51
|
Antigen-Specific IFN-γ/IL-17-Co-Producing CD4 + T-Cells Are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines (Basel) 2020; 8:vaccines8020300. [PMID: 32545304 PMCID: PMC7350228 DOI: 10.3390/vaccines8020300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.
Collapse
|
52
|
Kannan N, Haug M, Steigedal M, Flo TH. Mycobacterium smegmatis Vaccine Vector Elicits CD4+ Th17 and CD8+ Tc17 T Cells With Therapeutic Potential to Infections With Mycobacterium avium. Front Immunol 2020; 11:1116. [PMID: 32582196 PMCID: PMC7296097 DOI: 10.3389/fimmu.2020.01116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium (Mav) complex is increasingly reported to cause non-tuberculous infections in individuals with a compromised immune system. Treatment is complicated and no vaccines are available. Previous studies have shown some potential of using genetically modified Mycobacterium smegmatis (Msm) as a vaccine vector to tuberculosis since it is non-pathogenic and thus would be tolerated by immunocompromised individuals. In this study, we used a mutant strain of Msm disrupted in EspG3, a component of the ESX-3 secretion system. Infection of macrophages and dendritic cells with Msm ΔespG3 showed increased antigen presentation compared to cells infected with wild-type Msm. Vaccination of mice with Msm ΔespG3, expressing the Mav antigen MPT64, provided equal protection against Mav infection as the tuberculosis vaccine, Mycobacterium bovis BCG. However, upon challenge with Mav, we observed a high frequency of IL-17-producing CD4+ (Th17 cells) and CD8+ (Tc17 cells) T cells in mice vaccinated with Msm ΔespG3::mpt64 that was not seen in BCG-vaccinated mice. Adoptive transfer of cells from Msm ΔespG3-vaccinated mice showed that cells from the T cell compartment contributed to protection from Mav infection. Further experiments revealed Tc17-enriched T cells did not provide prophylactic protection against subsequent Mav infection, but a therapeutic effect was observed when Tc17-enriched cells were transferred to mice already infected with Mav. These initial findings are important, as they suggest a previously unknown role of Tc17 cells in mycobacterial infections. Taken together, Msm ΔespG3 shows promise as a vaccine vector against Mav and possibly other (myco)bacterial infections.
Collapse
Affiliation(s)
- Nisha Kannan
- Center of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Markus Haug
- Center of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Infectious Diseases, St. Olavs University Hospital, Trondheim, Norway
| | - Magnus Steigedal
- Center of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Infectious Diseases, St. Olavs University Hospital, Trondheim, Norway
| | - Trude Helen Flo
- Center of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
53
|
Abstract
Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Collapse
Affiliation(s)
- Benedict Brazier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
54
|
RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010067. [PMID: 32033104 PMCID: PMC7158685 DOI: 10.3390/vaccines8010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is still an important global threat and although the causing organism has been discovered long ago, effective prevention strategies are lacking. Mycobacterium tuberculosis (MTB) is a unique pathogen with a complex host interaction. Understanding the immune responses upon infection with MTB is crucial for the development of new vaccination strategies and therapeutic targets for TB. Recently, it has been proposed that sensing bacterial nucleic acid in antigen-presenting cells via intracellular pattern recognition receptors (PRRs) is a central mechanism for initiating an effective host immune response. Here, we summarize key findings of the impact of mycobacterial RNA sensing for innate and adaptive host immunity after MTB infection, with emphasis on endosomal toll-like receptors (TLRs) and cytosolic sensors such as NLRP3 and RLRs, modulating T-cell differentiation through IL-12, IL-21, and type I interferons. Ultimately, these immunological pathways may impact immune memory and TB vaccine efficacy. The novel findings described here may change our current understanding of the host response to MTB and potentially impact clinical research, as well as future vaccination design. In this review, the current state of the art is summarized, and an outlook is given on how progress can be made.
Collapse
|
55
|
Upregulation of Cytokines and Differentiation of Th17 and Treg by Dendritic Cells: Central Role of Prostaglandin E2 Induced by Mycobacterium bovis. Microorganisms 2020; 8:microorganisms8020195. [PMID: 32023904 PMCID: PMC7074778 DOI: 10.3390/microorganisms8020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a zoonotic pathogen that causes bovine and human tuberculosis. Dendritic cells play a critical role in initiating and regulating immune responses by promoting antigen-specific T-cell activation. Prostaglandin E2 (PGE2)-COX signaling is an important mediator of inflammation and immunity and might be involved in the pathogenesis of M. bovis infection. Therefore, this study aimed to reveal the character of PGE2 in the differentiation of naïve CD4+ T cells induced by infected dendritic cells (DCs). Murine bone marrow-derived DCs were pre-infected with M. bovis and its attenuated strain M. bovis bacillus Calmette-Guérin (BCG). Then, the infected DCs were co-cultured with naïve CD4+ T cells with or without the cyclooxygenase (COX) inhibitor indomethacin. Quantitative RT-PCR analysis and protein detection showed that PGE2/COX-2 signaling was activated, shown by the upregulation of PGE2 production as well as COX-2 and microsomal PGE2 synthase (mPGES1) transcription in DCs specifically induced by M. bovis and BCG infection. The further co-culture of infected DCs with naïve CD4+ T cells enhanced the generation of inflammatory cytokines IL-17 and IL-23, while indomethacin suppressed their production. Following this, the differentiation of regulatory T cells (Treg) and Th17 cell subsets was significantly induced by the infected DCs rather than uninfected DCs. Meanwhile, M. bovis infection stimulated significantly higher levels of IL-17 and IL-23 and the differentiation of Treg and Th17 cell subsets, while BCG infection led to higher levels of TNF-α and IL-12, but lower proportions of Treg and Th17 cells. In mice, M. bovis infection generated more bacterial load and severe abnormalities in spleens and lungs, as well as higher levels of COX-2, mPGE2 expression, Treg and Th17 cell subsets than BCG infection. In conclusion, PGE2/COX-2 signaling was activated in DCs by M. bovis infection and regulated differentiation of Treg and Th17 cell subsets through the crosstalk between DCs and naive T cells under the cytokine atmosphere of IL-17 and IL-23, which might contribute to M. bovis pathogenesis in mice.
Collapse
|
56
|
Essone PN, Leboueny M, Maloupazoa Siawaya AC, Alame-Emane AK, Aboumegone Biyogo OC, Dapnet Tadatsin PH, Mveang Nzoghe A, Essamazokou DU, Mvoundza Ndjindji O, Padzys GS, Agnandji ST, Takiff H, Gicquel B, Djoba Siawaya JF. M. tuberculosis infection and antigen specific cytokine response in healthcare workers frequently exposed to tuberculosis. Sci Rep 2019; 9:8201. [PMID: 31160610 PMCID: PMC6547719 DOI: 10.1038/s41598-019-44294-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious agent, but only a small fraction of those infected develop the disease. Cytokines are involved in the mediation and regulation of immunity, and their secretion patterns may reflect the infection status. To increase our understanding of immune response to M. tuberculosis infection, we conducted a cross-sectional study investigating M. tuberculosis infection status and comparing the release profiles of cytokines GM-CSF, IFN-γ, IL-1β, IL-10, IL-12 (p70), IL-2, IL-4, IL-5, IL-6, IL-8, TNF-α, in community controls (CCs) and healthy healthcare workers (HCWs) highly exposed to TB. Among HCWs and CCs, the probability of latent M. tuberculosis (LTB+) infection was respectively 5.4 (p = 0.002) and 3.4 (p = 0.006) times higher in men than women. The odds ratio of LTB infection was 4 times higher among HCWs in direct contact with active TB patients than other HCW (p = 0.01). Whole blood supernatant cytokine responses to M. tuberculosis antigens showed differential pro-inflammatory responses between HCWs and CCs. CCsLTB- had higher IL-1β responses than HCWsLTB- (p = 0.002). HCWsLTB+ had significantly higher IL-8 responses to M. tuberculosis antigens than HCWsLTB- (p = 0.003) and CCsLTB- (p = 0.015). HCWsLTB+/- showed weak but positive TNF-α responses to M. tuberculosis antigen stimulation compared to CCsLTB+/- (p ≤ 0.015). Looking at T-helper (1 and 2) responses, HCWsLTB+ and CCsLTB+ had significantly higher IFN-γ and IL-2 responses compared to HCWsLTB- and CCsLTB- (p < [0.0001-0.003]). Also, TB antigen induced IL-5 secretion was significantly higher in HCWsLTB+ and CCsLTB+ than in non-infected CCsLTB- (p < [0.005-0.04]). M. tuberculosis antigen specific responses in HCWsLTB+ varied based on active TB exposure gradient. HCWsLTB+ who were highly exposed to active TB (≥3 hours per day) had significantly higher IFN-γ and IL-8 responses (p ≤ 0.02) than HCWs LTB+ not in direct contact with active TB patients. HCWsLTB+ working with active TB patients for 5 to 31 years had a significantly enhanced secretion of proinflammatory cytokines (GM-CSF, IFN-γ, IL-1β, IL-2, IL-6, IL-8, IL-12p70, TNF-α) compared to HCWsLTB- (p < [0.0001-0.01]). Secretion of anti-inflammatory/Th2 cytokines IL-5 and IL-10 was also higher in HCWsLTB+ than HCWsLTB-. In conclusion, LTBI individuals controlling the M. tuberculosis infection have an enhanced TB specific Th1-cytokines/proinflammatory response combined with selected Th2 type/anti-inflammatory cytokines induction.
