51
|
Goldsmith C, Rodríguez-Aguilera JR, El-Rifai I, Jarretier-Yuste A, Hervieu V, Raineteau O, Saintigny P, Chagoya de Sánchez V, Dante R, Ichim G, Hernandez-Vargas H. Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level. Sci Rep 2021; 11:8032. [PMID: 33850190 PMCID: PMC8044111 DOI: 10.1038/s41598-021-87457-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC.
Collapse
Affiliation(s)
- Chloe Goldsmith
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France.
| | - Jesús Rafael Rodríguez-Aguilera
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Ines El-Rifai
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Adrien Jarretier-Yuste
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Valérie Hervieu
- Department of Surgical Pathology, Hospices Civils de Lyon, Groupement Hospitalier Est, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France
| | - Victoria Chagoya de Sánchez
- Department of Cellular Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Robert Dante
- Dependence Receptors Cancer and Development Laboratory, Department of Signaling of Tumoral Escape. Cancer Research. Center of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Gabriel Ichim
- Cancer Cell Death Laboratory, Part of LabEx DEVweCAN, Université de Lyon, Lyon, France
- Cancer Research Centre of Lyon (CRCL), Inserm U 1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France
| | - Hector Hernandez-Vargas
- Department of Tumor Escape, Resistance and Immunity, TGF-Beta and Immuno-Regulation Team, Cancer Research Centre of Lyon (CRCL), INSERM U 1052, CNRS UMR 5286, UCBL1, Université de Lyon, Centre Léon Bérard, 28 rue Laennec, 69373, Lyon Cedex 08, France.
- Department of Translational Medicine, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
52
|
Zhuang X, Forde D, Tsukuda S, D'Arienzo V, Mailly L, Harris JM, Wing PAC, Borrmann H, Schilling M, Magri A, Rubio CO, Maidstone RJ, Iqbal M, Garzon M, Minisini R, Pirisi M, Butterworth S, Balfe P, Ray DW, Watashi K, Baumert TF, McKeating JA. Circadian control of hepatitis B virus replication. Nat Commun 2021; 12:1658. [PMID: 33712578 PMCID: PMC7955118 DOI: 10.1038/s41467-021-21821-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown. We establish a circadian cycling liver cell-model and demonstrate that REV-ERB directly regulates NTCP-dependent hepatitis B and delta virus particle entry. Importantly, we show that pharmacological activation of REV-ERB inhibits HBV infection in vitro and in human liver chimeric mice. We uncover a role for BMAL1 to bind HBV genomes and increase viral promoter activity. Pharmacological inhibition of BMAL1 through REV-ERB ligands reduces pre-genomic RNA and de novo particle secretion. The presence of conserved E-box motifs among members of the Hepadnaviridae family highlight an evolutionarily conserved role for BMAL1 in regulating this family of small DNA viruses.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Donall Forde
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | | | - Laurent Mailly
- University of Strasbourg and Inserm, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Robert J Maidstone
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Miguel Garzon
- Division of Pharmacy and Optometry, School of Health Sciences and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
- Department of Applied Biological Sciences, Tokyo University of Science Graduate School of Science and Technology, Japan and Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Thomas F Baumert
- University of Strasbourg and Inserm, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Pôle Hépato-Digestif, Institut Hopitalo-Universitaire (IHU), Hopitaux Universitaire de Strasbourg, Strasbourg and Institut Universitaire de France, Paris, France
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
53
|
Voss L, Hoché E, Stock V, Böhmert L, Braeuning A, Thünemann AF, Sieg H. Intestinal and hepatic effects of iron oxide nanoparticles. Arch Toxicol 2021; 95:895-905. [PMID: 33554279 PMCID: PMC7904561 DOI: 10.1007/s00204-020-02960-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the need for case-by-case assessment of iron oxide nanoparticles.
Collapse
Affiliation(s)
- Linn Voss
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Elisa Hoché
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Valerie Stock
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Linda Böhmert
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas F Thünemann
- German Federal Institute for Material Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
54
|
Prabhakar B, Lee S, Bochanis A, He W, Manautou JE, Rasmussen TP. lnc-RHL, a novel long non-coding RNA required for the differentiation of hepatocytes from human bipotent progenitor cells. Cell Prolif 2021; 54:e12978. [PMID: 33393114 PMCID: PMC7848967 DOI: 10.1111/cpr.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The final stage of liver development is the production of hepatocytes and cholangiocytes (biliary epithelial cells) from bipotent hepatic progenitor cells. We used HepaRG cells, which are bipotent and able to differentiate into both hepatocytes and cholangiocytes, as a model to study the action of a novel lncRNA (lnc-RHL) and its role in the regulation of bipotency leading to hepatocytes and cholangiocytes. MATERIALS AND METHODS Differentiation of HepaRG cells was assessed by marker expression and morphology which revealed their ability to differentiate into hepatocytes and cholangiocytes (modelling the behaviour of hepatoblasts in vivo). Using a qRT-PCR and RACE, we cloned a novel lncRNA (lnc-RHL; regulator of hepatic lineages) that is upregulated upon HepaRG differentiation. Using inducible knockdown of lnc-RHL concurrently with differentiation, we show that lnc-RHL is required for proper HepaRG cell differentiation resulting in diminution of the hepatocyte lineage. RESULTS Here, we report the discovery of lnc-RHL, a spliced and polyadenylated 670 base lncRNA expressed from the 11q23.3 apolipoprotein gene cluster. lnc-RHL expression is confined to hepatic lineages and is upregulated when bipotent HepaRG cells are caused to differentiate. HepaRG cells made deficient for lnc-RHL have reduced ability to differentiate into hepatocytes, but retain their ability to differentiate into cholangiocytes. CONCLUSIONS Deficiency for lnc-RHL in HepaRG cells converts them from bipotent progenitor cells to unipotent progenitor cells with impaired ability to yield hepatocytes. We conclude that lnc-RHL is a key regulator of bipotency in HepaRG cells.
Collapse
Affiliation(s)
| | - Soowan Lee
- Department of Pharmaceutical SciencesStorrsCTUSA
| | | | - Wu He
- Flow Cytometry Core FacilityCenter for Open Research Resources and EquipmentStorrsCTUSA
| | | | - Theodore P. Rasmussen
- Department of Pharmaceutical SciencesStorrsCTUSA
- Institute for Systems GenomicsStorrs/FarmingtonCTUSA
- University of Connecticut Stem Cell InstituteStorrs/FarmingtonCTUSA
| |
Collapse
|
55
|
Yamazaki T, Tokiwa T. Elevated levels of expression of cytochrome P450 3A4 in a human liver epithelial cell line in differentiation-inducing conditions. Hum Cell 2021; 34:750-758. [PMID: 33495943 DOI: 10.1007/s13577-021-00487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 (CYP) enzymes, especially CYP3A4 play a major role in the metabolism of xenobiotics in human liver. CYP3A4-expressing human liver or hepatoma cell lines may be good cell substitutes of human hepatocytes for drug metabolism studies. However, there are only a few cell lines expressing high levels of CYP3A4. The aim of this study is to investigate the expression of CYP3A4 and its mechanism in an immortalized non-tumorigenic human liver epithelial cell line, THLE-5b in differentiation-inducing conditions. When THLE-5b cells were cultivated in culture medium supplemented with hepatocytic differentiation-inducing factors, they showed hepatocytic morphology. In addition, elevated levels of expression not only of α1-antitrypsin (AAT) and albumin (ALB) mRNAs, but also of CYP3A4 mRNA, which are functional hepatocyte markers, were observed compared with the control. Among hepatocytic differentiation-inducing factors, dexamethasone (DEX) and insulin-transferrin-sodium selenite (ITS) seemed to be involved in elevation of expression of CYP3A4 mRNA. The mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126 or the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 reduced CYP3A4 mRNA levels of THLE-5b cells. Furthermore, the CpG site of the CYP3A4 promoter region in THLE-5b cells was found to be unmethylated, although in low CYP3A4-expressing HepG2 cells, the site was methylated. In conclusion, THLE-5b cells, which are unmethylated at the CpG site of the CYP3A4 promoter region, express CYP3A4 mRNA through the MEK/ERK1/2 and PI3K/Akt signaling pathways and acquire hepatocytic functions in differentiation-inducing conditions. Thus, THLE-5b cells could be a useful cell system for the study of drug metabolism.
Collapse
Affiliation(s)
- Taisuke Yamazaki
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-shinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan.
| | - Takayoshi Tokiwa
- Department of Liver Cell Biology, Kohno Clinical Medicine Research Institute, 3-4-4 Kita-shinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan
| |
Collapse
|
56
|
Jones SW, Penman SL, French NS, Park BK, Chadwick AE. Investigating dihydroorotate dehydrogenase inhibitor mediated mitochondrial dysfunction in hepatic in vitro models. Toxicol In Vitro 2021; 72:105096. [PMID: 33460737 DOI: 10.1016/j.tiv.2021.105096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023]
Abstract
Inhibition of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzymatic step in de novo pyrimidine synthesis, has broad immunosuppressive effects in vivo and shows promise as a therapeutic target for the treatment of malignancies, viral infections and auto-immune diseases. Whilst there are numerous DHODH inhibitors under development, leflunomide and teriflunomide are the only FDA approved compounds on the market, each of which have been issued with black-box warnings for hepatotoxicity. Mitochondrial dysfunction is a putative mechanism by which teriflunomide and leflunomide elicit their hepatotoxic effects, however it is as yet unclear whether this is shared by other nascent DHODH inhibitors. The present study aimed to evaluate the propensity for DHODH inhibitors to mediate mitochondrial dysfunction in two hepatic in vitro models. Initial comparisons of cytotoxicity and ATP content in HepaRG® cells primed for oxidative metabolism, in tandem with mechanistic evaluations by extracellular flux analysis identified multifactorial toxicity and moderate indications of respiratory chain dysfunction or uncoupling. Further investigations using HepG2 cells, a hepatic line with limited capability for phase I xenobiotic metabolism, identified leflunomide and brequinar as positive mitochondrial toxicants. Taken together, biotransformation of some DHODH inhibitor species may play a role in mediating or masking hepatic mitochondrial liabilities.
