51
|
Shwartz A, Goessling W, Yin C. Macrophages in Zebrafish Models of Liver Diseases. Front Immunol 2019; 10:2840. [PMID: 31867007 PMCID: PMC6904306 DOI: 10.3389/fimmu.2019.02840] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatic macrophages are key components of the liver immunity and consist of two main populations. Liver resident macrophages, known as Kupffer cells in mammals, are crucial for maintaining normal liver homeostasis. Upon injury, they become activated to release proinflammatory cytokines and chemokines and recruit a large population of inflammatory monocyte-derived macrophages to the liver. During the progression of liver diseases, macrophages are highly plastic and have opposing functions depending on the signaling cues that they receive from the microenvironment. A comprehensive understanding of liver macrophages is essential for developing therapeutic interventions that target these cells in acute and chronic liver diseases. Mouse studies have provided the bulk of our current knowledge of liver macrophages. The emergence of various liver disease models and availability of transgenic tools to visualize and manipulate macrophages have made the teleost zebrafish (Danio rerio) an attractive new vertebrate model to study liver macrophages. In this review, we summarize the origin and behaviors of macrophages in healthy and injured livers in zebrafish. We highlight the roles of macrophages in zebrafish models of alcoholic and non-alcoholic liver diseases, hepatocellular carcinoma, and liver regeneration, and how they compare with the roles that have been described in mammals. We also discuss the advantages and challenges of using zebrafish to study liver macrophages.
Collapse
Affiliation(s)
- Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
52
|
DeRossi C, Bambino K, Morrison J, Sakarin I, Villacorta-Martin C, Zhang C, Ellis JL, Fiel MI, Ybanez M, Lee YA, Huang KL, Yin C, Sakaguchi TF, Friedman SL, Villanueva A, Chu J. Mannose Phosphate Isomerase and Mannose Regulate Hepatic Stellate Cell Activation and Fibrosis in Zebrafish and Humans. Hepatology 2019; 70:2107-2122. [PMID: 31016744 PMCID: PMC6812593 DOI: 10.1002/hep.30677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
The growing burden of liver fibrosis and lack of effective antifibrotic therapies highlight the need for identification of pathways and complementary model systems of hepatic fibrosis. A rare, monogenic disorder in which children with mutations in mannose phosphate isomerase (MPI) develop liver fibrosis led us to explore the function of MPI and mannose metabolism in liver development and adult liver diseases. Herein, analyses of transcriptomic data from three human liver cohorts demonstrate that MPI gene expression is down-regulated proportionate to fibrosis in chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis B virus. Depletion of MPI in zebrafish liver in vivo and in human hepatic stellate cell (HSC) lines in culture activates fibrotic responses, indicating that loss of MPI promotes HSC activation. We further demonstrate that mannose supplementation can attenuate HSC activation, leading to reduced fibrogenic activation in zebrafish, culture-activated HSCs, and in ethanol-activated HSCs. Conclusion: These data indicate the prospect that modulation of mannose metabolism pathways could reduce HSC activation and improve hepatic fibrosis.
Collapse
Affiliation(s)
- Charles DeRossi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Morrison
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Isabel Sakarin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - M. Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Ybanez
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Youngmin A. Lee
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Takuya F. Sakaguchi
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Augusto Villanueva
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
53
|
Cheng V, Dasgupta S, Reddam A, Volz DC. Ciglitazone-a human PPARγ agonist-disrupts dorsoventral patterning in zebrafish. PeerJ 2019; 7:e8054. [PMID: 31741801 PMCID: PMC6858815 DOI: 10.7717/peerj.8054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor that regulates lipid/glucose homeostasis and adipocyte differentiation. While the role of PPARγ in adipogenesis and diabetes has been extensively studied, little is known about PPARγ function during early embryonic development. Within zebrafish, maternally-loaded pparγ transcripts are present within the first 6 h post-fertilization (hpf), and de novo transcription of zygotic pparγ commences at ~48 hpf. Since maternal pparγ transcripts are elevated during a critical window of cell fate specification, the objective of this study was to test the hypothesis that PPARγ regulates gastrulation and dorsoventral patterning during zebrafish embryogenesis. To accomplish this objective, we relied on (1) ciglitazone as a potent PPARγ agonist and (2) a splice-blocking, pparγ-specific morpholino to knockdown pparγ. We found that initiation of ciglitazone-a potent human PPARγ agonist-exposure by 4 hpf resulted in concentration-dependent effects on dorsoventral patterning in the absence of epiboly defects during gastrulation, leading to ventralized embryos by 24 hpf. Interestingly, ciglitazone-induced ventralization was reversed by co-exposure with dorsomorphin, a bone morphogenetic protein signaling inhibitor that induces strong dorsalization within zebrafish embryos. Moreover, mRNA-sequencing revealed that lipid- and cholesterol-related processes were affected by exposure to ciglitazone. However, pparγ knockdown did not block ciglitazone-induced ventralization, suggesting that PPARγ is not required for dorsoventral patterning nor involved in ciglitazone-induced toxicity within zebrafish embryos. Our findings point to a novel, PPARγ-independent mechanism of action and phenotype following ciglitazone exposure during early embryonic development.
Collapse
Affiliation(s)
- Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
54
|
Wei J, Man Q, Ding C, Hu Y, Liu M, Li H, Guo F, Zhang Y, Li D, Song L, Yang H, Tang S. Proteomic Investigations of Transcription Factors Critical in Geniposide-Mediated Suppression of Alcoholic Steatosis and in Overdose-Induced Hepatotoxicity on Liver in Rats. J Proteome Res 2019; 18:3821-3830. [DOI: 10.1021/acs.jproteome.9b00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiong Man
- Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yanzhen Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
55
|
Reddam A, Mitchell CA, Dasgupta S, Kirkwood JS, Vollaro A, Hur M, Volz DC. mRNA-Sequencing Identifies Liver as a Potential Target Organ for Triphenyl Phosphate in Embryonic Zebrafish. Toxicol Sci 2019; 172:51-62. [PMID: 31368501 PMCID: PMC6813745 DOI: 10.1093/toxsci/kfz169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Triphenyl phosphate (TPHP) is a commonly used organophosphate flame retardant and plasticizer in the United States. Using zebrafish as a model, the overall objective of this study was to identify potential organs that might be targeted by TPHP during embryonic development. Based on mRNA-sequencing, TPHP exposure from 24 to 30 h post fertilization (hpf) and 24 to 48 hpf significantly affected the abundance of 305 and 274 transcripts, respectively, relative to vehicle (0.1% DMSO) controls. In addition to minor effects on cardiotoxicity- and nephrotoxicity-related pathways, Ingenuity Pathway Analysis (IPA) of significantly affected transcripts within 30- and 48-hpf embryos revealed that hepatotoxicity-related pathways were strongly affected following exposure to TPHP alone. Moreover, while pre-treatment with fenretinide (a retinoic acid receptor agonist) mitigated TPHP-induced pericardial edema and liver enlargement at 72 hpf and 128 hpf, respectively, IPA revealed that fenretinide was unable to block TPHP-induced effects on cardiotoxicity-, nephrotoxicity-, and hepatotoxicity-related pathways at 48 hpf, suggesting that TPHP-induced effects on the transcriptome were not associated with toxicity later in development. In addition, based on Oil Red O staining, we found that exposure to TPHP nearly abolished neutral lipids from the embryonic head and trunk and, based on metabolomics, significantly decreased the total abundance of metabolites - including betaine, a known osmoprotectant - at 48 and 72 hpf. Overall, our data suggest that, in addition to the heart, TPHP exposure during early development results in adverse effects on the liver, lipid utilization, and osmoregulation within embryonic zebrafish.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Constance A Mitchell
