51
|
Balog S, Li Y, Ogawa T, Miki T, Saito T, French SW, Asahina K. Development of Capsular Fibrosis Beneath the Liver Surface in Humans and Mice. Hepatology 2020; 71:291-305. [PMID: 31206736 PMCID: PMC6918014 DOI: 10.1002/hep.30809] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Glisson's capsule is the connective tissue present in the portal triad as well as beneath the liver surface. Little is known about how Glisson's capsule changes its structure in capsular fibrosis (CF), which is characterized by fibrogenesis beneath the liver surface. In this study, we found that the human liver surface exhibits multilayered capsular fibroblasts and that the bile duct is present beneath the mesothelium, whereas capsular fibroblasts are scarce and no bile ducts are present beneath the mouse liver surface. Patients with cirrhosis caused by alcohol abuse or hepatitis C virus infection show development of massive CF. To examine the effect of alcohol on CF in mice, we first injected chlorhexidine gluconate (CG) intraperitoneally and then fed alcohol for 1 month. The CG injection induces CF consisting of myofibroblasts beneath the mesothelium. One month after CG injection, the fibrotic area returns to the normal structure. In contrast, additional alcohol feeding sustains the presence of myofibroblasts in CF. Cell lineage tracing revealed that mesothelial cells give rise to myofibroblasts in CF, but these myofibroblasts disappear 1 month after recovery with or without alcohol feeding. Capsular fibroblasts isolated from the mouse liver spontaneously differentiated into myofibroblasts and their differentiation was induced by transforming growth factor beta 1 (TGF-β1) or acetaldehyde in culture. In alcohol-fed mice, infiltrating CD11b+ Ly-6CLow/- monocytes had reduced mRNA expression of matrix metalloproteinase 13 and matrix metalloproteinase 9 and increased expression of tissue inhibitor of matrix metalloproteinase 1, Tgfb1, and interleukin-10 during resolution of CF. Conclusion: The present study revealed that the structure of Glisson's capsule is different between human and mouse livers and that alcohol impairs the resolution of CF by changing the phenotype of Ly-6CLow/- monocytes.
Collapse
Affiliation(s)
- Steven Balog
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, USA
| | - Yuchang Li
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, USA
| | - Tomohiro Ogawa
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, USA.,Center for the Advancement of Higher Education, Faculty of Engineering, Kindai University, Hiroshima, Japan
| | - Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, CA, USA
| | - Takeshi Saito
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, USA.,Department of Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | | | - Kinji Asahina
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, CA, USA.,Contact Information: Kinji Asahina, Ph.D., FAASLD, Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine, University of Southern California, 1333 San Pablo St., MMR402, Los Angeles, CA 90033-9141, Tel: 323-442-2213, Fax: 323-442-3126,
| |
Collapse
|
52
|
Abstract
Alcoholic liver disease (ALD) is one of the most common causes of chronic liver disease in Western countries. The spectrum of ALD ranges from simple steatosis to steatohepatitis to cirrhosis and hepatocellular carcinoma. Over the past 50 years, several animal models of ALD have been developed. Although none of them faithfully recapitulates the human disease, they have proven to be invaluable tools to study the pathogenesis of ALD, to identify potential therapeutic targets and to test new drugs. Here, we describe the mouse model of chronic and binge ethanol feeding, also known as the NIAAA model or Gao binge model. This model combines chronic feeding of Lieber-DeCarli ethanol liquid diet with acute administration of high-dose ethanol by oral gavage to mimic the drinking patterns of many alcoholic patients who engage in episodes of binge drinking on top of chronic daily drinking. Short-term (10-day) chronic plus single binge ethanol feeding causes a substantial increase in serum transaminase levels, moderate steatosis and mild inflammation characterized by lobular neutrophil infiltration. Long-term (8-week) chronic plus single or multiple (twice a week) binge ethanol feeding induce more severe steatohepatitis and mild fibrosis. This clinically relevant, easy-to-perform model of ALD is currently used by many research laboratories to reproduce early stages of human alcoholic steatohepatitis.
Collapse
|
53
|
Furuya S, Argemi J, Uehara T, Katou Y, Fouts DE, Schnabl B, Dubuquoy L, Belorkar A, Vadigepalli R, Kono H, Bataller R, Rusyn I. A Novel Mouse Model of Acute-on-Chronic Cholestatic Alcoholic Liver Disease: A Systems Biology Comparison With Human Alcoholic Hepatitis. Alcohol Clin Exp Res 2019; 44:87-101. [PMID: 31710124 DOI: 10.1111/acer.14234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Alcohol-related liver disease is the main cause of liver-related mortality worldwide. The development of novel targeted therapies for patients with advanced forms (i.e., alcoholic hepatitis, AH) is hampered by the lack of suitable animal models. Here, we developed a novel mouse model of acute-on-chronic alcohol liver injury with cholestasis and fibrosis and performed an extensive molecular comparative analysis with human AH. METHODS For the mouse model of acute-on-chronic liver injury, we used 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC, 0.05% w/w) diet for 8 weeks to establish cholestatic liver fibrosis. After 1-week washout period, male mice were fed intragastrically for 4 weeks with up to 24 g/kg of ethyl alcohol in a high-fat diet. This animal model was phenotyped using histopathology, clinical chemistry, microbiome, and gene expression approaches. Data were compared to the phenotypes of human alcohol-related liver disease, including AH. RESULTS Mice with cholestatic liver fibrosis and subsequent alcohol exposure (DDC + EtOH) exhibited exacerbated liver fibrosis with a pericellular pattern, increased neutrophil infiltration, and ductular proliferation, all characteristics of human AH. DDC administration had no effect on urine alcohol concentration or liver steatosis. Importantly, DDC- and alcohol-treated mice showed a transcriptomic signature that resembled that of patients with AH. Finally, we show that mice in the DDC + EtOH group had an increased gut barrier dysfunction, mimicking an important pathophysiological mechanism of human AH. CONCLUSIONS We developed a novel mouse model of acute-on-chronic cholestatic alcoholic liver injury that has considerable translational potential and can be used to test novel therapeutic modalities for AH.