Collapse
Affiliation(s)
- Samantha W Jones
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Sophie L Penman
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Neil S French
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - B Kevin Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK
| | - Amy E Chadwick
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Ashton street Liverpool, L69 3GE, UK.
| |
Collapse
|
57
|
Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2020; 269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Bioprinting is an emergent technology that has already demonstrated the capacity to create complex and/or vascularized multicellular structures with defined and organized architectures, in a reproducible and high throughput way. Here, we present the implementation of a complex liver model by the development of a three-dimensional extrusion bioprinting process, including parameters for matrix polymerization of methacrylated gelatin, using two hepatic cell lines, Huh7 and HepaRG. The printed structures exhibited long-term viability (28 days), proliferative ability, a relevant hepatocyte phenotype and functions equivalent to or better than those of their 2D counterparts using standard DMSO treatment. This work served as a basis for the bioprinting of complex multicellular models associating the hepatic parenchymal cells, HepaRG, with stellate cells (LX-2) and endothelial cells (HUVECs), able of colonizing the surface of the structure and thus recreating a pseudo endothelial barrier. When bioprinted in 3D monocultures, LX-2 expression was modulated by TGFβ-1 toward the induction of myofibroblastic genes such as ACTA2 and COL1A1. In 3D multicellular bioprinted structures comprising HepaRG, LX-2 and endothelial cells, we evidenced fibrillar collagen deposition, which is never observed in monocultures of either HepaRG or LX-2 alone. These observations indicate that a precise control of cellular communication is required to recapitulate key steps of fibrogenesis. Bioprinted 3D co-cultures therefore open up new perspectives in studying the molecular and cellular basis of fibrosis development and provide better access to potential inducers and inhibitors of collagen expression and deposition.
Collapse
Affiliation(s)
- Marie Cuvellier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Hugo Oliveira
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France
| | - Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; CHU Bordeaux, Services D'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Georges Baffet
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| |
Collapse
|
58
|
Le Daré B, Ferron PJ, Allard PM, Clément B, Morel I, Gicquel T. New insights into quetiapine metabolism using molecular networking. Sci Rep 2020; 10:19921. [PMID: 33199804 PMCID: PMC7669884 DOI: 10.1038/s41598-020-77106-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism is involved in both pharmacology and toxicology of most xenobiotics including drugs. Yet, visualization tools facilitating metabolism exploration are still underused, despite the availibility of pertinent bioinformatics solutions. Since molecular networking appears as a suitable tool to explore structurally related molecules, we aimed to investigate its interest in in vitro metabolism exploration. Quetiapine, a widely prescribed antipsychotic drug, undergoes well-described extensive metabolism, and is therefore an ideal candidate for such a proof of concept. Quetiapine was incubated in metabolically competent human liver cell models (HepaRG) for different times (0 h, 3 h, 8 h, 24 h) with or without cytochrom P450 (CYP) inhibitor (ketoconazole as CYP3A4/5 inhibitor and quinidine as CYP2D6 inhibitor), in order to study its metabolism kinetic and pathways. HepaRG culture supernatants were analyzed on an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-HRMS/MS). Molecular networking approach on LC-HRMS/MS data allowed to quickly visualize the quetiapine metabolism kinetics and determine the major metabolic pathways (CYP3A4/5 and/or CYP2D6) involved in metabolite formation. In addition, two unknown putative metabolites have been detected. In vitro metabolite findings were confirmed in blood sample from a patient treated with quetiapine. This is the first report using LC-HRMS/MS untargeted screening and molecular networking to explore in vitro drug metabolism. Our data provide new evidences of the interest of molecular networking in drug metabolism exploration and allow our in vitro model consistency assessment.
Collapse
Affiliation(s)
- Brendan Le Daré
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France. .,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France.
| | - Pierre-Jean Ferron
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, Rue Michel Servet 1, 1211, Geneva 4, Switzerland
| | - Bruno Clément
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France
| | - Isabelle Morel
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France.,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| | - Thomas Gicquel
- INSERM, INRAE, CHU Rennes, Institut NuMeCan (Nutrition, Metabolism and Cancer), PREVITOX Network, Univ Rennes, 35033, Rennes, France.,Forensic Toxicology Laboratory, Rennes University Hospital, 35033, Rennes, France
| |
Collapse
|
59
|
Effects of vanadium (sodium metavanadate) and aflatoxin-B1 on cytochrome p450 activities, DNA damage and DNA methylation in human liver cell lines. Toxicol In Vitro 2020; 70:105036. [PMID: 33164849 DOI: 10.1016/j.tiv.2020.105036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/15/2023]
Abstract
Vanadium is considered as "possibly carcinogenic to humans" (V2O5, IARC Group 2B), yet uncertainties persist related to the toxicity mechanisms of the multiple forms of vanadium. Exposure to vanadium often co-occurs with other metals or with organic compounds that can be transformed by cytochrome p450 (CYP) enzymes into DNA-reactive carcinogens. Therefore, effects of a soluble form of vanadium (sodium metavanadate, NaVO3) and aflatoxin-B1 (AFB1) were tested separately and together, for induction of CYP activities, DNA damage (γH2AX and DNA alkaline unwinding assays), and DNA methylation changes (global genome and DNA repeats) in HepaRG or HepG2 liver cell lines. NaVO3 (≥ 2.3 μM) reduced CYP1A1 and CYP3A4 activities and induced DNA damage, butcaused important cell proliferation only in HepaRG cells. As a binary mixture, NaVO3 did not modify the effects of AFB1. There was no reproducible effect of NaVO3 (<21 μM) on DNA methylation in AluYb8, satellite-α, satellite-2, and by the luminometric methylation assay, but DNA methylation flow-cytometry signals in HepG2 cells (25-50 μM) increased at the G1 and G2 cell cycle phases. In conclusion, cell lines responded differently to NaVO3 supporting the importance of investigating more than one cell line, and a carcinogenic role of NaVO3 might reside at low concentrations by stimulating the proliferation of tumorigenic cells.
Collapse
|
60
|
Angireddy R, Chowdhury AR, Zielonka J, Ruthel G, Kalyanaraman B, Avadhani NG. Alcohol-induced CYP2E1, mitochondrial dynamics and retrograde signaling in human hepatic 3D organoids. Free Radic Biol Med 2020; 159:1-14. [PMID: 32738395 DOI: 10.1016/j.freeradbiomed.2020.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022]
Abstract
Alcohol toxicity is a significant health problem with ~3 million estimated deaths per year globally. Alcohol is metabolized to the toxic metabolite, acetaldehyde by alcohol dehydrogenase or CYP2E1 in the hepatic tissue, and also induces reactive oxygen species (ROS), which together play a pivotal role in cell and tissue damage. Our previous studies with COS-7 cells transduced with unique human CYP2E1 variants that mostly localize to either microsomes or mitochondria revealed that mitochondrially-localized CYP2E1 drives alcohol toxicity through the generation of higher levels of ROS, which has a consequent effect on cytochrome c oxidase (CcO) and mitochondrial oxidative function. Alcohol treatment of human hepatocyte cell line, HepaRG, in monolayer cultures increased ROS, affected CcO activity/stability, and induced mitophagy. Alcohol treatment of 3D organoids of HepaRG cells induced higher levels of CYP2E1 mRNA and activated mitochondrial stress-induced retrograde signaling, and also induced markers of hepatic steatosis. Knock down of CYP2E1 mRNA using specific shRNA, FK506, a Calcineurin inhibitor, and Mdivi-1, a DRP1 inhibitor, ameliorated alcohol-induced mitochondrial retrograde signaling, and hepatic steatosis. These results for the first time present a mechanistic link between CYP2E1 function and alcohol mediated mitochondrial dysfunction, retrograde signaling, and activation of hepatic steatosis in a 3D organoid system that closely recapitulates the in vivo liver response.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacek Zielonka
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gordon Ruthel
- Department of Pathobiology, Veterinary Center for Imaging, Hill Pavilion, School of Veterinary Medicine, University of Pennsylvania, PA, 19104, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and, Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, 3800 Spruce Street, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
61
|
Pasqua M, Pereira U, de Lartigue C, Nicolas J, Vigneron P, Dermigny Q, Legallais C. Preclinical characterization of alginate-poly-L-lysine encapsulated HepaRG for extracorporeal liver supply. Biotechnol Bioeng 2020; 118:453-464. [PMID: 32997339 DOI: 10.1002/bit.27583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022]
Abstract
We recently demonstrated that HepaRG cells encapsulated into 1.5% alginate beads are capable of self-assembling into spheroids. They adequately differentiate into hepatocyte-like cells, with hepatic features observed at Day 14 post-encapsulation required for external bioartificial liver applications. Preliminary investigations performed within a bioreactor under shear stress conditions and using a culture medium mimicking acute liver failure (ALF) highlighted the need to reinforce beads with a polymer coating. We demonstrated in a first step that a poly-l-lysine coating improved the mechanical stability, without altering the metabolic activities necessary for bioartificial liver applications (such as ammonia and lactate elimination). In a second step, we tested the optimized biomass in a newly designed perfused dynamic bioreactor, in the presence of the medium model for pathological plasma for 6 h. Performances of the biomass were enhanced as compared to the steady configuration, demonstrating its efficacy in decreasing the typical toxins of ALF. This type of bioreactor is easy to scale up as it relies on the number of micro-encapsulated cells, and could provide an adequate hepatic biomass for liver supply. Its design allows it to be integrated into a hybrid artificial/bioartificial liver setup for further clinical studies regarding its impact on ALF animal models.