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA.,Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
56
|
Park KH, Ye ZW, Zhang J, Kim SH. Palmitic Acid-Enriched Diet Induces Hepatic Steatosis and Injury in Adult Zebrafish. Zebrafish 2019; 16:497-504. [PMID: 31355732 DOI: 10.1089/zeb.2019.1758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Palmitic acid (PA) is the most abundant saturated fatty acid in fast foods and is known to induce inflammation and cellular injury in various tissues. In this study, we investigated whether a PA-enriched diet can induce hepatic steatosis and injury in adult zebrafish. The adult zebrafish exhibited increased body weight, hyperlipidemia, hyperglycemia, and steatosis and a hepatic injury phenotype after being fed with a PA-enriched diet for 6 weeks. The quantitative polymerase chain reaction analysis demonstrated that genes associated with hepatic injury were all significantly increased in the liver. Furthermore, livers from the PA-fed group showed an increased messenger RNA (mRNA) expression associated with oxidative stress and endoplasmic reticulum (ER) stress responses. We also found significant upregulation of genes involved in lipid metabolism and triacylglyceride accumulation. Ultrastructural analysis revealed mitochondrial cristae injury and a dilated ER phenotype in the PA-fed hepatocytes, which can be causes of hepatic injury. PA-enriched diet induced hepatic steatosis and injury in adult zebrafish that recapitulated typical metabolic changes and pathophysiological changes as well as increased oxidative stress and ER stress observed in patients with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ki-Hoon Park
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
57
|
Hortle E, Johnson KE, Johansen MD, Nguyen T, Shavit JA, Britton WJ, Tobin DM, Oehlers SH. Thrombocyte Inhibition Restores Protective Immunity to Mycobacterial Infection in Zebrafish. J Infect Dis 2019; 220:524-534. [PMID: 30877311 PMCID: PMC6603966 DOI: 10.1093/infdis/jiz110] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection-induced thrombocytosis is a clinically important complication of tuberculosis infection. Recent studies have highlighted the utility of aspirin as a host-directed therapy modulating the inflammatory response to infection but have not investigated the possibility that the effect of aspirin is related to an antiplatelet mode of action. METHODS In this study, we utilize the zebrafish-Mycobacterium marinum model to show mycobacteria drive host hemostasis through the formation of granulomas. Treatment of infected zebrafish with aspirin markedly reduced mycobacterial burden. This effect is reproduced by treatment with platelet-specific glycoprotein IIb/IIIa inhibitors demonstrating a detrimental role for infection-induced thrombocyte activation. RESULTS We find that the reduction in mycobacterial burden is dependent on macrophages and granuloma formation, providing the first in vivo experimental evidence that infection-induced platelet activation compromises protective host immunity to mycobacterial infection. CONCLUSIONS Our study illuminates platelet activation as an efficacious target of aspirin, a widely available and affordable host-directed therapy candidate for tuberculosis.
Collapse
Affiliation(s)
- Elinor Hortle
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
- The University of Sydney, Central Clinical School and Marie Bashir Institute, Camperdown, Australia
| | - Khelsey E Johnson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Matt D Johansen
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Tuong Nguyen
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
| | - Jordan A Shavit
- Department of Pediatrics and Cellular and Molecular Biology Program, University of Michigan, Ann Arbor
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
- The University of Sydney, Central Clinical School and Marie Bashir Institute, Camperdown, Australia
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, Australia
- The University of Sydney, Central Clinical School and Marie Bashir Institute, Camperdown, Australia
| |
Collapse
|
58
|
Park KH, Kim SH. Low dose of chronic ethanol exposure in adult zebrafish induces hepatic steatosis and injury. Biomed Pharmacother 2019; 117:109179. [PMID: 31387182 DOI: 10.1016/j.biopha.2019.109179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic alcohol consumption is a major cause of chronic liver disease worldwide. Adult zebrafish have emerged as a new vertebrate model of alcoholic liver disease. In previous research, a high dose of chronic ethanol treatment induced characteristic features of steatosis and hepatic injury in adult zebrafish, yet the ethanol concentration in that study was significantly higher than the lethal dose in humans. In the current study, we examined whether a low dose of chronic ethanol exposure in adult zebrafish induced the metabolic and pathological features seen in alcoholic liver disease. We found that chronic ethanol treatment at 0.2% ethanol (v/v) concentration for 4 weeks induced a significant elevation of serum glucose and triacylglycerol in adult zebrafish. In addition, serum alanine aminotransferase activity was significantly elevated after ethanol treatment. Histological analysis revealed steatosis and hepatocyte ballooning phenotype. Gene expression analysis using quantitative real-time PCR suggested that ethanol treatment induced inflammation, apoptosis, and fibrosis. In addition, we found significant increases in gene expression involved in glucose and lipid metabolism as well as mitochondrial biogenesis and function. Importantly, expression of genes involved in oxidative and endoplasmic reticulum stress, two major stress signaling pathways underlying hepatic injury in alcoholic liver disease, were highly upregulated in the livers of adult zebrafish after chronic ethanol treatment. In conclusion, we found that 4 weeks of low dose ethanol exposure leads to typical ethanol-induced liver disease, with pathological and gene expression patterns.
Collapse
Affiliation(s)
- Ki-Hoon Park
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seok-Hyung Kim
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
59
|
Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, Xie M, Gao C, Ye Y, Duan M, Zhou Z. The use of zebrafish ( Danio rerio) as biomedical models. Anim Front 2019; 9:68-77. [PMID: 32002264 PMCID: PMC6951987 DOI: 10.1093/af/vfz020] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minxu Xie
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, affiliated to Beijing university of Chinese Medicine (BUCM), Beijing, China
| | - Ming Duan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
60
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
61
|
Ma J, Yin H, Li M, Deng Y, Ahmad O, Qin G, He Q, Li J, Gao K, Zhu J, Wang B, Wu S, Wang T, Shang J. A Comprehensive Study of High Cholesterol Diet-Induced Larval Zebrafish Model: A Short-Time In Vivo Screening Method for Non-Alcoholic Fatty Liver Disease Drugs. Int J Biol Sci 2019; 15:973-983. [PMID: 31182918 PMCID: PMC6535789 DOI: 10.7150/ijbs.30013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world. However, there is still no drug for NAFLD in the market, the study of potential therapeutic drugs on NAFLD is extraordinarily pressing and urgent. The rodent models for NAFLD drugs' study are always with a long time cost. Therefore, we aim to establish a short-time NAFLD drug screening model. A laboratory-made high cholesterol diet was used on larval zebrafish for 3 weeks to establish the NAFLD screen model. Lipid metabolism, oxidant stress, and pathology were studied to comprehensively demonstrate the whole spectrum of NAFLD on this model. Bezafibrate and pioglitazone were used to evaluate the model. Moreover, mechanism research was performed on this model.The NAFLD larval zebrafish model was established with the comprehensive process of NAFLD. Moreover, multiple index on lipid metabolism, oxidant stress, hepatic steatosis, and hepatic inflammation can be easily tested for drug screening. Furthermore, this model can be used to perform the mechanism research by testing mRNA expression. The NAFLD larval zebrafish model is a comprehensive short-time screening method for NAFLD drugs.
