51
|
Alkanat M, Özdemir Alkanat H, Akgün E. Effects of menstrual cycle on divided attention in dual-task performance. Somatosens Mot Res 2021; 38:287-293. [PMID: 34463190 DOI: 10.1080/08990220.2021.1968370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Monthly hormonal fluctuation in women causes changes in peripheral systems and central nervous system structure and functions. In this study, we investigated the effects of menstrual cycle periods in women on attention during multitasking. Single and dual task conditions were tested in different menstrual cycle periods. MATERIALS AND METHODS A total of forty women with regular menstrual cycles participated in this study. They were not any type of medication or hormonal treatment. Fine motor skills and Go/No-go tasks were performed on the 10th day of the late follicular phase, and then the tests were repeated on the 20th day of the late luteal phase. Fine motor tasks were performed by Annett's peg-moving test. Auditory stimuli were used in Go/No-go task. In dual tasks, both tasks were performed simultaneously. RESULTS There was no difference between follicular and luteal phases in single fine motor and Go/No-go task. In dual task condition Go/No-go task % error rate decreased in the luteal phase. Similarly, Go/No-go task reaction time decreased in the luteal phase. Non-dominant hand performance was increased in the luteal phase during the dual-task condition compared to the follicular phase. CONCLUSIONS When these results are evaluated together, declining error rates and reaction times indicates women successfully multitask in the luteal phase in dual tasks condition. This suggests that divided attention in women leads to better performance in the luteal phase than in the follicular phase.
Collapse
Affiliation(s)
- Mehmet Alkanat
- Department of Physiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Hafize Özdemir Alkanat
- Department of Internal Medicine, Faculty of Health Science, Giresun University, Giresun, Turkey
| | - Egemen Akgün
- Department of Molecular Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| |
Collapse
|
52
|
Siegel ALM, Eich TS. Age, Sex, and Inhibitory Control: Identifying A Specific Impairment in Memorial, But Not Perceptual Inhibition in Older Women. J Gerontol B Psychol Sci Soc Sci 2021; 76:2013-2022. [PMID: 34232279 PMCID: PMC8599043 DOI: 10.1093/geronb/gbab124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 01/18/2023] Open
Abstract
Objectives Declines in the ability to inhibit information, and the consequences to memory of unsuccessful inhibition, have been frequently reported to increase with age. However, few studies have investigated whether sex moderates such effects. Here, we examined whether inhibitory ability may vary as a function of age and sex, and the interaction between these two factors. Method 202 older (mean age = 69.40 years) and younger (mean age =30.59 years) participants who had equivalent educational attainment and self-reported health completed 2 tasks that varied only in the time point at which inhibition should occur: either prior to, or after, encoding. Results While we did not find evidence for age or sex differences in inhibitory processes when information needed to be inhibited prior to encoding, when encoded information being actively held in working memory needed to be suppressed, we found that older women were particularly impaired relative to both younger women and men of either age group. Discussion These results provide further support for the presence of memorial inhibitory deficits in older age, but add nuance by implicating biological sex as an important mediator in this relationship, with it more difficult for older women to inhibit what was once relevant in memory.
Collapse
Affiliation(s)
| | - Teal S Eich
- The Davis School of Gerontology, University of Southern California
| |
Collapse
|
53
|
Do oral contraceptives affect young women's memory? Dopamine-dependent working memory is influenced by COMT genotype, but not time of pill ingestion. PLoS One 2021; 16:e0252807. [PMID: 34111174 PMCID: PMC8192013 DOI: 10.1371/journal.pone.0252807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background Despite the widespread use of oral contraceptives (OCs), and the well-documented influence of estrogens, notably 17β-estradiol (E2), on cognition, research relating OCs to working memory is limited and mixed. Two factors may contribute to these mixed findings: 1) pharmacokinetics of oral contraceptives, which drive fluctuations in synthetic hormone levels; and 2) genetic polymorphisms related to dopamine degradation and working memory, which interact with E2. This research investigated whether the pharmacokinetics of oral contraceptives, in concert with the single nucleotide polymorphism (Val158Met; rs4680) of the catechol-o-methyltransferase gene (COMT), influence working memory performance. Methods University-age women taking and not taking OCs were tested for working memory and genotyped for COMT. If they were not taking OCs (n = 62), sessions occurred in the early follicular (low E2) and late follicular (high E2) phase. If they were taking OCs (n = 52), sessions occurred 1–2 hours after (high ethinyl estradiol, EE) and ~24 hours after (low EE) pill ingestion. Working memory was tested using the N-back, AX-CPT, Digit Span, and Digit Ordering Tasks. Data were analyzed using multilevel models with estrogen condition, COMT, and group as predictors, controlling for mood and practice effects. Results For women taking OCs, time of pill ingestion did not influence performance. However, the subgroup with COMT val/val (low dopamine) were less accurate on 2-back lure trials than those with COMT met/met (high dopamine). For women not taking OCs, cycle phase moderated COMT’s influence on lure accuracy. When compared, women taking OCs had higher AX-CPT proactive control indices than those not taking OCs. Conclusion These findings suggest that oral contraceptives are not detrimental for young women’s working memory and that they may increase proactive control. The more pronounced effects of COMT in women taking OCs suggests that, in women taking OCs, suppressed endogenous E2–not fluctuating EE levels–may be more relevant for working memory. Future studies are needed to differentiate effects of endogenous versus synthetic estrogens on working memory.
Collapse
|
54
|
Effects of stress associated with academic examination on the kynurenine pathway profile in healthy students. PLoS One 2021; 16:e0252668. [PMID: 34081742 PMCID: PMC8174692 DOI: 10.1371/journal.pone.0252668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of stress on the neuroendocrine, central nervous and immune systems are extremely complex. The kynurenine pathway (KP) of the tryptophan metabolism is recognised as a cross-link between the neuroendocrine- and immune systems. However, the effects of acute stress from everyday life on KP activation have not yet been studied. This study aims to investigate changes in the levels of the KP neuroactive metabolites and cytokines in response to stress triggered by academic examinations. Ninety-two healthy first year medical students benevolently participated in the study. Parameters were measured pre- examination, which is considered to be a high-stress period, and post-examination, as a low-stress period. Stress induced by academic examinations significantly increases the perceived stress scores (p<0.001), serum cortisol levels (p<0.001) and brain-derived neurotrophic factor (BDNF) levels (p<0.01). It decreased IL-10 levels (p<0.05) but had no effect on IL-6 and TNF-alpha levels. Only the KP neuroactive metabolite, 3-hydroxykynurenine (3-HK) significantly increased (p<0.01) in the post-examination period. In addition, the stress scores positively correlated with the levels of cortisol (r2 = 0.297, p<0.01) at post examination. Acute stress triggered by academic examinations increases cortisol and BDNF production and suppresses the anti-inflammatory cytokine, IL-10, but did not increase significantly the levels of other pro-inflammatory cytokines, tryptophan, kynurenine and downstream KP metabolites. The concomitant increased levels of BDNF under the duress of acute examination stress appear to limit the levels pro-inflammatory markers, which may attenuate the action of cortisol and the neuroinflammatory branch of the KP.
Collapse
|
55
|
Matijevic S, Ryan L. Tract Specificity of Age Effects on Diffusion Tensor Imaging Measures of White Matter Health. Front Aging Neurosci 2021; 13:628865. [PMID: 33790778 PMCID: PMC8006297 DOI: 10.3389/fnagi.2021.628865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Well-established literature indicates that older adults have poorer cerebral white matter integrity, as measured through diffusion tensor imaging (DTI). Age differences in DTI have been observed widely across white matter, although some tracts appear more sensitive to the effects of aging than others. Factors like APOE ε4 status and sex may contribute to individual differences in white matter integrity that also selectively impact certain tracts, and could influence DTI changes in aging. The present study explored the degree to which age, APOE ε4, and sex exerted global vs. tract specific effects on DTI metrics in cognitively healthy late middle-aged to older adults. Data from 49 older adults (ages 54–92) at two time-points separated by approximately 2.7 years were collected. DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD), were extracted from nine white matter tracts and global white matter. Results showed that across timepoints, FA and MD increased globally, with no tract-specific changes observed. Baseline age had a global influence on both measures, with increasing age associated with lower FA and higher MD. After controlling for global white matter FA, age additionally predicted FA for the genu, callosum body, inferior fronto-occipital fasciculus (IFOF), and both anterior and posterior cingulum. Females exhibited lower global FA on average compared to males. In contrast, MD was selectively elevated in the anterior cingulum and superior longitudinal fasciculus (SLF), for females compared to males. APOE ε4 status was not predictive of either measure. In summary, these results indicate that age and sex are associated with both global and tract-specific alterations to DTI metrics among a healthy older adult cohort. Older women have poorer white matter integrity compared to older men, perhaps related to menopause-induced metabolic changes. While age-related alterations to white matter integrity are global, there is substantial variation in the degree to which tracts are impacted, possibly as a consequence of tract anatomical variability. The present study highlights the importance of accounting for global sources of variation in DTI metrics when attempting to investigate individual differences (due to age, sex, or other factors) in specific white matter tracts.