Collapse
Affiliation(s)
- Mattia Pasqua
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Ulysse Pereira
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Claire de Lartigue
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Jonathan Nicolas
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Pascale Vigneron
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Quentin Dermigny
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Centre de recherche de Royallieu, Compiègne, France.,DHU Hépatinov, Villejuif, France
| |
Collapse
|
62
|
Ooeda K, Kubiura‐Ichimaru M, Tsuji S, Okuyama S, Yamashita M, Mine A, Kawamura F, Ueyama T, Tada M. A two-dimensional multiwell cell culture method for the production of CYP3A4-expressing hepatocyte-like cells from HepaRG cells. Pharmacol Res Perspect 2020; 8:e00652. [PMID: 32955797 PMCID: PMC7507088 DOI: 10.1002/prp2.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 enzymes (CYP) function in drug metabolism in the liver. To evaluate numerous drug candidates, a high-content screening (HCS) system with hepatocyte-like cells (HLCs) that can replace adult human hepatocytes is required. Human hepatocellular carcinoma HepaRG is the only cell line capable of providing HLCs with high CYP3A4 expression comparable to that in adult hepatocytes after cell differentiation. The aim of this study was to design an ideal multiwell culture system for HLCs using transgenic HepaRG cells expressing the EGFP coding an enhanced green fluorescent protein under CYP3A4 transcriptional regulation. HLCs were matured on five different types of 96-well black plates. Culturing HLCs on glass-bottom Optical CVG plates significantly promoted cell maturation and increased metabolic activity by twofold under two-dimensional (2D) culture conditions, and these features were enhanced by 2% collagen coating. Three plates for three-dimensional (3D) cell cultures with a gas-exchangeable fabric or dimethylpolysiloxane membrane bottom formed multiple round colonies, whereas they were ineffective for CYP3A4 expression. Under optimized conditions presented here, HLCs lost responsiveness to nuclear receptor-mediated transcriptional induction of CYP3A4, suggesting that CYP3A4 transcription has already been fully upregulated. Therefore, HepaRG-derived HLCs will provide an alternative to human hepatocytes with high levels of CYP3A4 enzyme activity even under 2D culture conditions. This will improve a variety of drug screening methods.
Collapse
Affiliation(s)
- Keiko Ooeda
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Musashi Kubiura‐Ichimaru
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Mao Yamashita
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Akari Mine
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | | | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
63
|
Ogoke O, Maloy M, Parashurama N. The science and engineering of stem cell-derived organoids-examples from hepatic, biliary, and pancreatic tissues. Biol Rev Camb Philos Soc 2020; 96:179-204. [PMID: 33002311 DOI: 10.1111/brv.12650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
The field of organoid engineering promises to revolutionize medicine with wide-ranging applications of scientific, engineering, and clinical interest, including precision and personalized medicine, gene editing, drug development, disease modelling, cellular therapy, and human development. Organoids are a three-dimensional (3D) miniature representation of a target organ, are initiated with stem/progenitor cells, and are extremely promising tools with which to model organ function. The biological basis for organoids is that they foster stem cell self-renewal, differentiation, and self-organization, recapitulating 3D tissue structure or function better than two-dimensional (2D) systems. In this review, we first discuss the importance of epithelial organs and the general properties of epithelial cells to provide a context and rationale for organoids of the liver, pancreas, and gall bladder. Next, we develop a general framework to understand self-organization, tissue hierarchy, and organoid cultivation. For each of these areas, we provide a historical context, and review a wide range of both biological and mathematical perspectives that enhance understanding of organoids. Next, we review existing techniques and progress in hepatobiliary and pancreatic organoid engineering. To do this, we review organoids from primary tissues, cell lines, and stem cells, and introduce engineering studies when applicable. We discuss non-invasive assessment of organoids, which can reveal the underlying biological mechanisms and enable improved assays for growth, metabolism, and function. Applications of organoids in cell therapy are also discussed. Taken together, we establish a broad scientific foundation for organoids and provide an in-depth review of hepatic, biliary and pancreatic organoids.
Collapse
Affiliation(s)
- Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, NY, U.S.A.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, NY, U.S.A
| |
Collapse
|
64
|
Kim J, Ryu B, Kim U, Kim CH, Hur GH, Kim CY, Park JH. Improved human hematopoietic reconstitution in HepaRG co-transplanted humanized NSG mice. BMB Rep 2020. [PMID: 32336318 PMCID: PMC7526976 DOI: 10.5483/bmbrep.2020.53.9.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Chang-Hwan Kim
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - Gyeung-Haeng Hur
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05030, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
65
|
Voss L, Yilmaz K, Burkard L, Vidmar J, Stock V, Hoffmann U, Pötz O, Hammer HS, Peiser M, Braeuning A, Löschner K, Böhmert L, Sieg H. Impact of iron oxide nanoparticles on xenobiotic metabolism in HepaRG cells. Arch Toxicol 2020; 94:4023-4035. [PMID: 32914219 DOI: 10.1007/s00204-020-02904-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Iron oxide nanoparticles are used in various industrial fields, as a tool in biomedicine as well as in food colorants, and can therefore reach human metabolism via oral uptake or injection. However, their effects on the human body, especially the liver as one of the first target organs is still under elucidation. Here, we studied the influence of different representative iron oxide materials on xenobiotic metabolism of HepaRG cells. These included four iron oxide nanoparticles, one commercially available yellow food pigment (E172), and non-particulate ionic control FeSO4. The nanoparticles had different chemical and crystalline structures and differed in size and shape and were used at a concentration of 50 µg Fe/mL. We found that various CYP enzymes were downregulated by some but not all iron oxide nanoparticles, with the Fe3O4-particle, both γ-Fe2O3-particles, and FeSO4 exhibiting the strongest effects, the yellow food pigment E172 showing a minor effect and an α-Fe2O3 nanoparticle leading to almost no inhibition of phase I machinery. The downregulation was seen at the mRNA, protein expression, and activity levels. Thereby, no dependency on the size or chemical structure was found. This underlines the difficulty of the grouping of nanomaterials regarding their physiological impact, suggesting that every iron oxide nanoparticle species needs to be evaluated in a case-by-case approach.
Collapse
Affiliation(s)
- Linn Voss
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Kiymet Yilmaz
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Lea Burkard
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Janja Vidmar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs, Lyngby, Denmark
| | - Valerie Stock
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Ute Hoffmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Oliver Pötz
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | | | - Matthias Peiser
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Katrin Löschner
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs, Lyngby, Denmark
| | - Linda Böhmert
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Holger Sieg
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
66
|
Tryndyak VP, Borowa-Mazgaj B, Steward CR, Beland FA, Pogribny IP. Epigenetic effects of low-level sodium arsenite exposure on human liver HepaRG cells. Arch Toxicol 2020; 94:3993-4005. [PMID: 32844245 DOI: 10.1007/s00204-020-02872-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Chronic exposure to inorganic arsenic is associated with a variety of adverse health effects, including lung, bladder, kidney, and liver cancer. Several mechanisms have been proposed for arsenic-induced tumorigenesis; however, insufficient knowledge and many unanswered questions remain to explain the integrated molecular pathogenesis of arsenic carcinogenicity. In the present study, using non-tumorigenic human liver HepaRG cells, we investigated epigenetic alterations upon prolonged exposure to a noncytotoxic concentration of sodium arsenite (NaAsO2). We demonstrate that continuous exposure of HepaRG cells to 1 µM sodium arsenite (NaAsO2) for 14 days resulted in substantial cytosine DNA demethylation and hypermethylation across the genome, among which the claudin 14 (CLDN14) gene was hypermethylated and the most down-regulated gene. Another important finding was a profound loss of histone H3 lysine 36 (H3K36) trimethylation, which was accompanied by increased damage to genomic DNA and an elevated de novo mutation frequency. These results demonstrate that continuous exposure of HepaRG cells to a noncytotoxic concentration of NaAsO2 results in substantial epigenetic abnormalities accompanied by several carcinogenesis-related events, including induction of epithelial-to-mesenchymal transition, damage to DNA, inhibition of DNA repair genes, and induction of de novo mutations. Importantly, this study highlights the intimate mechanistic link and interplay between two fundamental cancer-associated events, epigenetic and genetic alterations, in arsenic-associated carcinogenesis.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Colleen R Steward
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA.
| |
Collapse
|
67
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
68
|
Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers (Basel) 2020; 12:polym12081705. [PMID: 32751402 PMCID: PMC7464256 DOI: 10.3390/polym12081705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.
Collapse
|
69
|
van der Mark VA, Adam AAA, Chang JC, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. Overexpression of the constitutive androstane receptor and shaken 3D-culturing increase biotransformation and oxidative phosphorylation and sensitivity to mitochondrial amiodarone toxicity of HepaRG cells. Toxicol Appl Pharmacol 2020; 399:115055. [PMID: 32428594 DOI: 10.1016/j.taap.2020.115055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
The liver cell line HepaRG is one of the preferred sources of human hepatocytes for in vitro applications. However, mitochondrial energy metabolism is relatively low, which affects hepatic functionality and sensitivity to hepatotoxins. Culturing in a bioartificial liver (BAL) system with high oxygen, medium perfusion, low substrate stiffness, and 3D conformation increases HepaRG functionality and mitochondrial activity compared to conventional monolayer culturing. In addition, drug metabolism has been improved by overexpression of the constitutive androstane receptor (CAR), a regulator of drug and energy metabolism in the new HepaRG-CAR line. Here, we investigated the effect of BAL culturing on the HepaRG-CAR line by applying a simple and downscaled BAL culture procedure based on shaking 3D cultures, named Bal-in-a-dish (BALIAD). We compared monolayer and BALIAD cultures of HepaRG and HepaRG-CAR cells. CAR overexpression and BALIAD culturing synergistically or additively increased transcript levels of CAR and three of the seven tested CAR target genes in biotransformation. Additionally, Cytochrome P450 3A4 activity was 35-fold increased. The mitochondrial energy metabolism was enhanced; lactate production and glucose consumption switched into lactate elimination and glucose production. BALIAD culturing alone reduced glycogen content and increased oxygen consumption and mitochondrial content. Both CAR overexpression and BALIAD culturing decreased mitochondrial superoxide levels. HepaRG-CAR BALIADs were most sensitive to mitochondrial toxicity induced by the hepatotoxin amiodarone, as indicated by oxygen consumption and mitochondrial superoxide accumulation. These data show that BALIAD culturing of HepaRG-CAR cells induces high mitochondrial energy metabolism and xenobiotic metabolism, increasing its potential for drug toxicity studies.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands
| | - Aziza A A Adam
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
| | - Jung-Chin Chang
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
| | - Ronald P Oude Elferink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
| | - Robert A F M Chamuleau
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
| | - Ruurdtje Hoekstra
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK, Amsterdam, the Netherlands.