Collapse
Affiliation(s)
- Paulin N Essone
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
- Centre de Recherches Médicales de Lambaréné, BP 242, Lambaréné, Gabon
| | - Marielle Leboueny
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
| | - Anicet Christel Maloupazoa Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
| | - Amel Kévin Alame-Emane
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
| | - Oriane Cordelia Aboumegone Biyogo
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
| | | | - Amandine Mveang Nzoghe
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
| | - Dimitri Ulrich Essamazokou
- Département de Biologie Cellulaire et Physiologie Faculté des Sciences, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Ofilia Mvoundza Ndjindji
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon
| | - Guy-Stéphane Padzys
- Département de Biologie Cellulaire et Physiologie Faculté des Sciences, Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, BP 242, Lambaréné, Gabon
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Howard Takiff
- Unité de Pathogenomique Mycobactérienne Intégrée, Institut Pasteur, Paris, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur, Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Joel Fleury Djoba Siawaya
- Unité de Recherche et de Diagnostics Spécialisés, Laboratoire National de Santé Publique/Centre Hospitalier Universitaire Mère Enfant Fondation Jeanne EBORI, Lambaréné, Gabon.
| |
Collapse
|
57
|
Masonou T, Hokey DA, Lahey T, Halliday A, Berrocal-Almanza LC, Wieland-Alter WF, Arbeit RD, Lalvani A, von Reyn CF. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: A randomized, placebo-controlled trial. PLoS One 2019; 14:e0217091. [PMID: 31120957 PMCID: PMC6532882 DOI: 10.1371/journal.pone.0217091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
Background DAR-901 is an inactivated whole cell tuberculosis booster vaccine, prepared using a new scalable, broth-grown method from the master cell bank of SRL172, a vaccine previously shown to prevent tuberculosis. This study examined whether DAR-901 (a) induces CD4+ T cell cytokine profiles previously proposed as correlates of protection and (b) has a specific vaccine-induced immunological signature compared to BCG or placebo. Methods We analysed CD4+ T cell cytokine immune responses from 10 DAR-901 recipients, 9 BCG recipients and 9 placebo recipients from the Phase I DAR-901 MDES trial. In that study, HIV-negative, IGRA-negative participants with prior BCG immunization were randomized (double-blind) to receive three intradermal injections of DAR-901 or saline placebo or two injections of saline placebo followed by an intradermal injection of BCG. Antigen-specific functional and phenotypic CD4+ T cell responses along with effector phenotype of responder cells were measured by intracellular cytokine staining. Results DAR-901 recipients exhibited increased DAR-901 antigen-specific polyfunctional or bifunctional T cell responses compared to baseline. Vaccine specific CD4+ IFNγ, IL2, TNFα and any cytokine responses peaked at 7 days post-dose 3. Th1 responses predominated, with most responder cells exhibiting a polyfunctional effector memory phenotype. BCG induced greater CD4+ T cell responses than placebo while the more modest DAR-901 responses did not differ from placebo. Neither DAR-901 nor BCG induced substantial or sustained Th17 /Th22 cytokine responses. Conclusion DAR-901, a TB booster vaccine grown from the master cell bank of SRL 172 which was shown to prevent TB, induced low magnitude polyfunctional effector memory CD4+ T cell responses. DAR-901 responses were lower than those induced by BCG, a vaccine that has been shown ineffective as a booster to prevent tuberculosis disease. These results suggest that induction of higher levels of CD4+ cytokine stimulation may not be a critical or pre-requisite characteristic for candidate TB vaccine boosters. Trial registration ClinicalTrials.gov NCT02063555.
Collapse
Affiliation(s)
- Tereza Masonou
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail: (TM); (AL); (CFvR)
| | | | - Timothy Lahey
- Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Alice Halliday
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Luis C. Berrocal-Almanza
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Robert D. Arbeit
- Tufts University School of Medicine, Boston, MA, United States of America
| | - Ajit Lalvani
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail: (TM); (AL); (CFvR)
| | - C. Fordham von Reyn
- Geisel School of Medicine, Hanover, NH, United States of America
- * E-mail: (TM); (AL); (CFvR)
| |
Collapse
|
58
|
Lyadova I, Nikitina I. Cell Differentiation Degree as a Factor Determining the Role for Different T-Helper Populations in Tuberculosis Protection. Front Immunol 2019; 10:972. [PMID: 31134070 PMCID: PMC6517507 DOI: 10.3389/fimmu.2019.00972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Efficient tuberculosis (TB) control depends on early TB prediction and prevention. Solution to these tasks requires knowledge of TB protection correlates (TB CoPs), i.e., laboratory markers that are mechanistically involved in the protection and which allow to determine how well an individual is protected against TB or how efficient the candidate TB vaccine is. The search for TB CoPs has been largely focused on different T-helper populations, however, the data are controversial, and no reliable CoPs are still known. Here we discuss the role of different T-helper populations in TB protection focusing predominantly on Th17, “non-classical” Th1 (Th1*) and “classical” Th1 (cTh1) populations. We analyze how these populations differ besides their effector activity and suggest the hypothesis that: (i) links the protective potential of Th17, Th1*, and cTh1 to their differentiation degree and plasticity; (ii) implies different roles of these populations in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination and biasing T cell response toward the preferential generation of Th1 are not beneficial. The review sheds new light on the problem of TB CoPs and will help develop better strategies for TB control.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Irina Nikitina
- Laboratory of Cellular and Molecular Mechanisms of Histogenesis, Koltsov Institute of Developmental Biology, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
59
|
Fan X, Li N, Wang X, Zhang J, Xu M, Liu X, Wang B. Protective immune mechanisms of Yifei Tongluo, a Chinese herb formulation, in the treatment of mycobacterial infection. PLoS One 2018; 13:e0203678. [PMID: 30204794 PMCID: PMC6133367 DOI: 10.1371/journal.pone.0203678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/26/2018] [Indexed: 02/05/2023] Open
Abstract
Yifei Tongluo (YFTL) is a traditional Chinese medicine (TCM) formulation which has been shown clinical efficacy in treatment of patients with multidrug-resistant tuberculosis in China. However, the underlying mechanisms of the effects of YFTL are lacking. This study investigated the effects of YFTL on immune regulation with a mouse lung infection model with Bacille Calmette-Guérin (BCG). We found that compared with untreated mice, the lung mycobacterial load in YFTL-treated mice was significantly reduced, accompanied by alleviated pulmonary inflammation with reduction of pro-inflammatory cytokines and increase of prostaglandin E2 (PGE2). Flow cytometry analyses showed that Th1 cells were significantly higher in the lungs of YFTL-treated mice at early infection time. The results suggest that YFTL-treatment down-regulates pulmonary inflammation, which facilitates a rapid infiltration of Th1 cells into the lungs. Moreover, the Th1 cells in the lungs were resolved faster at later time concomitant with increased the regulatory T cells (Tregs). The reduction of mycobacterial burden associated with improved tissue pathology, faster Th1 cell trafficking, and accelerated resolution of Th1 cells in the lungs of YFTL-treated mice indicates that YFTL improves mycobacterial clearance by maintaining lung homeostasis and dynamically regulating T cells in the lung parenchyma, and suggests that YFTL can be used as host-directed therapies that target immune responses to mycobacterial infection.