Collapse
Affiliation(s)
- Stephanie Matijevic
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
56
|
Mueller JM, Pritschet L, Santander T, Taylor CM, Grafton ST, Jacobs EG, Carlson JM. Dynamic community detection reveals transient reorganization of functional brain networks across a female menstrual cycle. Netw Neurosci 2021; 5:125-144. [PMID: 33688609 PMCID: PMC7935041 DOI: 10.1162/netn_a_00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Sex steroid hormones have been shown to alter regional brain activity, but the extent to which they modulate connectivity within and between large-scale functional brain networks over time has yet to be characterized. Here, we applied dynamic community detection techniques to data from a highly sampled female with 30 consecutive days of brain imaging and venipuncture measurements to characterize changes in resting-state community structure across the menstrual cycle. Four stable functional communities were identified, consisting of nodes from visual, default mode, frontal control, and somatomotor networks. Limbic, subcortical, and attention networks exhibited higher than expected levels of nodal flexibility, a hallmark of between-network integration and transient functional reorganization. The most striking reorganization occurred in a default mode subnetwork localized to regions of the prefrontal cortex, coincident with peaks in serum levels of estradiol, luteinizing hormone, and follicle stimulating hormone. Nodes from these regions exhibited strong intranetwork increases in functional connectivity, leading to a split in the stable default mode core community and the transient formation of a new functional community. Probing the spatiotemporal basis of human brain–hormone interactions with dynamic community detection suggests that hormonal changes during the menstrual cycle result in temporary, localized patterns of brain network reorganization. Sex steroid hormones influence the central nervous system across multiple spatiotemporal scales. Estrogen and progesterone concentrations rise and fall throughout the menstrual cycle, but it remains poorly understood whether day-to-day fluctuations in hormones shape human brain dynamics. Here, we assessed the structure and stability of resting-state brain network connectivity in concordance with serum hormone levels from a female who underwent fMRI and venipuncture for 30 consecutive days. Our results reveal that while network structure is largely stable over the course of a menstrual cycle, temporary reorganization of several large-scale functional brain networks occurs during the ovulatory window. In particular, a default mode subnetwork exhibits increased connectivity with itself and with nodes belonging to the temporoparietal and limbic networks, providing novel perspective into brain-hormone interactions.
Collapse
Affiliation(s)
- Joshua M Mueller
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Caitlin M Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Scott T Grafton
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Emily Goard Jacobs
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jean M Carlson
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
57
|
Gaillard A, Fehring DJ, Rossell SL. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur J Neurosci 2021; 53:2592-2611. [PMID: 33423339 DOI: 10.1111/ejn.15107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 01/21/2023]
Abstract
The number of studies investigating sex differences in executive functions, particularly those using human functional neuroimaging techniques, has risen dramatically in the past decade. However, the influences of sex on executive function are still underexplored and poorly characterized. To address this, we conducted a systematic literature review of functional neuroimaging studies investigating sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Following the application of exclusion criteria, 21 studies were included, with a total of 677 females and 686 males. Ten of these studies were fMRI and PET, eight were EEG, and three were NIRS. At present, there is evidence for sex differences in the neural networks underlying all tasks of executive control included in this review suggesting males and females engage different strategies depending on task demands. There was one task exception, the 2-Back task, which showed no sex differences. Due to methodological variability and the involvement of multiple neural networks, a simple overarching statement with regard to gender differences during executive control cannot be provided. As such, we discuss limitations within the current literature and methodological considerations that should be employed in future research. Importantly, sex differences in neural mechanisms are present in the majority of tasks assessed, and thus should not be ignored in future research. PROSPERO registration information: CRD42019124772.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC., Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC., Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC., Australia
| |
Collapse
|
58
|
Taylor CM, Pritschet L, Jacobs EG. The scientific body of knowledge - Whose body does it serve? A spotlight on oral contraceptives and women's health factors in neuroimaging. Front Neuroendocrinol 2021; 60:100874. [PMID: 33002517 PMCID: PMC7882021 DOI: 10.1016/j.yfrne.2020.100874] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Women constitute half of the world's population, yet neuroscience research does not serve the sexes equally. Fifty years of preclinical animal evidence documents the tightly-coupled relationship between our endocrine and nervous systems, yet human neuroimaging studies rarely consider how endocrine factors shape the structural and functional architecture of the human brain. Here, we quantify several blind spots in neuroimaging research, which overlooks aspects of the human condition that impact women's health (e.g. the menstrual cycle, hormonal contraceptives, pregnancy, menopause). Next, we illuminate potential consequences of this oversight: today over 100 million women use oral hormonal contraceptives, yet relatively few investigations have systematically examined whether disrupting endogenous hormone production impacts the brain. We close by presenting a roadmap for progress, highlighting the University of California Women's Brain Initiative which is addressing unmet needs in women's health research.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States.
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States; Neuroscience Research Institute, University of California, Santa Barbara, United States.
| |
Collapse
|
59
|
Subramaniapillai S, Almey A, Natasha Rajah M, Einstein G. Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer's disease in women. Front Neuroendocrinol 2021; 60:100879. [PMID: 33137359 DOI: 10.1016/j.yfrne.2020.100879] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Women represent ⅔ of the cases of Alzheimer's disease (AD). Current research has focused on differential risks to explain higher rates of AD in women. However, factors that reduce risk for AD, like cognitive/brain reserve, are less well explored. We asked: what is known about sex and gender differences in how reserve mitigates risk for AD? We conducted a narrative review of the literature, with keywords: "sex/gender differences", "cognitive/brain reserve", "Alzheimer's Disease", and the following cognitive reserve contributors: "education", "IQ", "occupation", "cognitive stimulation", "bilingualism", "socioeconomic status", "physical activity", "social support". Sixteen papers disaggregated their data by sex. Those papers observed sex and gender differences in reserve contributors. There is also evidence that greater reserve may be more beneficial in lowering AD risk in women, although more research is needed. We discuss how traditional reserve contributors are gendered and may not capture factors that support cognition in aging women.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montréal, QC H3A 1G1, Canada; Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada.
| | - Anne Almey
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada
| | - M Natasha Rajah
- Brain Imaging Centre, Douglas Institute Research Centre, 6875 LaSalle Blvd Verdun, Montréal, QC H4H 1R3, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, 1033 Avenue des Pins, Montréal, QC H3A 1A1, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Rotman Research Institute, Baycrest Hospital, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada; Tema Genus, Linköping University, TEMA-huset, Entrance 37, Room E433, Campus Valla, Linköping, Sweden
| |
Collapse
|
60
|
Conley AC, Albert KM, Boyd BD, Kim SG, Shokouhi S, McDonald BC, Saykin AJ, Dumas JA, Newhouse PA. Cognitive complaints are associated with smaller right medial temporal gray-matter volume in younger postmenopausal women. Menopause 2020; 27:1220-1227. [PMID: 33110037 PMCID: PMC9153070 DOI: 10.1097/gme.0000000000001613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Menopause is associated with increasing cognitive complaints and older women are at increased risk of developing Alzheimer disease compared to men. However, there is difficulty in early markers of risk using objective performance measures. We investigated the impact of subjective cognitive complaints on the cortical structure in a sample of younger postmenopausal women. METHODS Data for this cross-sectional study were drawn from the baseline visit of a longer double-blind study examining estrogen-cholinergic interactions in normal postmenopausal women. Structural Magnetic Resonance Imaging was acquired on 44 women, aged 50-60 years and gray-matter volume was defined by voxel-based morphometry. Subjective measures of cognitive complaints and postmenopausal symptoms were obtained as well as tests of verbal episodic and working memory performance. RESULTS Increased levels of cognitive complaints were associated with lower gray-matter volume in the right medial temporal lobe (r = -0.445, P < 0.002, R = 0.2). Increased depressive symptoms and somatic complaints were also related to increased cognitive complaints and smaller medial temporal volumes but did not mediate the effect of cognitive complaints. In contrast, there was no association between performance on the memory tasks and subjective cognitive ratings, or medial temporal lobe volume. CONCLUSIONS The findings of the present study indicate that the level of reported cognitive complaints in postmenopausal women may be associated with reduced gray-matter volume which may be associated with cortical changes that may increase risk of future cognitive decline. : Video Summary:http://links.lww.com/MENO/A626.
Collapse
Affiliation(s)
- Alexander C. Conley
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Kimberly M. Albert
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Brian D. Boyd
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Shin-Gyeom Kim
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
- Department of Neuropsychiatry, Soonchunhyang University, Bucheon Hospital, Republic of Korea
| | - Sepideh Shokouhi
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Brenna C. McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN
| | - Julie A. Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT
| | - Paul A. Newhouse
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN
| |
Collapse
|
61
|
Hill RA, Kouremenos K, Tull D, Maggi A, Schroeder A, Gibbons A, Kulkarni J, Sundram S, Du X. Bazedoxifene - a promising brain active SERM that crosses the blood brain barrier and enhances spatial memory. Psychoneuroendocrinology 2020; 121:104830. [PMID: 32858306 DOI: 10.1016/j.psyneuen.2020.104830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Over 20 years of accumulated evidence has shown that the major female sex hormone 17β-estradiol can enhance cognitive functioning. However, the utility of estradiol as a therapeutic cognitive enhancer is hindered by its unwanted peripheral effects (carcinogenic). Selective estrogen receptor modulators (SERMs) avoid the unwanted effects of estradiol by acting as estrogen receptor antagonists in some tissues such as breast and uterus, but as agonists in others such as bone, and are currently used for the treatment of osteoporosis. However, understanding of their actions in the brain are limited. The third generation SERM bazedoxifene has recently been FDA approved for clinical use with an improved biosafety profile. However, whether bazedoxifene can enter the brain and enhance cognition is unknown. Using mice, the current study aimed to explore if bazedoxifene can 1) cross the blood-brain barrier, 2) rescue ovariectomy-induced hippocampal-dependent spatial memory deficit, and 3) activate neural estrogen response element (ERE)-dependent gene transcription. Using liquid chromatography-mass spectrometry (LC-MS), we firstly demonstrate that a peripheral injection of bazedoxifene can enter the brain. Secondly, we show that an acute intraperitoneal injection of bazedoxifene can rescue ovariectomy-induced spatial memory deficits. And finally, using the ERE-luciferase reporter mouse, we show in vivo that bazedoxifene can activate the ERE in the brain. The evidence shown here suggest bazedoxifene could be a viable cognitive enhancer with promising clinical applicability.
