51
|
Ao M, Domingue JC, Khan N, Javed F, Osmani K, Sarathy J, Rao MC. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells. Am J Physiol Cell Physiol 2016; 310:C1010-23. [PMID: 27076617 DOI: 10.1152/ajpcell.00350.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Fatima Javed
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Kashif Osmani
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
52
|
Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis. Curr Opin Lipidol 2016; 27:148-54. [PMID: 26959704 DOI: 10.1097/mol.0000000000000274] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article evaluates the link between trimethylamine-N-oxide (TMAO) and bile acids and the consequent impact on the development of atherosclerosis. RECENT FINDINGS Elevation in plasma TMAO concentrations is associated with an increased risk of cardiovascular disease in many different patient cohorts. In addition to the recently identified direct effects of TMAO on the development of atherosclerosis, other components involved in TMAO metabolism may also have an impact. Furthermore, the relationship between TMAO and bile acid regulation is emerging as a possible mediator of atherosclerosis. SUMMARY Studies that are emerging highlight the mechanistic relationship of TMAO to the development atherosclerosis in addition to its role as disease biomarker. The interplay between TMAO and bile acid metabolism mediated through multiple factors, such as the gut microbiome, farnesoid X receptor signaling, and flavin monooxygenase 3 activity may help identify another pathway by which atherosclerosis occurs. In this review, we discuss the most recent data regarding atherosclerosis, TMAO, and bile acid metabolism.
Collapse
Affiliation(s)
- Aze Wilson
- aDivisions of Clinical Pharmacology bGastroenterology, Department of Medicine cDepartment of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | | |
Collapse
|
53
|
Zhou C, Jia HM, Liu YT, Yu M, Chang X, Ba YM, Zou ZM. Metabolism of glycerophospholipid, bile acid and retinol is correlated with the early outcomes of autoimmune hepatitis. MOLECULAR BIOSYSTEMS 2016; 12:1574-85. [DOI: 10.1039/c6mb00092d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study first reports the metabolic variations at the early stage of the liver injury related to autoimmune hepatitis.
Collapse
Affiliation(s)
- Chao Zhou
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Hong-mei Jia
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Yue-tao Liu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Meng Yu
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Xing Chang
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| | - Yuan-ming Ba
- Hubei Provincial Hospital of TCM
- Wuhan
- P. R. China
| | - Zhong-mei Zou
- Institute of Medicinal Plant Development
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100193
- P. R. China
| |
Collapse
|
54
|
Fang ZZ, Tosh DK, Tanaka N, Wang H, Krausz KW, O'Connor R, Jacobson KA, Gonzalez FJ. Metabolic mapping of A3 adenosine receptor agonist MRS5980. Biochem Pharmacol 2015; 97:215-223. [PMID: 26212548 PMCID: PMC4581425 DOI: 10.1016/j.bcp.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023]
Abstract
(1S,2R,3S,4R,5S)-4-(2-((5-Chlorothiophen-2-yl)ethynyl)-6-(methylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide (MRS5980) is an A3AR selective agonist containing multiple receptor affinity- and selectivity-enhancing modifications and a therapeutic candidate drug for many inflammatory diseases. Metabolism-related poor pharmacokinetic behavior and toxicities are a major reason for drug R&D failure. Metabolomics with UPLC-MS was employed to profile the metabolism of MRS5980 and MRS5980-induced disruption of endogenous compounds. Recombinant drug-metabolizing enzymes screening experiment were used to determine the enzymes involved in MRS5980 metabolism. Analysis of lipid metabolism-related genes was performed to investigate the reason for MRS5980-induced lipid metabolic disorders. Unsupervised principal components analysis separated the control and MRS5980 treatment groups in feces, urine, and liver samples, but not in bile and serum. The major ions mainly contributing to the separation of feces and urine were oxidized MRS5980, glutathione (GSH) conjugates and cysteine conjugate (degradation product of the GSH conjugates) of MRS5980. The major ions contributing to the group separation of liver samples were phosphatidylcholines. In vitro incubation experiments showed the involvement of CYP3A enzymes in the oxidative metabolism of MRS5980 and direct GSH reactivity of MRS5980. The electrophilic attack by MRS5980 is a minor pathway and did not alter GSH levels in liver or liver histology, and thus may be of minor clinical consequence. Gene expression analysis further showed decreased expression of PC biosynthetic genes choline kinase a and b, which further accelerated conversion of lysophosphatidylcholine to phosphatidylcholines through increasing the expression of lysophosphatidylcholine acyltransferase 3. These data will be useful to guide rational design of drugs targeting A3AR, considering efficacy, metabolic elimination, and electrophilic reactivity.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haina Wang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert O'Connor