Collapse
Affiliation(s)
- Xin Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meiyi Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Beinan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
60
|
Worth L, Michel S, Gaertner VD, Kabesch M, Schieck M. Asthma- and IgE-associated polymorphisms affect expression of T H 17 genes. Allergy 2018; 73:1342-1347. [PMID: 29380867 DOI: 10.1111/all.13422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- L. Worth
- Department of Pediatric Pneumology and Allergy University Children's Hospital Regensburg (KUNO) Regensburg Germany
| | - S. Michel
- Department of Pediatric Pneumology and Allergy University Children's Hospital Regensburg (KUNO) Regensburg Germany
| | - V. D. Gaertner
- Department of Pediatric Pneumology and Allergy University Children's Hospital Regensburg (KUNO) Regensburg Germany
| | - M. Kabesch
- Department of Pediatric Pneumology and Allergy University Children's Hospital Regensburg (KUNO) Regensburg Germany
| | - M. Schieck
- Department of Pediatric Pneumology and Allergy University Children's Hospital Regensburg (KUNO) Regensburg Germany
- Department of Human Genetics Hannover Medical School Hannover Germany
| |
Collapse
|
61
|
Erin N, Tanrıöver G, Curry A, Akman M, Duymuş Ö, Gorczynski R. CD200fc enhances anti-tumoral immune response and inhibits visceral metastasis of breast carcinoma. Oncotarget 2018; 9:19147-19158. [PMID: 29721190 PMCID: PMC5922384 DOI: 10.18632/oncotarget.24931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/28/2018] [Indexed: 01/11/2023] Open
Abstract
CD200 is a widely expressed cell surface glycoprotein that inhibits excessive inflammation in autoimmunity, transplantation, and viral infections. We previously observed that visceral metastasis of highly aggressive and inflammatory 4THM breast carcinoma cells was markedly decreased in CD200 transgenic mice. The goal of this study was to determine whether exogenous exposure to CD200fc mimics the effects of endogenously over expressed CD200. Female BALB/c mice were injected with CD200fc two times a week for five times. Injection was started two days after orthotopic injection of 4THM cells. Tumor infiltrating Gr1+Cd11b+ cells were decreased while CD8+ cells were increased in CD200fc-treated animals. CD200fc injection significantly decreased lung and liver metastasis and the growth of primary tumors. CD200fc injection enhanced the tumor-induced IFN-g response while suppressing the IL-10 response. We observed excessive basal IL-6 secretion in MLC which was significantly decreased in CD200fc treated mice 12 days after injection of 4TM cells. These results are in accord with previous data from CD200 transgenic mice, and demonstrate for the first time that CD200 analogues might have therapeutic potential in the treatment of aggressive breast carcinoma which induces excessive systemic inflammation.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Gamze Tanrıöver
- Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Anna Curry
- University Health Network, Toronto General Hospital, Toronto, Canada
| | - Muhlis Akman
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Özlem Duymuş
- Department of Medical Pharmacology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Reg Gorczynski
- University Health Network, Toronto General Hospital, Toronto, Canada
| |
Collapse
|
62
|
The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm 2018; 2018:6587296. [PMID: 29743811 PMCID: PMC5884031 DOI: 10.1155/2018/6587296] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
T helper 17 cells (Th17) constitute a distinct subset of helper T cells with a unique transcriptional profile (STAT3, RORγ, and RORα), cytokine production pattern (IL17 family), and requirement of specific cytokines for their differentiation (TGF-β, IL6, IL21, and IL23). Recent studies involving experimental animals and humans have shown that Th17/IL17 plays a crucial role in host defense against a variety of pathogens, including bacteria and viruses. The underlying mechanisms by which Th17 performs include dendritic cell (DC) regulation, neutrophil recruitment, Th1 modulation, and T regulatory cell (Treg) balance. In recent years, researchers have generated an accumulating wealth of evidence on the role of Th17/IL17 in protective immunity to intracellular bacterial pathogens, such as Mycobacterium tuberculosis and Chlamydia trachomatis, which are one of the most important pathogens that inflict significant socioeconomic burden across the globe. In this article, we reviewed the current literature on the functions and mechanisms by which Th17/IL17 responds to intracellular bacterial infections. A better understanding of Th17/IL17 immunity to pathogens would be crucial for developing effective prophylactics and therapeutics.
Collapse
|
63
|
Velasquez LN, Stüve P, Gentilini MV, Swallow M, Bartel J, Lycke NY, Barkan D, Martina M, Lujan HD, Kalay H, van Kooyk Y, Sparwasser TD, Berod L. Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Front Immunol 2018; 9:471. [PMID: 29662482 PMCID: PMC5890140 DOI: 10.3389/fimmu.2018.00471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Collapse
Affiliation(s)
- Lis Noelia Velasquez
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Judith Bartel
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Nils Yngve Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariana Martina
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hugo D Lujan
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
64
|
Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA, Nikolaev AA, Gorelova LA, Radaeva TV, Kiseleva YY, Bozhenko VK, Lyadova IV. Th1, Th17, and Th1Th17 Lymphocytes during Tuberculosis: Th1 Lymphocytes Predominate and Appear as Low-Differentiated CXCR3 +CCR6 + Cells in the Blood and Highly Differentiated CXCR3 +/-CCR6 - Cells in the Lungs. THE JOURNAL OF IMMUNOLOGY 2018; 200:2090-2103. [PMID: 29440351 DOI: 10.4049/jimmunol.1701424] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Th1 lymphocytes are considered the main mediators of protection against tuberculosis (TB); however, their phenotypic characteristics and relationship with Th17 and Th1Th17 populations during TB are poorly understood. We have analyzed Th1, Th17, and Th1Th17 lymphocytes in the blood and pulmonary lesions of TB patients. The populations were identified based on the production of IFN-γ and/or IL-17 and the coexpression of CXCR3 (X3) and CCR6 (R6). In the blood, IL-17+ and IFN-γ+IL-17+ lymphocytes were barely detectable (median, <0.01% of CD4+ lymphocytes), whereas IFN-γ+ lymphocytes predominated (median, 0.45%). Most IFN-γ+ lymphocytes (52%) were X3+R6+, suggesting their "nonclassical" (ex-Th17) nature. In the lungs, IL-17+ and IFN-γ+IL-17+ lymphocytes were more frequent (0.3%, p < 0.005), yet IFN-γ+ cells predominated (11%). Phenotypically, lung CD4+ cells were X3+/loR6- The degree of differentiation of blood effector CD4+ lymphocytes (evaluated based on CD62L/CD27/CD28 coexpression) increased as follows: X3+R6+ < X3+R6- < X3-R6-, with X3-R6- cells being largely terminally differentiated CD62L-CD27-CD28- cells. Lung CD4+ lymphocytes were highly differentiated, recalling blood X3+/-R6- populations. Following in vitro stimulation with anti-CD3/anti-CD28 Abs, X3+R6+CD4+ lymphocytes converted into X3+R6- and X3-R6- cells. The results demonstrate that, during active TB, Th1 lymphocytes predominate in blood and lungs, document differences in X3/R6 expression by blood and lung CD4+ cells, and link the pattern of X3/R6 expression with the degree of cell differentiation. These findings add to the understanding of immune mechanisms operating during TB and are relevant for the development of better strategies to control it.
Collapse
Affiliation(s)
- Irina Yu Nikitina
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander V Panteleev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - George A Kosmiadi
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana V Serdyuk
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana A Nenasheva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Alexander A Nikolaev
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Lubov A Gorelova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Tatiana V Radaeva
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| | - Yana Yu Kiseleva
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Vladimir K Bozhenko
- Department of Molecular Biology and Experimental Therapy of Tumors, Federal State Budgetary Institution Russian Scientific Center of Roentgenoradiology of the Ministry of Healthcare of the Russian Federation, Moscow 117997, Russia
| | - Irina V Lyadova
- Immunology Department, Central Tuberculosis Research Institute, Moscow 107564, Russia; and
| |
Collapse
|
65
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
66
|
The crucial roles of Th17-related cytokines/signal pathways in M. tuberculosis infection. Cell Mol Immunol 2017; 15:216-225. [PMID: 29176747 DOI: 10.1038/cmi.2017.128] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-17 (IL-17), IL-21, IL-22 and IL-23 can be grouped as T helper 17 (Th17)-related cytokines because they are either produced by Th17/Th22 cells or involved in their development. Here, we review Th17-related cytokines/Th17-like cells, networks/signals and their roles in immune responses or immunity against Mycobacterium tuberculosis (Mtb) infection. Published studies suggest that Th17-related cytokine pathways may be manipulated by Mtb microorganisms for their survival benefits in primary tuberculosis (TB). In addition, there is evidence that immune responses of the signal transducer and activator of transcription 3 (STAT3) signal pathway and Th17-like T-cell subsets are dysregulated or destroyed in patients with TB. Furthermore, Mtb infection can impact upstream cytokines in the STAT3 pathway of Th17-like responses. Based on these findings, we discuss the need for future studies and the rationale for targeting Th17-related cytokines/signals as a potential adjunctive treatment.
Collapse
|
67
|
Zeng G, Zhang G, Chen X. Th1 cytokines, true functional signatures for protective immunity against TB? Cell Mol Immunol 2017; 15:206-215. [PMID: 29151578 DOI: 10.1038/cmi.2017.113] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The lack of an effective preventative vaccine against tuberculosis (TB) presents a great challenge to TB control. Since it takes an extremely long time to accurately determine the protective efficacy of TB vaccines, there is a great need to identify the surrogate signatures of protection to facilitate vaccine development. Unfortunately, antigen-specific Th1 cytokines that are currently used to evaluate the protective efficacy of the TB vaccine, do not align with the protection and failure of TB vaccine candidates in clinical trials. In this review, we discuss the limitation of current Th1 cytokines as surrogates of protection and address the potential elements that should be considered to finalize the true functional signatures of protective immunity against TB.