Collapse
Affiliation(s)
- Ji Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Hongli Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Maoru Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Deng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Owais Ahmad
- School of life sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Guohong Qin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang He
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai Province, China
| | - Jiajing Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Gao
- Nanjing Ruiying Runze Biopharmaceutical Technology Co., Inc, Nanjing 210000, China
| | - Junyi Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Bing Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
| | - Tao Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai Province, China
| |
Collapse
|
62
|
Clugston RD, Gao MA, Blaner WS. The Hepatic Lipidome: A Gateway to Understanding the Pathogenes is of Alcohol-Induced Fatty Liver. Curr Mol Pharmacol 2019; 10:195-206. [PMID: 26278391 DOI: 10.2174/1874467208666150817111419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Chronic alcohol consumption can lead to the development of alcoholic fatty liver disease. The underlying pathogenic mechanisms however, have not been fully elucidated. Here, we review the current state of the art regarding the application of lipidomics to study alcohol's effect on hepatic lipids. It is clear that alcohol has a profound effect on the hepatic lipidome, with documented changes in the major lipid categories (i.e. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids). Alcohol's most striking effect is the marked change in the hepatic fatty acyl pool. This effect includes increased levels of 18-carbon fatty acyl chains incorporated into multiple lipid species, as well as a general shift toward increased unsaturation of fatty acyl moieties. In addition to our literature review, we also make several recommendations to consider when designing lipidomic studies into alcohol's effects. These recommendations include integration of lipidomic data with other measures of lipid metabolism, inclusion of multiple experimental time points, and presentation of quantitative data. We believe rigorous analysis of the hepatic lipidome can yield new insight into the pathogenesis of alcohol-induced fatty liver. While the existing literature has been largely descriptive, the field is poised to apply lipidomics to yield a new level of understanding on alcohol's effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7. Canada
| | - Madeleine A Gao
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| |
Collapse
|
63
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
64
|
Abstract
Tuberculosis is still a global health burden. It is caused by Mycobacterium tuberculosis which afflicts around one third of the world's population and costs around 1.3 million people their lives every year. Bacillus Calmette-Guerin vaccine is inefficient to prevent overt infection. Additionally, the lengthy inconvenient course of treatment, along with the raising issue of antimicrobial resistance, result in incomplete eradication of this infectious disease. The lack of proper animal models that replicate the latent and active courses of human tuberculosis infection remains one of the main reasons behind the poor advancement in tuberculosis research. Danio rerio, commonly known as zebrafish, is catching more attention as an animal model in tuberculosis research field. This shift is based on the histological and pathological similarities between Mycobacterium marinum infection in zebrafish and Mycobacterium tuberculosis infection in humans. Being small, cheap, transparent, and easy to handle have added further advantages to the use of zebrafish model. Besides better understanding of the pathogenesis of tuberculosis, Mycobacterium marinum infected zebrafish model is useful for evaluating novel vaccines against human tuberculosis, high throughput small molecule screening, repurposing established drugs with possible antitubercular activity, and assessing novel antituberculars for hepatotoxicity.
Collapse
Affiliation(s)
- Ghada Bouz
- a Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove , Charles University , Hradec Kralove , Czech Republic
| | - Nada Al Hasawi
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kuwait University , Kuwait , State of Kuwait
| |
Collapse
|
65
|
Impaired Liver Size and Compromised Neurobehavioral Activity are Elicited by Chitosan Nanoparticles in the Zebrafish Embryo Model. NANOMATERIALS 2019; 9:nano9010122. [PMID: 30669437 PMCID: PMC6359003 DOI: 10.3390/nano9010122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 01/31/2023]
Abstract
The use of chitosan nanoparticles (ChNPs) in various biological and environmental applications is attracting great interest. However, potential side effects related to ChNP toxicity remain the major limitation hampering their wide application. For the first time, we investigate the potential organ-specific (cardiac, hepatic, and neuromuscular) toxicity of ChNPs (size 100–150 nm) using the zebrafish embryo model. Our data highlight the absence of both acute and teratogenic toxic effects of ChNPs (~100% survival rate) even at the higher concentration employed (200 mg/L). Although no single sign of cardiotoxicity was observed upon exposure to 200 mg/L of ChNPs, as judged by heartbeat rate, the corrected QT interval (QTc, which measures the time between the start of the Q wave and the end of the T wave in the heart's electrical cycle), maximum cardiac arrest, and ejection fraction assays, the same dosage elicited the impairment of both liver size (decreased liver size, but without steatosis and lipid yolk retention) and neurobehavioral activity (increased movement under different light conditions). Although the observed toxic effect failed to affect embryo survival, whether a prolonged ChNP treatment may induce other potentially harmful effects remains to be elucidated. By reporting new insights on their organ-specific toxicity, our results add novel and useful information into the available data concerning the in vivo effect of ChNPs.
Collapse
|
66
|
Zhang H, He J, Li N, Gao N, Du Q, Chen B, Chen F, Shan X, Ding Y, Zhu W, Wu Y, Tang J, Jia X. Lipid accumulation responses in the liver of Rana nigromaculata induced by perfluorooctanoic acid (PFOA). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:29-35. [PMID: 30292973 DOI: 10.1016/j.ecoenv.2018.09.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 05/22/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a perfluorinated compound that is widely distributed, is persistent in the environment, and has a low-level chronic exposure effect on human health. The aim of this study was to investigate the peroxisome proliferator activated receptors γ (PPARγ) and the sterol regulatory element-binding protein 2 (SREBP2) signaling pathways in regulating the lipid damage response to PFOA in the livers of amphibians. Male and female frogs (Rana nigromaculata) were exposed to 0, 0.01, 0.1, 0.5 and 1 mg/L PFOA. After treatment, we evaluated the pathological changes in the liver by Oil Red O, staining and examined the total cholesterol (T-CHO) and triglyceride (TG) contents. The mRNA expression levels of PPARγ, Fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), Glycerol-3-phosphate acyltransferase (GPAT), SREBP2 and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The administration of PFOA caused marked lipid accumulation damage in the amphibian livers. The T-CHO contents were elevated significantly after PFOA treatment; these results show a dose-dependent manner in both sexes. The TG content showed a significant increase in male livers, while it was elevated significantly in female livers. The RT-PCR results showed that the mRNA expression levels of PPARγ, ACC, FAS, GPAT, SREBP2 and HMG-CoA were significantly dose-dependently increased in the PFOA-treated groups compared with those of the control group. Our results demonstrated that PFOA-induced lipid accumulation also affected the expression levels of genes FAS, ACC, GPAT and HMG-CoA in the PPARγ and SREBP2 signaling pathways in the liver. These finding will provide a scientific theoretical basis for the protection of Rana nigromaculata against PFOA effects.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Ning Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Nana Gao
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Ying Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Weiqin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, Zhejiang Province 310036, China
| | - Yingzhu Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China
| | - Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China.
| |
Collapse
|
67
|
Zhou C, Lai Y, Huang P, Xie L, Lin H, Zhou Z, Mo C, Deng G, Yan W, Gao Z, Huang S, Chen Y, Sun X, Lv Z, Gao L. Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress. Life Sci 2019; 216:305-312. [DOI: 10.1016/j.lfs.2018.07.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
|
68
|
Zhang X, Wang S, Hu L, Wang J, Liu Y, Shi P. Gemfibrozil reduces lipid accumulation in SMMC-7721 cells via the involvement of PPARα and SREBP1. Exp Ther Med 2018; 17:1282-1289. [PMID: 30680004 PMCID: PMC6327679 DOI: 10.3892/etm.2018.7046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Gemfibrozil (GEM) is a member of the fibrate class of lipid-lowering pharmaceuticals and has been widely used in the therapy of different forms of hyperlipidemia and hypercholesterolemia. Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is becoming an important public health concern worldwide. However, there is little knowledge about the effects of GEM on NAFLD. In the present study, oleate-treated human hepatoma SMMC-7721 cells were utilized to investigate the role of GEM in regulating hepatic lipid metabolism. The present results demonstrated that GEM attenuated excessive intracellular triglyceride content in the steatosis model. Upregulation of peroxisome proliferator-activated receptor α (PPARα) protein and sterol regulatory element-binding protein 1 (SREBP1) was detected following treatment with GEM. Additionally, reverse transcription-polymerase chain reaction analysis demonstrated that GEM increased the downstream genes related to PPARα and SREBP1, including carnitine palmitoyltransferase 2, acyl-coA oxidase 1, hydroxyacyl-CoA dehydrogenase, LIPIN1 and diacylglycerol O-acyltransferase 1. These findings demonstrated that GEM alleviated hepatic steatosis via the involvement of the PPARα and SREBP1 signaling pathways, which enhances lipid oxidation and interferes with lipid synthesis and secretion. Taken together, the data provide direct evidence that GEM may lower lipid accumulation in hepatocellular steatosis cells in vitro and that it may have a potential therapeutic use for NAFLD.