| |
Collapse
|
70
|
Sun G, Teng Y, Zhao Z, Cheow LF, Yu H, Chen CH. Functional Stem Cell Sorting via Integrative Droplet Synchronization. Anal Chem 2020; 92:7915-7923. [DOI: 10.1021/acs.analchem.0c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guoyun Sun
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
| | - Zixuan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, The Nanos 07-01, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 04-01, Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|
71
|
Ramaiahgari SC, Auerbach SS, Saddler TO, Rice JR, Dunlap PE, Sipes NS, DeVito MJ, Shah RR, Bushel PR, Merrick BA, Paules RS, Ferguson SS. The Power of Resolution: Contextualized Understanding of Biological Responses to Liver Injury Chemicals Using High-throughput Transcriptomics and Benchmark Concentration Modeling. Toxicol Sci 2020; 169:553-566. [PMID: 30850835 DOI: 10.1093/toxsci/kfz065] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prediction of human response to chemical exposures is a major challenge in both pharmaceutical and toxicological research. Transcriptomics has been a powerful tool to explore chemical-biological interactions, however, limited throughput, high-costs, and complexity of transcriptomic interpretations have yielded numerous studies lacking sufficient experimental context for predictive application. To address these challenges, we have utilized a novel high-throughput transcriptomics (HTT) platform, TempO-Seq, to apply the interpretive power of concentration-response modeling with exposures to 24 reference compounds in both differentiated and non-differentiated human HepaRG cell cultures. Our goals were to (1) explore transcriptomic characteristics distinguishing liver injury compounds, (2) assess impacts of differentiation state of HepaRG cells on baseline and compound-induced responses (eg, metabolically-activated), and (3) identify and resolve reference biological-response pathways through benchmark concentration (BMC) modeling. Study data revealed the predictive utility of this approach to identify human liver injury compounds by their respective BMCs in relation to human internal exposure plasma concentrations, and effectively distinguished drug analogs with varied associations of human liver injury (eg, withdrawn therapeutics trovafloxacin and troglitazone). Impacts of cellular differentiation state (proliferated vs differentiated) were revealed on baseline drug metabolizing enzyme expression, hepatic receptor signaling, and responsiveness to metabolically-activated toxicants (eg, cyclophosphamide, benzo(a)pyrene, and aflatoxin B1). Finally, concentration-response modeling enabled efficient identification and resolution of plausibly-relevant biological-response pathways through their respective pathway-level BMCs. Taken together, these findings revealed HTT paired with differentiated in vitro liver models as an effective tool to model, explore, and interpret toxicological and pharmacological interactions.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Scott S Auerbach
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Trey O Saddler
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Julie R Rice
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Paul E Dunlap
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Nisha S Sipes
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Michael J DeVito
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Ruchir R Shah
- Sciome, LLC, Research Triangle Park, Durham, North Carolina 27709
| | - Pierre R Bushel
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709.,Division of Intramural Research, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Bruce A Merrick
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Richard S Paules
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| | - Stephen S Ferguson
- *Biomolecular Screening Branch, Division of National Toxicology Program, National Institutes of Environmental Health Sciences of National Institutes of Health, Durham, North Carolina 27709
| |
Collapse
|
72
|
Feng L, Liang S, Zhou Y, Luo Y, Chen R, Huang Y, Chen Y, Xu M, Yao R. Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomater Sci Eng 2020; 6:2995-3004. [DOI: 10.1021/acsbiomaterials.9b01825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lu Feng
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaojun Liang
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yongyong Zhou
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yixue Luo
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruoyu Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuyu Huang
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yiqing Chen
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingen Xu
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rui Yao
- Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
73
|
Non-oxidative ethanol metabolism in human hepatic cells in vitro: Involvement of uridine diphospho-glucuronosyltransferase 1A9 in ethylglucuronide production. Toxicol In Vitro 2020; 66:104842. [PMID: 32283135 DOI: 10.1016/j.tiv.2020.104842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Ethanol is the most frequently psychoactive substance used in the world, leading to major public health problems with several millions of deaths attributed to alcohol consumption each year. Metabolism of ethanol occurs mainly in the liver via the predominant oxidative metabolism pathway involving phase I enzymes including alcohol dehydrogenases (ADH), cytochrome P450 (CYP) 2E1 and catalase. In a lesser extent, an alternative non-oxidative pathway also contributes to the metabolism of ethanol, which involves the uridine diphospho-glucuronosyltransferase (UGT) and sulfotransferase (SULT) phase II enzymes. Using liquid chromatography-high resolution mass spectrometry, ethylglucuronide (EtG) and ethylsulfate (EtS) produced respectively by UGT and SULT conjugation and detected in various biological samples are direct markers of alcohol consumption. We report herein the efficient non-oxidative metabolic pathway of ethanol in human differentiated HepaRG cells compared to primary human hepatocytes (HH). We showed dose- and time-dependent production of EtS and EtG after ethanol (25 or 50 mM) treatment in culture media of differentiated HepaRG cells and HH and a significant induction of CYP2E1 mRNA expression upon acute ethanol exposure in HepaRG cells. These differentiated hepatoma cells thus represent a suitable in vitro human liver cell model to explore ethanol metabolism and more particularly EtG and EtS production. In addition, using recombinant HepG2 cells expressing different UGT1A genes, we found that UGT1A9 was the major UGT involved in ethanol glucuronidation.
Collapse
|
74
|
Minsart C, Liefferinckx C, Lemmers A, Dressen C, Quertinmont E, Leclercq I, Devière J, Moreau R, Gustot T. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci Rep 2020; 10:5557. [PMID: 32221312 PMCID: PMC7101425 DOI: 10.1038/s41598-020-61270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Extracellular release of HMGB1 contributes to acetaminophen-induced liver injury. HMGB1 acts as a danger-associated molecular patterns during this toxic process but the mechanisms of action and targeted cells are incompletely defined. Here we studied, in vitro, the role of HMGB1 in amplifying the acetaminophen-induced hepatocyte necrosis process. Using cultured HepaRG cells, primary human hepatocytes and selective chemical inhibitors we evaluated acetaminophen-induced toxicity. We confirmed that addition of acetaminophen induced HepaRG cell death and HMGB1 release. We showed that inhibition of HMGB1 decreased acetaminophen-induced HepaRG cell death, suggesting a feedforward effect. We provide the first evidence that exposure of HepaRG cells to recombinant human HMGB1 (rhHMGB1) also resulted in cell death. Moreover, we found that both acetaminophen and rhHMGB1 induced programmed HepaRG cell necrosis through a RIPK3-dependent mechanism. By using TLR4 blocking antibody, we demonstrated the reduction of the HepaRG cell death induced by acetaminophen and rhHMGB1. Furthermore, inhibition of TRIF, known to induce a RIPK3-dependent cell death, reduced rhHMGB1-induced HepaRG cell death. Our data support that released HMGB1 from acetaminophen-stressed hepatocytes induced necrosis of neighboring hepatocytes by TLR4-TRIF-RIPK3- pathway. This in vitro study gives new insights in the role of HMGB1 in the amplification of acetaminophen-induced toxicity.
Collapse
Affiliation(s)
- Charlotte Minsart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Claire Liefferinckx
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaud Lemmers
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Dressen
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Eric Quertinmont
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Devière
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Richard Moreau
- Inserm Unité 1149, Centre de Recherche sur l'inflammation [CRI], Paris, France
- UMR S_1149, Université Paris Diderot, Paris, France
- DHU UNITY, Service d'Hépatologie, Hôpital Beaujon, APHP, Clichy, France
| | - Thierry Gustot
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Gastroenterology, HepatoPancreatology and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium.
- UMR S_1149, Université Paris Diderot, Paris, France.
- DHU UNITY, Service d'Hépatologie, Hôpital Beaujon, APHP, Clichy, France.
| |
Collapse
|
75
|
Validation of Reference Genes for Gene Expression Studies by RT-qPCR in HepaRG Cells during Toxicity Testing and Disease Modelling. Cells 2020; 9:cells9030770. [PMID: 32245194 PMCID: PMC7140694 DOI: 10.3390/cells9030770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gene expression analysis by quantitative real-time polymerase chain reaction (RT-qPCR) is routinely used in biomedical studies. The reproducibility and reliability of the data fundamentally depends on experimental design and data interpretation. Despite the wide application of this assay, there is significant variation in the validation process of gene expression data from research laboratories. Since the validity of results depends on appropriate normalisation, it is crucial to select appropriate reference gene(s), where transcription of the selected gene is unaffected by experimental setting. In this study we have applied geNorm technology to investigate the transcription of 12 ‘housekeeping’ genes for use in the normalisation of RT-qPCR data acquired using a widely accepted HepaRG hepatic cell line in studies examining models of pre-clinical drug testing. geNorm data identified a number of genes unaffected by specific drug treatments and showed that different genes remained invariant in response to different drug treatments, whereas the transcription of ‘classical’ reference genes such as GAPDH (glyceralde- hyde-3-phosphate dehydrogenase) was altered by drug treatment. Comparing data normalised using the reference genes identified by geNorm with normalisation using classical housekeeping genes demonstrated substantial differences in the final results. In light of cell therapy application, RT-qPCR analyses has to be carefully evaluated to accurately interpret data obtained from dynamic cellular models undergoing sequential stages of phenotypic change.