Collapse
Affiliation(s)
- R A Hill
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
| | - K Kouremenos
- Metabolomics Australia, Bio21 Molecular Science & Biotechnology Institute, Parkville, VIC, 3052, Australia
| | - D Tull
- Metabolomics Australia, Bio21 Molecular Science & Biotechnology Institute, Parkville, VIC, 3052, Australia
| | - A Maggi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, 20133, Italy
| | - A Schroeder
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
| | - A Gibbons
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
| | - J Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University, St Kilda, VIC, 3004, Australia
| | - S Sundram
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia
| | - X Du
- Department of Psychiatry, Monash University, Clayton, VIC, 3168, Australia; Florey Institute for Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| |
Collapse
|
62
|
The infralimbic cortex and mGlu5 mediate the effects of chronic intermittent ethanol exposure on fear learning and memory. Psychopharmacology (Berl) 2020; 237:3417-3433. [PMID: 32767063 PMCID: PMC7572878 DOI: 10.1007/s00213-020-05622-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
RATIONALE AND OBJECTIVES Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) often occur comorbidly. While the incidence of these disorders is increasing, there is little investigation into the interacting neural mechanisms between these disorders. These studies aim to identify cognitive deficits that occur as a consequence of fear and ethanol exposure, implement a novel pharmaceutical intervention, and determine relevant underlying neurocircuitry. Additionally, due to clinical sex differences in PTSD prevalence and alcohol abuse, these studies examine the nature of this relationship in rodent models. METHODS Animals were exposed to a model of PTSD+AUD using auditory fear conditioning followed by chronic intermittent ethanol exposure (CIE). Then, rats received extinction training consisting of multiple conditioned stimulus presentations in absence of the shock. Extinction recall and context-induced freezing were measured in subsequent tests. CDPPB, a metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator, was used to treat these deficits, and region-specific effects were determined using microinjections. RESULTS These studies determined that CIE exposure led to deficits in fear extinction learning and heightened context-induced freezing while sex differences emerged in fear conditioning and extinction cue recall tests. Furthermore, using CDPPB, these studies found that enhancement of infralimbic (IfL) mGlu5 activity was able to recover CIE-induced deficits in both males and females. CONCLUSIONS These studies show that CIE induces deficits in fear-related behaviors and that enhancement of IfL glutamatergic activity can facilitate learning during extinction. Additionally, we identify novel pharmacological targets for the treatment of individuals who suffer from PTSD and AUD.
Collapse
|
63
|
Slow electroencephalographic oscillations and behavioral measures as predictors of high executive processing in early postmenopausal females: A discriminant analysis approach. Brain Cogn 2020; 145:105613. [PMID: 32911233 DOI: 10.1016/j.bandc.2020.105613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/22/2022]
Abstract
Decline in cognitive function is frequent in early postmenopause. There are postmenopausal females who show high performance while others display low performance in executive function, modulated by the prefrontal cortex. These differences have led to confusing and inconclusive results, which have not been explained entirely by the decline in estrogens, which affect the prefrontal cortex functions. An analysis of brain function and the application of a discriminant analysis can help to clarify the deficits in executive function shown by some postmenopausal females. The objective was to examine electroencephalographic recording during the performance of an executive function test in early postmenopausal females, ten with a high level of performance and ten with a low level of performance. Absolute power of delta, theta, alpha1, alpha2, beta1 and beta2 and the numbers of completed categories, trials, perseverative errors and overall errors were submitted to stepwise discriminant analysis to identify predictor variables. Four predictors emerged as significant of group membership based on cognitive performance, with the high-performance group characterized by more completed categories, more delta power, less theta power and more alpha1 power. These findings suggest that postmenopausal females classified in the high-performance group displayed appropriate temporary activation in slow oscillations during executive processing.
Collapse
|
64
|
Gaillard A, Fehring DJ, Rossell SL. A systematic review and meta-analysis of behavioural sex differences in executive control. Eur J Neurosci 2020; 53:519-542. [PMID: 32844505 DOI: 10.1111/ejn.14946] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Literature investigating whether an individuals' sex affects their executive control abilities and performance on cognitive tasks in a normative population has been contradictory and inconclusive. Using meta-analytic procedures (abiding by PRISMA guidelines), this study attempts to identify the magnitude of behavioural sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Across 46 included studies, a total of 1988 females and 1884 males were included in the analysis. Overall, males and females did not differ on performance in any of the three domains of performance monitoring, response inhibition, or cognitive set-shifting. Task-specific sex differences were observed in the domains of performance monitoring, in the CANTAB Spatial Working Memory task-males scored statistically higher than females (Hedges' g = -0.60), and response inhibition, in the Delay Discounting task-females scored statistically higher than males (Hedges' g = 0.64). While the meta-analysis did not detect overall behavioural sex differences in executive control, significant heterogeneity and task-specific sex differences were found. To further understand sex differences within these specific tasks and domains, future research must better control for age and sex hormone levels.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
65
|
Shanmugan S, Cao W, Satterthwaite TD, Sammel MD, Ashourvan A, Bassett DS, Ruparel K, Gur RC, Epperson CN, Loughead J. Impact of childhood adversity on network reconfiguration dynamics during working memory in hypogonadal women. Psychoneuroendocrinology 2020; 119:104710. [PMID: 32563173 PMCID: PMC7745207 DOI: 10.1016/j.psyneuen.2020.104710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
Abstract
Many women with no history of cognitive difficulties experience executive dysfunction during menopause. Significant adversity during childhood negatively impacts executive function into adulthood and may be an indicator of women at risk of a mid-life cognitive decline. Previous studies have indicated that alterations in functional network connectivity underlie these negative effects of childhood adversity. There is growing evidence that functional brain networks are not static during executive tasks; instead, such networks reconfigure over time. Optimal dynamics are necessary for efficient executive function; while too little reconfiguration is insufficient for peak performance, too much reconfiguration (supra-optimal reconfiguration) is also maladaptive and associated with poorer performance. Here we examined the impact of adverse childhood experiences (ACEs) on network flexibility, a measure of dynamic reconfiguration, during a letter n-back task within three networks that support executive function: frontoparietal, salience, and default mode networks. Several animal and human subject studies have suggested that childhood adversity exerts lasting effects on executive function via serotonergic mechanisms. Tryptophan depletion (TD) was used to examine whether serotonin function drives ACE effects on network flexibility. We hypothesized that ACE would be associated with higher flexibility (supra-optimal flexibility) and that TD would further increase this measure. Forty women underwent functional imaging at two time points in this double-blind, placebo controlled, crossover study. Participants also completed the Penn Conditional Exclusion Test, a task assessing abstraction and mental flexibility. The effects of ACE and TD were evaluated using generalized estimating equations. ACE was associated with higher flexibility across networks (frontoparietal β = 0.00748, D = 2.79, p = 0.005; salience β = 0.00679, D = 3.02, p = 0.003; and default mode β = 0.00910, D = 3.53, p = 0.0004). While there was no interaction between ACE and TD, active TD increased network flexibility in both ACE groups in comparison to sham depletion (frontoparietal β = 0.00489, D = 2.15, p = 0.03; salience β = 0.00393, D = 1.91, p = 0.06; default mode β = 0.00334, D = 1.73, p = 0.08). These results suggest that childhood adversity has lasting impacts on dynamic reconfiguration of functional brain networks supporting executive function and that decreasing serotonin levels may exacerbate these effects.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wen Cao
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D Sammel
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arian Ashourvan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kosha Ruparel
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - C Neill Epperson
- Department of Psychiatry, Anschutz Medical Campus, University of Colorado, Aurora, CO USA
| | - James Loughead
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
66
|
Karalexi MA, Georgakis MK, Dimitriou NG, Vichos T, Katsimpris A, Petridou ET, Papadopoulos FC. Gender-affirming hormone treatment and cognitive function in transgender young adults: a systematic review and meta-analysis. Psychoneuroendocrinology 2020; 119:104721. [PMID: 32512250 DOI: 10.1016/j.psyneuen.2020.104721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Previous studies have examined whether steroid hormone treatment in transgender individuals may affect cognitive function; yet, their limited power does not allow firm conclusions to be drawn. We leveraged data from to-date literature aiming to explore the effect of gender-affirming hormone administration on cognitive function in transgender individuals. METHODS A search strategy of MEDLINE was developed (through June 1, 2019) using the key terms transgender, hormone therapy and cognitive function. Eligible were (i) cohort studies examining the longitudinal effect of hormone therapy on cognition, and (ii) cross-sectional studies comparing the cognitive function between treated and non-treated individuals. Standardized mean differences (Hedges' g) were pooled using random-effects models. Study quality was evaluated using the Newcastle-Ottawa Scale. OUTCOMES Ten studies (seven cohort and three cross-sectional) were eligible representing 234 birth-assigned males (aM) and 150 birth-assigned females (aF). The synthesis of cohort studies (n = 5) for visuospatial ability following hormone treatment showed a statistically significant enhancement among aF (g = 0.55, 95% confidence intervals [CI]: 0.29, 0.82) and an improvement with a trend towards statistical significance among aM (g = 0.28, 95%CI: -0.01, 0.58). By contrast, no adverse effects of hormone administration were shown. No heterogeneity was evident in most meta-analyses. INTERPRETATION Current evidence does not support an adverse impact of hormone therapy on cognitive function, whereas a statistically significant enhancing effect on visuospatial ability was shown in aF. New longitudinal studies with longer follow-up should explore the long-term effects of hormone therapy, especially the effects on younger individuals, where there is greater scarcity of data.