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
55
|
Lian JS, Liu W, Hao SR, Chen DY, Wang YY, Yang JL, Jia HY, Huang JR. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat Dis Int 2015; 14:413-21. [PMID: 26256087 DOI: 10.1016/s1499-3872(15)60393-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Because of the diversity of the clinical and laboratory manifestations, the diagnosis of autoimmune liver disease (AILD) remains a challenge in clinical practice. The value of metabolomics has been studied in the diagnosis of many diseases. The present study aimed to determine whether the metabolic profiles, based on ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), differed between autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC), to identify specific metabolomic markers, and to establish a model for the diagnosis of AIH and PBC. METHODS Serum samples were collected from 20 patients with PBC, 19 patients with AIH, and 25 healthy individuals. UPLC-MS data of the samples were analyzed using principal component analysis, partial least squares discrimination analysis and orthogonal partial least squares discrimination analysis. RESULTS The partial least squares discrimination analysis model (R2Y=0.991, Q2=0.943) was established between the AIH and PBC groups and exhibited both sensitivity and specificity of 100%. Five groups of biomarkers were identified, including bile acids, free fatty acids, phosphatidylcholines, lysolecithins and sphingomyelin. Bile acids significantly increased in the AIH and PBC groups compared with the healthy control group. The other biomarkers decreased in the AIH and PBC groups compared with those in the healthy control group. In addition, the biomarkers were downregulated in the AIH group compared with the PBC group. CONCLUSIONS The biomarkers identified revealed the pathophysiological changes in AILD and helped to discriminate between AIH and PBC. The predictability of this method suggests its potential application in the diagnosis of AILD.
Collapse
Affiliation(s)
- Jiang-Shan Lian
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, Takahashi S, Tanaka N, Desai D, Amin SG, Albert I, Patterson AD, Gonzalez FJ. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125:386-402. [PMID: 25500885 PMCID: PMC4382255 DOI: 10.1172/jci76738] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota-associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yunpeng Qi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Dhimant Desai
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shantu G. Amin
- Department of Pharmacology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
57
|
Han JC, Yu J, Gao YJ. Lipidomics investigation of reversal effect of glycyrrhizin (GL) towards lithocholic acid (LCA)-induced alteration of phospholipid profiles. PHARMACEUTICAL BIOLOGY 2014; 52:1624-1628. [PMID: 25289528 DOI: 10.3109/13880209.2014.900810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Glycyrrhizin (GL), the major ingredient isolated from licorice, exerts multiple pharmacological activities. OBJECTIVE To elucidate the protective mechanism of GL towards lithocholic acid (LCA)-induced liver toxicity using lipidomics. MATERIALS AND METHODS GL (200 mg/kg) dissolved in corn oil was treated intraperitoneally for 7 d. On the 4th day, 200 mg/kg LCA was used to treat mice (i.p., twice daily) for another 4 d. The protective role of GL towards LCA-induced liver toxicity was investigated through evaluating the liver histology and the activity of alanine transaminase (ALT). The complete lipid profile was employed using UFLC-Triple TOF MS-based lipidomics. RESULTS Intraperitoneal (i.p.) administration of 200 mg/kg GL can significantly protect LCA-induced liver damage, indicated by alleviated histology alteration and prevention of the ALT elevation. Lipidomics analysis can well separate the control group from LCA-treated group, and three lipid components were major contributors, including LPC 16:0, LPC 18:0, and LPC 18:2. GL treatment can significantly prevent LCA-induced reduction of these three lipid compounds, providing a new explanation for GL's protection mechanism towards LCA-induced liver toxicity. DISCUSSION AND CONCLUSION The recent study highlights the importance of lipidomics in elucidating the therapeutic mechanism of herbs.