Collapse
Affiliation(s)
- Shinji Furuya
- From the , Department of Veterinary Integrative Biosciences (SF, IR), Texas A&M University, College Station, Texas
| | - Josepmaria Argemi
- Center for Liver Diseases, (JA, RB), Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Takeki Uehara
- Laboratory of Veterinary Pathology, (TU, YK), Osaka Prefecture University, Osaka, Japan
| | - Yuuki Katou
- Laboratory of Veterinary Pathology, (TU, YK), Osaka Prefecture University, Osaka, Japan
| | | | - Bernd Schnabl
- Department of Medicine, (BS), University of California San Diego, La Jolla, California
| | - Laurent Dubuquoy
- Unité INSERM 995, (LD), Faculté de Médecine, Hôpital Huriez, Lille Service des Maladies de l'Appareil Digestif, Lille, France
| | - Abha Belorkar
- Department of Pathology, Anatomy and Cell Biology, (AB, RV), Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, (AB, RV), Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hiroshi Kono
- First Department of Surgery, (HK), University of Yamanashi, Yamanashi Prefecture, Japan
| | - Ramon Bataller
- Center for Liver Diseases, (JA, RB), Pittsburgh Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ivan Rusyn
- From the , Department of Veterinary Integrative Biosciences (SF, IR), Texas A&M University, College Station, Texas
| |
Collapse
|
54
|
Abstract
Many studies have indicated that intestinal barrier dysfunction is the key mechanism of alcoholic liver disease (ALD). In this paper, we systematically review the causes of intestinal barrier dysfunction and the pathogenesis of ALD and discuss the treatment of intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
55
|
Li S, Tan HY, Wang N, Feng Y, Wang X, Feng Y. Recent Insights Into the Role of Immune Cells in Alcoholic Liver Disease. Front Immunol 2019; 10:1328. [PMID: 31244862 PMCID: PMC6581703 DOI: 10.3389/fimmu.2019.01328] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Accumulating clinical and experimental evidences have demonstrated that both innate and adaptive immunity are involved in the pathogenesis of alcoholic liver disease (ALD), in which the role of immunity is to fuel the inflammation and to drive the progression of ALD. Various immune cells are implicated in the pathogenesis of ALD. The activation of innate immune cells induced by alcohol and adaptive immune response triggered by oxidative modification of hepatic constituents facilitate the persistent hepatic inflammation. Meanwhile, the suppressed antigen-presenting capability of various innate immune cells and impaired function of T cells may consequently lead to an increased risk of infection in the patients with advanced ALD. In this review, we summarized the significant recent findings of immune cells participating in ALD. The pathways and molecules involved in the regulation of specific immune cells, and novel mediators protecting the liver from alcoholic injury via affecting these cells are particularly highlighted. This review aims to update the knowledge about immunity in the pathogenesis of ALD, which may facilitate to enhancement of currently available interventions for ALD treatment.
Collapse
Affiliation(s)
- Sha Li
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hor-Yue Tan
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yigang Feng
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Laboratory of Wudang Local Chinese Medicine Research, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yibin Feng
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
56
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS, Kwon T. Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. Int J Mol Sci 2019; 20:ijms20112712. [PMID: 31159489 PMCID: PMC6600448 DOI: 10.3390/ijms20112712] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Alcoholic liver disease (ALD) refers to the damages to the liver and its functions due to alcohol overconsumption. It consists of fatty liver/steatosis, alcoholic hepatitis, steatohepatitis, chronic hepatitis with liver fibrosis or cirrhosis, and hepatocellular carcinoma. However, the mechanisms behind the pathogenesis of alcoholic liver disease are extremely complicated due to the involvement of immune cells, adipose tissues, and genetic diversity. Clinically, the diagnosis of ALD is not yet well developed. Therefore, the number of patients in advanced stages has increased due to the failure of proper early detection and treatment. At present, abstinence and nutritional therapy remain the conventional therapeutic interventions for ALD. Moreover, the therapies which target the TNF receptor superfamily, hormones, antioxidant signals, and MicroRNAs are used as treatments for ALD. In particular, mesenchymal stem cells (MSCs) are gaining attention as a potential therapeutic target of ALD. Therefore, in this review, we have summarized the current understandings of the pathogenesis and diagnosis of ALD. Moreover, we also discuss the various existing treatment strategies while focusing on promising therapeutic approaches for ALD.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Ying-Hao Han
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Chungcheongbuk-do 28116, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Hu-Nan Sun
- Department of Disease Model Animal Research Center, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Dong Sun Lee
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk 56216, Korea.
| |
Collapse
|
57
|
Lassailly G, Bou Saleh M, Leleu-Chavain N, Ningarhari M, Gantier E, Carpentier R, Artru F, Gnemmi V, Bertin B, Maboudou P, Betbeder D, Gheeraert C, Maggiotto F, Dharancy S, Mathurin P, Louvet A, Dubuquoy L. Nucleotide-binding oligomerization domain 1 (NOD1) modulates liver ischemia reperfusion through the expression adhesion molecules. J Hepatol 2019; 70:1159-1169. [PMID: 30685324 DOI: 10.1016/j.jhep.2019.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS In liver transplantation, organ shortage leads to the use of marginal grafts that are more susceptible to ischemia-reperfusion (IR) injury. We identified nucleotide-binding oligomerization domain 1 (NOD1) as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in IR. Herein, we aimed to elucidate the role of NOD1 in IR injury, particularly focusing on its effects on the endothelium and hepatocytes. METHOD Nod1 WT and KO mice were treated with NOD1 agonists and subjected to liver IR. Expression of adhesion molecules was analyzed in total liver, isolated hepatocytes and endothelial cells. Interactions between PMNs and hepatocytes were studied in an ex vivo co-culture model using electron microscopy and lactate dehydrogenase levels. We generated NOD1 antagonist-loaded nanoparticles (np ALINO). RESULTS NOD1 agonist treatment increased liver injury, PMN tissue infiltration and upregulated ICAM-1 and VCAM-1 expression 20 hours after reperfusion. NOD1 agonist treatment without IR increased expression of adhesion molecules (ICAM-1, VCAM-1) in total liver and more particularly in WT hepatocytes, but not in Nod1 KO hepatocytes. This induction is dependent of p38 and ERK signaling pathways. Compared to untreated hepatocytes, a NOD1 agonist markedly increased hepatocyte lysis in co-culture with PMNs as shown by the increase of lactate dehydrogenase in supernatants. Interaction between hepatocytes and PMNs was confirmed by electron microscopy. In a mouse model of liver IR, treatment with np ALINO significantly reduced the area of necrosis, aminotransferase levels and ICAM-1 expression. CONCLUSION NOD1 regulates liver IR injury through induction of adhesion molecules and modulation of hepatocyte-PMN interactions. NOD1 antagonist-loaded nanoparticles reduced liver IR injury and provide a potential approach to prevent IR, especially in the context of liver transplantation. LAY SUMMARY Nucleotide-binding oligomerization domain 1 (NOD1) is as an important modulator of polymorphonuclear neutrophil (PMN)-induced liver injury, which occurs in ischemia-reperfusion. Here, we show that the NOD1 pathway targets liver adhesion molecule expression on the endothelium and on hepatocytes through p38 and ERK signaling pathways. The early increase of adhesion molecule expression after reperfusion emphasizes the importance of adhesion molecules in liver injury. In this study we generated nanoparticles loaded with NOD1 antagonist. These nanoparticles reduced liver necrosis by reducing PMN liver infiltration and adhesion molecule expression.