Collapse
|
76
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
77
|
Tang D, Chen Y, Fu GB, Yuan TJ, Huang WJ, Wang ZY, Li WJ, Jiao YF, Yu WF, Yan HX. EpCAM inhibits differentiation of human liver progenitor cells into hepatocytes in vitro by activating Notch1 signaling. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30309-0. [PMID: 32087972 DOI: 10.1016/j.bbrc.2020.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/08/2020] [Indexed: 12/26/2022]
Abstract
In both normal turnover of the hepatic tissue and acute hepatic injury, the liver predominantly activates terminally differentiated hepatocytes to proliferate and repair. However, in chronic and severe chronic injury, this capacity fails, and liver progenitor cells (LPCs) can give rise to hepatocytes to restore both hepatic architecture and liver metabolic function. Although the promotion of LPC-to-hepatocyte differentiation to acquire a considerable number of functional hepatocytes could serve as a potentially new therapeutic option for patients with end-stage liver disease, its development first requires the identification of the molecular mechanisms driving this process. Here, we found that the epithelial cell adhesion molecule (EpCAM), a progenitor cell marker, regulates the differentiation of LPCs into hepatocytes through Notch1 signaling pathway. Western blotting (WB) revealed a consistent expression pattern of EpCAM and Notch1 during LPC-to-hepatocyte differentiation in vitro. Additionally, overexpression of EpCAM blocked LPC-to-hepatocyte differentiation, which was in consistent with the repressive role of Notch signaling during hepatic differentiation. WB and immunofluorescence data also showed that the upregulation of EpCAM expression increased the generation of Notch intracellular domain (N1ICD), indicating the promotion of Notch1 activity. Our results established the EpCAM-Notch1 signaling axis as an inhibitory mechanism preventing LPC-to-hepatocyte differentiation in vitro.
Collapse
Affiliation(s)
- Dan Tang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gong-Bo Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tian-Jie Yuan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Huang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Jian Li
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Fu Jiao
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wei-Feng Yu
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - He-Xin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
78
|
Kopp B, Le Hégarat L, Audebert M. Differential toxic effects of food contaminant mixtures in HepaRG cells after single or repeated treatments. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 850-851:503161. [DOI: 10.1016/j.mrgentox.2020.503161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
|
79
|
Braeuning A, Mentz A, Schmidt FF, Albaum SP, Planatscher H, Kalinowski J, Joos TO, Poetz O, Lichtenstein D. RNA-protein correlation of liver toxicity markers in HepaRG cells. EXCLI JOURNAL 2020; 19:135-153. [PMID: 32194361 PMCID: PMC7068204 DOI: 10.17179/excli2019-2005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
The liver is a main target organ for the toxicity of many different compounds. While in general, in vivo testing is still routinely used for assessing the hepatotoxic potential of test chemicals, the use of in vitro models offers advantages with regard to throughput, consumption of resources, and animal welfare aspects. Using the human hepatoma cell line HepaRG, we performed a comparative evaluation of a panel of hepatotoxicity marker mRNAs and proteins after exposure of the cells to 30 different pesticidal active compounds comprising herbizides, fungicides, insecticides, and others. The panel of hepatotoxicity markers included nuclear receptor target genes, key players of fatty acid and bile acid metabolism-related pathways, as well as recently identified biomarkers of drug-induced liver injury. Moreover, marker genes and proteins were identified, for example, S100P, ANXA10, CYP1A1, and CYP7A1. These markers respond with high sensitivity to stimulation with chemically diverse test compounds already at non-cytotoxic concentrations. The potency of the test compounds, determined as an overall parameter of their ability to deregulate marker expression in vitro, was very similar between the mRNA and protein levels. Thus, this study does not only characterize the response of human liver cells to 30 different pesticides but also demonstrates that hepatotoxicity testing in human HepaRG cells yields well comparable results at the mRNA and protein levels. Furthermore, robust hepatotoxicity marker genes and proteins were identified in HepaRG cells.
Collapse
Affiliation(s)
- Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Stefan P. Albaum
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Thomas O. Joos
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Oliver Poetz
- Signatope GmbH, Reutlingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen,Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| |
Collapse
|
80
|
Chong LH, Ng C, Li H, Tian EF, Ananthanarayanan A, McMillian M, Toh YC. Hepatic Bioactivation of Skin-Sensitizing Drugs to Immunogenic Reactive Metabolites. ACS OMEGA 2019; 4:13902-13912. [PMID: 31497708 PMCID: PMC6714514 DOI: 10.1021/acsomega.9b01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
The clinical use of some drugs, such as carbamazepine, phenytoin, and allopurinol, is often associated with adverse cutaneous reactions. The bioactivation of drugs into immunologically reactive metabolites by the liver is postulated to be the first step in initiating a downstream cascade of pathological immune responses. Current mechanistic understanding and the ability to predict such adverse drug cutaneous responses have been partly limited by the lack of appropriate cutaneous drug bioactivation experimental models. Although in vitro human liver models have been extensively investigated for predicting hepatotoxicity and drug-drug interactions, their ability to model the generation of antigenic reactive drug metabolites that are capable of eliciting immunological reactions is not well understood. Here, we employed a human progenitor cell (HepaRG)-derived hepatocyte model and established highly sensitive liquid chromatography-mass spectrometry analytical assays to generate and quantify different reactive metabolite species of three paradigm skin sensitizers, namely, carbamazepine, phenytoin, and allopurinol. We found that the generation of reactive drug metabolites by the HepaRG-hepatocytes was sensitive to the medium composition. In addition, a functional assay based on the activation of U937 myeloid cells into the antigen-presenting cell (APC) phenotype was established to evaluate the immunogenicity potential of the reactive drug metabolites produced by HepaRG-derived hepatocytes. We showed that the reactive drug metabolites of known skin sensitizers could significantly upregulate IL8, IL1β, and CD86 expressions in U937 cells compared to the metabolites from a nonskin sensitizer (i.e., acetaminophen). Thus, the extent of APC activation by HepaRG-hepatocytes conditioned medium containing reactive drug metabolites can potentially be used to predict their skin sensitization potential.
Collapse
Affiliation(s)
- Lor Huai Chong
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
| | - Celine Ng
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Huan Li
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | - Edmund Feng Tian
- School
of Applied Science, Temasek Polytechnic, Tampines Avenue 1, Singapore 529765
| | | | - Michael McMillian
- Invitrocue
Pte Ltd, 11, Biopolis
Way, Helios #12-07/08, Singapore 138667
- Department
of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, #04-11, Singapore 117597
| | - Yi-Chin Toh
- Department
of Biomedical Engineering, National University
of Singapore, 4 Engineering Drive 3, #04-08, Singapore 117583
- Institute
for Health Innovation and Technology (iHealthtech), National University of Singapore, MD6, 14 Medical Drive, #14-01, Singapore 117599
- The
N.1 Institute for Health, 28 Medical Drive, #05-corridor, Singapore 117456
- NUS
Tissue Engineering Programme, National University
of Singapore, 28 Medical
Drive, Singapore 117456
| |
Collapse
|
81
|
System analysis of cross-talk between nuclear receptors reveals an opposite regulation of the cell cycle by LXR and FXR in human HepaRG liver cells. PLoS One 2019; 14:e0220894. [PMID: 31437187 PMCID: PMC6705839 DOI: 10.1371/journal.pone.0220894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulations exert a critical control of metabolic homeostasis. In particular, the nuclear receptors (NRs) are involved in regulating numerous pathways of the intermediate metabolism. The purpose of the present study was to explore in liver cells the interconnectedness between three of them, LXR, FXR, and PPARα, all three known to act on lipid and glucose metabolism, and also on inflammation. The human cell line HepaRG was selected for its best proximity to human primary hepatocytes. Global gene expression of differentiated HepaRG cells was assessed after 4 hours and 24 hours of exposure to GW3965 (LXR agonist), GW7647 (PPARα agonist), and GW4064 and CDCA (FXR synthetic and natural agonist, respectively). Our work revealed that, contrary to our expectations, NR specificity is largely present at the level of target genes, with a smaller than expected overlap of the set of genes targeted by the different NRs. It also highlighted the much broader activity of the synthetic FXR ligand compared to CDCA. More importantly, our results revealed that activation of FXR has a pro-proliferative effect and decreases the number of tetraploid (or binucleated) hepatocytes, while LXR inhibits the cell cycle progression, inducing hepatocyte differentiation and an increase in tetraploidism. Conclusion: these results highlight the importance of analyzing the different NR activities in a context allowing a direct confrontation of each receptor outcome, and reveals the opposite role of FXR and LXR in hepatocyte cells division and maturation.
Collapse
|
82
|
EZH2, JMJD3, and UTX epigenetically regulate hepatic plasticity inducing retro-differentiation and proliferation of liver cells. Cell Death Dis 2019; 10:518. [PMID: 31285428 PMCID: PMC6614397 DOI: 10.1038/s41419-019-1755-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 06/19/2019] [Indexed: 12/20/2022]
Abstract
Modification of histones by lysine methylation plays a role in many biological processes, and it is dynamically regulated by several histone methyltransferases and demethylases. The polycomb repressive complex contains the H3K27 methyltransferase EZH2 and controls dimethylation and trimethylation of H3K27 (H3K27me2/3), which trigger gene suppression. JMJD3 and UTX have been identified as H3K27 demethylases that catalyze the demethylation of H3K27me2/3, which in turns lead to gene transcriptional activation. EZH2, JMJD3 and UTX have been extensively studied for their involvement in development, immune system, neurodegenerative disease, and cancer. However, their role in molecular mechanisms underlying the differentiation process of hepatic cells is yet to be elucidated. Here, we show that EZH2 methyltransferase and JMJD3/UTX demethylases were deregulated during hepatic differentiation of human HepaRG cells resulting in a strong reduction of H3K27 methylation levels. Inhibition of JMJD3 and UTX H3K27 demethylase activity by GSK-J4 epi-drug reverted phenotype of HepaRG DMSO-differentiated cells and human primary hepatocytes, drastically decreasing expression of hepatic markers and inducing cell proliferation. In parallel, inhibition of EZH2 H3K27me3 activity by GSK-126 epi-drug induced upregulation of hepatic markers and downregulated the expression of cell cycle inhibitor genes. To conclude, we demonstrated that modulation of H3K27 methylation by inhibiting methyl-transferase and dimethyl-transferase activity influences the differentiation status of hepatic cells, identifying a possible new role of EZH2, JMJD3 and UTX epi-drugs to modulate hepatic cell plasticity.