Collapse
Affiliation(s)
- Jing-Chun Han
- Oncology Department, First Affiliated Hospital of Dalian Medical University , Dalian , China and
| | | | | |
Collapse
|
58
|
Álvarez-Muñoz D, Al-Salhi R, Abdul-Sada A, González-Mazo E, Hill EM. Global metabolite profiling reveals transformation pathways and novel metabolomic responses in Solea senegalensis after exposure to a non-ionic surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5203-5210. [PMID: 24684439 DOI: 10.1021/es501276g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Alcohol polyethoxylate (AEO) surfactants are widely used in household and industrial products, but the health effects arising from short-term exposure to sublethal concentrations are unknown. A metabolomic approach was used to investigate the biotransformation and effects of exposure to sublethal concentrations of hexaethylene glycol monododecylether (C12EO6) in juvenile sole, Solea senegalensis. After 5 days, C12EO6 was rapidly metabolized in the sole by oxidation, glucuronidation, and ethoxylate chain shortening. C12EO6 exposure at either 146 or 553 μg L(-1) resulted in significant metabolite disruption in liver and blood samples, including an apparent fold increase of >10(6) in the circulating levels of C24 bile acids and C27 bile alcohols, disturbance of glucocorticoid and lipid metabolism, and a 470-fold decrease in levels of the fatty acid transport molecule palmitoyl carnitine. Depuration resulted in rapid elimination of the surfactant and normalization of metabolites toward pre-exposure levels. Our findings show for the first time the ability of metabolomic analyses to discern effects of this AEO on metabolite homeostasis at exposure levels below its no effect concentrations for survival and reproduction in juvenile fish. The pronounced alteration in levels of liver metabolites, phospholipids, and glucocorticoids in S. senegalensis in response to surfactant exposure may indicate that this contaminant could potentially impact a number of health end points in fish.
Collapse
Affiliation(s)
- Diana Álvarez-Muñoz
- School of Life Sciences, University of Sussex , Brighton BN1 9QJ, United Kingdom
| | | | | | | | | |
Collapse
|
59
|
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2014; 4:2384. [PMID: 24064762 DOI: 10.1038/ncomms3384] [Citation(s) in RCA: 550] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 08/01/2013] [Indexed: 12/16/2022] Open
Abstract
The antioxidant tempol reduces obesity in mice. Here we show that tempol alters the gut microbiome by preferentially reducing the genus Lactobacillus and its bile salt hydrolase (BSH) activity leading to the accumulation of intestinal tauro-β-muricholic acid (T-β-MCA). T-β-MCA is an farnesoid X receptor (FXR) nuclear receptor antagonist, which is involved in the regulation of bile acid, lipid and glucose metabolism. Its increased levels during tempol treatment inhibit FXR signalling in the intestine. High-fat diet-fed intestine-specific Fxr-null (Fxr(ΔIE)) mice show lower diet-induced obesity, similar to tempol-treated wild-type mice. Further, tempol treatment does not decrease weight gain in Fxr(ΔIE) mice, suggesting that the intestinal FXR mediates the anti-obesity effects of tempol. These studies demonstrate a biochemical link between the microbiome, nuclear receptor signalling and metabolic disorders, and suggest that inhibition of FXR in the intestine could be a target for anti-obesity drugs.