Collapse
Affiliation(s)
- Maria A Karalexi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Marios K Georgakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Dimitriou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Vichos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Katsimpris
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Unit of Clinical Epidemiology, Karolinska Institute, Stockholm, Sweden
| | - Fotios C Papadopoulos
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| |
Collapse
|
67
|
Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL, Lonardo A, Maki PM, McCullough LD, Regitz-Zagrosek V, Regensteiner JG, Rubin JB, Sandberg K, Suzuki A. Sex and gender: modifiers of health, disease, and medicine. Lancet 2020; 396:565-582. [PMID: 32828189 PMCID: PMC7440877 DOI: 10.1016/s0140-6736(20)31561-0] [Citation(s) in RCA: 1209] [Impact Index Per Article: 241.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/09/2023]
Abstract
Clinicians can encounter sex and gender disparities in diagnostic and therapeutic responses. These disparities are noted in epidemiology, pathophysiology, clinical manifestations, disease progression, and response to treatment. This Review discusses the fundamental influences of sex and gender as modifiers of the major causes of death and morbidity. We articulate how the genetic, epigenetic, and hormonal influences of biological sex influence physiology and disease, and how the social constructs of gender affect the behaviour of the community, clinicians, and patients in the health-care system and interact with pathobiology. We aim to guide clinicians and researchers to consider sex and gender in their approach to diagnosis, prevention, and treatment of diseases as a necessary and fundamental step towards precision medicine, which will benefit men's and women's health.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Diabetes Discovery & Sex-Based Medicine Laboratory, Section of Endocrinology, John W Deming Department of Medicine, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, LA, USA.
| | - Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Roberta D Brinton
- Department of Pharmacology and Department of Neurology, College of Medicine, Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - Juan-Jesus Carrero
- Department of Medical Epidemiology and Biostatistics and Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Geert J De Vries
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Sabra L Klein
- W Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amedeo Lonardo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria di Modena, Ospedale Civile di Baggiovara, Modena, Italy
| | - Pauline M Maki
- Department of Psychiatry, Department of Psychology, and Department of Obstetrics & Gynecology, University of Illinois at Chicago, Chicago, IL, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Cardiology, University Hospital Zürich, University of Zürich, Switzerland
| | - Judith G Regensteiner
- Center for Women's Health Research, Divisions of General Internal Medicine and Cardiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Rubin
- Department of Medicine, Department of Paediatrics, and Department of Neuroscience, Washington University School of Medicine St Louis, MO, USA
| | - Kathryn Sandberg
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center Durham, NC, USA; Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
68
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
69
|
Pritschet L, Santander T, Taylor CM, Layher E, Yu S, Miller MB, Grafton ST, Jacobs EG. Functional reorganization of brain networks across the human menstrual cycle. Neuroimage 2020; 220:117091. [PMID: 32621974 DOI: 10.1016/j.neuroimage.2020.117091] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone production that occurs in most mammalian species. In rodents and nonhuman primates, estrogen and progesterone's impact on the brain is evident across a range of spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture of the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we examine the extent to which endogenous fluctuations in sex hormones alter intrinsic brain networks at rest in a woman who underwent brain imaging and venipuncture for 30 consecutive days. Standardized regression analyses illustrate estrogen and progesterone's widespread associations with functional connectivity. Time-lagged analyses examined the temporal directionality of these relationships and suggest that cortical network dynamics (particularly in the Default Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen receptors) are preceded-and perhaps driven-by hormonal fluctuations. A similar pattern of associations was observed in a follow-up study one year later. Together, these results reveal the rhythmic nature in which brain networks reorganize across the human menstrual cycle. Neuroimaging studies that densely sample the individual connectome have begun to transform our understanding of the brain's functional organization. As these results indicate, taking endocrine factors into account is critical for fully understanding the intrinsic dynamics of the human brain.
Collapse
Affiliation(s)
- Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Caitlin M Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Evan Layher
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Michael B Miller
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Emily G Jacobs
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
70
|
Shanmugan S, Sammel MD, Loughead J, Ruparel K, Gur RC, Brown TE, Faust J, Domchek S, Neill Epperson C. Executive function after risk-reducing salpingo-oophorectomy in BRCA1 and BRCA2 mutation carriers: does current mood and early life adversity matter? Menopause 2020; 27:746-755. [PMID: 32187134 PMCID: PMC7473450 DOI: 10.1097/gme.0000000000001535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Despite the fact that negative mood and executive dysfunction are common after risk-reducing salpingo-oophorectomy (RRSO), occurring in up to a third of women, little is known about risk factors predicting these negative outcomes. Adverse childhood experiences (ACE) predict poorer health in adulthood and may be a risk factor for negative outcomes after RRSO. Given the complex relationship between early life stress, affective disorders, and cognitive dysfunction, we hypothesized that ACE would be associated with poorer executive function and that mood symptoms would partially mediate this relationship. METHODS Women who had undergone RRSO were included in the study (N = 552; age 30-73 y). We measured executive function (continuous performance task, letter n-back task, and Brown Attention Deficit Disorder Scale Score), exposure to early life stress (ACE questionnaire), and mood symptoms (Hospital Anxiety and Depression Scale). Generalized estimating equations were used to evaluate the association between ACE and executive dysfunction and the role of mood symptoms as a mediator in this relationship. RESULTS ACE was associated with greater severity of subjective executive dysfunction (adjusted mean difference [aMD] = 7.1, P = 0.0005) and worse performance on both cognitive tasks (continuous performance task: aMD = -0.1, P = 0.03; n-back: aMD = -0.17, P = 0.007). Mood symptoms partially mediated ACE associations with sustained attention (21.3% mediated; 95% CI: 9.3%-100%) and subjective report of executive dysfunction (62.8% mediated; 95% CI: 42.3%-100%). CONCLUSIONS The relationship between childhood adversity and executive dysfunction is partially mediated by mood symptoms. These data indicate that assessing history of childhood adversity and current anxiety and depression symptoms may play a role in treating women who report cognitive complaints after RRSO. : Video Summary:http://links.lww.com/MENO/A571.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D. Sammel
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Loughead
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kosha Ruparel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas E. Brown
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jessica Faust
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Domchek
- Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Neill Epperson
- Department of Psychiatry, Anschutz Medical Campus, University of Colorado, Aurora, CO USA
| |
Collapse
|
71
|
Khayum MA, Moraga-Amaro R, Buwalda B, Koole M, den Boer JA, Dierckx RAJO, Doorduin J, de Vries EFJ. Ovariectomy-induced depressive-like behavior and brain glucose metabolism changes in female rats are not affected by chronic mild stress. Psychoneuroendocrinology 2020; 115:104610. [PMID: 32088632 DOI: 10.1016/j.psyneuen.2020.104610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/23/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023]
Abstract
The increased incidence of depression in women going through peri-menopause suggests that fluctuations in estrogen levels may increase the risk of developing depression. Nonetheless, this psychiatric disorder is likely to be multifactorial and consequently an additional trigger may be needed to induce depression in this population. Stress could be such a trigger. We therefore investigated the effect of ovarian estrogen depletion and chronic mild stress (CMS) on depressive-like behavior and brain metabolism in female rats. Approximately 2 and 9 weeks after estrogen depletion by ovariectomy, behavioral changes were assessed in the open-field test and the forced swim test, and brain metabolism was measured with [18F]FDG PET imaging. A subset of animals was subjected to a 6-weeks CMS protocol starting 17 days after ovariectomy. Short-term estrogen depletion had a significant effect on brain metabolism in subcortical areas, but not on behavior. Differences in depressive-like behavior were only found after prolonged estrogen depletion, leading to an increased immobility time in the forced swim test. Prolonged estrogen depletion also resulted in an increase in glucose metabolism in frontal cortical areas and hippocampus, whereas a decrease glucose metabolism was found in temporal cortical areas, hypothalamus and brainstem. Neither short-term nor prolonged estrogen depletion caused anxiety-like behavior. Changes in body weight, behavior and brain glucose metabolism were not significantly affected by CMS. In conclusion, ovarian estrogen depletion resulted in changes in brain metabolism and depressive-like behavior, but these changes were not enhanced by CMS.
Collapse
Affiliation(s)
- M A Khayum
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - R Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences (BCN), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B Buwalda
- Behavioral Physiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - M Koole
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - J A den Boer
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; PRA-Health Sciences, Van Swietenlaan, 9728 NZ, Groningen, the Netherlands
| | - R A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - J Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - E F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
72
|
Greater activation of the response inhibition network in females compared to males during stop signal task performance. Behav Brain Res 2020; 386:112586. [DOI: 10.1016/j.bbr.2020.112586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
|
73
|
Batt MM, Duffy KA, Novick AM, Metcalf CA, Epperson CN. Is Postpartum Depression Different From Depression Occurring Outside of the Perinatal Period? A Review of the Evidence. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2020; 18:106-119. [PMID: 33162848 PMCID: PMC7587887 DOI: 10.1176/appi.focus.20190045] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whether a major depressive episode occurring in the postpartum period (i.e., postpartum depression [PPD]) is sufficiently distinct from major depressive episodes occurring at other times (i.e., major depressive disorder) to warrant a separate diagnosis is a point of debate with substantial clinical significance. The evidence for and against diagnostic distinction for PPD is reviewed with respect to epidemiology, etiology, and treatment. Overall, evidence that PPD is distinct from major depressive disorder is mixed and is largely affected by how the postpartum period is defined. For depression occurring in the early postpartum period (variably defined, but typically with onset in the first 8 weeks), symptom severity, heritability, and epigenetic data suggest that PPD may be distinct, whereas depression occurring in the later postpartum period may be more similar to major depressive disorder occurring outside of the perinatal period. The clinical significance of this debate is considerable given that PPD, the most common complication of childbirth, is associated with immediate and enduring adverse effects on maternal and offspring morbidity and mortality. Future research investigating the distinctiveness of PPD from major depressive disorder in general should focus on the early postpartum period when the rapid decline in hormones contributes to a withdrawal state, requiring profound adjustments in central nervous system function.