Collapse
Affiliation(s)
- Guillaume Lassailly
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France.
| | - Mohamed Bou Saleh
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Institut de Chimie Pharmaceutique de Lille, Faculté de Pharmacie, Univ Lille, F-59000 Lille, France
| | - Massih Ningarhari
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France
| | - Emilie Gantier
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Rodolphe Carpentier
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Florent Artru
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France
| | - Viviane Gnemmi
- Service d'anatomopathologie, CHU Lille, F-59000 Lille, France
| | - Benjamin Bertin
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Patrice Maboudou
- UF 8832 - Biochimie Automatisée, Pôle de Biologie Pathologie Génétique, CHRU de Lille, F-59000 Lille, France
| | - Didier Betbeder
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Université d'artois, F-62300 Lens, France
| | - Céline Gheeraert
- U1011 - EGID, Univ. Lille, Inserm, Institut Pasteur de Lille, F-59000 Lille, France
| | - François Maggiotto
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - Sébastien Dharancy
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France
| | - Philippe Mathurin
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France
| | - Alexandre Louvet
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France; Service des Maladies de l'Appareil Digestif et de la Nutrition, CHU Lille, F-59000 Lille, France
| | - Laurent Dubuquoy
- LIRIC - Lille Inflammation Research International Center - U995, Univ. Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
58
|
Kuprys PV, Tsukamoto H, Gao B, Jia L, McGowan J, Coopersmith CM, Moreno MC, Hulsebus H, Meena AS, Souza-Smith FM, Roper P, Foster MT, Raju SV, Marshall SA, Fujita M, Curtis BJ, Wyatt TA, Mandrekar P, Kovacs EJ, Choudhry MA. Summary of the 2018 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2019; 77:11-18. [PMID: 30763905 PMCID: PMC6733262 DOI: 10.1016/j.alcohol.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
On January 26, 2018, the 23rd annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado. The meeting consisted of plenary sessions with oral presentations and a poster presentation session. There were four plenary sessions that covered a wide range of topics relating to alcohol use: Alcohol and Liver Disease; Alcohol, Inflammation and Immune Response; Alcohol and Organ Injury; Heath Consequences and Alcohol Drinking. The meeting provided a forum for the presentation and discussion of novel research findings regarding alcohol use and immunology.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD, Cirrhosis and Department of Pathology, University of Southern California, Greater Los Angeles Veterans Affairs Health Care System, Los Angeles, CA, United States
| | - Bin Gao
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Lin Jia
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Jacob McGowan
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | | | - Maria Camargo Moreno
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Holly Hulsebus
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Avtar S. Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Philip Roper
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States
| | - Michelle T. Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, United States
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - S. Alex Marshall
- Department of Basic Pharmaceutical Sciences, High Point University Fred Wilson School of Pharmacy, High Point, NC, United States
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Brenda J. Curtis
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Elizabeth J. Kovacs
- Alcohol Research Program, Burn Research Program, Division of GI, Trauma and Endocrine Surgery, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, United States
| | - Mashkoor A. Choudhry
- Department of Surgery, Alcohol Research Program, Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL, United States,Corresponding author. Alcohol Research Program, Burn & Shock Trauma, Research Institute, Loyola University Chicago Health Sciences Division, 2160 South, First Ave., Maywood, IL 60153, United States. Fax: +1 708 327 2813. (M.A. Choudhry)
| |
Collapse
|
59
|
Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70:249-259. [PMID: 30658726 PMCID: PMC6361545 DOI: 10.1016/j.jhep.2018.10.023] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory processes are primary contributors to the development and progression of alcoholic steatohepatitis (ASH), with severe alcoholic hepatitis characterised by non-resolving inflammation. Inflammation in the progression of ASH is a complex response to microbial dysbiosis, loss of barrier integrity in the intestine, hepatocellular stress and death, as well as inter-organ crosstalk. Herein, we review the roles of multiple cell types that are involved in inflammation in ASH, including resident macrophages and infiltrating monocytes, as well as other cell types in the innate and adaptive immune system. In response to chronic, heavy alcohol exposure, hepatocytes themselves also contribute to the inflammatory process; hepatocytes express a large number of chemokines and inflammatory mediators and can also release damage-associated molecular patterns during injury and death. These cellular responses are mediated and accompanied by changes in the expression of pro- and anti-inflammatory cytokines and chemokines, as well as by signals which orchestrate the recruitment of immune cells and activation of the inflammatory process. Additional mechanisms for cell-cell and inter-organ communication in ASH are also reviewed, including the roles of extracellular vesicles and microRNAs, as well as inter-organ crosstalk. We highlight the concept that inflammation also plays an important role in promoting liver repair and controlling bacterial infection. Understanding the complex regulatory processes that are disrupted during the progression of ASH will likely lead to better targeted strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States.
| | - Maleeha F Ahmad
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Laura E Nagy
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, United States; Northern Ohio Alcohol Center, Departments of Molecular Medicine, Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States.
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, University of Southern California, Greater Los Angeles VA Healthcare System, Los Angeles, CA, United States.