Collapse
Affiliation(s)
- Fei Li
- 1] Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ma J, Yu J, Su X, Zhu C, Yang X, Sun H, Chen D, Wang Y, Cao H, Lu J. UPLC-MS-based serum metabonomics for identifying acute liver injury biomarkers in Chinese miniature pigs. Toxicol Lett 2014; 225:358-366. [PMID: 24451218 DOI: 10.1016/j.toxlet.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/26/2022]
Abstract
Metabonomics has emerged as an important technology for exploring the underlying mechanisms of diseases and screening for biomarkers. In this investigation, to comprehensively assess metabolite changes in D-galactosamine (GalN)-induced liver injury in Chinese miniature pigs and to increase our understanding of physiological changes in normal and pathological states, we used ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) to analyze metabolites and identify biomarkers in serum. Blood samples were collected both from 18 h after GalN treatment group and control group pigs. We performed multivariate analyses on the metabolite profiles to identify potential biomarkers of acute liver injury, which were then confirmed by tandem MS. Based on "variable of importance in the project" (VIP) values and S-plots, four groups of biomarkers were identified--namely conjugated bile acids, lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs) and fatty acid amides (FAAs)--that were present at significantly different levels in the control and GalN-induced groups. LPCs, PCs, and FAAs showed marked decreases in the GalN-treated group, whereas conjugated bile acids in the treated group showed considerable increases. Taken together, our results suggested that obvious metabolic disturbances occur during acute liver injury, which provided novel insights into the molecular mechanism(s) of D-galactosamine (GalN)-induced liver injury, and will facilitate future research and management of liver injury.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Medical College, Zhejiang University, 79 Qingchun Road, Institute for Cell-Based Drug Development for Zhejiang Province, Hangzhou City 310003, Zhejiang Province, PR China.
| | - Xiaoru Su
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Chengxing Zhu
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Xiao Yang
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Huawang Sun
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Medical College, Zhejiang University, 79 Qingchun Road, Institute for Cell-Based Drug Development for Zhejiang Province, Hangzhou City 310003, Zhejiang Province, PR China.
| | - Ying Wang
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Hongcui Cao
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Medical College, Zhejiang University, 79 Qingchun Road, Institute for Cell-Based Drug Development for Zhejiang Province, Hangzhou City 310003, Zhejiang Province, PR China.
| | - Jianxin Lu
- Key Laboratory for Laboratory Medicine of Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
61
|
Kanbe H, Kamijo Y, Nakajima T, Tanaka N, Sugiyama E, Wang L, Fang ZZ, Hara A, Gonzalez FJ, Aoyama T. Chronic ethanol consumption decreases serum sulfatide levels by suppressing hepatic cerebroside sulfotransferase expression in mice. Arch Toxicol 2014; 88:367-379. [PMID: 24065054 PMCID: PMC6624431 DOI: 10.1007/s00204-013-1132-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022]
Abstract
Epidemiological studies demonstrate a possible relationship between chronic ethanol drinking and thrombotic diseases, such as myocardial infarction and stroke. However, the precise mechanism for this association remains unclear. Sulfatides are endogenous glycosphingolipids composed of ceramide, galactose, and sulfate, known to have anti-thrombotic properties. Low (0.5 g/kg/day), middle (1.5 g/kg/day), and high (3.0 g/kg/day) doses of ethanol were administered for 21 days intraperitoneally to female wild-type mice, and serum/liver sulfatide levels were measured. No significant changes in cholesterol and triglycerides were seen in serum and liver by ethanol treatment. However, serum/liver sulfatide levels were significantly decreased by middle- and high-dose ethanol treatment, likely due to downregulation of hepatic cerebroside sulfotransferase (CST) levels. Marked decreases in the expression of catalase and superoxide dismutases and ensuing increases in lipid peroxides were also observed in the livers of mice with middle- and high-dose ethanol treatment, suggesting the association between the suppression of hepatic CST expression and enhancement of oxidative stress. Furthermore, serum levels of tissue factor, a typical pro-coagulant molecule, were significantly increased in the mice with middle- and high-dose ethanol treatment showing decreases in serum sulfatide levels. Collectively, these results demonstrate that chronic ethanol consumption reduces serum sulfatide levels by increasing oxidative stress and decreasing the expression of CST in the liver. These findings could provide a mechanism by which chronic ethanol drinking increases thrombotic events.