Collapse
|
83
|
Penman SL, Sharma P, Aerts H, Park BK, Weaver RJ, Chadwick AE. Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol In Vitro 2019; 61:104595. [PMID: 31288073 PMCID: PMC6853172 DOI: 10.1016/j.tiv.2019.104595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) are recognised as the causative agents of toxicity in drug-induced cholestasis (DIC). Research in isolated mitochondria and HepG2 cells have demonstrated BA-mediated mitochondrial dysfunction as a key mechanism of toxicity in DIC. However, HepG2 cells are of limited suitability for DIC studies as they do not express the necessary physiological characteristics. In this study, the mitotoxic potentials of BA mixtures were assessed in isolated mitochondria and a better-suited hepatic model, HepaRG cells. BAs induced structural alterations and a loss of mitochondrial membrane potential (MMP) in isolated mitochondria however, this toxicity did not translate to HepaRG cells. There were no changes in oxygen consumption rate, MMP or ATP levels in glucose and galactose media, indicating that there was no direct mitochondrial toxicity mediated via electron transport chain dysfunction in HepaRG cells. Assessment of key biliary transporters revealed that there was a time-dependent reduction in the expression and activity of multi-drug resistance protein 2 (MRP2), which was consistent with the induction of cytotoxicity in HepaRG cells. Overall, the findings from this study have demonstrated that mitochondrial dysfunction is not a mechanism of BA-induced toxicity in HepaRG cells. HepaRG cells are a better suited in vitro model for cholestatic studies than HepG2 cell. Bile acids cause mitochondrial toxicity in isolated mitochondria but not in HepaRG cells. Time-dependent alterations in biliary transporters are consistent with the cytotoxicity of bile acid mixtures. There are important mechanistic differences when bile acids interact at the organelle level versus the whole cell.
Collapse
Affiliation(s)
- Sophie L Penman
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Hélène Aerts
- Biologie Servier, 905 Rue de Saran, 45520 Gidy, France
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Richard J Weaver
- Institute de Recherches Internationales Servier, Biopharmacy, rue Carnot, 92284 Suresnes, France
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
84
|
Kamalian L, Douglas O, Jolly CE, Snoeys J, Simic D, Monshouwer M, Williams DP, Park BK, Chadwick AE. Acute Metabolic Switch Assay Using Glucose/Galactose Medium in HepaRG Cells to Detect Mitochondrial Toxicity. CURRENT PROTOCOLS IN TOXICOLOGY 2019; 80:e76. [PMID: 31058461 DOI: 10.1002/cptx.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using galactose instead of glucose in the culture medium of hepatoma cell lines, such as HepG2 cells, has been utilized for a decade to unmask the mitochondrial liability of chemical compounds. A modified glucose-galactose assay on HepG2 cells, reducing the experimental period for screening of mitochondrial toxicity to 2 to 4 hr, has been previously reported. HepaRG cells are one of the few cell lines that retain some of the important characteristics of human hepatocytes, offering advantages of working with a cell line, therefore, are considered an alternative for HepG2 cells in drug toxicity screening. A method is described here using HepaRG cells in an acute metabolic switch assay utilizing specific glucose/galactose media, a combined ATP-protein-LDH assay measuring three endpoints from one 96-well plate, and a criteria to label a compound as a mitochondrial toxin. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laleh Kamalian
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Oisin Douglas
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Carol E Jolly
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Damir Simic
- Mechanistic and Investigative Toxicology, Janssen Research and Development, Spring House, Pennsylvania
| | - Mario Monshouwer
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Dominic P Williams
- Innovative Medicines and Early Development, Drug Safety and Metabolism, Translational Safety, AstraZeneca, Cambridge, United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, The Department of Clinical and Molecular Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
85
|
Vlach M, Quesnot N, Dubois-Pot-Schneider H, Ribault C, Verres Y, Petitjean K, Rauch C, Morel F, Robin MA, Corlu A, Loyer P. Cytochrome P450 1A1/2, 2B6 and 3A4 HepaRG Cell-Based Biosensors to Monitor Hepatocyte Differentiation, Drug Metabolism and Toxicity. SENSORS 2019; 19:s19102245. [PMID: 31096615 PMCID: PMC6567340 DOI: 10.3390/s19102245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
Human hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells. Interestingly, differentiated hepatocyte-like HepaRG cells expressed GFP at higher levels than cholangiocyte-like cells. Despite weaker inductions of GFP expression compared to the strong increases in mRNA levels of endogenous genes, we also demonstrated that the biosensor transgenes were induced by prototypical drug inducers benzo(a)pyrene and phenobarbital. In addition, we used the differentiated biosensor HepaRG cells to evidence that pesticide mancozeb triggered selective cytotoxicity of hepatocyte-like cells. Our data demonstrate that these new biosensor HepaRG cells have potential applications in the field of chemicals safety evaluation and the assessment of drug hepatotoxicity.
Collapse
Affiliation(s)
- Manuel Vlach
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Nicolas Quesnot
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | | | - Catherine Ribault
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Yann Verres
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Kilian Petitjean
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Claudine Rauch
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Fabrice Morel
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Marie-Anne Robin
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Anne Corlu
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
| | - Pascal Loyer
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, Plateforme BiogenOuest SynNanoVect, F-35000 Rennes, France; (M.V.); (N.Q.); (C.R.); (Y.V.); (K.P.); (C.R.); (A.C.)
- Correspondence: ; Tel.: +33-(0)223233873; Fax: +33-(0)299540137
| |
Collapse
|
86
|
Sun M, Wong JY, Nugraha B, Ananthanarayanan A, Liu Z, Lee F, Gupta K, Fong EL, Huang X, Yu H. Cleavable cellulosic sponge for functional hepatic cell culture and retrieval. Biomaterials 2019; 201:16-32. [DOI: 10.1016/j.biomaterials.2019.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
|
87
|
PASLARU LILIANA, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328, Bucharest, Romania, ALEXANDRU PETRUTA, M. CRETOIU SANDA, O. DIMA SIMONA, POPESCU IRINEL. CRISPR/Cas9 gene editing in Huh7 and Hepa RG cell lines. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/216.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
88
|
Mezzasalma L, Harrisson S, Saba S, Loyer P, Coulembier O, Taton D. Bulk Organocatalytic Synthetic Access to Statistical Copolyesters from l-Lactide and ε-Caprolactone Using Benzoic Acid. Biomacromolecules 2019; 20:1965-1974. [PMID: 30964279 DOI: 10.1021/acs.biomac.9b00190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic strategies to produce statistical copolymers based on l-lactide (l-LA) and ε-caprolactone (CL), denoted as P(LA- stat-CL), remains highly challenging in polymer chemistry. This is due to the differing reactivity of the two monomers during their ring-opening copolymerization (ROcP). Yet, P(LA- stat-CL) materials are highly sought after as they combine the properties of both polylactide (PLA) and poly(ε-caprolactone) (PCL). Here, benzoic acid (BA), a naturally occurring, cheap, readily recyclable, and thermally stable weak acid, is shown to trigger the organocatalyzed ring-opening copolymerization (OROcP) of l-LA and CL under solvent-free conditions at 155 °C, in presence of various alcohols as initiators, with good control over molar masses and dispersities (1.11 < Đ < 1.35) of the resulting copolyesters. Various compositions can be achieved, and the formation of statistical compounds is shown through characterization by 1H, 13C, and diffusion ordered spectroscopy NMR spectroscopies and by differential scanning calorimetry, as well as through the determination of reactivity ratios ( rLA = 0.86, rCL = 0.86), using the visualization of the sum of squared residuals space method. Furthermore, this BA-OROcP process can be exploited to access metal-free PLA- b-P(LA- stat-CL)- b-PLA triblock copolymers, using a diol as an initiator. Finally, residual traces of BA remaining in P(LA- stat-CL) copolymers (<0.125 mol %) do not show any cytotoxicity toward hepatocyte-like HepaRG cells, demonstrating the safety of this organic catalyst.
Collapse
Affiliation(s)
- Leila Mezzasalma
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composites Materials , University of Mons , 23 Place du Parc , Mons B-7000 , Belgium.,Laboratoire de Chimie des Polymères Organiques (LCPO) , CNRS, ENSCBP University of Bordeaux, UMR 5629 , 16, av. Pey Berland , 33607 Pessac Cedex, France
| | - Simon Harrisson
- Laboratoire des IMRCP , Université de Toulouse, CNRS, Université Paul Sabatier, UMR 5623 , 118 route de Narbonne , 31062 Toulouse Cedex 9, France
| | - Saad Saba
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241 , F-35000 Rennes , France
| | - Pascal Loyer
- Inserm, INRA, Univ Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341, UMR-S 1241 , F-35000 Rennes , France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composites Materials , University of Mons , 23 Place du Parc , Mons B-7000 , Belgium
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO) , CNRS, ENSCBP University of Bordeaux, UMR 5629 , 16, av. Pey Berland , 33607 Pessac Cedex, France
| |
Collapse
|
89
|
Sutherland GE, Franco ME, Willing SM, Lavado R. Applicability of a human cell co-culture model to evaluate antioxidant responses triggered by chemical mixtures in fish and oyster homogenates. Food Chem Toxicol 2019; 128:154-162. [PMID: 30965104 DOI: 10.1016/j.fct.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 01/17/2023]
Abstract
The accumulation of chemical compounds in fish tissue represents significant health concerns for seafood consumers, but little is known about the risks to human health associated with such substances. The identification of adverse biological responses upon exposure to contaminants has been facilitated by the development of in vitro systems resembling the human dietary pathway. The present study explores the applicability of an organotypic co-culture system, using intestinal (Caco-2) and hepatic (HepaRG) cell lines, to provide insight into the toxicity of chemical mixtures found in commercially available seafood. Chemical extractions were conducted utilizing fish and oyster standard reference material (SRM) from the U.S. National Institute of Standards and Technology (NIST). Cells were seeded in monoculture and co-culture systems and exposed to SRM extracts before measurements of cytotoxicity and antioxidant responses. Exposure to oyster extracts led to significant cell mortality in monocultures. HepaRG cells in monoculture expressed lower levels of glutathione peroxidase and superoxide dismutase than HepaRG cells in co-culture, upon exposure to both oyster and fish extracts. These observations illustrate the importance of organotypic co-culture models to explore biological responses that could be otherwise difficult to evaluate in monocultures, and the adverse effects associated with the consumption of contaminated seafood.