Collapse
Affiliation(s)
- Xiaonan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Song Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Linlin Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yajing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
69
|
Johansen MD, Hortle E, Kasparian JA, Romero A, Novoa B, Figueras A, Britton WJ, de Silva K, Purdie AC, Oehlers SH. Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility. FISH & SHELLFISH IMMUNOLOGY 2018; 83:238-242. [PMID: 30219383 DOI: 10.1016/j.fsi.2018.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Changes to lipid metabolism are well-characterised consequences of human tuberculosis infection but their functional relevance are not clearly elucidated in these or other host-mycobacterial systems. The zebrafish-Mycobacterium marinum infection model is used extensively to model many aspects of human-M. tuberculosis pathogenesis but has not been widely used to study the role of infection-induced lipid metabolism. We find mammalian mycobacterial infection-induced alterations in host Low Density Lipoprotein metabolism are conserved in the zebrafish model of mycobacterial pathogenesis. Depletion of LDLR, a key lipid metabolism node, decreased M. marinum burden, and corrected infection-induced altered lipid metabolism resulting in decreased LDL and reduced the rate of macrophage transformation into foam cells. Our results demonstrate a conserved role for infection-induced alterations to host lipid metabolism, and specifically the LDL-LDLR axis, across host-mycobacterial species pairings.
Collapse
Affiliation(s)
- Matt D Johansen
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia
| | - Joshua A Kasparian
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia
| | - Kumudika de Silva
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science and Marie Bashir Institute The University of Sydney, Camden, NSW, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
70
|
Johansen MD, Kasparian JA, Hortle E, Britton WJ, Purdie AC, Oehlers SH. Mycobacterium marinum infection drives foam cell differentiation in zebrafish infection models. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:169-172. [PMID: 30040967 DOI: 10.1016/j.dci.2018.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Host lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model recapitulates many aspects of human-M. tuberculosis infection and is used as a model to investigate the structural components of the mycobacterial granuloma. Here, we demonstrate that the zebrafish-M. marinum granuloma contains foam cells and that the transdifferentiation of macrophages into foam cells is driven by the mycobacterial ESX1 pathogenicity locus. This report demonstrates conservation of an important aspect of mycobacterial infection across species.
Collapse
Affiliation(s)
- Matt D Johansen
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Joshua A Kasparian
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Camperdown, NSW, Australia; Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Elinor Hortle
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Newtown, NSW, Australia; Marie Bashir Institute, University of Sydney, Newtown, NSW, Australia
| | - Auriol C Purdie
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program, Centenary Institute, University of Sydney, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Newtown, NSW, Australia; Marie Bashir Institute, University of Sydney, Newtown, NSW, Australia.
| |
Collapse
|
71
|
Zhao C, Li E, Wang Z, Tian J, Dai Y, Ni Y, Li F, Ma Z, Lin R. Nux Vomica Exposure Triggered Liver Injury and Metabolic Disturbance in Zebrafish Larvae. Zebrafish 2018; 15:610-628. [PMID: 30277848 DOI: 10.1089/zeb.2018.1632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebrafish larvae were used to further understand the liver toxicity of nux vomica. The histopathology, protein expression, and gene expression were assessed to confirm apoptosis in the liver, and then, profiles of the metabolites in zebrafish were investigated by untargeted metabolomic assessment to understand the potential toxicity mechanism of nux vomica. Histopathological observations showed that nux vomica caused damage to liver cells. Western blot results indicated increased expression of activated caspase3, and the result of real-time polymerase chain reaction showed a significant increase in the expression level of caspase-3, caspase-8, and caspase-9 genes (p < 0.05) compared with the control group. The liver injury from nux vomica was linked to the downregulation of amino acid (e.g., proline and alanine) and fatty acid (e.g., palmitoleic acid) metabolism and upregulation of some other fatty acid (e.g., arachidic acid) and purine (e.g., xanthine and uric acid) metabolism. The hepatotoxicity of nux vomica resulted from metabolic pathway disturbances, including small molecules involved in energy, purine, lipids, and amino acid metabolism.
Collapse
Affiliation(s)
- Chongjun Zhao
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Erwen Li
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Zhaoyi Wang
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Jinghuan Tian
- 2 CCRF (Beijing), Inc., Shimao International Center Office Building One , Beijing, China
| | - Yihang Dai
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Yuanyuan Ni
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Farong Li
- 3 Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shanxi Normal University , Xi'an, China
| | - Zhiqiang Ma
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| | - Ruichao Lin
- 1 Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine , Beijing, China
| |
Collapse
|
72
|
Lai Y, Zhou C, Huang P, Dong Z, Mo C, Xie L, Lin H, Zhou Z, Deng G, Liu Y, Chen Y, Huang S, Wu Z, Sun X, Gao L, Lv Z. Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress. J Pharmacol Sci 2018; 138:46-53. [DOI: 10.1016/j.jphs.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
|
73
|
Imran M, Sergent O, Tête A, Gallais I, Chevanne M, Lagadic-Gossmann D, Podechard N. Membrane Remodeling as a Key Player of the Hepatotoxicity Induced by Co-Exposure to Benzo[a]pyrene and Ethanol of Obese Zebrafish Larvae. Biomolecules 2018; 8:biom8020026. [PMID: 29757947 PMCID: PMC6023014 DOI: 10.3390/biom8020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
The rise in prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes an important public health concern worldwide. Including obesity, numerous risk factors of NAFLD such as benzo[a]pyrene (B[a]P) and ethanol have been identified as modifying the physicochemical properties of the plasma membrane in vitro thus causing membrane remodeling—changes in membrane fluidity and lipid-raft characteristics. In this study, the possible involvement of membrane remodeling in the in vivo progression of steatosis to a steatohepatitis-like state upon co-exposure to B[a]P and ethanol was tested in obese zebrafish larvae. Larvae bearing steatosis as the result of a high-fat diet were exposed to ethanol and/or B[a]P for seven days at low concentrations coherent with human exposure in order to elicit hepatotoxicity. In this condition, the toxicant co-exposure raised global membrane order with higher lipid-raft clustering in the plasma membrane of liver cells, as evaluated by staining with the fluoroprobe di-4-ANEPPDHQ. Involvement of this membrane’s remodeling was finally explored by using the lipid-raft disruptor pravastatin that counteracted the effects of toxicant co-exposure both on membrane remodeling and toxicity. Overall, it can be concluded that B[a]P/ethanol co-exposure can induce in vivo hepatotoxicity via membrane remodeling which could be considered as a good target mechanism for developing combination therapy to deal with steatohepatitis.