Collapse
Affiliation(s)
- Hiroki Kanbe
- Department of Metabolic Regulation, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Gemfibrozil disrupts lysophosphatidylcholine and bile acid homeostasis via PPARα and its relevance to hepatotoxicity. Arch Toxicol 2014; 88:983-96. [PMID: 24385052 DOI: 10.1007/s00204-013-1188-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023]
Abstract
Gemfibrozil, a ligand of peroxisome proliferator-activated receptor α (PPARα), is one of the most widely prescribed anti-dyslipidemia fibrate drugs. Among the adverse reactions observed with gemfibrozil are alterations in liver function, cholestatic jaundice, and cholelithiasis. However, the mechanisms underlying these toxicities are poorly understood. In this study, wild-type and Ppara-null mice were dosed with a gemfibrozil-containing diet for 14 days. Ultra-performance chromatography electrospray ionization quadrupole time-of-flight mass spectrometry-based metabolomics and traditional approaches were used to assess the mechanism of gemfibrozil-induced hepatotoxicity. Unsupervised multivariate data analysis revealed four lysophosphatidylcholine components in wild-type mice that varied more dramatically than those in Ppara-null mice. Targeted metabolomics revealed taurocholic acid and tauro-α-muricholic acid/tauro-β-muricholic acid were significantly increased in wild-type mice, but not in Ppara-null mice. In addition to the above perturbations in metabolite homeostasis, phenotypic alterations in the liver were identified. Hepatic genes involved in metabolism and transportation of lysophosphatidylcholine and bile acid compounds were differentially regulated between wild-type and Ppara-null mice, in agreement with the observed downstream metabolic alterations. These data suggest that PPARα mediates gemfibrozil-induced hepatotoxicity in part by disrupting phospholipid and bile acid homeostasis.
Collapse
|
63
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
64
|
Abstract
Enterohepatic circulation is responsible for the capture of bile acids and other steroids produced or metabolized in the liver and secreted to the intestine, for reabsorption back into the circulation and transport back to the liver. Bile acids are secreted from the liver in the form of mixed micelles that also contain phosphatidylcholines and cholesterol that facilitate the uptake of fats and vitamins from the diet due to the surfactant properties of bile acids and lipids. Bile acids are synthesized in the liver from cholesterol by a cascade of enzymes that carry out oxidation and conjugation reactions, and transported to the bile duct and gall bladder where they are stored before being released into the intestine. Bile flow from the gall bladder to the small intestine is triggered by food intake in accordance with its role in lipid and vitamin absorption from the diet. Bile acids are further metabolized by gut bacteria and are transported back to the circulation. Metabolites produced in the liver are termed primary bile acids or primary conjugated bile salts, while the metabolites generated by bacterial are called secondary bile acids. About 95% of bile acids are reabsorbed in the proximal and distal ileum into the hepatic portal vein and then into the liver sinusoids, where they are efficiently transported into the liver with little remaining in circulation. Each bile acid is reabsorbed about 20 times on average before being eliminated. Enterohepatic circulation is under tight regulation by nuclear receptor signaling, notably by the farnesoid X receptor (FXR).