| |
Collapse
|
60
|
Ge X, Arriazu E, Magdaleno F, Antoine DJ, dela Cruz R, Theise N, Nieto N. High Mobility Group Box-1 Drives Fibrosis Progression Signaling via the Receptor for Advanced Glycation End Products in Mice. Hepatology 2018; 68:2380-2404. [PMID: 29774570 PMCID: PMC6240507 DOI: 10.1002/hep.30093] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Abstract
High-mobility group box-1 (HMGB1) is a damage-associated molecular pattern (DAMP) increased in response to liver injury. Because HMGB1 is a ligand for the receptor for advanced glycation endproducts (RAGE), we hypothesized that induction of HMGB1 could participate in the pathogenesis of liver fibrosis though RAGE cell-specific signaling mechanisms. Liver HMGB1 protein expression correlated with fibrosis stage in patients with chronic hepatitis C virus (HCV) infection, primary biliary cirrhosis (PBC), or alcoholic steatohepatitis (ASH). Hepatic HMGB1 protein expression and secretion increased in five mouse models of liver fibrosis attributed to drug-induced liver injury (DILI), cholestasis, ASH, or nonalcoholic steatohepatitis (NASH). HMGB1 was up-regulated and secreted mostly by hepatocytes and Kupffer cells (KCs) following CCl4 treatment. Neutralization of HMGB1 protected, whereas injection of recombinant HMGB1 promoted liver fibrosis. Hmgb1 ablation in hepatocytes (Hmgb1ΔHep ) or in myeloid cells (Hmgb1ΔMye ) partially protected, whereas ablation in both (Hmgb1ΔHepΔMye ) prevented liver fibrosis in vivo. Coculture with hepatocytes or KCs from CCl4 -injected wild-type (WT) mice up-regulated Collagen type I production by hepatic stellate cells (HSCs); yet, coculture with hepatocytes from CCl4 -injected Hmgb1ΔHep or with KCs from CCl4 -injected Hmgb1ΔMye mice partially blunted this effect. Rage ablation in HSCs (RageΔHSC ) and RAGE neutralization prevented liver fibrosis. Last, we identified that HMGB1 stimulated HSC migration and signaled through RAGE to up-regulate Collagen type I expression by activating the phosphorylated mitogen-activated protein kinase kinase (pMEK)1/2, phosphorylated extracellular signal-regulated kinase (pERK)1/2 and pcJun signaling pathway. Conclusion: Hepatocyte and KC-derived HMGB1 participates in the pathogenesis of liver fibrosis by signaling through RAGE in HSCs to activate the pMEK1/2, pERK1/2 and pcJun pathway and increase Collagen type I deposition.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA
| | - Elena Arriazu
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA
| | - Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Daniel J. Antoine
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, GB
| | - Rouchelle dela Cruz
- Division of Digestive Diseases, Mount Sinai Beth Israel Medical Center, First Avenue at 16 Street, New York, NY 10003
| | - Neil Theise
- Division of Digestive Diseases, Mount Sinai Beth Israel Medical Center, First Avenue at 16 Street, New York, NY 10003,Department of Pathology, New York University Langone Medical Center, 550 First Ave., New York, NY 10016
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA,Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Box 1123, 1425 Madison Ave., Room 11-70, New York, NY 10029, USA,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA
| |
Collapse
|
61
|
Freire D, Reyes RE, Baghram A, Davies DL, Asatryan L. P2X7 Receptor Antagonist A804598 Inhibits Inflammation in Brain and Liver in C57BL/6J Mice Exposed to Chronic Ethanol and High Fat Diet. J Neuroimmune Pharmacol 2018; 14:263-277. [PMID: 30353422 DOI: 10.1007/s11481-018-9816-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Chronic low-grade neuroinflammation is increasingly implicated in organ damage caused by alcohol abuse. Purinergic P2X7 receptors (P2X7Rs) play an important role in the generation of inflammatory responses during a number of CNS pathologies as evidenced from studies using pharmacological inhibition approach. P2X7Rs antagonism has not been tested during chronic alcohol abuse. In the present study, we tested the potential of P2X7R antagonist A804598 to reduce/abolish alcohol-induced neuroinflammation using chronic intragastric ethanol infusion and high-fat diet (Hybrid) in C57BL/6J mice. We have previously demonstrated an increase in neuroinflammatory response in 8 weeks of Hybrid paradigm. In the present study, we found neuroinflammatory response to 4 weeks of Hybrid exposure. A804598 treatment reversed the changes in microglia and astrocytes, reduced/abolished increases in mRNA levels of number of inflammatory markers, including IL-1β, iNOS, CXCR2, and components of inflammatory signaling pathways, such as TLR2, CASP1, NF-kB1 and CREB1, as well in the protein levels of pro-IL-1β and Nf-kB1. The P2X7R antagonist did not affect the increase in mRNA levels of fraktalkine (CX3CL1) and its receptor CX3CR1, an interaction that plays a neuroprotective role in neuron-glia communication. P2X7R antagonism also resulted in reduction of the inflammatory markers but did not alter steatosis in the liver. Taken together, these findings demonstrate how P2X7R antagonism suppresses inflammatory response in brain and liver but does not alter the neuroprotective response caused by Hybrid exposure. Overall, these findings support an important role of P2X7Rs in inflammation in brain and liver caused by combined chronic alcohol and high-fat diet. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Daniel Freire
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA.,Department of Neurology, Keck School of Medicine, HCT 1520 San Pablo St, Los Angeles, CA, 90033, USA
| | - Rachel E Reyes
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Ared Baghram
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
62
|
Zhao N, Guo FF, Xie KQ, Zeng T. Targeting Nrf-2 is a promising intervention approach for the prevention of ethanol-induced liver disease. Cell Mol Life Sci 2018; 75:3143-3157. [PMID: 29947925 PMCID: PMC11105722 DOI: 10.1007/s00018-018-2852-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
63
|
Wang S, Wang H, Ding WX. Pyroptosis, A novel player for alcoholic hepatitis? Hepatology 2018; 67:1660-1662. [PMID: 29222919 PMCID: PMC5906175 DOI: 10.1002/hep.29725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
- Correspondence to: Wen-Xing Ding, Ph.D., Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Blvd., Kansas City, Kansas 66160, Fax 913-588-7501,
| |
Collapse
|
64
|
Khanova E, Wu R, Wang W, Yan R, Chen Y, French SW, Llorente C, Pan SQ, Yang Q, Li Y, Lazaro R, Ansong C, Smith RD, Bataller R, Morgan T, Schnabl B, Tsukamoto H. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 2018; 67:1737-1753. [PMID: 29108122 PMCID: PMC5906140 DOI: 10.1002/hep.29645] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Alcoholic hepatitis (AH) continues to be a disease with high mortality and no efficacious medical treatment. Although severe AH is presented as acute on chronic liver failure, what underlies this transition from chronic alcoholic steatohepatitis (ASH) to AH is largely unknown. To address this question, unbiased RNA sequencing and proteomic analyses were performed on livers of the recently developed AH mouse model, which exhibits the shift to AH from chronic ASH upon weekly alcohol binge, and these results are compared to gene expression profiling data from AH patients. This cross-analysis has identified Casp11 (CASP4 in humans) as a commonly up-regulated gene known to be involved in the noncanonical inflammasome pathway. Immunoblotting confirms CASP11/4 activation in AH mice and patients, but not in chronic ASH mice and healthy human livers. Gasdermin-D (GSDMD), which induces pyroptosis (lytic cell death caused by bacterial infection) downstream of CASP11/4 activation, is also activated in AH livers in mice and patients. CASP11 deficiency reduces GSDMD activation, bacterial load in the liver, and severity of AH in the mouse model. Conversely, the deficiency of interleukin-18, the key antimicrobial cytokine, aggravates hepatic bacterial load, GSDMD activation, and AH. Furthermore, hepatocyte-specific expression of constitutively active GSDMD worsens hepatocellular lytic death and polymorphonuclear leukocyte inflammation. CONCLUSION These results implicate pyroptosis induced by the CASP11/4-GSDMD pathway in the pathogenesis of AH. (Hepatology 2018;67:1737-1753).