Collapse
Affiliation(s)
- Grace E Sutherland
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sarah M Willing
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
90
|
Sharanek A, Burban A, Ciriaci N, Guillouzo A. Pro-inflammatory cytokines enhance dilatation of bile canaliculi caused by cholestatic antibiotics. Toxicol In Vitro 2019; 58:51-59. [PMID: 30876886 DOI: 10.1016/j.tiv.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Many drugs can induce liver injury, characterized by hepatocellular, cholestatic or mixed hepatocellular-cholestatic lesions. While an inflammatory stress is known to aggravate hepatocellular injury caused by some drugs much less evidence exists for cholestatic features. In this study, the influence of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α), either individually or combined, on cytotoxic and cholestatic properties of antibiotics was evaluated using differentiated HepaRG cells. Six antibiotics of various chemical structures and known to cause cholestasis and/or hepatocellular injury in clinic were investigated. Caspase-3 activity was increased with all these tested hepatotoxic drugs and except with erythromycin, was further augmented in presence of cytokines mainly when these were co-added as a mixture. TNF-α and IL-1β aggravated cytotoxicity of TVX more than IL-6. Bile canaliculi (BC) dilatation induced by cholestatic drugs was increased by co-treatment with IL-6 and IL-1β but not with TNF-α. Reduced accumulation of carboxy-dichlorofluorescein, a substrate of the multi-drug resistance-associated protein 2, in antibiotic-induced dilatated BC, was further extended in presence of individual or mixed cytokines. In conclusion, our data demonstrate that pro-inflammatory cytokines either individually or in mixture, can modulate cholestatic and/or cytotoxic responses to antibiotics and that the extent of these effects is dependent on the cytokine and the cholestatic antibiotic.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - Audrey Burban
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - Nadia Ciriaci
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - André Guillouzo
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France.
| |
Collapse
|
91
|
Fekir K, Dubois-Pot-Schneider H, Désert R, Daniel Y, Glaise D, Rauch C, Morel F, Fromenty B, Musso O, Cabillic F, Corlu A. Retrodifferentiation of Human Tumor Hepatocytes to Stem Cells Leads to Metabolic Reprogramming and Chemoresistance. Cancer Res 2019; 79:1869-1883. [DOI: 10.1158/0008-5472.can-18-2110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
|
92
|
Ahn J, Lee HJ, Oh SJ, Kim W, Mun SJ, Lee JH, Jung CR, Cho HS, Kim DS, Son MJ, Chung KS. Developing scalable cultivation systems of hepatic spheroids for drug metabolism via genomic and functional analyses. Biotechnol Bioeng 2019; 116:1496-1508. [PMID: 30737956 DOI: 10.1002/bit.26954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Spheroids, a widely used three-dimensional (3D) culture model, are standard in hepatocyte culture as they preserve long-term hepatocyte functionality and enhance survivability. In this study, we investigated the effects of three operation modes in 3D culture - static, orbital shaking, and under vertical bidirectional flow using spheroid forming units (SFUs) on hepatic differentiation and drug metabolism to propose the best for mass production of functionally enhanced spheroids. Spheroids in SFUs exhibited increased hepatic gene expression, albumin secretion, and cytochrome P450 3A4 (CYP3A4) activity during the differentiation period (12 days). SFUs advantages include facilitated mass production and a relatively earlier peak of CYP3A4 activity. However, CYP3A4 activity was not well maintained under dimethyl sulfoxide (DMSO)-free conditions (13-18 days), dramatically reducing drug metabolism capability. Continued shear stimulation without differentiation stimuli in assay conditions markedly attenuated CYP3A4 activity, which was less severe in static conditions. In this condition, SFU spheroids exhibited dedifferentiation characteristics, such as increased proliferation and Notch signaling genes. We found that the dedifferentiation could be overcome by using the serum-free medium formulation. Therefore, we suggest that SFUs represent the best option for the mass production of functionally improved spheroids and so the serum-free conditions should be maintained during drug metabolism analysis.
Collapse
Affiliation(s)
- Jiwon Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ho-Joon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Jin Oh
- New Drug Development Center, Asan Medical Center and Convergence Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Wantae Kim
- Biomedical Translational Research Center, KRIBB, Daejeon, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jae-Hye Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Cho-Rock Jung
- Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Gene Therapy Unit, KRIBB, Daejeon, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dae-Soo Kim
- Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Genome Research Center, KRIBB, Daejeon, Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Biomedical Translational Research Center, KRIBB, Daejeon, Republic of Korea.,Functional Genomics, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
93
|
Dreval K, Tryndyak V, Kindrat I, Twaddle NC, Orisakwe OE, Mudalige TK, Beland FA, Doerge DR, Pogribny IP. Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci 2019; 162:676-687. [PMID: 29301061 DOI: 10.1093/toxsci/kfx290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic arsenic is a human carcinogen associated with several types of cancers, including liver cancer. Inorganic arsenic has been postulated to target stem cells, causing their oncogenic transformation. This is proposed to be one of the key events in arsenic-associated carcinogenesis; however, the underlying mechanisms for this process remain largely unknown. To address this question, human hepatic HepaRG cells, at progenitor and differentiated states, were continuously treated with a noncytotoxic concentration of 1 μM sodium arsenite (NaAsO2). The HepaRG cells demonstrated active intracellular arsenite metabolism that shared important characteristic with primary human hepatocytes. Treatment of proliferating progenitor-like HepaRG cells with NaAsO2 inhibited their differentiation into mature hepatocyte-like cells, up-regulated genes involved in cell growth, proliferation, and survival, and down-regulated genes involved in cell death. In contrast, treatment of differentiated hepatocyte-like HepaRG cells with NaAsO2 resulted in enhanced cell death of mature hepatocyte-like cells, overexpression of cell death-related genes, and down-regulation of genes in the cell proliferation pathway, while biliary-like cells remained largely unaffected. Mechanistically, the cytotoxic effect of arsenic on mature hepatocyte-like HepaRG cells may be attributed to arsenic-induced dysregulation of cellular iron metabolism. The inhibitory effect of NaAsO2 on the differentiation of progenitor cells, the resistance of biliary-like cells to cell death, and the enhanced cell death of functional hepatocyte-like cells resulted in stem-cell activation. These effects favored the proliferation of liver progenitor cells that can serve as a source of initiation and driving force of arsenic-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Iryna Kindrat
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Biological and Medical Chemistry, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Orish Ebere Orisakwe
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Experimental Pharmacology and Toxicology, University of Port-Harcourt, Rivers State, Nigeria
| | - Thilak K Mudalige
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
94
|
Jang M, Kleber A, Ruckelshausen T, Betzholz R, Manz A. Differentiation of the human liver progenitor cell line (HepaRG) on a microfluidic-based biochip. J Tissue Eng Regen Med 2019; 13:482-494. [PMID: 30746894 DOI: 10.1002/term.2802] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
HepaRG is a bipotent stem cell line that can be differentiated towards hepatocyte-like and biliary-like cells. The entire cultivation process requires 1 month and relies on the addition of 2% dimethyl sulfoxide (DMSO) to the culture. Our motivation in this research is to differentiate HepaRG cells (progenitor cells and undifferentiated cells) towards hepatocyte-like cells by minimizing the cultivation time and without using DMSO treatment by instead using a microfluidic device combined with the following strategies: (a) comparison of extracellular matrices (matrigel and collagen I), (b) types of flow (one or both sides), and (c) effects of DMSO. Our results demonstrate that matrigel promotes the differentiation of progenitor cells towards hepatocytes and biliary-like cells. Moreover, the frequent formation of HepaRG cell clusters was observed by a supply of both sides of flow, and the cell viability and liver specific functions were influenced by DMSO. Finally, differentiated HepaRG progenitor cells cultured in a microfluidic device for 14 days without DMSO treatment yielded 70% of hepatocyte-like cells with a highly polarized organization that reacted to stimulation with IL-6 to produce C-reactive protein (CRP). This culture model has high potential for investigating cell differentiation and liver pathophysiology research.
Collapse
Affiliation(s)
- Mi Jang
- Department of system engineering, Saarland University, Saarbrücken, Germany.,Microfluidics group, KIST Europe, Saarbrücken, Germany.,Department of Neuroscience, Korea University College of Medicine, Seoul, Korea
| | - Astrid Kleber
- Rhineland Palantinate Centre of Excellence for climate Change Impacts, Trippstadt, Germany
| | - Thomas Ruckelshausen
- Dynamic Biomaterial group, INM - Leibniz-Institut für Neue Materialien GmbH, Saarbrücken, Germany.,Service and Support group, PicoQuant, Rudower Chaussee 29, Berlin, Germany
| | - Ralf Betzholz
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Manz
- Department of system engineering, Saarland University, Saarbrücken, Germany.,Microfluidics group, KIST Europe, Saarbrücken, Germany
| |
Collapse
|
95
|
Seo JE, Tryndyak V, Wu Q, Dreval K, Pogribny I, Bryant M, Zhou T, Robison TW, Mei N, Guo X. Quantitative comparison of in vitro genotoxicity between metabolically competent HepaRG cells and HepG2 cells using the high-throughput high-content CometChip assay. Arch Toxicol 2019; 93:1433-1448. [PMID: 30788552 DOI: 10.1007/s00204-019-02406-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
In vitro genotoxicity testing that employs metabolically active human cells may be better suited for evaluating human in vivo genotoxicity than current bacterial or non-metabolically active mammalian cell systems. In the current study, 28 compounds, known to have different genotoxicity and carcinogenicity modes of action (MoAs), were evaluated over a wide range of concentrations for the ability to induce DNA damage in human HepG2 and HepaRG cells. DNA damage dose-responses in both cell lines were quantified using a combination of high-throughput high-content (HTHC) CometChip technology and benchmark dose (BMD) quantitative approaches. Assays of metabolic activity indicated that differentiated HepaRG cells had much higher levels of cytochromes P450 activity than did HepG2 cells. DNA damage was observed for four and two out of five indirect-acting genotoxic carcinogens in HepaRG and HepG2 cells, respectively. Four out of seven direct-acting carcinogens were positive in both cell lines, with two of the three negatives being genotoxic mainly through aneugenicity. The four chemicals positive in both cell lines generated HTHC Comet data in HepaRG and HepG2 cells with comparable BMD values. All the non-genotoxic compounds, including six non-genotoxic carcinogens, were negative in HepaRG cells; five genotoxic non-carcinogens also were negative. Our results indicate that the HTHC CometChip assay detects a greater proportion of genotoxic carcinogens requiring metabolic activation (i.e., indirect carcinogens) when conducted with HepaRG cells than with HepG2 cells. In addition, BMD genotoxicity potency estimate is useful for quantitatively evaluating CometChip assay data in a scientifically rigorous manner.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.,Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Igor Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA.