Collapse
Affiliation(s)
- Muhammad Imran
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Odile Sergent
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Arnaud Tête
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Isabelle Gallais
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Martine Chevanne
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, University of Rennes, F-35000 Rennes, France.
| |
Collapse
|
74
|
Bucher S, Tête A, Podechard N, Liamin M, Le Guillou D, Chevanne M, Coulouarn C, Imran M, Gallais I, Fernier M, Hamdaoui Q, Robin MA, Sergent O, Fromenty B, Lagadic-Gossmann D. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8:5963. [PMID: 29654281 PMCID: PMC5899096 DOI: 10.1038/s41598-018-24403-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.
Collapse
Affiliation(s)
- Simon Bucher
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Arnaud Tête
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marie Liamin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dounia Le Guillou
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Martine Chevanne
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cédric Coulouarn
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Isabelle Gallais
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Morgane Fernier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Quentin Hamdaoui
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Marie-Anne Robin
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer) - UMR_S 1241, UMR_A 1341, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
75
|
Tay SS, Kuah MK, Shu-Chien AC. Transcriptional activation of zebrafish fads2 promoter and its transient transgene expression in yolk syncytial layer of zebrafish embryos. Sci Rep 2018; 8:3874. [PMID: 29497119 PMCID: PMC5832746 DOI: 10.1038/s41598-018-22157-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
The front-end desaturases (Fads) are rate-limiting enzymes responsible for production of long-chain polyunsaturated fatty acids (LC-PUFA). The full spectrum of the transcriptional regulation of fads is still incomplete, as cloning of fads promoter is limited to a few species. Here, we described the cloning and characterisation of the zebrafish fads2 promoter. Using 5'-deletion and mutation analysis on this promoter, we identified a specific region containing the sterol regulatory element (SRE) which is responsible for the activation of the fads2 promoter. In tandem, two conserved CCAAT boxes were also present adjacent to the SRE and mutation of either of these binding sites attenuates the transcriptional activation of the fads2 promoter. An in vivo analysis employing GFP reporter gene in transiently transfected zebrafish embryos showed that this 1754 bp upstream region of the fads2 gene specifically directs GFP expression in the yolk syncytial layer (YSL) region. This indicates a role for LC-PUFA in the transport of yolk lipids through this tissue layer. In conclusion, besides identifying novel core elements for transcriptional activation in zebrafish fads2 promoter, we also reveal a potential role for fads2 or LC-PUFA in YSL during development.
Collapse
Affiliation(s)
- Shu-Shen Tay
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. .,Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Block B No. 10, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
76
|
|
77
|
Bambino K, Zhang C, Austin C, Amarasiriwardena C, Arora M, Chu J, Sadler KC. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 2018; 11:dmm.031575. [PMID: 29361514 PMCID: PMC5894941 DOI: 10.1242/dmm.031575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Collapse
Affiliation(s)
- Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
78
|
|
79
|
Cothren SD, Meyer JN, Hartman JH. Blinded Visual Scoring of Images Using the Freely-available Software Blinder. Bio Protoc 2018; 8:e3103. [PMID: 30761327 DOI: 10.21769/bioprotoc.3103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In nearly all subfields of biomedical sciences, there are phenotypes that are currently classified by expert visual scoring. In research applications, these classifications require the experimenter to be blinded to the treatment group in order to avoid unintentional bias in scoring. Currently, many labs either use laborious and tedious methods to manually blind the images, require multiple experimenters to gather and score the data blindly or fail to properly blind the data altogether. In this protocol, we present a simple, freely available software that we created that allows the experimenter to blindly score images. In our protocol, the user loads unblinded images and defines a scoring system. The software then shows the user the images in a random order, allowing the user to select a score from their defined scoring system for each image. Furthermore, the software has an optional "quality control" mechanism where the user will be shown some images multiple times to test the robustness of the visual scoring. Finally, the software summarizes the results in an exportable file that includes unblinded summary data for each group and a full list of images with their scores. In this protocol, we briefly present directions for using the software, potential applications, and caveats/limitations to this approach.
Collapse
Affiliation(s)
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
80
|
Naringenin inhibits alcoholic injury by improving lipid metabolism and reducing apoptosis in zebrafish larvae. Oncol Rep 2017; 38:2877-2884. [PMID: 29048675 DOI: 10.3892/or.2017.5965] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/18/2017] [Indexed: 11/05/2022] Open
Abstract
Alcoholic liver disease (ALD) includes a spectrum of hepatic abnormalities that range from isolated alcoholic steatosis to steatohepatitis and cirrhosis. Naringenin, a predominant flavanone in grapefruit, increases resistance to oxidative stress and inflammation and protects against multiple organ injury in various animal models. However, the specific mechanisms responsible for protection against alcoholic injury are poorly understood. In the present study, we aimed to investigate the effect of naringenin on alcoholic events and the molecular regulatory mechanisms of naringenin in the liver and whole body of zebrafish larvae following exposure to 350 mmol/l ethanol for 32 h. Zebrafish larvae {4 days post‑fertilization (dpf); wild-type (WT) and a transgenic line with liver-specific eGFP expression [Tg(lfabp10α-eGFP)]} were used to establish an alcoholic fatty liver model in order to evaluate the effects of naringenin treatment on anti-alcoholic injury. Naringenin significantly reduced alcoholic liver morphological phenotypes and the expression of alcohol and lipid metabolism-related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, fabp10α, fads2 and echs1, in zebrafish larvae. Naringenin also attenuated hepatic apoptosis in larvae as detected by TUNEL staining, consistent with the expression of critical biomarkers of endoplasmic reticulum stress and of DNA damage genes (chop, gadd45αa and edem1). The present study showed that naringenin inhibited alcohol-induced liver steatosis and injury in zebrafish larvae by reducing apoptosis and DNA damage and by harmonizing alcohol and lipid metabolism.
Collapse
|
81
|
Abstract
Alcoholic Liver Disease (ALD) refers to damage to the liver due to acute or chronic alcohol abuse. It is among the leading causes of alcohol-related morbidity and mortality and affects more than 2 million people in the United States. A better understanding of the cellular and molecular mechanisms underlying alcohol-induced liver injury is crucial for developing effective treatment for ALD. Zebrafish larvae exhibit hepatic steatosis and fibrogenesis after just 24 h of exposure to 2% ethanol, making them useful for the study of acute alcoholic liver injury. This work describes the procedure for acute ethanol treatment in zebrafish larvae and shows that it causes steatosis and swelling of the hepatic blood vessels. A detailed protocol for Hematoxylin and Eosin (H&E) staining that is optimized for the histological analysis of the zebrafish larval liver, is also described. H&E staining has several unique advantages over immunofluorescence, as it marks all liver cells and extracellular components simultaneously and can readily detect hepatic injury, such as steatosis and fibrosis. Given the increasing usage of zebrafish in modeling toxin and virus-induced liver injury, as well as inherited liver diseases, this protocol serves as a reference for the histological analyses performed in all these studies.
Collapse
Affiliation(s)
- Jillian L Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center;
| |
Collapse
|
82
|
Hesperidin Protects against Acute Alcoholic Injury through Improving Lipid Metabolism and Cell Damage in Zebrafish Larvae. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7282653. [PMID: 28596796 PMCID: PMC5449749 DOI: 10.1155/2017/7282653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
Abstract
Alcoholic liver disease (ALD) is a series of abnormalities of liver function, including alcoholic steatosis, steatohepatitis, and cirrhosis. Hesperidin, the major constituent of flavanone in grapefruit, is proved to play a role in antioxidation, anti-inflammation, and reducing multiple organs damage in various animal experiments. However, the underlying mechanism of resistance to alcoholic liver injury is still unclear. Thus, we aimed to investigate the protective effects of hesperidin against ALD and its molecular mechanism in this study. We established an ALD zebrafish larvae model induced by 350 mM ethanol for 32 hours, using wild-type and transgenic line with liver-specific eGFP expression Tg (lfabp10α:eGFP) zebrafish larvae (4 dpf). The results revealed that hesperidin dramatically reduced the hepatic morphological damage and the expressions of alcohol and lipid metabolism related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, and fads2 compared with ALD model. Moreover, the findings demonstrated that hesperidin alleviated hepatic damage as well, which is reflected by the expressions of endoplasmic reticulum stress and DNA damage related genes (chop, gadd45αa, and edem1). In conclusion, this study revealed that hesperidin can inhibit alcoholic damage to liver of zebrafish larvae by reducing endoplasmic reticulum stress and DNA damage, regulating alcohol and lipid metabolism.