Collapse
Affiliation(s)
- Elena Khanova
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Raymond Wu
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Wen Wang
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Rui Yan
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Yibu Chen
- Bioinformatics Service, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | | | - Cristina Llorente
- Department of Medicine, University of California San Diego and VA San Diego Healthcare System, San Diego, California, USA
| | - Stephanie Q. Pan
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Qihong Yang
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Yuchang Li
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Raul Lazaro
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA 99352
| | | | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Timothy Morgan
- Gastroenterology Services, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego and VA San Diego Healthcare System, San Diego, California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Los Angeles, California, USA,Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
65
|
Abstract
Alcoholic hepatitis is the most severe and acute form of alcoholic liver disease. The mortality rate associated with alcoholic hepatitis is high, largely due to the lack of suitable pharmacological interventions. While there has been substantial research in the area, generating pharmacological interventions has been plagued by the lack of a robust mouse model both for testing and for understanding the underlying pathology. A number of major notable advances have been made in this area recently, with the goal of generating a mouse model of alcoholic hepatitis. The purpose of this article is to review recent advances in modeling alcoholic liver disease both in vitro and in vivo in the mouse, and place them in the context of the greater spectrum of alcoholic liver disease, with a focus on how we can translate current advances into a high-fidelity model of alcoholic hepatitis. In addition, we will review the basic mechanisms of alcoholic hepatitis as it is currently understood, focusing on recent advancements in diagnosis, prognosis and current pathophysiology, especially as it relates to the profound immune dysfunction present during alcoholic hepatitis.
Collapse
Affiliation(s)
- Benjamin L. Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
66
|
|
67
|
Ghosh Dastidar S, Warner JB, Warner DR, McClain CJ, Kirpich IA. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules 2018; 8:biom8010003. [PMID: 29342874 PMCID: PMC5871972 DOI: 10.3390/biom8010003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Both chronic and acute (binge) alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD). There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH) feeding (Lieber–DeCarli liquid diet model), chronic intragastric EtOH administration (Tsukamoto–French model), and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA) model). This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s) of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.
Collapse
Affiliation(s)
- Shubha Ghosh Dastidar
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Jeffrey B Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Dennis R Warner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Craig J McClain
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- University of Louisville Alcohol Research Center and Hepatobiology & Toxicology COBRE, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
68
|
Gao B, Zakhari S. Epidemiology and Pathogenesis of Alcoholic Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:334-344.e3. [DOI: 10.1016/b978-0-323-37591-7.00022-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
69
|
Magdaleno F, Ge X, Fey H, Lu Y, Gaskell H, Blajszczak CC, Aloman C, Fiel MI, Nieto N. Osteopontin deletion drives hematopoietic stem cell mobilization to the liver and increases hepatic iron contributing to alcoholic liver disease. Hepatol Commun 2018; 2:84-98. [PMID: 29404515 PMCID: PMC5776866 DOI: 10.1002/hep4.1116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the role of osteopontin (OPN) in hematopoietic stem cell (HPSC) mobilization to the liver and its contribution to alcoholic liver disease (ALD). We analyzed young (14-16 weeks) and old (>1.5 years) wild-type (WT) littermates and global Opn knockout (Opn-/- ) mice for HPSC mobilization to the liver. In addition, WT and Opn-/- mice were chronically fed the Lieber-DeCarli diet for 7 weeks. Bone marrow (BM), blood, spleen, and liver were analyzed by flow cytometry for HPSC progenitors and polymorphonuclear neutrophils (PMNs). Chemokines, growth factors, and cytokines were measured in serum and liver. Prussian blue staining for iron deposits and naphthol AS-D chloroacetate esterase staining for PMNs were performed on liver sections. Hematopoietic progenitors were lower in liver and BM of young compared to old Opn-/- mice. Granulocyte colony-stimulating factor and macrophage colony-stimulating factor were increased in Opn-/- mice, suggesting potential migration of HPSCs from the BM to the liver. Furthermore, ethanol-fed Opn-/- mice showed significant hepatic PMN infiltration and hemosiderin compared to WT mice. As a result, ethanol feeding caused greater liver injury in Opn-/- compared to WT mice. Conclusion: Opn deletion promotes HPSC mobilization, PMN infiltration, and iron deposits in the liver and thereby enhances the severity of ALD. The age-associated contribution of OPN to HPSC mobilization to the liver, the prevalence of PMNs, and accumulation of hepatic iron, which potentiates oxidant stress, reveal novel signaling mechanisms that could be targeted for therapeutic benefit in patients with ALD. (Hepatology Communications 2018;2:84-98).
Collapse
Affiliation(s)
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Holger Fey
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - Yongke Lu
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Harriet Gaskell
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
| | | | - Costica Aloman
- Division of Digestive DiseasesRush University Medical CenterChicagoIL
| | - M. Isabel Fiel
- Department of PathologyIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoIL
- Division of Liver Diseases, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
- Department of Medicine, Division of Gastroenterology and HepatologyUniversity of Illinois at ChicagoChicagoIL
| |
Collapse
|
70
|
Is Osteopontin a Friend or Foe of Cell Apoptosis in Inflammatory Gastrointestinal and Liver Diseases? Int J Mol Sci 2017; 19:ijms19010007. [PMID: 29267211 PMCID: PMC5795959 DOI: 10.3390/ijms19010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
Collapse
|
71
|
Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 2017; 55:12-25. [PMID: 29331880 DOI: 10.1016/j.jnutbio.2017.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
72
|
The role of the IL-8 signaling pathway in the infiltration of granulocytes into the livers of patients with alcoholic hepatitis. Exp Mol Pathol 2017; 103:137-140. [DOI: 10.1016/j.yexmp.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022]
|
73
|
Li XJ, Mu YM, Qin QF, Zeng ZX, Li YS, Zhang WK, Tang HB, Tian GH, Shang HC. Chronic high-dosage fish oil exacerbates gut-liver axis injury in alcoholic steatohepatitis in mice: the roles of endotoxin and IL-4 in Kupffer cell polarization imbalance. Toxicol Res (Camb) 2017; 6:611-620. [PMID: 30090529 DOI: 10.1039/c7tx00037e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 01/21/2023] Open
Abstract