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
65
|
Li F, Patterson AD, Krausz KW, Jiang C, Bi H, Sowers AL, Cook JA, Mitchell JB, Gonzalez FJ. Metabolomics reveals that tumor xenografts induce liver dysfunction. Mol Cell Proteomics 2013; 12:2126-35. [PMID: 23637421 DOI: 10.1074/mcp.m113.028324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metabolomics, based on ultraperformance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry, was used to explore metabolic signatures of tumor growth in mice. Urine samples were collected from control mice and mice injected with squamous cell carcinoma (SCCVII) tumor cells. When tumors reached ∼2 cm, all mice were killed and blood and liver samples collected. The urine metabolites hexanoylglycine, nicotinamide 1-oxide, and 11β,20α-dihydroxy-3-oxopregn-4-en-21-oic acid were elevated in tumor-bearing mice, as was asymmetric dimethylarginine, a biomarker for oxidative stress. Interestingly, SCCVII tumor growth resulted in hepatomegaly, reduced albumin/globulin ratios, and elevated serum triglycerides, suggesting liver dysfunction. Alterations in liver metabolites between SCCVII-tumor-bearing and control mice confirmed the presence of liver injury. Hepatic mRNA analysis indicated that inflammatory cytokines, tumor necrosis factor α, and transforming growth factor β were enhanced in SCCVII-tumor-bearing mice, and the expression of cytochromes P450 was decreased in tumor-bearing mice. Further, genes involved in fatty acid oxidation were decreased, suggesting impaired fatty acid oxidation in SCCVII-tumor-bearing mice. Additionally, activated phospholipid metabolism and a disrupted tricarboxylic acid cycle were observed in SCCVII-tumor-bearing mice. These data suggest that tumor growth imposes a global inflammatory response that results in liver dysfunction and underscore the use of metabolomics to temporally examine these changes and potentially use metabolite changes to monitor tumor treatment response.
Collapse
Affiliation(s)
- Fei Li
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Fang ZZ, Krausz KW, Tanaka N, Li F, Qu A, Idle JR, Gonzalez FJ. Metabolomics reveals trichloroacetate as a major contributor to trichloroethylene-induced metabolic alterations in mouse urine and serum. Arch Toxicol 2013; 87:1975-1987. [PMID: 23575800 DOI: 10.1007/s00204-013-1053-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/26/2013] [Indexed: 01/14/2023]
Abstract
Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.
Collapse
Affiliation(s)
- Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Aijuan Qu
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Jeffrey R Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 3106, Bethesda, MD, 20892, USA.
| |
Collapse
|
67
|
Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res 2012; 53:2698-2707. [PMID: 23034213 PMCID: PMC3494264 DOI: 10.1194/jlr.m031773] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dong Wook Kang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathleen C. Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Hans Luecke
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lalage M. Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
68
|
Matsubara T, Tanaka N, Krausz KW, Manna SK, Kang DW, Anderson ER, Luecke H, Patterson AD, Shah YM, Gonzalez FJ. Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metab 2012; 16:634-644. [PMID: 23140643 PMCID: PMC3496181 DOI: 10.1016/j.cmet.2012.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 09/17/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent environmentally toxic compounds. Serum metabolomics identified azelaic acid monoesters as significantly increased metabolites after TCDD treatment, due to downregulation of hepatic carboxylesterase 3 (CES3, also known as triglyceride hydrolase) expression in an arylhydrocarbon receptor (AhR)-dependent manner in mice. The decreased CES3 expression was accomplished by TCDD-stimulated TGFβ-SMAD3 and IL6-STAT3 signaling, but not by direct AhR signaling. Methionine- and choline-deficient (MCD) diet-treated mice also showed enhanced serum azelaic acid monoester levels after attenuation of hepatic CES3 expression, while db/db mice did not, thus suggesting an association with steatohepatitis. Forced expression of CES3 reversed serum azelaic acid monoester/azelaic acid ratios and hepatic TGFβ mRNA levels in TCDD- and MCD diet-treated mice and ameliorated steatohepatitis induced by MCD diet. These results support the view that azelaic acid monoesters are possible indicators of TCDD exposure and steatohepatitis and suggest a link between CES3, TGFβ, and steatohepatitis.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Soumen K. Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dong Wook Kang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erik R. Anderson