Collapse
|
83
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
84
|
Cornet C, Calzolari S, Miñana-Prieto R, Dyballa S, van Doornmalen E, Rutjes H, Savy T, D'Amico D, Terriente J. ZeGlobalTox: An Innovative Approach to Address Organ Drug Toxicity Using Zebrafish. Int J Mol Sci 2017; 18:E864. [PMID: 28422076 PMCID: PMC5412445 DOI: 10.3390/ijms18040864] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023] Open
Abstract
Toxicity is one of the major attrition causes during the drug development process. In that line, cardio-, neuro-, and hepatotoxicities are among the main reasons behind the retirement of drugs in clinical phases and post market withdrawal. Zebrafish exploitation in high-throughput drug screening is becoming an important tool to assess the toxicity and efficacy of novel drugs. This animal model has, from early developmental stages, fully functional organs from a physiological point of view. Thus, drug-induced organ-toxicity can be detected in larval stages, allowing a high predictive power on possible human drug-induced liabilities. Hence, zebrafish can bridge the gap between preclinical in vitro safety assays and rodent models in a fast and cost-effective manner. ZeGlobalTox is an innovative assay that sequentially integrates in vivo cardio-, neuro-, and hepatotoxicity assessment in the same animal, thus impacting strongly in the 3Rs principles. It Reduces, by up to a third, the number of animals required to assess toxicity in those organs. It Refines the drug toxicity evaluation through novel physiological parameters. Finally, it might allow the Replacement of classical species, such as rodents and larger mammals, thanks to its high predictivity (Specificity: 89%, Sensitivity: 68% and Accuracy: 78%).
Collapse
Affiliation(s)
- Carles Cornet
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| | - Simone Calzolari
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| | - Rafael Miñana-Prieto
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| | - Sylvia Dyballa
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| | - Els van Doornmalen
- Pivot Park Screening Centre (PPSC), Kloosterstraat 9, 5349AB OSS, The Netherland.
| | - Helma Rutjes
- Pivot Park Screening Centre (PPSC), Kloosterstraat 9, 5349AB OSS, The Netherland.
| | - Thierry Savy
- Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, 91190 Gif sur Yvette, France.
| | - Davide D'Amico
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| | - Javier Terriente
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain.
| |
Collapse
|
85
|
Schneider ACR, Gregório C, Uribe-Cruz C, Guizzo R, Malysz T, Faccioni-Heuser MC, Longo L, da Silveira TR. Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver. World J Hepatol 2017; 9:418-426. [PMID: 28357029 PMCID: PMC5355764 DOI: 10.4254/wjh.v9.i8.418] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of chronic exposure to ethanol in the liver and the expression of inflammatory genes in zebrafish.
METHODS Zebrafish (n = 104), wild type, adult, male and female, were divided into two groups: Control and ethanol (0.05 v/v). The ethanol was directly added into water; tanks water were changed every two days and the ethanol replaced. The animals were fed twice a day with fish food until satiety. After two and four weeks of trial, livers were dissected, histological analysis (hematoxilin-eosin and Oil Red staining) and gene expression assessment of adiponectin, adiponectin receptor 2 (adipor2), sirtuin-1 (sirt-1), tumor necrosis factor-alpha (tnf-a), interleukin-1b (il-1b) and interleukin-10 (il-10) were performed. Ultrastructural evaluations were conducted at fourth week.
RESULTS Exposing zebrafish to 0.5% ethanol developed intense liver steatosis after four weeks, as demonstrated by oil red staining. In ethanol-treated animals, the main ultrastructural changes were related to cytoplasmic lipid particles and droplets, increased number of rough endoplasmic reticulum cisterns and glycogen particles. Between two and four weeks, hepatic mRNA expression of il-1b, sirt-1 and adipor2 were upregulated, indicating that ethanol triggered signaling molecules which are key elements in both hepatic inflammatory and protective responses. Adiponectin was not detected in the liver of animals exposed and not exposed to ethanol, and il-10 did not show significant difference.
CONCLUSION Data suggest that inflammatory signaling and ultrastructural alterations play a significant role during hepatic steatosis in zebrafish chronically exposed to ethanol.
Collapse
|
86
|
Burkina V, Rasmussen MK, Pilipenko N, Zamaratskaia G. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450. Toxicology 2017; 375:10-27. [DOI: 10.1016/j.tox.2016.11.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/25/2022]
|
87
|
Hugo SE, Schlegel A. A genetic screen for zebrafish mutants with hepatic steatosis identifies a locus required for larval growth. J Anat 2016; 230:407-413. [PMID: 27976367 DOI: 10.1111/joa.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/14/2023] Open
Abstract
In a screen for zebrafish larval mutants with excessive liver lipid accumulation (hepatic steatosis), we identified harvest moon (hmn). Cytoplasmic lipid droplets, surrounded by multivesicular structures and mitochondria whose cristae appeared swollen, are seen in hmn mutant hepatocytes. Whole body triacylglycerol is increased in hmn mutant larvae. When we attempted to raise mutants, which were morphologically normal at the developmental stage that the screen was conducted, to adulthood, we observed that most hmn mutants do not survive to the juvenile period when raised. An arrest in growth occurs in the late larval period without obvious organ defects. Maternal zygotic mutants have no additional defects, suggesting that the mutation affects a late developmental process. The developmental window between embryogenesis and the metamorphosis remains under-studied, and hmn mutants might be useful for exploring the molecular and anatomic processes occurring during this transition period.
