underlying intractable itch such as psoriasis remains unclear. In this study, we aimed to determine whether itch-responsive GRPR+ neurons contribute to the spinal transmission of imiquimod (IMQ)-induced psoriatic itch. METHODS To generate a psoriasis model, C57BL/6J mice received a daily topical application of 5% IMQ cream on their shaved back skin for 7-10 consecutive days. GRP+ neurons were inhibited using Cre-dependent expression of Gi-designer receptors exclusively activated by designer drugs (DREADDs), while GRPR+ neurons were ablated by intrathecal administration of bombesin-saporin. RESULTS Repeated topical application of IMQ elicited psoriasis-like dermatitis and scratching behaviors. The mRNA expression levels of GRP and GRPR were upregulated in the cervical spinal dorsal horn (SDH) on days 7 and 10 after IMQ application. Either chemogenetic silencing of GRP+ neurons by Gi-DREADD or ablation of GRPR+ neurons significantly attenuated IMQ-induced scratching behaviors. CONCLUSION The GRP-GRPR system might be enhanced in the SDH, and itch-responsive GRPR+ neurons largely contribute to intractable itch in a mouse model of psoriasis.
Collapse
|
96
|
Smith LC, Kimbrough A. Leveraging Neural Networks in Preclinical Alcohol Research. Brain Sci 2020; 10:E578. [PMID: 32825739 PMCID: PMC7565429 DOI: 10.3390/brainsci10090578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
Alcohol use disorder is a pervasive healthcare issue with significant socioeconomic consequences. There is a plethora of neural imaging techniques available at the clinical and preclinical level, including magnetic resonance imaging and three-dimensional (3D) tissue imaging techniques. Network-based approaches can be applied to imaging data to create neural networks that model the functional and structural connectivity of the brain. These networks can be used to changes to brain-wide neural signaling caused by brain states associated with alcohol use. Neural networks can be further used to identify key brain regions or neural "hubs" involved in alcohol drinking. Here, we briefly review the current imaging and neurocircuit manipulation methods. Then, we discuss clinical and preclinical studies using network-based approaches related to substance use disorders and alcohol drinking. Finally, we discuss how preclinical 3D imaging in combination with network approaches can be applied alone and in combination with other approaches to better understand alcohol drinking.
Collapse
Affiliation(s)
- Lauren C. Smith
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
| | - Adam Kimbrough
- Department of Psychiatry, School of Medicine, University of California San Diego, MC 0667, La Jolla, CA 92093, USA;
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
97
|
Alzate-Correa D, Mei-Ling Liu J, Jones M, Silva TM, Alves MJ, Burke E, Zuñiga J, Kaya B, Zaza G, Aslan MT, Blackburn J, Shimada MY, Fernandes-Junior SA, Baer LA, Stanford KI, Kempton A, Smith S, Szujewski CC, Silbaugh A, Viemari JC, Takakura AC, Garcia AJ, Moreira TS, Czeisler CM, Otero JJ. Neonatal apneic phenotype in a murine congenital central hypoventilation syndrome model is induced through non-cell autonomous developmental mechanisms. Brain Pathol 2020; 31:84-102. [PMID: 32654284 PMCID: PMC7881415 DOI: 10.1111/bpa.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) represents a rare genetic disorder usually caused by mutations in the homeodomain transcription factor PHOX2B. Some CCHS patients suffer mainly from deficiencies in CO2 and/or O2 respiratory chemoreflex, whereas other patients present with full apnea shortly after birth. Our goal was to identify the neuropathological mechanisms of apneic presentations in CCHS. In the developing murine neuroepithelium, Phox2b is expressed in three discrete progenitor domains across the dorsal-ventral axis, with different domains responsible for producing unique autonomic or visceral motor neurons. Restricting the expression of mutant Phox2b to the ventral visceral motor neuron domain induces marked newborn apnea together with a significant loss of visceral motor neurons, RTN ablation, and preBötzinger complex dysfunction. This finding suggests that the observed apnea develops through non-cell autonomous developmental mechanisms. Mutant Phox2b expression in dorsal rhombencephalic neurons did not generate significant respiratory dysfunction, but did result in subtle metabolic thermoregulatory deficiencies. We confirm the expression of a novel murine Phox2b splice variant which shares exons 1 and 2 with the more widely studied Phox2b splice variant, but which differs in exon 3 where most CCHS mutations occur. We also show that mutant Phox2b expression in the visceral motor neuron progenitor domain increases cell proliferation at the expense of visceral motor neuron development. We propose that visceral motor neurons may function as organizers of brainstem respiratory neuron development, and that disruptions in their development result in secondary/non-cell autonomous maldevelopment of key brainstem respiratory neurons.