Collapse
Affiliation(s)
- Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guoliang Zhang
- Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical University, Shenzhen, Guangdong 518112, China
| | - Xinchun Chen
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
68
|
Interleukin-17 A and F gene polymorphisms affect the risk of tuberculosis: An updated meta-analysis. Indian J Tuberc 2017; 65:200-207. [PMID: 29933861 DOI: 10.1016/j.ijtb.2017.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/13/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cytokines are fundamental elements in mediating and stimulating the immune response against tuberculosis (TB). Growing evidence indicated that polymorphisms in the interleukin-17 (IL-17) A and F genes are implicated in TB. OBJECTIVES This meta-analysis was aimed to re-evaluate and update the relationship between IL-17A rs2275913 G/A and IL17F rs763780 T/C polymorphisms and TB risk. METHODS Using inclusive searches of the PubMed, MEDLINE, EMBASE, Web of Science and Elsevier Science Direct, we identified outcome data from all articles estimating the association between IL-17 A and F polymorphisms and TB risk. RESULTS A total of 15 studies comprising 7130 patients and 7540 controls were included. Our pooled analysis demonstrated that the IL-17A rs2275913 G/A SNP was not associated with the risk of TB in overall, or in Asians and Caucasians, but it conferred resistance to TB in Latin Americans using allele (OR=0.53), codominant (OR=0.53 and 0.38), dominant (OR=0.49) and recessive (OR=0.46) inheritance models. For IL-17F rs763780 T/C, the pooled evidence indicated that this variation was a risk factor for TB in allele (C vs T) and dominant (TC+CC vs TT) models in overall (OR of 1.35) and among Asians (OR=1.40), but not in Caucasians. CONCLUSION In summary, our meta-analysis suggested that the IL-17A rs2275913 was a protective factor against TB, but -17F rs763780 T/C was a risk factor for TB.
Collapse
|
69
|
Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12:e0184563. [PMID: 28886145 PMCID: PMC5590973 DOI: 10.1371/journal.pone.0184563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The determinants of immunological protection against Mycobacterium tuberculosis (M.tb) infection in humans are not known. Mycobacterial growth inhibition assays have potential utility as in vitro surrogates of in vivo immunological control of M.tb. We evaluated a whole blood growth inhibition assay in a setting with high burden of TB and aimed to identify immune responses that correlate with control of mycobacterial growth. We hypothesized that individuals with underlying M.tb infection will exhibit greater M.tb growth inhibition than uninfected individuals and that children aged 4 to 12 years, an age during which TB incidence is curiously low, will also exhibit greater M.tb growth inhibition than adolescents or adults. Neither M.tb infection status, age of the study participants, nor M.tb strain was associated with differential control of mycobacterial growth. Abundance and function of innate or T cell responses were also not associated with mycobacterial growth. Our data suggest that this assay does not provide a useful measure of age-associated differential host control of M.tb infection in a high TB burden setting. We propose that universally high levels of mycobacterial sensitization (through environmental non-tuberculous mycobacteria and/or universal BCG vaccination) in persons from high TB burden settings may impart broad inhibition of mycobacterial growth, irrespective of M.tb infection status. This sensitization may mask the augmentative effects of mycobacterial sensitization on M.tb growth inhibition that is typical in low burden settings.
Collapse
|
70
|
Sia JK, Bizzell E, Madan-Lala R, Rengarajan J. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection. PLoS Pathog 2017; 13:e1006530. [PMID: 28767735 PMCID: PMC5540402 DOI: 10.1371/journal.ppat.1006530] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. Tuberculosis (TB) remains a serious global health problem and understanding how to induce protective immunity to M. tuberculosis (Mtb) remains a major challenge. While antigen-specific CD4 T cells and IFN-γ are important for controlling Mtb infection, they are not sufficient for protecting against TB. We need insights into host pathways that can be targeted to overcome suboptimal antigen-specific immunity induced by Mtb. Dendritic cells (DCs) are antigen presenting cells that orchestrate the adaptive immune response to infection, but Mtb subverts DC-T cell interactions. Therefore, improving the crosstalk between DCs and T cells during Mtb infection has the potential to enhance anti-mycobacterial immunity. Here we identify interaction between CD40 on DCs and CD40L on T cells as a critical mechanism for generating lung Th17 cells. By engaging CD40 on DCs using a multimeric reagent, we significantly augmented early Mtb-specific Th17 responses in lungs. Intratracheal DC instillation in conjunction with CD40 engagement provided a balanced Th1/Th17 response and improved control of bacterial burden after aerosol challenge with Mtb. Our studies show that the CD40-CD40L pathway is important for the generation of Mtb-specific Th17 responses and targeting CD40-CD40L interactions is a promising avenue for improving adaptive immunity to TB.
Collapse
Affiliation(s)
- Jonathan Kevin Sia
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Erica Bizzell
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Ranjna Madan-Lala
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
71
|
Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 2017; 35:4983-4989. [PMID: 28774560 DOI: 10.1016/j.vaccine.2017.07.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. Experimental vaccines delivered through the mucosal route induce robust T helper type 17 (Th17)/ Interleukin (IL) -17 responses and provide superior protection against Mtb infection. Thus, the development of safe mucosal adjuvants for human use is critical. In this study, we demonstrate that nanoemulsion (NE)-based adjuvants when delivered intranasally along with Mtb specific immunodominant antigens (NE-TB vaccine) induce potent mucosal IL-17T-cell responses. Additionally, the NE-TB vaccine confers significant protection against Mtb infection, and when delivered along with BCG, is associated with decreased disease severity. These findings strongly support the development of a NE-TB vaccine as a novel, safe and effective, first-of-kind IL-17 inducing mucosal vaccine for potential use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | | | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, United States
| | - Ali Fattom
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States.
| |
Collapse
|
72
|
de Carvalho FM, Rodrigues LS, Duppre NC, Alvim IMP, Ribeiro-Alves M, Pinheiro RO, Sarno EN, Pessolani MCV, Pereira GMB. Interruption of persistent exposure to leprosy combined or not with recent BCG vaccination enhances the response to Mycobacterium leprae specific antigens. PLoS Negl Trop Dis 2017; 11:e0005560. [PMID: 28467415 PMCID: PMC5432189 DOI: 10.1371/journal.pntd.0005560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/15/2017] [Accepted: 04/07/2017] [Indexed: 01/26/2023] Open
Abstract
Household contacts of multibacillary leprosy patients (HCMB) constitute the group of individuals at the highest risk of developing leprosy. Early diagnosis and treatment of their index cases combined with Bacille Calmette-Guerin (BCG) immunization remain important strategies adopted in Brazil to prevent HCMB from evolving into active disease. In the present study, we assessed the impact of these measures on the immune response to Mycobacterium leprae in HCMB. Peripheral blood mononuclear cells (PBMC) from HCMB (n = 16) were obtained at the beginning of leprosy index case treatment (T0). At this time point, contacts were vaccinated (n = 13) or not (n = 3) in accordance with their infancy history of BCG vaccination and PBMCs were recollected at least 6 months later (T1). As expected, a significant increase in memory CD4 and CD8 T cell frequencies responsive to M. leprae whole-cell sonicate was observed in most contacts. Of note, higher frequencies of CD4+ T cells that recognize M. leprae specific epitopes were also detected. Moreover, increased production of the inflammatory mediators IL1-β, IL-6, IL-17, TNF, IFN-γ, MIP1-β, and MCP-1 was found at T1. Interestingly, the increment in these parameters was observed even in those contacts that were not BCG vaccinated at T0. This result reinforces the hypothesis that the continuous exposure of HCMB to live M. leprae down regulates the specific cellular immune response against the pathogen. Moreover, our data suggest that BCG vaccination of HCMB induces activation of T cell clones, likely through “trained immunity”, that recognize M. leprae specific antigens not shared with BCG as an additional protective mechanism besides the expected boost in cell-mediated immunity by BCG homologues of M. leprae antigens. Leprosy remains a global public health issue with an annual new case detection of approximately 200,000–250,000 patients. The current study targets leprosy patient contacts, who constitute the group of individuals at highest risk of developing the disease. Treatment of the index case (patient) and BCG vaccination of his/her contacts are among the measures known to decrease the risk of household leprosy contacts contracting the disease. In the present work, the impact of these two measures on the immune response of contacts to mycobacterial antigens was investigated, showing improvement in the cellular immune response to both specific and shared M. leprae antigens and an increase in secretion of proinflammatory mediators, which likely explains the protective effect of these measures against leprosy.