In the present study, intestinal tight junctions (TJs) and Kupffer cell polarization were investigated in an alcoholic steatohepatitis (ASH) mouse model to uncover the potential side effects of overexposure to fish oil or omega-3 fatty acids. The mice were fed ad libitum with a liquid diet containing ethanol and fish oil. In the meantime, ethanol was given every 5-7 days by gavage to simulate binge drinking. After the 7th binge, steatosis, necrosis, inflammatory infiltration, and bridging fibrosis were observed in the liver by histological staining. After the 13th binge, the inducers, markers and other downstream genes/proteins of the Kupffer cell M1/M2 phenotype in the liver, serum, and small intestine were analysed. The results suggested that a chronic high dosage of fish oil alone reduced the mRNA levels of most genes tested and showed a tendency to damage the intestinal zonula occludens-1 localization and reduce the number of M2 Kupffer cells. Meanwhile, the combination of fish oil and ethanol damaged the intestinal TJs, resulting in an increased endotoxin level in the liver. Gut-derived endotoxin polarized Kupffer cells to the M1 phenotype, whereas the number of cells with the M2 phenotype (markers: CD163 and CD206) was decreased. Interleukin-4 (IL-4), an M2 Kupffer cell inducer, was also decreased. Moreover, in vitro experiments showed that IL-4 reversed eicosapentaenoic acid-induced CD163 and CD206 mRNA suppression in RAW 264.7 cells. Overall, our results showed that a chronic high dosage of fish oil exacerbated gut-liver axis injury in alcoholic liver disease in mice, and endotoxin/IL-4-induced Kupffer cell polarization imbalance might play an important role in that process.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - Yun-Mei Mu
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - Qiu-Fang Qin
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - Zi-Xuan Zeng
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - Yu-Sang Li
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - Wei Kevin Zhang
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332
| | - He-Bin Tang
- Department of Pharmacology , School of Pharmaceutical Sciences , South-Central University for Nationalities , No. 182 Minyuan Road , 430074 , Wuhan , China . ; ; Tel: +86 27 6784 2332.,Key Laboratory of Chinese Internal Medicine of MOE and Beijing , Dongzhimen Hospital , Beijing University of Chinese Medicine , 100029 , Beijing , China . ; ; Tel: +86 10 8401 2510.,Research Institute of Huazhong University of Science and Technology in Shenzhen , 518057 , Shenzhen , China
| | - Gui-Hua Tian
- Key Laboratory of Chinese Internal Medicine of MOE and Beijing , Dongzhimen Hospital , Beijing University of Chinese Medicine , 100029 , Beijing , China . ; ; Tel: +86 10 8401 2510
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of MOE and Beijing , Dongzhimen Hospital , Beijing University of Chinese Medicine , 100029 , Beijing , China . ; ; Tel: +86 10 8401 2510
| |
Collapse
|
74
|
Cai Y, Xu MJ, Koritzinsky EH, Zhou Z, Wang W, Cao H, Yuen PS, Ross RA, Star RA, Liangpunsakul S, Gao B. Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight 2017; 2:92634. [PMID: 28724791 DOI: 10.1172/jci.insight.92634] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last several years, one of the major advances in the field of alcoholic liver disease research was the discovery that binge alcohol consumption induced neutrophilia and hepatic neutrophil infiltration in chronically ethanol-fed mice and human subjects with excessive alcohol use (EAU); however, the underlying mechanisms remain obscure. Here, we demonstrated that chronic EAU patients with a history of recent excessive drinking (EAU + RD) had higher serum levels of mitochondrial DNA (mtDNA)-enriched microparticles (MPs) than EAU without recent drinking (EAU - RD) and healthy controls, which correlated positively with circulating neutrophils. Similarly, mice with chronic-plus-binge (E10d + 1B) ethanol feeding also had markedly elevated serum levels of mtDNA-enriched MPs, with activation of hepatic ER stress and inflammatory responses. Inhibition of ER stress by gene KO or inhibitors attenuated ethanol-induced elevation of mtDNA-enriched MPs, neutrophilia, and liver injury. The data from the study of hepatocyte-specific deletion of the protein kinase RNA-like ER kinase (Perk) gene in mice and of cultured hepatocytes demonstrated that hepatocytes were the main source of mtDNA-enriched MPs after ethanol feeding. Finally, administration of mtDNA-enriched MPs isolated from E10d+1B-fed mice caused neutrophilia in mice. In conclusion, E10d + 1B ethanol consumption activates hepatic ER stress-dependent mtDNA-enriched MP release, leading to neutrophilia and liver injury.
Collapse
Affiliation(s)
- Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Wei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Peter St Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ruth A Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| |
Collapse
|
75
|
Gao B, Xu MJ, Bertola A, Wang H, Zhou Z, Liangpunsakul S. Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expr 2017; 17:173-186. [PMID: 28411363 PMCID: PMC5500917 DOI: 10.3727/105221617x695519] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD), a leading cause of chronic liver injury worldwide, comprises a range of disorders including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Over the last five decades, many animal models for the study of ALD pathogenesis have been developed. Recently, a chronic-plus-binge ethanol feeding model was reported. This model induces significant steatosis, hepatic neutrophil infiltration, and liver injury. A clinically relevant model of high-fat diet feeding plus binge ethanol was also developed, which highlights the risk of excessive binge drinking in obese/overweight individuals. All of these models recapitulate some features of the different stages of ALD and have been widely used by many investigators to study the pathogenesis of ALD and to test for therapeutic drugs/components. However, these models are somewhat variable, depending on mouse genetic background, ethanol dose, and animal facility environment. This review focuses on these models and discusses these variations and some methods to improve the feeding protocol. The pathogenesis, clinical relevance, and translational studies of these models are also discussed.
Collapse
Affiliation(s)
- Bin Gao
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adeline Bertola
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- †Université Côte d’Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Hua Wang
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- ‡Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, P.R. China
| | - Zhou Zhou
- *Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Suthat Liangpunsakul
- §Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ¶Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
76
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of chronic liver disease with a wide spectrum of manifestations including simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Liver injury in ALD is caused by chronic inflammation, which has been actively investigated as a therapeutic target for the treatment of ALD for over the last four decades. In this review, we summarize a wide variety of inflammatory mediators that have been shown to contribute to the pathogenesis of ALD, and discuss the therapeutic potential of these mediators for the treatment of ALD.
Collapse
|
77
|
McDaniel K, Huang L, Sato K, Wu N, Annable T, Zhou T, Ramos-Lorenzo S, Wan Y, Huang Q, Francis H, Glaser S, Tsukamoto H, Alpini G, Meng F. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. J Biol Chem 2017; 292:11336-11347. [PMID: 28536261 DOI: 10.1074/jbc.m116.773291] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/20/2017] [Indexed: 12/11/2022] Open
Abstract
The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases.