Collapse
Affiliation(s)
- Diego Alzate-Correa
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jillian Mei-Ling Liu
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mikayla Jones
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Talita M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Michele Joana Alves
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elizabeth Burke
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Zuñiga
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Behiye Kaya
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Giuliana Zaza
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mehmet Tahir Aslan
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marina Y Shimada
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Silvio A Fernandes-Junior
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lisa A Baer
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Amber Kempton
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sakima Smith
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Caroline C Szujewski
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Abby Silbaugh
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jean-Charles Viemari
- P3M Team, Institut de Neurosciences de la Timone, UMR 7289 AMU-CNRS, Marseille, France
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alfredo J Garcia
- Institute for Integrative Physiology, Grossman Institute for Neuroscience Quantitative Biology and Human Behavior, The Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Catherine M Czeisler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - José J Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
98
|
Wang L, Zhu L, Meister J, Bone DBJ, Pydi SP, Rossi M, Wess J. Use of DREADD Technology to Identify Novel Targets for Antidiabetic Drugs. Annu Rev Pharmacol Toxicol 2020; 61:421-440. [PMID: 32746768 DOI: 10.1146/annurev-pharmtox-030220-121042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) form a superfamily of plasma membrane receptors that couple to four major families of heterotrimeric G proteins, Gs, Gi, Gq, and G12. GPCRs represent excellent targets for drug therapy. Since the individual GPCRs are expressed by many different cell types, the in vivo metabolic roles of a specific GPCR expressed by a distinct cell type are not well understood. The development of designer GPCRs known as DREADDs (designer receptors exclusively activated by a designer drug) that selectively couple to distinct classes of heterotrimeric G proteins has greatly facilitated studies in this area. This review focuses on the use of DREADD technology to explore the physiological and pathophysiological roles of distinct GPCR/G protein cascades in several metabolically important cell types. The novel insights gained from these studies should stimulate the development of GPCR-based treatments for major metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Derek B J Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA;
| |
Collapse
|
99
|
Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, Matovic S, Lu WY, Prado MAM, Inoue W, Prado VF. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun 2020; 88:791-801. [PMID: 32434046 DOI: 10.1016/j.bbi.2020.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Microglia express muscarinic G protein-coupled receptors (GPCRs) that sense cholinergic activity and are activated by acetylcholine to potentially regulate microglial functions. Knowledge about how distinct types of muscarinic GPCR signaling regulate microglia function in vivo is still poor, partly due to the fact that some of these receptors are also present in astrocytes and neurons. We generated mice expressing the hM3Dq Designer Receptor Exclusively Activated by Designer Drugs (DREADD) selectively in microglia to investigate the role of muscarinic M3Gq-linked signaling. We show that activation of hM3Dq using clozapine N-oxide (CNO) elevated intracellular calcium levels and increased phagocytosis of FluoSpheres by microglia in vitro. Interestingly, whereas acute treatment with CNO increased synthesis of cytokine mRNA, chronic treatment attenuated LPS-induced cytokine mRNA changes in the brain. No effect of CNO on cytokine expression was observed in DREADD-negative mice. Interestingly, CNO activation of M3Dq in microglia was able to attenuate LPS-mediated decrease in social interactions. These results suggest that chronic activation of M3 muscarinic receptors (the hM3Dq progenitor) in microglia, and potentially other Gq-coupled GPCRs, can trigger an inflammatory-like response that preconditions microglia to decrease their response to further immunological challenges. Our results indicate that hM3Dq can be a useful tool to modulate neuroinflammation and study microglial immunological memory in vivo, which may be applicable for manipulations of neuroinflammation in neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- William Binning
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Aja E Hogan-Cann
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Diana Yae Sakae
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Matthew Maksoud
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Valeriy Ostapchenko
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Mohammed Al-Onaizi
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Sara Matovic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Wei-Yang Lu
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Marco A M Prado
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | - Wataru Inoue
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| | - Vania F Prado
- Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5K8, Canada; Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5K8, Canada.
| |
Collapse
|
100
|
Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Ca v1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology 2020; 45:1506-1517. [PMID: 31905369 PMCID: PMC7360569 DOI: 10.1038/s41386-019-0597-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Cocaine-associated contextual cues can trigger relapse behavior by recruiting the hippocampus. Extinction of cocaine-associated contextual memories can reduce cocaine-seeking behavior, however the molecular mechanisms within the hippocampus that underlie contextual extinction behavior and subsequent reinstatement remain poorly understood. Here, we extend our previous findings for a role of Cav1.2 L-type Ca2+ channels in dopamine 1 receptor (D1R)-expressing cells in extinction of cocaine conditioned place preference (CPP) in adult male mice. We report that attenuated cocaine CPP extinction in mice lacking Cav1.2 channels in D1R-expressing cells (D1cre, Cav1.2fl/fl) can be rescued through chemogenetic activation of D1R-expressing cells within the dorsal dentate gyrus (dDG), but not the dorsal CA1 (dCA1). This is supported by the finding that Cav1.2 channels are required in excitatory cells of the dDG, but not in the dCA1, for cocaine CPP extinction. Examination of the role of S1928 phosphorylation of Cav1.2, a protein kinase A (PKA) site using S1928A Cav1.2 phosphomutant mice revealed no extinction deficit, likely due to homeostatic scaling up of extinction-dependent S845 GluA1 phosphorylation in the dDG. However, phosphomutant mice failed to show cocaine-primed reinstatement which can be reversed by chemogenetic manipulation of excitatory cells in the dDG during extinction training. These findings outline an essential role for the interaction between D1R, Cav1.2, and GluA1 signaling in the dDG for extinction of cocaine-associated contextual memories.
Collapse
|