Collapse
Affiliation(s)
- Melissa M Batt
- Department of Psychiatry (all authors) and Helen and Arthur E. Johnson Depression Center (Batt), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Korrina A Duffy
- Department of Psychiatry (all authors) and Helen and Arthur E. Johnson Depression Center (Batt), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Andrew M Novick
- Department of Psychiatry (all authors) and Helen and Arthur E. Johnson Depression Center (Batt), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - Christina A Metcalf
- Department of Psychiatry (all authors) and Helen and Arthur E. Johnson Depression Center (Batt), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| | - C Neill Epperson
- Department of Psychiatry (all authors) and Helen and Arthur E. Johnson Depression Center (Batt), University of Colorado School of Medicine, Anschutz Medical Campus, Aurora
| |
Collapse
|
74
|
Beltz AM, Moser JS. Ovarian hormones: a long overlooked but critical contributor to cognitive brain structures and function. Ann N Y Acad Sci 2020; 1464:156-180. [DOI: 10.1111/nyas.14255] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Adriene M. Beltz
- Department of PsychologyUniversity of Michigan Ann Arbor Michigan
| | - Jason S. Moser
- Department of PsychologyMichigan State University East Lansing Michigan
| |
Collapse
|
75
|
Konishi K, Cherkerzian S, Aroner S, Jacobs EG, Rentz DM, Remington A, Aizley H, Hornig M, Klibanski A, Goldstein JM. Impact of BDNF and sex on maintaining intact memory function in early midlife. Neurobiol Aging 2019; 88:137-149. [PMID: 31948671 DOI: 10.1016/j.neurobiolaging.2019.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 12/14/2019] [Indexed: 01/06/2023]
Abstract
Sex steroid hormones and neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), play a significant neuroprotective role in memory circuitry aging. Here, we present findings characterizing the neuroprotective effects of BDNF on memory performance, as a function of sex and reproductive status in women. Participants (N = 191; mean age = 50.03 ± 2.10) underwent clinical and cognitive testing, fMRI scanning, and hormonal assessments of menopausal staging. Memory performance was assessed with the 6-Trial Selective Reminding Test and the Face-Name Associative Memory Exam. Participants also performed a working memory (WM) N-back task during fMRI scanning. Results revealed significant interactions between menopausal status and BDNF levels. Only in postmenopausal women, lower plasma BDNF levels were associated with significantly worse memory performance and altered function in the WM circuitry. BDNF had no significant impact on memory performance or WM function in pre/perimenopausal women or men. These results suggest that in postmenopausal women, BDNF is associated with memory performance and memory circuitry function, thus providing evidence of potential sex-dependent factors of risk and resilience for early intervention.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara Cherkerzian
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily G Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Dorene M Rentz
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harlyn Aizley
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
76
|
Pertesi S, Coughlan G, Puthusseryppady V, Morris E, Hornberger M. Menopause, cognition and dementia - A review. Post Reprod Health 2019; 25:200-206. [PMID: 31690174 DOI: 10.1177/2053369119883485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing evidence that menopausal changes can have an impact on women’s cognition and potentially, the future development of dementia. In particular, the role of reduced levels of estrogen in postmenopausal changes has been linked to an increased risk of developing dementia in observational studies. Not surprisingly, this has led to several clinical trials investigating whether postmenopausal hormone replacement therapy can potentially delay/avoid cognitive changes and subsequently, the onset of dementia. However, the evidence of these trials has been mixed, with some showing positive effects while others show no or even negative effects. In the current review, we investigate this controversy further by reviewing the existing studies and trials in cognition and dementia. Based on the current evidence, we conclude that previous approaches may have used a mixture of women with different genetic risk factors for dementia which might explain these contradicting findings. Therefore, it is recommended that future interventional studies take a more personalised approach towards hormone replacement therapy use in postmenopausal women, by taking into account the women’s genetic status for dementia risk.
Collapse
Affiliation(s)
- S Pertesi
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - G Coughlan
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - E Morris
- Norfolk and Norwich University Hospital, Norwich, UK
| | - M Hornberger
- Norwich Medical School, University of East Anglia, Norwich, UK.,Norfolk and Suffolk Foundation Trust, Norwich, UK
| |
Collapse
|
77
|
Chung YS, Poppe A, Novotny S, Epperson CN, Kober H, Granger DA, Blumberg HP, Ochsner K, Gross JJ, Pearlson G, Stevens MC. A preliminary study of association between adolescent estradiol level and dorsolateral prefrontal cortex activity during emotion regulation. Psychoneuroendocrinology 2019; 109:104398. [PMID: 31394491 PMCID: PMC6842698 DOI: 10.1016/j.psyneuen.2019.104398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Non-human primate models have been useful in clarifying estradiol's role in cognitive processing. These animal studies indicate estradiol impacts cognitive processes supported by regions within dorsolateral prefrontal cortex (DLPFC). Although human functional neuroimaging studies have begun to find similar relationships between estradiol in women for some forms of 'cold' cognitive control, to date no studies have examined the relationship between estradiol and DLPFC function in the context of active attempts to regulate one's emotions. Here, we asked whether peripheral 17-beta estradiol levels in adolescent girls in different pubertal developmental stages (age = 14.9 years ± 1.74) were related to engagement of DLPFC regions during the use of a cognitive strategy for regulating emotion known as reappraisal using functional Magnetic Resonance Imaging. Findings indicated that higher estradiol levels predicted greater DLPFC activity during the down-regulation of negative emotion using reappraisal. This is the first report of an association between estradiol level and DLPFC activity during cognitive reappraisal of negative emotion. The study suggests a possibility that estradiol might positively contribute to regulatory function of a cortical system important for emotional experiences.
Collapse
Affiliation(s)
- Yu Sun Chung
- Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building- Institute of Living, Hartford, CT, 06106, USA; Department of Psychology and Neuroscience, Duke University.
| | - Andrew Poppe
- Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building- Institute of Living, Hartford, CT, 06106, USA; Department of Psychology and Neuroscience, Duke University
| | - Stephanie Novotny
- Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building- Institute of Living, Hartford, CT, 06106, USA; Department of Psychology and Neuroscience, Duke University
| | - C. Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California at Irvine, Irvine CA; School of Medicine, Bloomberg School of Public Health, and School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kevin Ochsner
- Department of Psychology, Columbia University, New York, NY, USA
| | - James J. Gross
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building- Institute of Living, Hartford, CT, 06106, USA; Department of Psychology and Neuroscience, Duke University.,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, 200 Retreat Avenue, Whitehall Building- Institute of Living, Hartford, CT, 06106, USA; Department of Psychology and Neuroscience, Duke University.,Department of Psychiatry, Yale University, New Haven, CT, USA
| |
Collapse
|
78
|
Gava G, Orsili I, Alvisi S, Mancini I, Seracchioli R, Meriggiola MC. Cognition, Mood and Sleep in Menopausal Transition: The Role of Menopause Hormone Therapy. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E668. [PMID: 31581598 PMCID: PMC6843314 DOI: 10.3390/medicina55100668] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
During the menopausal transition, which begins four to six years before cessation of menses, middle-aged women experience a progressive change in ovarian activity and a physiologic deterioration of hypothalamic-pituitary-ovarian axis function associated with fluctuating hormone levels. During this transition, women can suffer symptoms related to menopause (such as hot flushes, sleep disturbance, mood changes, memory complaints and vaginal dryness). Neurological symptoms such as sleep disturbance, "brain fog" and mood changes are a major complaint of women transitioning menopause, with a significant impact on their quality of life, productivity and physical health. In this paper, we consider the associations between menopausal stage and/or hormone levels and sleep problems, mood and reduced cognitive performance. The role of estrogen and menopause hormone therapy (MHT) in cognitive function, sleep and mood are also discussed.
Collapse
Affiliation(s)
- Giulia Gava
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy.
| | - Isabella Orsili
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Stefania Alvisi
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Ilaria Mancini
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Renato Seracchioli
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Maria Cristina Meriggiola
- Gynecology and Physiopathology of Human Reproduction, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
79
|
Hodes GE, Epperson CN. Sex Differences in Vulnerability and Resilience to Stress Across the Life Span. Biol Psychiatry 2019; 86:421-432. [PMID: 31221426 PMCID: PMC8630768 DOI: 10.1016/j.biopsych.2019.04.028] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
Susceptibility and resilience to stress depend on 1) the timing of the exposure with respect to development, 2) the time across the life span at which effects are measured, and 3) the behavioral or biological phenotype under consideration. This translational review examines preclinical stress models that provide clues to causal mechanisms and their relationship to the more complex phenomenon of stress-related psychiatric and cognitive disorders in humans. We examine how genetic sex and epigenetic regulation of hormones contribute to the proximal and distal effects of stress at different epochs of life. Stress during the prenatal period and early postnatal life puts male offspring at risk of developing diseases involving socialization, such as autism spectrum disorder, and attention and cognition, such as attention-deficit/hyperactivity disorder. While female offspring show resilience to some of the proximal effects of prenatal and early postnatal stress, there is evidence that risk associated with developmental insults is unmasked in female offspring following periods of hormonal activation and flux, including puberty, pregnancy, and perimenopause. Likewise, stress exposures during puberty have stronger proximal effects on girls, including an increased risk of developing mood-related and stress-related illnesses, such as depression, anxiety, and posttraumatic stress disorder. Hormonal changes during menopause and andropause impact the processes of memory and emotion in women and men, though women are preferentially at risk for dementia, and childhood adversity further impacts estradiol effects on neural function. We propose that studies to determine mechanisms for stress risk and resilience across the life span must consider the nature and timing of stress exposures as well as the sex of the organism under investigation.