Collapse
Affiliation(s)
- Sarah E Hugo
- University of Utah Molecular Medicine (U2M2) Program, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amnon Schlegel
- University of Utah Molecular Medicine (U2M2) Program, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
88
|
Podechard N, Chevanne M, Fernier M, Tête A, Collin A, Cassio D, Kah O, Lagadic-Gossmann D, Sergent O. Zebrafish larva as a reliable model for in vivo assessment of membrane remodeling involvement in the hepatotoxicity of chemical agents. J Appl Toxicol 2016; 37:732-746. [PMID: 27896850 DOI: 10.1002/jat.3421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/20/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022]
Abstract
The easy-to-use in vivo model, zebrafish larva, is being increasingly used to screen chemical-induced hepatotoxicity, with a good predictivity for various mechanisms of liver injury. However, nothing is known about its applicability in exploring the mechanism called membrane remodeling, depicted as changes in membrane fluidity or lipid raft properties. The aim of this study was, therefore, to substantiate the zebrafish larva as a suitable in vivo model in this context. Ethanol was chosen as a prototype toxicant because it is largely described, both in hepatocyte cultures and in rodents, as capable of inducing a membrane remodeling leading to hepatocyte death and liver injury. The zebrafish larva model was demonstrated to be fully relevant as membrane remodeling was maintained even after a 1-week exposure without any adaptation as usually reported in rodents and hepatocyte cultures. It was also proven to exhibit a high sensitivity as it discriminated various levels of cytotoxicity depending on the extent of changes in membrane remodeling. In this context, its sensitivity appeared higher than that of WIF-B9 hepatic cells, which is suited for analyzing this kind of hepatotoxicity. Finally, the protection afforded by a membrane stabilizer, ursodeoxycholic acid (UDCA), or by a lipid raft disrupter, pravastatin, definitely validated zebrafish larva as a reliable model to quickly assess membrane remodeling involvement in chemical-induced hepatotoxicity. In conclusion, this model, compatible with a high throughput screening, might be adapted to seek hepatotoxicants via membrane remodeling, and also drugs targeting membrane features to propose new preventive or therapeutic strategies in chemical-induced liver diseases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Normand Podechard
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Martine Chevanne
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Morgane Fernier
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Arnaud Tête
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Aurore Collin
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Doris Cassio
- Inserm, UMR-S 757; Orsay, France; Université Paris-Sud, Orsay, France
| | - Olivier Kah
- Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France.,UMR Inserm 1085, IRSET, Université de Rennes 1, bâtiment 9, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| | - Odile Sergent
- UMR Inserm 1085, IRSET, UFR des Sciences Pharmaceutiques et Biologiques, bâtiment 5, 35043, Rennes Cédex, France.,Biosit UMS3480, Université de Rennes 1, 35043, Rennes Cédex, France
| |
Collapse
|
89
|
Otis JP, Farber SA. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J Vis Exp 2016. [PMID: 27842350 DOI: 10.3791/54735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Embryology, Carnegie Institution for Science
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science; Department of Biology, Johns Hopkins University;
| |
Collapse
|
90
|
Guo DY, Cao C, Zhang XY, Xiang LX, Shao JZ. Scavenger Receptor SCARA5 Acts as an HMGB1 Recognition Molecule Negatively Involved in HMGB1-Mediated Inflammation in Fish Models. THE JOURNAL OF IMMUNOLOGY 2016; 197:3198-3213. [DOI: 10.4049/jimmunol.1600438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
|
91
|
Fai Tse WK, Li JW, Kwan Tse AC, Chan TF, Hin Ho JC, Sun Wu RS, Chu Wong CK, Lai KP. Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. CHEMOSPHERE 2016; 159:166-177. [PMID: 27289203 DOI: 10.1016/j.chemosphere.2016.05.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a hepato-toxicant and potential non-genotoxic carcinogen, was widely used in industrial and commercial products. Recent studies have revealed the ubiquitous occurrence of PFOS in the environment and in humans worldwide. The widespread contamination of PFOS in human serum raised concerns about its long-term toxic effects and its potential risks to human health. Using fatty liver mutant foie gras (fgr(-/-))/transport protein particle complex 11 (trappc11(-/-)) and PFOS-exposed wild-type zebrafish embryos as the study model, together with RNA sequencing and comparative transcriptomic analysis, we identified 499 and 1414 differential expressed genes (DEGs) in PFOS-exposed wild-type and trappc11 mutant zebrafish, respectively. Also, the gene ontology analysis on common deregulated genes was found to be associated with different metabolic processes such as the carbohydrate metabolic process, glycerol ether metabolic process, mannose biosynthetic process, de novo' (Guanosine diphosphate) GDP-l-fucose biosynthetic process, GDP-mannose metabolic process and galactose metabolic process. Ingenuity Pathway Analysis further highlighted that these deregulated gene clusters are closely related to hepatitis, inflammation, fibrosis and cirrhosis of liver cells, suggesting that PFOS can cause liver pathogenesis and non-alcoholic fatty liver disease in zebrafish. The transcriptomic alterations revealed may serve as biomarkers for the hepatotoxic effect of PFOS.
Collapse
Affiliation(s)
- William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Jing Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Anna Chung Kwan Tse
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jeff Cheuk Hin Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- The State Key Laboratory in Marine Pollution, Hong Kong SAR, China; Department of Science and Environmental Studies, Institute of Education, Hong Kong SAR, China.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
92
|
Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:87-96. [DOI: 10.1016/j.cbpb.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
|
93
|
Zhang C, Ellis JL, Yin C. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish. Dis Model Mech 2016; 9:1383-1396. [PMID: 27562099 PMCID: PMC5117223 DOI: 10.1242/dmm.024950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver disease (ALD) results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF) and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the zebrafish model to identify molecular targets for developing ALD therapies.
Collapse
Affiliation(s)
- Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jillian L Ellis
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
94
|
Feng W, Gu YF, Nie L, Guo DY, Xiang LX, Shao JZ. Characterization of SIGIRR/IL-1R8 Homolog from Zebrafish Provides New Insights into Its Inhibitory Role in Hepatic Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 197:151-67. [PMID: 27206770 DOI: 10.4049/jimmunol.1502334] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
Single Ig IL-1R-related molecule (SIGIRR, also called IL-1R8 or Toll/IL-1R [TIR]8), a negative regulator for Toll/IL-1R signaling, plays critical roles in innate immunity and various diseases in mammals. However, the occurrence of this molecule in ancient vertebrates and its function in liver homeostasis and disorders remain poorly understood. In this study, we identified a SIGIRR homology from zebrafish (Danio rerio [DrSIGIRR]) by using a number of conserved structural and functional hallmarks to its mammalian counterparts. DrSIGIRR was highly expressed in the liver. Ablation of DrSIGIRR by lentivirus-delivered small interfering RNA in the liver significantly enhanced hepatic inflammation in response to polyinosinic-polycytidylic acid [poly(I:C)] stimulation, as shown by the upregulation of inflammatory cytokines and increased histological disorders. In contrast, depletion of TIR domain-containing adaptor inducing IFN-β (TRIF) or administration of TRIF signaling inhibitor extremely abrogated the poly(I:C)-induced hepatic inflammation. Aided by the zebrafish embryo model, overexpression of DrSIGIRR in vivo significantly inhibited the poly(I:C)- and TRIF-induced NF-κB activations; however, knockdown of DrSIGIRR promoted such activations. Furthermore, pull-down and Duolink in situ proximity ligation assay assays showed that DrSIGIRR can interact with the TRIF protein. Results suggest that DrSIGIRR plays an inhibitory role in TRIF-mediated inflammatory reactions by competitive recruitment of the TRIF adaptor protein from its TLR3/TLR22 receptor. To our knowledge, this study is the first to report a functional SIGIRR homolog that existed in a lower vertebrate. This molecule is essential to establish liver homeostasis under inflammatory stimuli. Overall, the results will enrich the current knowledge about SIGIRR-mediated immunity and disorders in the liver.
Collapse
Affiliation(s)
- Wei Feng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Yi-Feng Gu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Dong-Yang Guo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; and Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, People's Republic of China
| |
Collapse
|
95
|
Huang M, Xu J, Shin CH. Development of an Ethanol-induced Fibrotic Liver Model in Zebrafish to Study Progenitor Cell-mediated Hepatocyte Regeneration. J Vis Exp 2016. [PMID: 27214059 DOI: 10.3791/54002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sustained liver fibrosis with continuation of extracellular matrix (ECM) protein build-up results in the loss of cellular competency of the liver, leading to cirrhosis with hepatocellular dysfunction. Among multiple hepatic insults, alcohol abuse can lead to significant health problems including liver failure and hepatocellular carcinoma. Nonetheless, the identity of endogenous cellular sources that regenerate hepatocytes in response to alcohol has not been properly investigated. Moreover, few studies have effectively modeled hepatocyte regeneration upon alcohol-induced injury. We recently reported on establishing an ethanol (EtOH)-induced fibrotic liver model in zebrafish in which hepatic progenitor cells (HPCs) gave rise to hepatocytes upon near-complete hepatocyte loss in the presence of fibrogenic stimulus. Furthermore, through chemical screens using this model, we identified multiple small molecules that enhance hepatocyte regeneration. Here we describe in detail the procedures to develop an EtOH-induced fibrotic liver model and to perform chemical screens using this model in zebrafish. This protocol will be a critical tool to delineate the molecular and cellular mechanisms of how hepatocyte regenerates in the fibrotic liver. Furthermore, these methods will facilitate potential discovery of novel therapeutic strategies for chronic liver disease in vivo.