- Department of Molecular and Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Hans Luecke
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew D. Patterson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology and Internal Medicine, Division of Gastroenterology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
69
|
Al-Salhi R, Abdul-Sada A, Lange A, Tyler CR, Hill EM. The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9080-9088. [PMID: 22803593 DOI: 10.1021/es3014453] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organisms exposed to wastewater treatment works (WwTW) effluents accumulate complex mixtures of xenobiotics but there is a scarcity of information on the nature and impacts of these chemical mixtures. We applied metabolomics techniques as a novel approach to identify xenobiotics and their metabolites (the xenometabolome) that bioconcentrate in fish exposed to a WwTW effluent. Exposed juvenile rainbow trout (Oncorhynchus mykiss) accumulated surfactants, naphthols, chlorinated xylenols, and phenoxyphenols, chlorophenes, resin acids, mefenamic acid, oxybenzone, and steroidal alkaloids in the bile or plasma, and there were perturbations in the plasma concentrations of bile acids and lipids. Exposure of adult roach (Rutilus rutilus) to 50% or 100% concentrations of the same effluent resulted in dose-dependent increases in plasma concentrations of xenometabolites as well as cyprinol sulfate and taurocholic acid, lysophospholipids, and a decrease in sphingosine levels (a key component of cell membrane lipids). Our findings reveal the highly complex nature of xenobiotics accumulating in effluent-exposed fish, and the great potential of metabolomics for both identifying plasma marker (bio)chemicals for monitoring exposure to wastewater effluents, and for targeting studies on potential consequent impacts on fish health.
Collapse
Affiliation(s)
- Raghad Al-Salhi
- School of Life Sciences, University of Sussex, Brighton, UK BN1 9QJ
| | | | | | | | | |
Collapse
|
70
|
Li F, Patterson AD, Krausz KW, Tanaka N, Gonzalez FJ. Metabolomics reveals an essential role for peroxisome proliferator-activated receptor α in bile acid homeostasis. J Lipid Res 2012; 53:1625-1635. [PMID: 22665165 PMCID: PMC3540854 DOI: 10.1194/jlr.m027433] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/04/2012] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that regulates fatty acid transport and metabolism. Previous studies revealed that PPARα can affect bile acid metabolism; however, the mechanism by which PPARα regulates bile acid homeostasis is not understood. In this study, an ultraperformance liquid chromatography coupled with electrospray ionization qua dru pole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics approach was used to profile metabolites in urine, serum, and bile of wild-type and Ppara-null mice following cholic acid (CA) dietary challenge. Metabolomic analysis showed that the levels of several serum bile acids, such as CA (25-fold) and taurocholic acid (16-fold), were significantly increased in CA-treated Ppara-null mice compared with CA-treated wild-type mice. Phospholipid homeostasis, as revealed by decreased serum lysophos phati dylcholine (LPC) 16:0 (1.6-fold) and LPC 18:0 (1.6-fold), and corticosterone metabolism noted by increased urinary excretion of 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (20-fold) and 11β,20α-dihydroxy-3-oxo-pregn-4-en-21-oic acid (3.6-fold), were disrupted in CA-treated Ppara-null mice. The hepatic levels of mRNA encoding transporters Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 were diminished in Ppara-null mice, leading to the accumulation of bile acids in the liver during the CA challenge. These observations revealed that PPARα is an essential regulator of bile acid biosynthesis, transport, and secretion.