Collapse
Affiliation(s)
- Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C. Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
80
|
Taylor CM, Pritschet L, Yu S, Jacobs EG. Applying a Women's Health Lens to the Study of the Aging Brain. Front Hum Neurosci 2019; 13:224. [PMID: 31333434 PMCID: PMC6625223 DOI: 10.3389/fnhum.2019.00224] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 11/15/2022] Open
Abstract
A major challenge in neuroscience is to understand what happens to a brain as it ages. Such insights could make it possible to distinguish between individuals who will undergo typical aging and those at risk for neurodegenerative disease. Over the last quarter century, thousands of human brain imaging studies have probed the neural basis of age-related cognitive decline. "Aging" studies generally enroll adults over the age of 65, a historical precedent rooted in the average age of retirement. A consequence of this research tradition is that it overlooks one of the most significant neuroendocrine changes in a woman's life: the transition to menopause. The menopausal transition is marked by an overall decline in ovarian sex steroid production-up to 90% in the case of estradiol-a dramatic endocrine change that impacts multiple biological systems, including the brain. Despite sex differences in the risk for dementia, the influence that biological sex and sex hormones have on the aging brain is historically understudied, leaving a critical gap in our understanding of the aging process. In this Perspective article, we highlight the influence that endocrine factors have on the aging brain. We devote particular attention to the neural and cognitive changes that unfold in the middle decade of life, as a function of reproductive aging. We then consider emerging evidence from animal and human studies that other endocrine factors occurring earlier in life (e.g., pregnancy, hormonal birth control use) also shape the aging process. Applying a women's health lens to the study of the aging brain will advance knowledge of the neuroendocrine basis of cognitive aging and ensure that men and women get the full benefit of our research efforts.
Collapse
Affiliation(s)
- Caitlin M. Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- The Sage Center for the Study of the Mind, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
81
|
Impact of adrenal hormones, reproductive aging, and major depression on memory circuitry decline in early midlife. Brain Res 2019; 1721:146303. [PMID: 31279842 DOI: 10.1016/j.brainres.2019.146303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022]
Abstract
Dehydroepiandrosterone-sulfate (DHEAS) is an adrenal androgen that is, in part, aromatized to estradiol. It continues to be produced after menopause and provides estrogenicity after depletion of ovarian hormones. Estradiol depletion contributes to memory circuitry changes over menopause, including changes in hippocampal (HIPP) and dorsolateral- and ventrolateral-prefrontal cortex (DLPFC; VLPFC) function. Further, major depressive disorder (MDD) patients have, in general, lower levels of estradiol and lower DHEAS than healthy controls, thus potentially a higher risk of adverse menopausal outcomes. We investigated whether higher DHEAS levels after menopause is associated with better memory circuitry function, especially in women with MDD. 212 adults (ages 45-55, 50% women) underwent clinical and fMRI testing. Participants performed a working memory (WM) N-back task and an episodic memory verbal encoding (VE) task during fMRI scanning. DHEAS levels were significantly associated with memory circuitry function, specifically in MDD postmenopausal women. On the WM task, lower DHEAS levels were associated with increased HIPP activity. On the VE task, lower DHEAS levels were associated with decreased activity in the HIPP and VLPFC. In contrast, there was no association between DHEAS levels and memory circuitry function in MDD pre/perimenopausal women, men, and non-MDD participants regardless of sex and reproductive status. In fact, MDD postmenopausal women with higher levels of DHEAS were similar to MDD pre/perimenopausal women and men. Thus, memory circuitry deficits associated with MDD and a lower ability of the adrenal gland to produce DHEAS after menopause may contribute to a lower ability to maintain intact memory function with age.
Collapse
|
82
|
Lejri I, Agapouda A, Grimm A, Eckert A. Mitochondria- and Oxidative Stress-Targeting Substances in Cognitive Decline-Related Disorders: From Molecular Mechanisms to Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9695412. [PMID: 31214285 PMCID: PMC6535827 DOI: 10.1155/2019/9695412] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting people mainly in their sixth decade of life and at a higher age. It is an extensively studied neurodegenerative disorder yet incurable to date. While its main postmortem brain hallmarks are the presence of amyloid-β plaques and hyperphosphorylated tau tangles, the onset of the disease seems to be largely correlated to mitochondrial dysfunction, an early event in the disease pathogenesis. AD is characterized by flawed energy metabolism in the brain and excessive oxidative stress, processes that involve less adenosine triphosphate (ATP) and more reactive oxygen species (ROS) production respectively. Mitochondria are at the center of both these processes as they are responsible for energy and ROS generation through mainly oxidative phosphorylation. Standardized Ginkgo biloba extract (GBE), resveratrol, and phytoestrogens as well as the neurosteroid allopregnanolone have shown not only some mitochondria-modulating properties but also significant antioxidant potential in in vitro and in vivo studies. According to our review of the literature, GBE, resveratrol, allopregnanolone, and phytoestrogens showed promising effects on mitochondria in a descending evidence order and, notably, this order pattern is in line with the existing clinical evidence level for each entity. In this review, the effects of these four entities are discussed with special focus on their mitochondria-modulating effects and their mitochondria-improving and antioxidant properties across the spectrum of cognitive decline-related disorders. Evidence from preclinical and clinical studies on their mechanisms of action are summarized and highlighted.
Collapse
Affiliation(s)
- Imane Lejri
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anastasia Agapouda
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Amandine Grimm
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| | - Anne Eckert
- University of Basel, Transfaculty Research Platform Molecular and Cognitive Neuroscience, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Psychiatric University Clinics, Basel, Switzerland
| |
Collapse
|
83
|
Consumption of a soy drink has no effect on cognitive function but may alleviate vasomotor symptoms in post-menopausal women; a randomised trial. Eur J Nutr 2019; 59:755-766. [PMID: 30863894 PMCID: PMC7058672 DOI: 10.1007/s00394-019-01942-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/02/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Cognitive decline is commonly reported during the menopausal transition, with memory and attention being particularly affected. The aim of this study was to investigate the effects of a commercially available soy drink on cognitive function and menopausal symptoms in post-menopausal women. METHODS 101 post-menopausal women, aged 44-63 years, were randomly assigned to consume a volume of soy drink providing a low (10 mg/day; control group), medium (35 mg/day), or high (60 mg/day) dose of isoflavones for 12 weeks. Cognitive function (spatial working memory, spatial span, pattern recognition memory, 5-choice reaction time, and match to sample visual search) was assessed using CANTAB pre- and post-the 12 week intervention. Menopausal symptoms were assessed using Greene's Climacteric Scale. RESULTS No significant differences were observed between the groups for any of the cognitive function outcomes measured. Soy drink consumption had no effect on menopausal symptoms overall; however, when women were stratified according to the severity of vasomotor symptoms (VMS) at baseline, women with more severe symptoms at baseline in the medium group had a significant reduction (P = 0.001) in VMS post-intervention (mean change from baseline score: - 2.15 ± 1.73) in comparison to those with less severe VMS (mean change from baseline score: 0.06 ± 1.21). CONCLUSIONS Soy drink consumption had no effect on cognitive function in post-menopausal women. Consumption of ~ 350 ml/day (35 mg IFs) for 12 weeks significantly reduced VMS in those with more severe symptoms at baseline. This finding is clinically relevant as soy drinks may provide an alternative, natural, treatment for alleviating VMS, highly prevalent among western women.
Collapse
|
84
|
Image-guided phenotyping of ovariectomized mice: altered functional connectivity, cognition, myelination, and dopaminergic functionality. Neurobiol Aging 2019; 74:77-89. [DOI: 10.1016/j.neurobiolaging.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/20/2018] [Accepted: 10/06/2018] [Indexed: 01/22/2023]
|
85
|
Nguyen HB, Loughead J, Lipner E, Hantsoo L, Kornfield SL, Epperson CN. What has sex got to do with it? The role of hormones in the transgender brain. Neuropsychopharmacology 2019; 44:22-37. [PMID: 30082887 PMCID: PMC6235900 DOI: 10.1038/s41386-018-0140-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/23/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
Sex differences and hormonal effects in presumed cisgender individuals have been well-studied and support the concept of a mosaic of both male and female "characteristics" in any given brain. Gonadal steroid increases and fluctuations during peri-puberty and across the reproductive lifespan influence the brain structure and function programmed by testosterone and estradiol exposures in utero. While it is becoming increasingly common for transgender and gender non-binary individuals to block their transition to puberty and/or use gender-affirming hormone therapy (GAHT) to obtain their desired gender phenotype, little is known about the impact of these manipulations on brain structure and function. Using sex differences and the effects of reproductive hormones in cisgender individuals as the backdrop, we summarize here the existing nascent neuroimaging and behavioral literature focusing on potential brain and cognitive differences in transgender individuals at baseline and after GAHT. Research in this area has the potential to inform our understanding of the developmental origins of gender identity and sex difference in response to gonadal steroid manipulations, but care is needed in our research questions and methods to not further stigmatize sex and gender minorities.
Collapse
Affiliation(s)
- Hillary B Nguyen
- School of Arts and Sciences, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Philadelphia, PA, USA
| | | | - Emily Lipner
- School of Arts and Sciences, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - C Neill Epperson
- School of Arts and Sciences, Philadelphia, PA, USA.
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Philadelphia, PA, USA.