Collapse
Affiliation(s)
- Kelly McDaniel
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504.,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504.,Research Institute, Baylor Scott & White Health, Temple, Texas 76504
| | - Li Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Keisaku Sato
- Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504
| | - Nan Wu
- Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504
| | - Tami Annable
- Research Institute, Baylor Scott & White Health, Temple, Texas 76504.,Temple Bioscience District, Temple, Texas 76504
| | - Tianhao Zhou
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504.,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504
| | | | - Ying Wan
- Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504.,Research Institute, Baylor Scott & White Health, Temple, Texas 76504.,Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China, and
| | - Qiaobing Huang
- Department of Pathophysiology, Key Laboratory for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou 510515, China, and
| | - Heather Francis
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504.,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504.,Research Institute, Baylor Scott & White Health, Temple, Texas 76504
| | - Shannon Glaser
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504.,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504
| | - Hidekazu Tsukamoto
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases (ALPD) and Cirrhosis, Keck School of Medicine of the University of Southern California and Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90089
| | - Gianfranco Alpini
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504, .,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504
| | - Fanyin Meng
- From the Division of Research, Central Texas Veterans Health Care System, Temple, Texas 76504, .,Digestive Disease Research Center, Department of Medicine, Baylor Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, and Baylor Scott & White Hospital, Temple, Texas 76504.,Research Institute, Baylor Scott & White Health, Temple, Texas 76504
| |
Collapse
|
78
|
Qin CC, Liu YN, Hu Y, Yang Y, Chen Z. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury. World J Gastroenterol 2017; 23:3043-3052. [PMID: 28533661 PMCID: PMC5423041 DOI: 10.3748/wjg.v23.i17.3043] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Macrophage inflammatory protein (MIP)-2 is one of the CXC chemokines and is also known as chemokine CXC ligand (CXCL2). MIP-2 affects neutrophil recruitment and activation through the p38 mitogen-activated-protein-kinase-dependent signaling pathway, by binding to its specific receptors, CXCR1 and CXCR2. MIP-2 is produced by a variety of cell types, such as macrophages, monocytes, epithelial cells, and hepatocytes, in response to infection or injury. In liver injury, activated Kupffer cells are known as the major source of MIP-2. MIP-2-recruited and activated neutrophils can accelerate liver inflammation by releasing various inflammatory mediators. Here, we give a brief introduction to the basic molecular and cellular sources of MIP-2, and focus on its physiological and pathological functions in acute liver injury induced by concanavalin A, lipopolysaccharides, irradiation, ischemia/reperfusion, alcohol, and hypoxia, and hepatectomy-induced liver regeneration and tumor colorectal metastasis. Further understanding of the regulatory mechanisms of MIP-2 secretion and activation may be helpful to develop MIP-2-targeted therapeutic strategies to prevent liver inflammation.
Collapse
|
79
|
Fung P, Pyrsopoulos N. Emerging concepts in alcoholic hepatitis. World J Hepatol 2017; 9:567-585. [PMID: 28515843 PMCID: PMC5411952 DOI: 10.4254/wjh.v9.i12.567] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 02/06/2023] Open
Abstract
Severe alcoholic hepatitis is implicated as a costly, worldwide public health issue with high morbidity and mortality. The one-month survival for severe alcoholic hepatitis is low with mortality rates high as 30%-50%. Abstinence from alcohol is the recommended first-line treatment. Although corticosteroids remain as the current evidence based option for selected patients with discriminant function > 32, improvement of short-term survival rate may be the only benefit. Identification of individuals with risk factors for the development of severe alcoholic hepatitis may provide insight to the diverse clinical spectrum and prognosis of the disease. The understanding of the complex pathophysiologic processes of alcoholic hepatitis is the key to elucidating new therapeutic treatments. Newer research describes the use of gut microbiota modification, immune modulation, stimulation of liver regeneration, caspase inhibitors, farnesoid X receptors, and the extracorporeal liver assist device to aid in hepatocellular recovery. Liver transplantation can be considered as the last medical option for patients failing conventional medical interventions. Although the preliminary data is promising in patients with low risk of recividism, controversy remains due to organ scarcity. This review article comprehensively summarizes the epidemiology, pathophysiology, risk factors, and prognostic indicators of severe alcoholic hepatitis with a focus on the current and emerging therapeutics.
Collapse
Affiliation(s)
- Phoenix Fung
- Phoenix Fung, Nikolaos Pyrsopoulos, Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| | - Nikolaos Pyrsopoulos
- Phoenix Fung, Nikolaos Pyrsopoulos, Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, Newark, NJ 07103, United States
| |
Collapse
|
80
|
Prakoura N, Chatziantoniou C. Matricellular Proteins and Organ Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
81
|
Li M, He Y, Zhou Z, Ramirez T, Gao Y, Gao Y, Ross RA, Cao H, Cai Y, Xu M, Feng D, Zhang P, Liangpunsakul S, Gao B. MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47 phox-oxidative stress pathway in neutrophils. Gut 2017; 66:705-715. [PMID: 27679493 PMCID: PMC5458746 DOI: 10.1136/gutjnl-2016-311861] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Chronic-plus-binge ethanol feeding activates neutrophils and exacerbates liver injury in mice. This study investigates how recent excessive drinking affects peripheral neutrophils and liver injury in alcoholics, and how miR-223, one of the most abundant microRNAs (miRNAs) in neutrophils, modulates neutrophil function and liver injury in ethanol-fed mice. DESIGNS Three hundred alcoholics with (n=140) or without (n=160) recent excessive drinking and 45 healthy controls were enrolled. Mice were fed an ethanol diet for 10 days followed by a single binge of ethanol. RESULTS Compared with healthy controls or alcoholics without recent drinking, alcoholics with recent excessive drinking had higher levels of circulating neutrophils, which correlated with serum levels of alanine transaminase (ALT) and aspartate transaminase (AST). miRNA array analysis revealed that alcoholics had elevated serum miR-223 levels compared with healthy controls. In chronic-plus-binge ethanol feeding mouse model, the levels of miR-223 were increased in both serum and neutrophils. Genetic deletion of the miR-223 gene exacerbated ethanol-induced hepatic injury, neutrophil infiltration, reactive oxygen species (ROS) and upregulated hepatic expression of interleukin (IL)-6 and phagocytic oxidase (phox) p47phox. Mechanistic studies revealed that miR-223 directly inhibited IL-6 expression and subsequently inhibited p47phox expression in neutrophils. Deletion of the p47phox gene ameliorated ethanol-induced liver injury and ROS production by neutrophils. Finally, miR-223 expression was downregulated, while IL-6 and p47phox expression were upregulated in peripheral blood neutrophils from alcoholics compared with healthy controls. CONCLUSIONS miR-223 is an important regulator to block neutrophil infiltration in alcoholic liver disease and could be a novel therapeutic target for the treatment of this malady.
Collapse
Affiliation(s)
- Man Li
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA,Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Teresa Ramirez
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhang Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ruth A Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, Indiana, USA,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
82
|
Transitional Remodeling of the Hepatic Extracellular Matrix in Alcohol-Induced Liver Injury. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3162670. [PMID: 27843941 PMCID: PMC5098054 DOI: 10.1155/2016/3162670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well understood. The liver is the primary site of alcohol metabolism and is therefore the major target of alcohol toxicity. Alcoholic liver disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation), to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of ALD is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) which ultimately impairs the function of the organ. The role of the ECM in early stages of ALD is poorly understood, but recent research has demonstrated that a number of changes in the hepatic ECM in prefibrotic ALD not only are present, but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic extracellular matrix (ECM) that may contribute to earlier stages of ALD development and to discuss potential mechanisms by which these changes may mediate the progression of the disease.
Collapse
|
83
|
Mandrekar P, Bataller R, Tsukamoto H, Gao B. Alcoholic hepatitis: Translational approaches to develop targeted therapies. Hepatology 2016; 64:1343-55. [PMID: 26940353 PMCID: PMC5010788 DOI: 10.1002/hep.28530] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Alcoholic liver disease is a leading cause of liver-related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with alcoholic liver disease. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of alcoholic liver disease. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20%-50% at 3 months). Available therapies are not effective in many patients, and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce the clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. CONCLUSION This review summarizes the unmet needs for translational studies on the pathogenesis of AH, preclinical translational tools, and emerging drug targets to benefit the AH patient. (Hepatology 2016;64:1343-1355).