Collapse
Affiliation(s)
| | - Luciana Silva Rodrigues
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research in DST- AIDS, Institute of Clinical Research Evandro Chagas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Geraldo Moura Batista Pereira
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail: (MCVP); (GMBP)
| |
Collapse
|
73
|
da Costa AC, de Resende DP, Santos BDPO, Zoccal KF, Faccioli LH, Kipnis A, Junqueira-Kipnis AP. Modulation of Macrophage Responses by CMX, a Fusion Protein Composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis. Front Microbiol 2017; 8:623. [PMID: 28446902 PMCID: PMC5389097 DOI: 10.3389/fmicb.2017.00623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/27/2017] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium bovis Bacillus Calmette–Guérin (BCG) is a vaccine used to prevent tuberculosis (TB). Due to the poor protection conferred by BCG in adults, new, more effective formulations have been developed. A recombinant BCG vaccine expressing the CMX fusion protein Ag85c_MPT51_HspX (rBCG-CMX) induced Th1 and Th17 responses and provided better protection than BCG. It has been shown that Mycobacterium smegmatis expressing CMX also induces better protection than BCG and is a strong macrophage activator. The aim of the present study was to evaluate macrophage activation by the recombinant CMX fusion protein and by rBCG-CMX and to evaluate their ability to generate vaccine-specific immune responses. The results demonstrate that rCMX protein expressed by BCG (rBCG-CMX) activates pulmonary macrophages; increases the expression of activation molecules, cytokines, and MHC-II. The interaction with rCMX activates the transcription factor NF-κB and induces the production of the cytokines TGF-β, TNF-α, and IL-6. The in vitro stimulation of bone marrow-derived macrophages (BMMs) from TLR-4 or TLR-2 KO mice showed that in the absence of TLR-4, IL-6 was not produced. rBCG-CMX was unable to induce CMX-specific Th1 and Th17 cells in TLR-4 and TLR-2 KO mice, suggesting that these receptors participate in their induction. We concluded that both the rBCG-CMX vaccine and the rCMX protein can activate macrophages and favor the specific immune response necessary for this vaccine.
Collapse
Affiliation(s)
- Adeliane C da Costa
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Danilo P de Resende
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Bruno de P O Santos
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Karina F Zoccal
- Laboratory of Inflammation and Immunology of Parasitoses, Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - Lúcia H Faccioli
- Laboratory of Inflammation and Immunology of Parasitoses, Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São PauloSão Paulo, Brazil
| | - André Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil.,Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| | - Ana P Junqueira-Kipnis
- Laboratory of Immunopathology of Infectious Disease, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil.,Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, Parasitology and Pathology, Tropical Institute of Pathology and Public Health, Federal University of GoiásGoiânia, Brazil
| |
Collapse
|
74
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
75
|
Ahmed M, Jiao H, Domingo-Gonzalez R, Das S, Griffiths KL, Rangel-Moreno J, Nagarajan UM, Khader SA. Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 2017; 101:1373-1381. [PMID: 28258153 DOI: 10.1189/jlb.4a0616-270r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongmei Jiao
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Racquel Domingo-Gonzalez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin L Griffiths
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Uma M Nagarajan
- Department of Pediatrics and Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
76
|
Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 2016; 7:13894. [PMID: 28004802 PMCID: PMC5192216 DOI: 10.1038/ncomms13894] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy. A delay in T cell responses is postulated as a possible explanation for the limited efficacy of vaccines against tuberculosis. Here the authors demonstrate this T-cell block and remove it by activating endogenous dendritic cells or delivering activated dendritic cells to the lungs, enhancing immunity of mice to Mycobacterium tuberculosis.
Collapse
|
77
|
Stevens WBC, Netea MG, Kater AP, van der Velden WJFM. 'Trained immunity': consequences for lymphoid malignancies. Haematologica 2016; 101:1460-1468. [PMID: 27903713 DOI: 10.3324/haematol.2016.149252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
In hematological malignancies complex interactions exist between the immune system, microorganisms and malignant cells. On one hand, microorganisms can induce cancer, as illustrated by specific infection-induced lymphoproliferative diseases such as Helicobacter pylori-associated gastric mucosa-associated lymphoid tissue lymphoma. On the other hand, malignant cells create an immunosuppressive environment for their own benefit, but this also results in an increased risk of infections. Disrupted innate immunity contributes to the neoplastic transformation of blood cells by several mechanisms, including the uncontrolled clearance of microbial and autoantigens resulting in chronic immune stimulation and proliferation, chronic inflammation, and defective immune surveillance and anti-cancer immunity. Restoring dysfunction or enhancing responsiveness of the innate immune system might therefore represent a new angle for the prevention and treatment of hematological malignancies, in particular lymphoid malignancies and associated infections. Recently, it has been shown that cells of the innate immune system, such as monocytes/macrophages and natural killer cells, harbor features of immunological memory and display enhanced functionality long-term after stimulation with certain microorganisms and vaccines. These functional changes rely on epigenetic reprogramming and have been termed 'trained immunity'. In this review the concept of 'trained immunity' is discussed in the setting of lymphoid malignancies. Amelioration of infectious complications and hematological disease progression can be envisioned to result from the induction of trained immunity, but future studies are required to prove this exciting new hypothesis.
Collapse
Affiliation(s)
- Wendy B C Stevens
- Department of Hematology, Radboud University Medical Centre, Nijmegen
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, and Radboud Center for Infectious Diseases, Nijmegen.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen
| | - Arnon P Kater
- Department of Hematology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE) Academic Medical Center, University of Amsterdam, The Netherlands
| | - Walter J F M van der Velden
- Department of Hematology, Radboud University Medical Centre, Nijmegen .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen
| |
Collapse
|
78
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
79
|
Abstract
UNLABELLED The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the "Collaborative Cross" project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. IMPORTANCE Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations.
Collapse
|
80
|
Polyfunctional CD4 T-cells correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis BCG-vaccination of infants. Vaccine 2016; 34:5298-5305. [PMID: 27622301 DOI: 10.1016/j.vaccine.2016.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 09/02/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vaccination with Bacillus Calmette Guerin (BCG) protects infants against childhood tuberculosis however the immune mechanisms involved are not well understood. Further elucidation of the infant immune response to BCG will aid with the identification of immune correlates of protection against tuberculosis and with the design of new improved vaccines. The purpose of this study was to investigate BCG-induced CD4+ T-cell responses in blood samples from infants for cytokine secretion profiles thought to be important for protection against tuberculosis and compare these to PBMC-mediated in vitro mycobacterial growth inhibition. METHODS Blood from BCG-vaccinated or unvaccinated infants was stimulated overnight with Mycobacterium tuberculosis (M. tb) purified protein derivative (PPD) or controls and intracellular cytokine staining and flow cytometry used to measure CD4+T-cell responses. PBMC cryopreserved at the time of sample collection were thawed and incubated with live BCG for four days following which inhibition of BCG growth was determined. RESULTS PPD-specific IFNγ+TNFα+IL-2+CD4+T-cells represented the dominant T-cell response at 4monthsand1yearafter infant BCG. These responses were undetectable in age-matched unvaccinated infants. IL-17+CD4+T-cells were significantly more frequent in vaccinated infants at 4monthsbut not at 1-year post-BCG. PBMC-mediated inhibition of mycobacterial growth was significantly enhanced at 4monthspost-BCG as compared to unvaccinated controls. In an analysis of all samples with both datasets available, mycobacterial growth inhibition correlated significantly with the frequency of polyfunctional (IFNγ+TNFα+IL-2+) CD4+T-cells. CONCLUSIONS These data suggest that BCG vaccination of infants induces specific polyfunctional T-helper-1 and T-helper-17 responses and the ability, in the PBMC compartment, to inhibit the growth of mycobacteria in vitro. We also demonstrate that polyfunctional T-helper-1 cells may play a role in growth inhibition as evidenced by a significant correlation between the two.
Collapse
|
81
|
Corral-Fernández N, Cortez-Espinosa N, Salgado-Bustamante M, Romano-Moreno S, Medellín-Garibay S, Solis-Rodríguez M, Hernández-Castro B, Macías-Mendoza J, González-Amaro R, Portales-Pérez D. Induction of transcription factors, miRNAs and cytokines involved in T lymphocyte differentiation in BCG-vaccinated subjects. Mol Immunol 2016; 77:44-51. [DOI: 10.1016/j.molimm.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/25/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
|
82
|
Fukui M, Shinjo K, Umemura M, Shigeno S, Harakuni T, Arakawa T, Matsuzaki G. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen. Microbiol Immunol 2016; 59:735-43. [PMID: 26577130 DOI: 10.1111/1348-0421.12340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/29/2015] [Accepted: 11/12/2015] [Indexed: 11/29/2022]
Abstract
Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin-binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN-γ and anti-HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN-γ but also IL-17A production by HBHA-specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB.