Collapse
Affiliation(s)
- Mianbo Huang
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Jin Xu
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Chong Hyun Shin
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology;
| |
Collapse
|
96
|
Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, Peng J. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet 2016; 12:e1005881. [PMID: 26901320 PMCID: PMC4764323 DOI: 10.1371/journal.pgen.1005881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/28/2016] [Indexed: 01/19/2023] Open
Abstract
Unlike mammals and birds, teleost fish undergo external embryogenesis, and therefore their embryos are constantly challenged by stresses from their living environment. These stresses, when becoming too harsh, will cause arrest of cell proliferation, abnormal cell death or senescence. Such organisms have to evolve a sophisticated anti-stress mechanism to protect the process of embryogenesis/organogenesis. However, very few signaling molecule(s) mediating such activity have been identified. liver-enriched gene 1 (leg1) is an uncharacterized gene that encodes a novel secretory protein containing a single domain DUF781 (domain of unknown function 781) that is well conserved in vertebrates. In the zebrafish genome, there are two copies of leg1, namely leg1a and leg1b. leg1a and leg1b are closely linked on chromosome 20 and share high homology, but are differentially expressed. In this report, we generated two leg1a mutant alleles using the TALEN technique, then characterized liver development in the mutants. We show that a leg1a mutant exhibits a stress-dependent small liver phenotype that can be prevented by chemicals blocking the production of reactive oxygen species. Further studies reveal that Leg1a binds to FGFR3 and mediates a novel anti-stress pathway to protect liver development through enhancing Erk activity. More importantly, we show that the binding of Leg1a to FGFR relies on the glycosylation at the 70th asparagine (Asn70 or N70), and mutating the Asn70 to Ala70 compromised Leg1’s function in liver development. Therefore, Leg1 plays a unique role in protecting liver development under different stress conditions by serving as a secreted signaling molecule/modulator. Although being challenged by stresses from their living environment during embryogenesis, teleost fish harbor a robust genetic program dictating liver development as long as any environmental change, including temperature or natural UV irradiation, is not detrimental. It is therefore of interest to explore the mechanism(s) behind this phenomenon. We showed that Liver-enriched gene 1 (Leg1) plays a unique role in protecting liver development under different stress conditions by serving as a secretory signaling molecule/modulator that binds to FGF receptor and activates the Erk signaling pathway. This finding may explain the adaption of teleost fish in coping with environmental changes.
Collapse
Affiliation(s)
- Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunxia Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| |
Collapse
|
97
|
Liu LY, Alexa K, Cortes M, Schatzman-Bone S, Kim AJ, Mukhopadhyay B, Cinar R, Kunos G, North TE, Goessling W. Cannabinoid receptor signaling regulates liver development and metabolism. Development 2016; 143:609-22. [PMID: 26884397 PMCID: PMC4760316 DOI: 10.1242/dev.121731] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.
Collapse
Affiliation(s)
- Leah Y Liu
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristen Alexa
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauricio Cortes
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | - Andrew J Kim
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bani Mukhopadhyay
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - Resat Cinar
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - George Kunos
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20982, USA
| | - Trista E North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA Dana-Farber Cancer Institute, Boston, MA 02215, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
98
|
Lívero FA, Acco A. Molecular basis of alcoholic fatty liver disease: From incidence to treatment. Hepatol Res 2016; 46:111-23. [PMID: 26417962 DOI: 10.1111/hepr.12594] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
Alcoholic liver diseases have complex and multiple pathogenic mechanisms but still no effective treatment. Steatosis or alcoholic fatty liver disease (AFLD) has a widespread incidence and is the first step in the progression to more severe stages of alcoholic liver disease, with concomitant increases in morbidity and mortality rates. The ways in which this progression occurs and why some individuals are susceptible are still unanswered scientific questions. Research with animal models and clinical evidence have shown that it is a multifactorial disease that involves interactions between lipid metabolism, inflammation, the immune response and oxidative stress. Each of these pathways provides a better understanding of the pathogenesis of AFLD and contributes to the development of therapeutic strategies. This review emphasizes the importance of research on alcoholic steatosis based on incidence data, key pathogenic mechanisms and therapeutic interventions, and discusses perspectives on the progression of this disease.
Collapse
Affiliation(s)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
99
|
Lyssimachou A, Santos JG, André A, Soares J, Lima D, Guimarães L, Almeida CMR, Teixeira C, Castro LFC, Santos MM. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish. PLoS One 2015; 10:e0143911. [PMID: 26633012 PMCID: PMC4669123 DOI: 10.1371/journal.pone.0143911] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.
Collapse
Affiliation(s)
- Angeliki Lyssimachou
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
- * E-mail: (AL); (LFCC); (MMS)
| | - Joana G. Santos
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - Ana André
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - Daniela Lima
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - Laura Guimarães
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - C. Marisa R. Almeida
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
| | - L. Filipe C. Castro
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
- * E-mail: (AL); (LFCC); (MMS)
| | - Miguel M. Santos
- CIMAR/CIIMAR-AL, Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050–123, Porto, Portugal
- FCUP–Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AL); (LFCC); (MMS)
| |
Collapse
|
100
|
Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J Biomed Sci 2015; 22:105. [PMID: 26572131 PMCID: PMC4647812 DOI: 10.1186/s12929-015-0206-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Caffeine, the main component of coffee, has showed its protective effect on non-alcoholic fatty liver disease (NAFLD) in many studies. However, the hepatoprotection of caffeine and its mechanisms in zebrafish were unexplored. Thus, this study's intentions are to establish a NAFLD model of zebrafish larvae and to examine the role of caffeine on fatty liver with the model. RESULTS Growth and the incidence of fatty liver of zebrafish larvae increased with the increased amount of feeding in a dose-dependent manner. The degree of hepatic steatosis of larvae also gradually aggravated with the increased quantity and duration of feeding. Triglyceride contents of zebrafish fed for 20 days significantly increased in model group (180 mg/d) compared with control group (30 mg/d) (P < 0.001). Significant decreases in body weight and hepatic steatosis rate were observed in 2.5, 5, 8 % caffeine treatment group compared with model group (P < 0.05). Hepatic lipid accumulation was also significantly reduced in caffeine treatment larvae. Moreover, caffeine treatment was associated with upregulation of lipid β-oxidation gene ACO and downregulation of lipogenesis-associated genes (SREBP1, ACC1, CD36 and UCP2), ER stress-associated genes (PERK, IRE1, ATF6 and BIP), the inflammatory cytokine genes (IL-1beta and TNF-alpha) and autophagy associated genes (ATG12 and Beclin-1). Protein expression of CHOP, BIP and IL-1beta remarkably reduced in caffeine treatment group compared with model group. CONCLUSIONS We induced hepatoteatosis in zebrafish by overfeeding regimen and demonstrated caffeine have a role in suppression of hepatosteatosis by downregulation of genes associated with lipogenesis, ER stress, inflammatory response and enhancement of lipid oxidation, indicating zebrafish model may be used to identify putative pharmacological targets and to test novel drugs for human NAFLD treatment.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wencong Dai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou, 510515, China.
| | - Kunyuan Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou, 510515, China.
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|