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
86
|
Kwon OD, Choi SY, Bae J. Association of head circumference with cognitive decline and symptoms of depression in elderly: a 3-year prospective study. Yeungnam Univ J Med 2018; 35:205-212. [PMID: 31620595 PMCID: PMC6784694 DOI: 10.12701/yujm.2018.35.2.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/04/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Oh Dae Kwon
- Department of Neurology, Catholic University of Daegu School of Medicine, Daegu, Korea
- Corresponding Author: Oh Dae Kwon, Department of Neurology, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea Tel: +82-53-650-4298, Fax: +82-53-654-9786 E-mail:
| | - So-Young Choi
- Department of Neurology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jisuk Bae
- Department of Preventive Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
87
|
Seitz J, Kubicki M, Jacobs EG, Cherkerzian S, Weiss BK, Papadimitriou G, Mouradian P, Buka S, Goldstein JM, Makris N. Impact of sex and reproductive status on memory circuitry structure and function in early midlife using structural covariance analysis. Hum Brain Mapp 2018; 40:1221-1233. [PMID: 30548738 DOI: 10.1002/hbm.24441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/13/2023] Open
Abstract
Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Emily G Jacobs
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sara Cherkerzian
- Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Blair K Weiss
- Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - George Papadimitriou
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Palig Mouradian
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Stephen Buka
- Department of Community Health, Brown University, Providence, Rhode Island
| | - Jill M Goldstein
- Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Psychiatry, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Women's Health, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Departments of Psychiatry, Neurology and Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Center for Morphometric Analysis, Center for Neural Systems Investigations, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
88
|
Effects of the experimental administration of oral estrogen on prefrontal functions in healthy young women. Psychopharmacology (Berl) 2018; 235:3465-3477. [PMID: 30306229 DOI: 10.1007/s00213-018-5061-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
Abstract
17-Beta-estradiol (E2) stimulates neural plasticity and dopaminergic transmission in the prefrontal cortex, which is critically involved in attentional control, working memory, and other executive functions. Studies investigating E2's actions on prefrontally mediated behavior in the course of the menstrual cycle or during hormone replacement therapy are inconclusive, with numerous null findings as well as beneficial and detrimental effects. The current study focused on the effect of E2 on attentional performance, as animal studies indicate that supraphysiological doses (i.e., above estrous cycle levels) of E2 have beneficial effects on measures of attention in female rodents. To translate these findings to humans, we administered 12 mg E2-valerate or placebo orally to 34 naturally cycling women in the low-hormone early follicular phase using a randomized, double-blinded, pre-post design. Behavioral performance was tested twice during baseline and E2 peak, where E2 levels reached mildly supraphysiological levels in the E2 group. Aside from mainly prefrontally mediated tasks of attention, working memory, and other executive functions, we employed tasks of affectively modulated attention, emotion recognition, and verbal memory. E2 administration had a significant, but subtle negative impact on general processing speed and working memory performance. These effects could be related to an overstimulation of dopaminergic transmission. The negative effect of supraphysiological E2 on working memory connects well to animal literature. There were no effects on attentional performance or any other measure. This could be explained by different E2 levels being optimal for changing behavioral performance in specific tasks, which likely depends on the brain regions involved.
Collapse
|
89
|
Bromberger JT, Epperson CN. Depression During and After the Perimenopause: Impact of Hormones, Genetics, and Environmental Determinants of Disease. Obstet Gynecol Clin North Am 2018; 45:663-678. [PMID: 30401549 PMCID: PMC6226029 DOI: 10.1016/j.ogc.2018.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vulnerability to depression is increased across the menopause transition and in the early years after the final menstrual period. Clinicians should systematically screen women in this age group; if depressive symptoms or disorder are present, treatment of depression should be initiated. Potential treatments include antidepressants for moderate to severe symptoms, psychotherapy to target psychological and interpersonal factors, and hormone therapy for women with first-onset major depressive disorder or elevated depressive symptoms and at low risk for adverse effects. Behavioral interventions can improve physical activity and sleep patterns.
Collapse
Affiliation(s)
- Joyce T Bromberger
- Department of Epidemiology, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Cynthia Neill Epperson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA; Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA; Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
90
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Comparison of transitional vs surgical menopause on monoamine and amino acid levels in the rat brain. Mol Cell Endocrinol 2018; 476:139-147. [PMID: 29738870 PMCID: PMC6120792 DOI: 10.1016/j.mce.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Loss of ovarian function has important effects on neurotransmitter production and release with corresponding effects on cognitive performance. To date, there has been little direct comparison of the effects of surgical and transitional menopause on neurotransmitter pathways in the brain. In this study, effects on monoamines, monoamine metabolites, and the amino acids tryptophan (TRP) and tyrosine (TYR) were evaluated in adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD). Tissues from the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) were dissected and analyzed at 1- and 6-weeks following OVX or VCD treatments. Tissues from gonadally intact rats were collected at proestrus and diestrus to represent neurochemical levels during natural states of high and low estrogens. In gonadally intact rats, higher levels of serotonin (5-HT) were detected at proestrus than at diestrus in the FCX. In addition, the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5HT in the FCX and HPC was lower at proestrus than at diestrus, suggesting an effect on 5-HT turnover in these regions. No other significant differences between proestrus and diestrus were observed. In OVX- and VCD-treated rats, changes were observed which were both brain region- and time point-dependent. In the HPC levels of norepinephrine, 5-HIAA, TRP and TYR were significantly reduced at 1 week, but not 6 weeks, in both OVX and VCD-treated rats relative to proestrus and diestrus. In the FCX, dopamine levels were elevated at 6 weeks after OVX relative to diestrus. A similar trend was observed at 1 week (but not 6 weeks) following VCD treatment. In the STR, norepinephrine levels were elevated at 1 week following OVX, and HVA levels were elevated at 1 week, but not 6 weeks, following VCD treatment, relative to proestrus and diestrus. Collectively, these data provide the first comprehensive analysis comparing the effects of two models of menopause on multiple neuroendocrine endpoints in the brain. These effects likely contribute to effects of surgical and transitional menopause on brain function and cognitive performance that have been reported.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Working memory (WM) is a key process that is integral to many complex cognitive tasks, and it declines significantly with advancing age. This review will survey recent evidence supporting the idea that the functioning of the WM system in women is modulated by circulating estrogens. RECENT FINDINGS In postmenopausal women, increased estrogen concentrations may be associated with improved WM function, which is evident on WM tasks that have a high cognitive load or significant manipulation demands. Experimental studies in rhesus monkeys and human neuroimaging studies support a prefrontal locus for these effects. Defining the basic neurochemical or cellular mechanisms that underlie the ability of estrogens to regulate WM is a topic of current research in both human and animal investigations. An emerging body of work suggests that frontal executive elements of the WM system are influenced by the circulating estrogen concentrations currently available to the CNS and that the effects are region-specific within the frontal cortex. These findings have implications for women's brain health and cognitive aging.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, Social Sciences Center, and Department of Psychiatry, University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|
92
|
Nguyen HB, Chavez AM, Lipner E, Hantsoo L, Kornfield SL, Davies RD, Epperson CN. Gender-Affirming Hormone Use in Transgender Individuals: Impact on Behavioral Health and Cognition. Curr Psychiatry Rep 2018; 20:110. [PMID: 30306351 PMCID: PMC6354936 DOI: 10.1007/s11920-018-0973-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW With increasing numbers of transgender and gender non-binary individuals presenting for care, knowing how to elucidate the mental health and cognitive outcomes of gender-affirming hormone therapy (GAHT) is necessary. This article reviews the present literature covering GAHT effects on mood, behavioral health, and cognition in these individuals and offers research priorities to address knowledge gaps. RECENT FINDINGS Although there are some conflicting data, GAHT overwhelmingly seems to have positive psychological effects in both adolescents and adults. Research tends to support that GAHT reduces symptoms of anxiety and depression, lowers perceived and social distress, and improves quality of life and self-esteem in both male-to-female and female-to-male transgender individuals. Clinically, prescribing GAHT can help with gender dysphoria-related mental distress. Thus, timely hormonal intervention represents a crucial tool for improving behavioral wellness in transgender individuals, though effects on cognitive processes fundamental for daily living are unknown. Future research should prioritize better understanding of how GAHT may affect executive functioning.
Collapse
Affiliation(s)
- Hillary B Nguyen
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Colorado School of Medicine-Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA
| | - Alexis M Chavez
- Department of Psychiatry, University of Colorado School of Medicine-Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA
| | - Emily Lipner
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Liisa Hantsoo
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sara L Kornfield
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert D Davies
- Department of Psychiatry, University of Colorado School of Medicine-Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA
| | - C Neill Epperson
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Colorado School of Medicine-Anschutz Medical Campus, 13001 E 17th Place, MS F546, Aurora, CO, 80045, USA.
| |
Collapse
|
93
|
Jacobs EG, Goldstein JM. The Middle-Aged Brain: Biological sex and sex hormones shape memory circuitry. Curr Opin Behav Sci 2018; 23:84-91. [PMID: 30271832 PMCID: PMC6157917 DOI: 10.1016/j.cobeha.2018.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Emily G. Jacobs
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Neuroscience Research Institute, University of California, Santa Barbara
| | - Jill M. Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School
- Departments of Psychiatry and Obstetrics and Gynecology, Massachusetts General Hospital
- Athinoula A. Martinos Brain Imaging Center, Massachusetts General Hospital
| |
Collapse
|
94
|
Hantsoo L, Golden CEM, Kornfield S, Grillon C, Epperson CN. Startling Differences: Using the Acoustic Startle Response to Study Sex Differences and Neurosteroids in Affective Disorders. Curr Psychiatry Rep 2018; 20:40. [PMID: 29777410 PMCID: PMC6050032 DOI: 10.1007/s11920-018-0906-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Neuroactive steroid hormones, such as estradiol and progesterone, likely play a role in the pathophysiology of female-specific psychiatric disorders such as premenstrual dysphoric disorder (PMDD) and postpartum depression and may contribute to the marked sex differences observed in the incidence and presentation of affective disorders. However, few tools are available to study the precise contributions of these neuroactive steroids (NSs). In this review, we propose that the acoustic startle response (ASR), an objective measure of an organism's response to an emotional context or stressor, is sensitive to NSs. As such, the ASR represents a unique translational tool that may help to elucidate the contribution of NSs to sex differences in psychiatric disorders. RECENT FINDINGS Findings suggest that anxiety-potentiated startle (APS) and prepulse inhibition of startle (PPI) are the most robust ASR paradigms for assessing contribution of NSs to affective disorders, while affective startle response modulation (ASRM) appears less diagnostic of sex or menstrual cycle (MC) effects. However, few studies have appropriately used ASR to test a priori hypotheses about sex or MC differences. We recommend that ASR studies account for sex as a biological variable (SABV) and hormonal status to further knowledge of NS contribution to affective disorders.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA.
| | - Carla E M Golden
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Kornfield
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA
| | - Christian Grillon
- National Institutes of Health, National Institute of Mental Health, Bethesda, MD, USA
| | - C Neill Epperson
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Philadelphia, PA, 19104, USA
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
95
|
Kornfield SL, Hantsoo L, Epperson CN. What Does Sex Have to Do with It? The Role of Sex as a Biological Variable in the Development of Posttraumatic Stress Disorder. Curr Psychiatry Rep 2018; 20:39. [PMID: 29777319 PMCID: PMC6354938 DOI: 10.1007/s11920-018-0907-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review highlights the neurobiological aspects of sex differences in posttraumatic stress disorder (PTSD), specifically focusing on the physiological responses to trauma and presents evidence supporting hormone and neurosteroid/peptide differences from both preclinical and clinical research. RECENT FINDINGS While others have suggested that trauma type or acute emotional reaction are responsible for women's disproportionate risk to PTSD, neither of these explanations fully accounts for the sex differences in PTSD. Sex differences in brain neurocircuitry, anatomy, and neurobiological processes, such as those involved in learning and memory, are discussed as they have been implicated in risk and resilience for the development of PTSD. Gonadal and stress hormones have been found to modulate sex differences in the neurocircuitry and neurochemistry underlying fear learning and extinction. Preclinical research has not consistently controlled for hormonal and reproductive status of rodents nor have clinical studies consistently examined these factors as potential moderators of risk for PTSD. Sex as a biological variable (SABV) should be considered, in addition to the endocrine and reproductive status of participants, in all stress physiology and PTSD research.