| |
Collapse
|
96
|
Tascher G, Burban A, Camus S, Plumel M, Chanon S, Le Guevel R, Shevchenko V, Van Dorsselaer A, Lefai E, Guguen-Guillouzo C, Bertile F. In-Depth Proteome Analysis Highlights HepaRG Cells as a Versatile Cell System Surrogate for Primary Human Hepatocytes. Cells 2019; 8:E192. [PMID: 30795634 PMCID: PMC6406872 DOI: 10.3390/cells8020192] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Of the hepatic cell lines developed for in vitro studies of hepatic functions as alternatives to primary human hepatocytes, many have lost major liver-like functions, but not HepaRG cells. The increasing use of the latter worldwide raises the need for establishing the reference functional status of early biobanked HepaRG cells. Using deep proteome and secretome analyses, the levels of master regulators of the hepatic phenotype and of the structural elements ensuring biliary polarity were found to be close to those in primary hepatocytes. HepaRG cells proved to be highly differentiated, with functional mitochondria, hepatokine secretion abilities, and an adequate response to insulin. Among differences between primary human hepatocytes and HepaRG cells, the factors that possibly support HepaRG transdifferentiation properties are discussed. The HepaRG cell system thus appears as a robust surrogate for primary hepatocytes, which is versatile enough to study not only xenobiotic detoxification, but also the control of hepatic energy metabolism, secretory function and disease-related mechanisms.
Collapse
Affiliation(s)
- Georg Tascher
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, F-67087 Strasbourg, France.
- Institute of Biochemistry II, Goethe University Hospital, D-60590 Frankfurt am Main, Germany.
| | - Audrey Burban
- INSERM U1241 NuMeCan, Université de Rennes 1, F-35033 Rennes, France.
| | - Sandrine Camus
- Biopredic International, Parc d'Affaires de la Bretêche, F-35760 St Grégoire, France.
| | - Marine Plumel
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, F-67087 Strasbourg, France.
| | - Stéphanie Chanon
- CarMeN Laboratory, INSERM, INRA, University of Lyon, F-69310 Pierre-Bénite, France.
| | - Remy Le Guevel
- ImPACcell platform, Biosit, Université de Rennes 1, F-35043 Rennes, France.
| | - Valery Shevchenko
- Biopredic International, Parc d'Affaires de la Bretêche, F-35760 St Grégoire, France.
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, F-67087 Strasbourg, France.
| | - Etienne Lefai
- CarMeN Laboratory, INSERM, INRA, University of Lyon, F-69310 Pierre-Bénite, France.
| | - Christiane Guguen-Guillouzo
- INSERM U1241 NuMeCan, Université de Rennes 1, F-35033 Rennes, France.
- Biopredic International, Parc d'Affaires de la Bretêche, F-35760 St Grégoire, France.
| | - Fabrice Bertile
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, IPHC UMR 7178, Université de Strasbourg, F-67087 Strasbourg, France.
| |
Collapse
|
97
|
Young CKJ, Young MJ. Comparison of HepaRG cells following growth in proliferative and differentiated culture conditions reveals distinct bioenergetic profiles. Cell Cycle 2019; 18:476-499. [PMID: 30755072 PMCID: PMC6422474 DOI: 10.1080/15384101.2019.1578133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HepaRG is a proliferative human hepatoma-derived cell line that can be differentiated into hepatocyte-like and biliary-like cells. Differentiated HepaRG cultures maintain key hepatic functions including drug transporters and xenobiotic-metabolizing enzymes. To gain insight into proliferative and differentiated HepaRG metabolism we profiled various bioenergetic parameters and investigated cell culture levels of adenosine triphosphate (ATP), lactate, and lactate dehydrogenase (LDH) activity. Compared to differentiated-derived HepaRG, cells from proliferative cultures had increased basal and ATP-linked respiration and decreased maximal and spare respiratory capacities. Basal ATP levels but not lactate or LDH activity were increased in samples from proliferative-derived compared to differentiated-derived HepaRG. Further extracellular acidification rate (ECAR) experiments revealed parameters associated with glycolysis and oxidative phosphorylation. Under basal conditions, cells derived from both cultures had similar ECARs; however, under stressed conditions, proliferative-derived HepaRG had increases in ECAR capacity and apparent glycolytic reserve. The biguanide metformin has been reported to protect differentiated HepaRG against acetaminophen (APAP)-induced cell injury, as well as offer protection against bioenergetic deficiencies; therefore, we studied the outcome of exposure to these drugs in both culture conditions. Proliferative- and differentiated-derived cells were found to have distinct mitochondrial bioenergetic alterations when exposed to the hepatotoxic drug APAP. Metformin offered protection against loss of APAP-induced cellular viability and prevented APAP-induced decreases in bioenergetics in differentiated- but not proliferative-derived HepaRG. Distinguishingly, treatment with metformin alone reduced ATP-linked respiration, maximal respiratory capacity, and basal respiration in proliferative-derived HepaRG. Our results support that HepaRG represents an appropriate model to study drug-induced bioenergetic dysfunction.
Collapse
Affiliation(s)
- Carolyn K J Young
- a Department of Biochemistry and Molecular Biology , Southern Illinois University School of Medicine , Carbondale , Illinois , USA
| | - Matthew J Young
- a Department of Biochemistry and Molecular Biology , Southern Illinois University School of Medicine , Carbondale , Illinois , USA
| |
Collapse
|
98
|
Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho DW. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 2019; 11:025001. [PMID: 30566930 DOI: 10.1088/1758-5090/aaf9fa] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To overcome the drawbacks of in vitro liver testing during drug development, numerous liver-on-a-chip models have been developed. However, current liver-on-a-chip technologies are labor-intensive, lack extracellular matrix (ECM) essential for liver cells, and lack a biliary system essential for excreting bile acids, which contribute to intestinal digestion but are known to be toxic to hepatocytes. Therefore, fabrication methods for development of liver-on-a-chip models that overcome the above limitations are required. Cell-printing technology enables construction of complex 3D structures with multiple cell types and biomaterials. We used cell-printing to develop a 3D liver-on-a-chip with multiple cell types for co-culture of liver cells, liver decellularized ECM bioink for a 3D microenvironment, and vascular/biliary fluidic channels for creating vascular and biliary systems. A chip with a biliary fluidic channel induced better biliary system creation and liver-specific gene expression and functions compared to a chip without a biliary system. Further, the 3D liver-on-a-chip showed better functionalities than 2D or 3D cultures. The chip was evaluated using acetaminophen and it showed an effective drug response. In summary, our results demonstrate that the 3D liver-on-a-chip we developed is promising in vitro liver test platform for drug discovery.
Collapse
Affiliation(s)
- Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
99
|
Burban A, Sharanek A, Humbert L, Eguether T, Guguen-Guillouzo C, Rainteau D, Guillouzo A. Predictive Value of Cellular Accumulation of Hydrophobic Bile Acids As a Marker of Cholestatic Drug Potential. Toxicol Sci 2019; 168:474-485. [DOI: 10.1093/toxsci/kfz009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Audrey Burban
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| | - Ahmad Sharanek
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| | - Lydie Humbert
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | - Thibaut Eguether
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | | | - Dominique Rainteau
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | - André Guillouzo
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
100
|
Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol 2019; 365:61-70. [PMID: 30611723 DOI: 10.1016/j.taap.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Non-alcoholic fatty liver disease is manifested by hepatic accumulation of triglycerides (TG) and is commonly associated with metabolic syndrome. The isoprenoid farnesol (FOH) modulates lipid metabolism and reduces hepatic TG content in rodents. This effect involves activation of at least two nuclear receptors, peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor. We evaluated the effects of FOH (100 μM) in a cellular model of human hepatic steatosis by loading hepatocyte-like HepaRG cells with oleic acid (OA, 0.66 mM). FOH treatment decreased OA-induced TG accumulation by ~25%. Using PCR arrays, we found that FOH treatment modulated the mRNA levels of several lipid-metabolizing enzymes, both alone and when cells were loaded with OA. While FOH activated PPARα and the constitutive androstane receptor (CAR), most of the FOH-mediated effects on lipid-metabolizing genes could be attributed to activation of PPARα. In OA-loaded HepaRG cells, FOH increased fatty acid oxidation, which was accompanied by up-regulation of PPARα target genes involved in mitochondrial fatty acid oxidation, including hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase and acetyl-coenzyme A acyltransferase 2. These effects on gene expression were lost when the cells were co-treated with the PPARα antagonist, GW6471. OA treatment alone decreased the mRNA levels of the drug-metabolizing enzymes, cytochrome P450 (CYP)1A2, 2B6, and 3A4, and increased CYP2E1 expression, all of which were attenuated by FOH co-treatment. These findings show that FOH treatment increases fatty acid oxidation and decreases TG accumulation in steatotic HepaRG cells, which is likely attributable to PPARα-mediated induction of mitochondrial fatty acid oxidation.
Collapse
|