Collapse
Affiliation(s)
- Fei Li
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Andrew D. Patterson
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
- Department of Veterinary and Biomedical Sciences and Pennsylvania State University, University Park, PA
- Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| |
Collapse
|
71
|
Induced CD4+ forkhead box protein–positive T cells inhibit mast cell function and established contact hypersensitivity through TGF-β1. J Allergy Clin Immunol 2012; 130:444-52.e7. [DOI: 10.1016/j.jaci.2012.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/27/2012] [Accepted: 05/10/2012] [Indexed: 01/14/2023]
|
72
|
Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 2012; 56:118-129. [PMID: 22290395 PMCID: PMC6371056 DOI: 10.1002/hep.25630] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can develop into cirrhosis, hepatic failure, and hepatocellular carcinoma. Although several metabolic pathways are disrupted and endogenous metabolites may change in NASH, the alterations in serum metabolites during NASH development remain unclear. To gain insight into the disease mechanism, serum metabolite changes were assessed using metabolomics with ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and a conventional mouse NASH model induced by a methionine- and choline-deficient (MCD) diet. Significant decreases in serum palmitoyl-, stearoyl-, and oleoyl-lysophosphatidylcholine (LPC) and marked increases in tauro-β-muricholate, taurocholate and 12-hydroxyeicosatetraenoic acid (12-HETE) were detected in mice with NASH. In agreement with these metabolite changes, hepatic mRNAs encoding enzymes and proteins involved in LPC degradation (lysophosphatidylcholine acyltransferase [Lpcat] 1-4), basolateral bile acid excretion (ATP-binding cassette subfamily C member [Abcc] 1/4/5 and organic solute transporter β), and 12-HETE synthesis (arachidonate 12-lipoxygenase) were significantly up-regulated. In contrast, the expression of solute carrier family 10 member 1 (Slc10a1) and solute carrier organic anion transporter family member (Slco) 1a1 and 1b2, responsible for transporting bile acids into hepatocytes, were markedly suppressed. Supplementation of the MCD diet with methionine revealed that the changes in serum metabolites and the related gene expression were derived from steatohepatitis, but not dietary choline deficiency or steatosis. Furthermore, tumor necrosis factor-α and transforming growth factor-β1 induced the expression of Lpcat2/4 and Abcc1/4 and down-regulated Slc10a1 and Slco1a1 in primary hepatocytes, suggesting an association between the changes in serum LPC and bile acids and proinflammatory cytokines. Finally, induction of hepatitis in ob/ob mice by D-galactosamine injection led to similar changes in serum metabolites and related gene expression. CONCLUSION Phospholipid and bile acid metabolism is disrupted in NASH, likely due to enhanced hepatic inflammatory signaling.
Collapse
Affiliation(s)
- Naoki Tanaka
- laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tsutomu Matsubara
- laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kristopher W. Krausz
- laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andrew D. Patterson
- laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA
| | - Frank J. Gonzalez
- laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
73
|
Wang B, Chen D, Chen Y, Hu Z, Cao M, Xie Q, Chen Y, Xu J, Zheng S, Li L. Metabonomic profiles discriminate hepatocellular carcinoma from liver cirrhosis by ultraperformance liquid chromatography-mass spectrometry. J Proteome Res 2012; 11:1217-27. [PMID: 22200553 DOI: 10.1021/pr2009252] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and usually develops in patients with liver cirrhosis (LC). Biomarkers that discriminate HCC from LC are important but are limited. In the present study, an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics approach was used to characterize serum profiles from HCC (n = 82), LC (n = 48), and healthy subjects (n = 90), and the accuracy of UPLC-MS profiles and alpha-fetoprotein (AFP) levels were compared for their use in HCC diagnosis. By multivariate data and receiver operating characteristic curves analysis, metabolic profiles were capable of discriminating not only patients from the controls but also HCC from LC with 100% sensitivity and specificity. Thirteen potential biomarkers were identified and suggested that there were significant disturbances of key metabolic pathways, such as organic acids, phospholipids, fatty acids, bile acids, and gut flora metabolism, in HCC patients. Canavaninosuccinate was first identified as a metabolite that exhibited a significant decrease in LC and an increase in HCC. In addition, glycochenodeoxycholic acid was suggested to be an important indicator for HCC diagnosis and disease prognosis. UPLC-MS signatures, alone or in combination with AFP levels, could be an efficient and convenient tool for early diagnosis and screening of HCC in high-risk populations.
Collapse
Affiliation(s)
- Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , 79 Qing-chun Road, Hangzhou 310003, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|