Collapse
Affiliation(s)
- Sara L Kornfield
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Room 3005, Philadelphia, PA, 19104, USA.
| | - Liisa Hantsoo
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Room 3005, Philadelphia, PA, 19104, USA
| | - C Neill Epperson
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Room 3005, Philadelphia, PA, 19104, USA
- Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Penn PROMOTES Research on Sex and Gender in Health, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
96
|
Nostro AD, Müller VI, Varikuti DP, Pläschke RN, Hoffstaedter F, Langner R, Patil KR, Eickhoff SB. Predicting personality from network-based resting-state functional connectivity. Brain Struct Funct 2018; 223:2699-2719. [PMID: 29572625 DOI: 10.1007/s00429-018-1651-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
Personality is associated with variation in all kinds of mental faculties, including affective, social, executive, and memory functioning. The intrinsic dynamics of neural networks underlying these mental functions are reflected in their functional connectivity at rest (RSFC). We, therefore, aimed to probe whether connectivity in functional networks allows predicting individual scores of the five-factor personality model and potential gender differences thereof. We assessed nine meta-analytically derived functional networks, representing social, affective, executive, and mnemonic systems. RSFC of all networks was computed in a sample of 210 males and 210 well-matched females and in a replication sample of 155 males and 155 females. Personality scores were predicted using relevance vector machine in both samples. Cross-validation prediction accuracy was defined as the correlation between true and predicted scores. RSFC within networks representing social, affective, mnemonic, and executive systems significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness, and Openness. RSFC patterns of most networks, however, predicted personality traits only either in males or in females. Personality traits can be predicted by patterns of RSFC in specific functional brain networks, providing new insights into the neurobiology of personality. However, as most associations were gender-specific, RSFC-personality relations should not be considered independently of gender.
Collapse
Affiliation(s)
- Alessandra D Nostro
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany. .,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany. .,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
| | - Veronika I Müller
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Deepthi P Varikuti
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Rachel N Pläschke
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Universitätstraße 1, 40225, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1,7), Research Centre Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| |
Collapse
|
97
|
Réus GZ, de Moura AB, Silva RH, Resende WR, Quevedo J. Resilience Dysregulation in Major Depressive Disorder: Focus on Glutamatergic Imbalance and Microglial Activation. Curr Neuropharmacol 2018; 16:297-307. [PMID: 28676011 PMCID: PMC5843981 DOI: 10.2174/1570159x15666170630164715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Accepted: 06/22/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Many studies have been shown an important role of glutamatergic system as well microglial activation in the pathophysiology of major depressive disorder (MDD). In humans most resistant to the development of psychiatric disorders, including MDD, are observed a greater degree of resilience resulting from stress. Less resilience is associated with neuroendocrine and neuroinflammatory markers, as well as with glutamatergic system dysregulation. Thus, this review we highlighted findings from literature identifying the function of glutamatergic system, microglial activation and inflammation in resilience. METHODS We conducted a review of computerized databases from 1970 to 2017. RESULTS There is an association between microglial activation and glutamatergic system activation with stress vulnerability and resilience. CONCLUSIONS Glutamate neurotransmission, including neurotransmitter synthesis, signalling, and glutamate receptor functions and expression all seem to be involved with both stress vulnerability and resilience. Moreover, inflammation and microglial activation mediate individual differences in resilience and the risk of stress-induced MDD.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Airam B. de Moura
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ritele H. Silva
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Wilson R. Resende
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
98
|
Jacobs EG, Weiss B, Makris N, Whitfield-Gabrieli S, Buka SL, Klibanski A, Goldstein JM. Reorganization of Functional Networks in Verbal Working Memory Circuitry in Early Midlife: The Impact of Sex and Menopausal Status. Cereb Cortex 2018; 27:2857-2870. [PMID: 27178194 DOI: 10.1093/cercor/bhw127] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Converging preclinical and human evidence indicates that the decline in ovarian estradiol production during the menopausal transition may play a mechanistic role in the neuronal changes that occur early in the aging process. Here, we present findings from a population-based fMRI study characterizing regional and network-level differences in working memory (WM) circuitry in midlife men and women (N = 142; age range 46-53), as a function of sex and reproductive stage. Reproductive histories and hormonal evaluations were used to determine menopausal status. Participants performed a verbal WM task during fMRI scanning. Results revealed robust differences in task-evoked responses in dorsolateral prefrontal cortex and hippocampus as a function of women's reproductive stage, despite minimal variance in chronological age. Sex differences in regional activity and functional connectivity that were pronounced between men and premenopausal women were diminished for postmenopausal women. Critically, analyzing data without regard to sex or reproductive status obscured group differences in the circuit-level neural strategies associated with successful working memory performance. These findings underscore the importance of reproductive age and hormonal status, over and above chronological age, for understanding sex differences in the aging of memory circuitry. Further, these findings suggest that early changes in working memory circuitry are evident decades before the age range typically targeted in cognitive aging studies.
Collapse
Affiliation(s)
- Emily G Jacobs
- Division of Women's Health, Department of Medicine.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA 02120, USA.,Harvard Medical School, Boston, MA 02120, USA.,Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Blair Weiss
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA 02120, USA
| | - Nikos Makris
- Harvard Medical School, Boston, MA 02120, USA.,Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sue Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Anne Klibanski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jill M Goldstein
- Division of Women's Health, Department of Medicine.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA 02120, USA.,Harvard Medical School, Boston, MA 02120, USA.,Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
99
|
Abstract
OBJECTIVE Few have characterized cognitive changes with age as a function of menopausal stage relative to men, or sex differences in components of memory in early midlife. The study aim was to investigate variation in memory function in early midlife as a function of sex, sex steroid hormones, and reproductive status. METHODS A total of 212 men and women aged 45 to 55 were selected for this cross-sectional study from a prenatal cohort of pregnancies whose mothers were originally recruited in 1959 to 1966. They underwent clinical and cognitive testing and hormonal assessments of menopause status. Multivariate general linear models for multiple memory outcomes were used to test hypotheses controlling for potential confounders. Episodic memory, executive function, semantic processing, and estimated verbal intelligence were assessed. Associative memory and episodic verbal memory were assessed using Face-Name Associative Memory Exam (FNAME) and Selective Reminding Test (SRT), given increased sensitivity to detecting early cognitive decline. Impacts of sex and reproductive stage on performance were tested. RESULTS Women outperformed men on all memory measures including FNAME (β = -0.30, P < 0.0001) and SRT (β = -0.29, P < 0.0001). Furthermore, premenopausal and perimenopausal women outperformed postmenopausal women on FNAME (initial learning, β= 0.32, P = 0.01) and SRT (recall, β= 2.39, P = 0.02). Across all women, higher estradiol was associated with better SRT performance (recall, β = 1.96, P = 0.01) and marginally associated with FNAME (initial learning, β = 0.19, P = 0.06). CONCLUSIONS This study demonstrated that, in early midlife, women outperformed age-matched men across all memory measures, but sex differences were attenuated for postmenopausal women. Initial learning and memory retrieval were particularly vulnerable, whereas memory consolidation and storage were preserved. Findings underscore the significance of the decline in ovarian estradiol production in midlife and its role in shaping memory function.
Collapse
|
100
|
Abstract
OBJECTIVE Anxiety about memory during menopause can affect quality of life. We aimed to improve memory self-efficacy during menopause using a group memory strategies program. METHODS The program was run five times for a total of 32 peri- and postmenopausal women, age between 47 and 60 years, recruited from hospital menopause and gynecology clinics. The 4-week intervention consisted of weekly 2-hour sessions, and covered how memory works, memory changes related to ageing, health and lifestyle factors, and specific memory strategies. Memory contentment (CT), reported frequency of forgetting (FF), use of memory strategies, psychological distress, and attitude toward menopause were measured. A double-baseline design was applied, with outcomes measured on two baseline occasions (1-month prior [T1] and in the first session [T2]), immediately postintervention (T3), and 3-month postintervention (T4). To describe changes in each variable between time points paired sample t tests were conducted. Mixed-effects models comparing the means of random slopes from T2 to T3 with those from T1 to T2 were conducted for each variable to test for treatment effects. RESULTS Examination of the naturalistic changes in outcome measures from T1 to T2 revealed no significant changes (all Ps > 0.05). CT, reported FF, and use of memory strategies improved significantly more from T2 to T3, than from T1 to T2 (all Ps < 0.05). Neither attitude toward menopause nor psychological distress improved significantly more postintervention than during the double-baseline (all Ps > 0.05). Improvements in reported CT and FF were maintained after 3 months. CONCLUSIONS The use of group interventions to improve memory self-efficacy during menopause warrants continued evaluation.
Collapse
|