Collapse
Affiliation(s)
| | | | - Masayuki Umemura
- Molecular Microbiology Group.,Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Tetsuya Harakuni
- Vaccinology and Vaccine Immunology Group, Department of Infectious Diseases, Tropical Biosphere Research Center
| | - Takeshi Arakawa
- Vaccinology and Vaccine Immunology Group, Department of Infectious Diseases, Tropical Biosphere Research Center
| | - Goro Matsuzaki
- Molecular Microbiology Group.,Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
83
|
Singh DK, Dwivedi VP, Ranganathan A, Bishai WR, Van Kaer L, Das G. Blockade of the Kv1.3 K+ Channel Enhances BCG Vaccine Efficacy by Expanding Central Memory T Lymphocytes. J Infect Dis 2016; 214:1456-1464. [PMID: 27571906 DOI: 10.1093/infdis/jiw395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 02/01/2023] Open
Abstract
Tuberculosis is the oldest known infectious disease, yet there is no effective vaccine against adult pulmonary tuberculosis. Emerging evidence indicates that T-helper 1 and T-helper 17 cells play important roles in host protection against tuberculosis. However, tuberculosis vaccine efficacy in mice is critically dependent on the balance between antigen-specific central memory T (Tcm) and effector memory T (Tem) cells. Specifically, a high Tcm/Tem cell ratio is essential for optimal vaccine efficacy. Here, we show that inhibition of Kv1.3, a potassium channel preferentially expressed by Tem cells, by Clofazimine selectively expands Tcm cells during BCG vaccination. Furthermore, mice that received clofazimine after BCG vaccination exhibited significantly enhanced resistance against tuberculosis. This superior activity against tuberculosis could be adoptively transferred to naive, syngeneic mice by CD4+ T cells. Therefore, clofazimine enhances Tcm cell expansion, which in turn provides improved vaccine efficacy. Thus, Kv1.3 blockade is a promising approach for enhancing the efficacy of the BCG vaccine in humans.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, and.,International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, and.,International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, and.,International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, and
| |
Collapse
|
84
|
Gasper MA, Biswas SP, Fisher BS, Ehnert SC, Sherman DR, Sodora DL. Nonpathogenic SIV and Pathogenic HIV Infections Associate with Disparate Innate Cytokine Signatures in Response to Mycobacterium bovis BCG. PLoS One 2016; 11:e0158149. [PMID: 27505158 PMCID: PMC4978473 DOI: 10.1371/journal.pone.0158149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022] Open
Abstract
Infections with mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis (M. bovis) BCG, are a leading cause of morbidity and mortality for HIV-infected persons. In contrast to HIV, nonpathogenic SIV infections of sooty mangabeys are characterized by a lack of clinical disease including an absence of opportunistic infections. The goal of this study was to identify innate immune responses to M. bovis BCG maintained during nonpathogenic lentiviral infections through a comparison of functional responses during pathogenic HIV or nonpathogenic SIV infections. Monocytes were evaluated for their ability to express key anti-mycobacterial cytokines TNF-α and IL-12 following a six-hour ex vivo BCG exposure. While HIV-infection was associated with a decreased percentage of IL-12-producing monocytes, nonpathogenic SIV-infection was associated with an increased percentage of monocytes producing both cytokines. Gene expression analysis of PBMC following ex vivo BCG exposure identified differential expression of NK cell-related genes and several cytokines, including IFN-γ and IL-23, between HIV-infected and control subjects. In contrast, SIV-infected and uninfected-control mangabeys exhibited no significant differences in gene expression after BCG exposure. Finally, differential gene expression patterns were identified between species, with mangabeys exhibiting lower IL-6 and higher IL-17 in response to BCG when compared to humans. Overall, this comparison of immune responses to M. bovis BCG identified unique immune signatures (involving cytokines IL-12, TNF-α, IL-23, IL-17, and IL-6) that are altered during HIV, but maintained or increased during nonpathogenic SIV infections. These unique cytokine and transcriptome signatures provide insight into the differential immune responses to Mycobacteria during pathogenic HIV-infection that may be associated with an increased incidence of mycobacterial co-infections.
Collapse
Affiliation(s)
- Melanie A. Gasper
- University of Washington Pathobiology Graduate Program, Seattle, Washington, United States of America
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Shameek P. Biswas
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stephanie C. Ehnert
- Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - David R. Sherman
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Donald L. Sodora
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
85
|
Heidarnezhad F, Asnaashari A, Rezaee SA, Ghezelsofla R, Ghazvini K, Valizadeh N, Basiri R, Ziaeemehr A, Sobhani S, Rafatpanah H. Evaluation of Interleukin17and Interleukin 23 expression in patients with active and latent tuberculosis infection. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:844-850. [PMID: 27746865 PMCID: PMC5048119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 04/28/2016] [Indexed: 12/05/2022]
Abstract
OBJECTIVES Tuberculosis is one of the most important infectious diseases with high mortality rates worldwide, especially in developing countries. Interleukin17 (IL-17) is an important acquired immunity cytokine, which is mainly produced by CD4+TH17 cells. It can recruit neutrophils and macrophages to the infected site in the lungs. IL-23 is one of the most important inducers of IL-17. In the present study, the expressions of IL-23 and IL-17 were examined in the pathogenesis of tuberculosis. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from subjects with latent tuberculosis infection (LTB) and newly diagnosed active tuberculosis patients (ATB). PBMCs were activated with purified protein derivative (PPD) for 72 hr. Activated cells were harvested, RNA was extracted, and cDNA was synthesized. IL-17 and IL-23 mRNA expressions were evaluated by real-time PCR. The frequency of Th17 cells was examined by flowcytometry. RESULTS The expressions of IL-17 and IL-23 mRNA were lower in patients than subjects with LTB (P<0.05). The frequency of IL-17 producing CD4+ T cells in patients with active TB was lower than LTB subjects (P<0.05). CONCLUSION The results of the present study might suggest that IL-17 and IL-23 play critical roles in the immune response against TB.
Collapse
Affiliation(s)
- Fatemeh Heidarnezhad
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Asnaashari
- Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Ghezelsofla
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Canter, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Valizadeh
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Basiri
- Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aghigh Ziaeemehr
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Sobhani
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
86
|
Cline A, Hill D, Lewallen R, Feldman SR. Current status and future prospects for biologic treatments of psoriasis. Expert Rev Clin Immunol 2016; 12:1273-1287. [DOI: 10.1080/1744666x.2016.1202115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
87
|
Goletti D, Petruccioli E, Joosten SA, Ottenhoff THM. Tuberculosis Biomarkers: From Diagnosis to Protection. Infect Dis Rep 2016; 8:6568. [PMID: 27403267 PMCID: PMC4927936 DOI: 10.4081/idr.2016.6568] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/25/2022] Open
Abstract
New approaches to control tuberculosis (TB) worldwide are needed. In particular, new tools for diagnosis and new biomarkers are required to evaluate both pathogen and host key elements of the response to infection. Non-sputum based diagnostic tests, biomarkers predictive of adequate responsiveness to treatment, and biomarkers of risk of developing active TB disease are major goals. Here, we review the current state of the field. Although reports on new candidate biomarkers are numerous, validation and independent confirmation are rare. Efforts are needed to reduce the gap between the exploratory up-stream identification of candidate biomarkers, and the validation of biomarkers against clear clinical endpoints in different populations. This will need a major commitment from both scientists and funding bodies.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani , Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases, L. Spallanzani , Rome, Italy
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Centre , The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre , The Netherlands
| |
Collapse
|
88
|
Griffiths KL, Villarreal DO, Weiner DB, Khader SA. A novel multivalent tuberculosis vaccine confers protection in a mouse model of tuberculosis. Hum Vaccin Immunother 2016; 12:2649-2653. [PMID: 27322875 DOI: 10.1080/21645515.2016.1197454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis infects one third of the world's population. Due to variable efficacy of the Bacille Calmette Guerin (BCG) vaccine, development of novel TB vaccines remains a priority. Here, we demonstrate the protective efficacy of a novel multivalent DNA vaccine, which contains 15 synthetic antigens targeting the Mtb ESX secretion system.
Collapse
Affiliation(s)
- Kristin L Griffiths
- a Department of Molecular Microbiology , Washington University in St. Louis , St. Louis , MO , USA
| | - Daniel O Villarreal
- b Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - David B Weiner
- b Department of Pathology and Laboratory Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Shabaana A Khader
- a Department of Molecular Microbiology , Washington University in St. Louis , St. Louis , MO , USA
| |
Collapse
|
89
|
Anipindi VC, Bagri P, Roth K, Dizzell SE, Nguyen PV, Shaler CR, Chu DK, Jiménez-Saiz R, Liang H, Swift S, Nazli A, Kafka JK, Bramson J, Xing Z, Jordana M, Wan Y, Snider DP, Stampfli MR, Kaushic C. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway. PLoS Pathog 2016; 12:e1005589. [PMID: 27148737 PMCID: PMC4858291 DOI: 10.1371/journal.ppat.1005589] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Clinical and experimental studies have shown that estradiol (E2) confers protection against HIV and other sexually transmitted infections. Here, we investigated the underlying mechanism. Better protection in E2-treated mice, immunized against genital HSV-2, coincided with earlier recruitment and higher proportions of Th1 and Th17 effector cells in the vagina post-challenge, compared to placebo-treated controls. Vaginal APCs isolated from E2-treated mice induced 10-fold higher Th17 and Th1 responses, compared to APCs from progesterone-treated, placebo-treated, and estradiol-receptor knockout mice in APC-T cell co-cultures. CD11c+ DCs in the vagina were the predominant APC population responsible for priming these Th17 responses, and a potent source of IL-6 and IL-1β, important factors for Th17 differentiation. Th17 responses were abrogated in APC-T cell co-cultures containing IL-1β KO, but not IL-6 KO vaginal DCs, showing that IL-1β is a critical factor for Th17 induction in the genital tract. E2 treatment in vivo directly induced high expression of IL-1β in vaginal DCs, and addition of IL-1β restored Th17 induction by IL-1β KO APCs in co-cultures. Finally, we examined the role of IL-17 in anti-HSV-2 memory T cell responses. IL-17 KO mice were more susceptible to intravaginal HSV-2 challenge, compared to WT controls, and vaginal DCs from these mice were defective at priming efficient Th1 responses in vitro, indicating that IL-17 is important for the generation of efficient anti-viral memory responses. We conclude that the genital mucosa has a unique microenvironment whereby E2 enhances CD4+ T cell anti-viral immunity by priming vaginal DCs to induce Th17 responses through an IL-1-dependent pathway.
Collapse
Affiliation(s)
- Varun C. Anipindi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Puja Bagri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kristy Roth
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sara E. Dizzell
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Philip V. Nguyen
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher R. Shaler
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Derek K. Chu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hong Liang
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie Swift
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Aisha Nazli
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jessica K. Kafka
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Denis P. Snider
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin R. Stampfli
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Charu Kaushic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
90
|
Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun 2016; 84:1301-1311. [PMID: 26883591 DOI: 10.1128/iai.00083-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022] Open
Abstract
Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined.
Collapse
|
91
|
Matsuyama M, Ishii Y, Sakurai H, Ano S, Morishima Y, Yoh K, Takahashi S, Ogawa K, Hizawa N. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium. PLoS One 2016; 11:e0147064. [PMID: 26784959 PMCID: PMC4718649 DOI: 10.1371/journal.pone.0147064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/27/2015] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host responses against MAC infection. Wild-type (WT) mice and RORγt-overexpressing mice were infected with MAC via intratracheal inoculation. Systemic MAC growth was not different between WT mice and RORγt-overexpressing mice. However, neutrophilic pulmonary inflammation following MAC infection was enhanced in RORγt-overexpressing mice compared with that in WT mice. The cytokine expression shifted toward a Th17 phenotype in the lungs of RORγt-overexpressing mice following MAC infection; the levels of IL-6 and IL-17 were significantly higher in the lung of these mice than in WT mice. In addition to the increase in IL-17 single-positive T cells, T cells producing both IL-17 and interferon-γ were elevated in the lung of RORγt-overexpressing mice following MAC infection. These findings suggest that RORγt overexpression-mediated Th17 bias contributes to local inflammation rather than systemic responses, by regulating neutrophil recruitment into the sites of infection during MAC infection.
Collapse
Affiliation(s)
- Masashi Matsuyama
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukio Ishii
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| | - Hirofumi Sakurai
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Ano
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuko Morishima
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keigyou Yoh
- Department of Nephrology, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Tsukuba, Japan
- International Institute for Integrative Sleep Medicine, Life Science Center, University of Tsukuba, Tsukuba, Japan
- Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan
| | - Kenji Ogawa
- Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya, Japan
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
92
|
Oksanen KE, Myllymäki H, Ahava MJ, Mäkinen L, Parikka M, Rämet M. DNA vaccination boosts Bacillus Calmette-Guérin protection against mycobacterial infection in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:89-96. [PMID: 26363085 DOI: 10.1016/j.dci.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Despite the widespread use of the current Bacillus Calmette-Guérin (BCG) vaccine, tuberculosis is still a major cause of morbidity and mortality worldwide. Vaccination with BCG does not prevent a Mycobacterium tuberculosis infection, nor does it inhibit the reactivation of latent tuberculosis. Here, we show that adult zebrafish are modestly and variably protected from a mycobacterial infection by BCG vaccination. An intraperitoneal (i.p.) BCG vaccination was associated with enhanced survival upon a high-dose (20,000 bacteria) Mycobacterium marinum infection. In addition, BCG-vaccinated fish were more able to restrict a low-dose (30 bacteria) intraperitoneal infection with M. marinum, as indicated by lower bacterial loads at six weeks post infection (wpi). However, the vaccination could not completely prevent an infection. A qRT-PCR analysis comparing BCG-vaccinated and unvaccinated fish upon a mycobacterial infection indicated that the induction of Tumor necrosis factor (TNF) was more modest in vaccinated fish. The partial protection gained by BCG could be boosted by a DNA vaccine combining Ag85B, ESAT6 and a resuscitation-related gene RpfE, suggesting that this combination of antigens could be useful for a future BCG booster vaccine. We conclude that zebrafish is a useful early-phase preclinical model for studying subunit vaccines designed for boosting the effects of BCG.
Collapse
Affiliation(s)
- Kaisa E Oksanen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Henna Myllymäki
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Maarit J Ahava
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | - Leena Mäkinen
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland
| | | | - Mika Rämet
- BioMediTech, University of Tampere, FIN 33014, Tampere, Finland; Department of Pediatrics, Tampere University Hospital, FIN 33521, Tampere, Finland; Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
93
|
Interleukin-17 Could Promote Breast Cancer Progression at Several Stages of the Disease. Mediators Inflamm 2015; 2015:804347. [PMID: 26783383 PMCID: PMC4691460 DOI: 10.1155/2015/804347] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
Metastatic disease accounts for more than 90% of deaths from breast cancer. Yet the factors that trigger metastasis, often years after primary tumor removal, are not understood well. Recently the proinflammatory cytokine interleukin- (IL-) 17 family has been associated with poor prognosis in breast cancer. Here we review current literature on the pathogenic mechanisms driven by IL-17 during breast cancer progression and connect these findings to metastasis. These include (1) direct effects of IL-17 on tumor cells promoting tumor cell survival and invasiveness, (2) regulation of tumor angiogenesis, and (3) interaction with myeloid derived suppressor cells (MDSCs) to inhibit antitumor immune response and collaborate at the distant metastatic site. Furthermore, IL-17 might also be a culprit in bone destruction caused by late stage bone metastasis. Interestingly, in addition to these potential prometastasis functions, there is also evidence for an opposite, antitumor role of IL-17 during cancer therapies. We hypothesize that these contradictory roles may be due to chronic, imbalanced versus acute transient nature of the immune reactions, as well as differences in the cells that interact with IL-17+ cells under different circumstances.
Collapse
|
94
|
Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm 2015; 2015:854507. [PMID: 26640327 PMCID: PMC4657112 DOI: 10.1155/2015/854507] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022] Open
Abstract
The outcome of Mycobacterium tuberculosis (Mtb) infection ranges from a complete pathogen clearance through asymptomatic latent infection (LTBI) to active tuberculosis (TB) disease. It is now understood that LTBI and active TB represent a continuous spectrum of states with different degrees of pathogen “activity,” host pathology, and immune reactivity. Therefore, it is important to differentiate LTBI and active TB and identify active TB stages.
CD4+ T cells play critical role during Mtb infection by mediating protection, contributing to inflammation, and regulating immune response. Th1 and Th17 cells are the main effector CD4+ T cells during TB. Th1 cells have been shown to contribute to TB protection by secreting IFN-γ and activating antimycobacterial action in macrophages. Th17 induce neutrophilic inflammation, mediate tissue damage, and thus have been implicated in TB pathology. In recent years new findings have accumulated that alter our view on the role of Th1 and Th17 cells during Mtb infection. This review discusses these new results and how they can be implemented for TB diagnosis and monitoring.
Collapse
|
95
|
Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis. J Immunol Res 2015; 2015:639107. [PMID: 26495323 PMCID: PMC4606092 DOI: 10.1155/2015/639107] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is a contagious infectious disease caused by the TB-causing bacillus Mycobacterium tuberculosis and is considered a public health problem with enormous social impact. Disease progression is determined mainly by the balance between the microorganism and the host defense systems. Although the immune system controls the infection, this control does not necessarily lead to sterilization. Over recent decades, the patterns of CD4+ T cell responses have been studied with a goal of complete understanding of the immunological mechanisms involved in the maintenance of latent or active tuberculosis infection and of the clinical cure after treatment. Conflicting results have been suggested over the years, particularly in studies comparing experimental models and human disease. In recent years, in addition to Th1, Th2, and Th17 profiles, new standards of cellular immune responses, such as Th9, Th22, and IFN-γ-IL-10 double-producing Th cells, discussed here, have also been described. Additionally, many new roles and cellular sources have been described for IL-10, demonstrating a critical role for this cytokine as regulatory, rather than merely pathogenic cytokine, involved in the establishment of chronic latent infection, in the clinical cure after treatment and in keeping antibacillary effector mechanisms active to prevent immune-mediated damage.
Collapse
|
96
|
Monin L, Griffiths K, Slight S, Lin YY, Rangel-Moreno J, Khader SA. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 2015; 8:1099-109. [PMID: 25627812 PMCID: PMC4517980 DOI: 10.1038/mi.2014.136] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/14/2014] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) vaccine development has focused largely on targeting T helper type 1 (Th1) cells. However, despite inducing Th1 cells, the recombinant TB vaccine MVA85A failed to enhance protection against TB disease in humans. In recent years, Th17 cells have emerged as key players in vaccine-induced protection against TB. However, the exact cytokine and immune requirements that enable Th17-induced recall protection remain unclear. In this study, we have investigated the requirements for Th17 cell-induced recall protection against Mycobacterium tuberculosis (Mtb) challenge by utilizing a tractable adoptive transfer model in mice. We demonstrate that adoptive transfer of Mtb-specific Th17 cells into naive hosts, and upon Mtb challenge, results in Th17 recall responses that confer protection at levels similar to vaccination strategies. Importantly, although interleukin (IL)-23 is critical, IL-12 and IL-21 are dispensable for protective Th17 recall responses. Unexpectedly, we demonstrate that interferon-γ (IFN-γ) produced by adoptively transferred Th17 cells impairs long-lasting protective recall immunity against Mtb challenge. In contrast, CXCR5 expression is crucial for localization of Th17 cells near macrophages within well-formed B-cell follicles to mediate Mtb control. Thus, our data identify new immune characteristics that can be harnessed to improve Th17 recall responses for enhancing vaccine design against TB.
Collapse
Affiliation(s)
- Leticia Monin
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Kristin Griffiths
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Samantha Slight
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Yin-yao Lin
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Shabaana A. Khader
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110,Corresponding Author: Shabaana A. Khader, Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, Phone: (314) 286-1590 Fax: (314) 362-1232,
| |
Collapse
|
97
|
Evaluation of the Immunogenicity of Mycobacterium bovis BCG Delivered by Aerosol to the Lungs of Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:992-1003. [PMID: 26108288 PMCID: PMC4550663 DOI: 10.1128/cvi.00289-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022]
Abstract
Nine million cases of tuberculosis (TB) were reported in 2013, with a further 1.5 million deaths attributed to the disease. When delivered as an intradermal (i.d.) injection, the Mycobacterium bovis BCG vaccine provides limited protection, whereas aerosol delivery has been shown to enhance efficacy in experimental models. In this study, we used the rhesus macaque model to characterize the mucosal and systemic immune response induced by aerosol-delivered BCG vaccine. Aerosol delivery of BCG induced both Th1 and Th17 cytokine responses. Polyfunctional CD4 T cells were detected in bronchoalveolar lavage (BAL) fluid and peripheral blood mononuclear cells (PBMCs) 8 weeks following vaccination in a dose-dependent manner. A similar trend was seen in peripheral gamma interferon (IFN-γ) spot-forming units measured by enzyme-linked immunosorbent spot (ELISpot) assay and serum anti-purified protein derivative (PPD) IgG levels. CD8 T cells predominantly expressed cytokines individually, with pronounced tumor necrosis factor alpha (TNF-α) production by BAL fluid cells. T-cell memory phenotype analysis revealed that CD4 and CD8 populations isolated from BAL fluid samples were polarized toward an effector memory phenotype, whereas the frequencies of peripheral central memory T cells increased significantly and remained elevated following aerosol vaccination. Expression patterns of the α4β1 integrin lung homing markers remained consistently high on CD4 and CD8 T cells isolated from BAL fluid and varied on peripheral T cells. This characterization of aerosol BCG vaccination highlights features of the resulting mycobacterium-specific immune response that may contribute to the enhanced protection previously reported in aerosol BCG vaccination studies and will inform future studies involving vaccines delivered to the mucosal surfaces of the lung.
Collapse
|
98
|
Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS, Shin SJ, Kim HJ. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol 2015; 45:1957-71. [PMID: 25907170 DOI: 10.1002/eji.201445329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 11/12/2022]
Abstract
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation-promoting factor (Rpf) E, a latency-associated member of the Rpf family, in promoting naïve CD4(+) T-cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL-6, IL-1β, IL-23p19, IL-12p70, and TNF-α but not IL-10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF-κB signaling. RpfE-treated DCs effectively caused naïve CD4(+) T cells to secrete IFN-γ, IL-2, and IL-17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T-bet and RORγt but not GATA-3. Furthermore, lung and spleen cells from Mtb-infected WT mice but not from TLR4(-/-) mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1- and Th17-polarized T-cell expansion.
Collapse
Affiliation(s)
- Han-Gyu Choi
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Woo Back
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
99
|
Raïch-Regué D, Rosborough BR, Watson AR, McGeachy MJ, Turnquist HR, Thomson AW. mTORC2 Deficiency in Myeloid Dendritic Cells Enhances Their Allogeneic Th1 and Th17 Stimulatory Ability after TLR4 Ligation In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:4767-76. [PMID: 25840913 DOI: 10.4049/jimmunol.1402551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/09/2015] [Indexed: 01/29/2023]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key integrative kinase that functions in two independent complexes, mTOR complex (mTORC) 1 and mTORC2. In contrast to the well-defined role of mTORC1 in dendritic cells (DC), little is known about the function of mTORC2. In this study, to our knowledge, we demonstrate for the first time an enhanced ability of mTORC2-deficient myeloid DC to stimulate and polarize allogeneic T cells. We show that activated bone marrow-derived DC from conditional Rictor(-/-) mice exhibit lower coinhibitory B7-H1 molecule expression independently of the stimulus and enhanced IL-6, TNF-α, IL-12p70, and IL-23 production following TLR4 ligation. Accordingly, TLR4-activated Rictor(-/-) DC display augmented allogeneic T cell stimulatory ability, expanding IFN-γ(+) and IL-17(+), but not IL-10(+) or CD4(+)Foxp3(+) regulatory T cells in vitro. A similar DC profile was obtained by stimulating Dectin-1 (C-type lectin family member) on Rictor(-/-) DC. Using novel CD11c-specific Rictor(-/-) mice, we confirm the alloreactive Th1 and Th17 cell-polarizing ability of endogenous mTORC2-deficient DC after TLR4 ligation in vivo. Furthermore, we demonstrate that proinflammatory cytokines produced by Rictor(-/-) DC after LPS stimulation are key in promoting Th1/Th17 responses. These data establish that mTORC2 activity restrains conventional DC proinflammatory capacity and their ability to polarize T cells following TLR and non-TLR stimulation. Our findings provide new insight into the role of mTORC2 in regulating DC function and may have implications for emerging therapeutic strategies that target mTOR in cancer, infectious diseases, and transplantation.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Brian R Rosborough
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Alicia R Watson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mandy J McGeachy
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Hēth R Turnquist
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
100
|
Liu X, Dowell AC, Patel P, Viney RP, Foster MC, Porfiri E, James ND, Bryan RT. Cytokines as effectors and predictors of responses in the treatment of bladder cancer by bacillus Calmette-Guérin. Future Oncol 2015; 10:1443-56. [PMID: 25052754 DOI: 10.2217/fon.14.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The most effective intravesical treatment of non-muscle-invasive bladder cancer is instillation of live Mycobacterium bovis bacillus Calmette-Guérin (BCG). BCG stimulates the release of cytokines, contributing directly or indirectly to its effectiveness. However, the function of specific cytokines is not well understood. We have undertaken a nonsystematic review of primary evidence regarding cytokine detection, activation and response in BCG patients. Cytokines IL-2, IL-8 and TNF-α appear to be essential for effective BCG therapy and nonrecurrence, while IL-10 may have an inhibitory effect on BCG responses. IL-2, IL-8, TRAIL and TNF-α are potentially predictive of response to BCG. Alterations in genes encoding cytokines may also affect responses. There are significant data showing the association of certain cytokines with successful BCG treatment, and which may be useful predictive markers. Isolating those cytokines mediating efficacy may hold the key to ameliorating BCG's side effects and improving efficacy and patient compliance.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- The Medical School, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|