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.
| | - Ramon Bataller
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, University of Southern California, Greater Los Angeles Department of Veterans Affairs Healthcare System, Los Angeles, CA.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
84
|
Wen Y, Jeong S, Xia Q, Kong X. Role of Osteopontin in Liver Diseases. Int J Biol Sci 2016; 12:1121-8. [PMID: 27570486 PMCID: PMC4997056 DOI: 10.7150/ijbs.16445] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein, is involved in numerous pathological conditions including inflammation, immunity, angiogenesis, fibrogenesis and carcinogenesis in various tissues. Extensive studies have elucidated the critical role of OPN in cell signaling such as regulation of cell proliferation, migration, inflammation, fibrosis and tumor progression. In the liver, OPN interacts with integrins, CD44, vimentin and MyD88 signaling, thereby induces infiltration, migration, invasion and metastasis of cells. OPN is highlighted as a chemoattractant for macrophages and neutrophils during injury in inflammatory liver diseases. OPN activates hepatic stellate cells (HSCs) to exert an enhancer in fibrogenesis. The role of OPN in hepatocellular carcinoma (HCC) has also generated significant interests, especially with regards to its role as a diagnostic and prognostic factor. Interestingly, OPN acts an opposing role in liver repair under different pathological conditions. This review summarizes the current understanding of OPN in liver diseases. Further understanding of the pathophysiological role of OPN in cellular interactions and molecular mechanisms associated with hepatic inflammation, fibrosis and cancer may contribute to the development of novel strategies for clinical diagnosis, monitoring and therapy of liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China;; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Seogsong Jeong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
85
|
Abstract
Alcoholic liver disease includes a broad clinical-histological spectrum from simple steatosis, cirrhosis, acute alcoholic hepatitis with or without cirrhosis to hepatocellular carcinoma as a complication of cirrhosis. The pathogenesis of alcoholic liver disease can be conceptually divided into (1) ethanol-mediated liver injury, (2) inflammatory immune response to injury, (3) intestinal permeability and microbiome changes. Corticosteroids may improve outcomes, but this is controversial and probably only impacts short-term survival. New pathophysiology-based therapies are under study, including antibiotics, caspase inhibition, interleukin-22, anakinra, FXR agonist and others. These studies provide hope for better future outcomes for this difficult disease.
Collapse
Affiliation(s)
- Winston Dunn
- Gastroenterology & Hepatology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS USA
| | - Vijay H. Shah
- Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
86
|
Gao B, Tsukamoto H. Inflammation in Alcoholic and Nonalcoholic Fatty Liver Disease: Friend or Foe? Gastroenterology 2016; 150:1704-9. [PMID: 26826669 PMCID: PMC4887345 DOI: 10.1053/j.gastro.2016.01.025] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| | - Hidekazu Tsukamoto
- Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Department of Pathology, The Keck School of Medicine of The University of Southern California, Los Angeles, California; Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
87
|
Wang HJ, Murray GJ, Jung MK. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease. Expert Rev Gastroenterol Hepatol 2016; 9:1193-205. [PMID: 26293978 DOI: 10.1586/17474124.2015.1069705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed.
Collapse
Affiliation(s)
- He Joe Wang
- a Division of Metabolism and Health Effect, National Institute of Alcohol Abuse and Alcoholism/NIH, 5635 Fishers Lane, MSC 9304, Bethesda, MD 20892-9304, USA
| | | | | |
Collapse
|
88
|
Abstract
Alcoholic liver disease (ALD) is a leading cause of liver-related morbidity and mortality worldwide. ALD encompasses a spectrum of disorders including asymptomatic steatosis, steatohepatitis, fibrosis, cirrhosis and its related complications, and the acute-on-chronic state of alcoholic hepatitis. While multidisciplinary efforts continue to be aimed at curbing progression of this spectrum of disorders, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with severe AH is very high (20-50 % at 3 months). The current therapeutic regimens are limited. The development of new therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of human AH. This review article summarizes the clinical syndrome, pre-clinical translational tools, and pathogenesis of AH at a molecular and cellular level, with the aim of identifying new targets of potential therapeutic intervention.
Collapse
|
89
|
Wilkin RJW, Lalor PF, Parker R, Newsome PN. Murine Models of Acute Alcoholic Hepatitis and Their Relevance to Human Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:748-60. [PMID: 26835538 DOI: 10.1016/j.ajpath.2015.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Alcohol-induced liver damage is a major burden for most societies, and murine studies can provide a means to better understand its pathogenesis and test new therapies. However, there are many models reported with widely differing phenotypes, not all of which fully regenerate the spectrum of human disease. Thus, it is important to understand the implications of these variations to efficiently model human disease. This review critically appraises key articles in the field, detailing the spectrum of liver damage seen in different models, and how they relate to the phenotype of disease seen in patients. A range of different methods of alcohol administration have been studied, ranging from ad libitum consumption of alcohol and water to modified diets (eg, Lieber deCarli liquid diet). Other feeding regimens have taken more invasive routes using intragastric feeding tubes to infuse alcohol directly into the stomach. Notably, models using wild-type mice generally produce a milder phenotype of liver damage than those using genetically modified mice, with the exception of the chronic binge-feeding model. We recommend panels of tests for consideration to standardize end points for the evaluation of the severity of liver damage-key for comparison of models of injury, testing of new therapies, and subsequent translation of findings into clinical practice.
Collapse
Affiliation(s)
- Richard J W Wilkin
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Patricia F Lalor
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Richard Parker
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
90
|
Puri P, Xu J, Vihervaara T, Katainen R, Ekroos K, Daita K, Min HK, Joyce A, Mirshahi F, Tsukamoto H, Sanyal AJ. Alcohol produces distinct hepatic lipidome and eicosanoid signature in lean and obese. J Lipid Res 2016; 57:1017-28. [PMID: 27020313 DOI: 10.1194/jlr.m066175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Alcohol- and obesity-related liver diseases often coexist. The hepatic lipidomics due to alcohol and obesity interaction is unknown. We characterized the hepatic lipidome due to 1) alcohol consumption in lean and obese mice and 2) obesity and alcohol interactions. In the French-Tsukamoto mouse model, intragastric alcohol or isocaloric dextrose were fed with either chow (lean) or high-fat, high-cholesterol diet (obese). Four groups (lean, lean alcohol, obese, and obese alcohol) were studied. MS was performed for hepatic lipidomics, and data were analyzed. Alcohol significantly increased hepatic cholesteryl esters and diacyl-glycerol in lean and obese but was more pronounced in obese. Alcohol produced contrasting changes in hepatic phospholipids with significant enrichment in lean mice versus significant decrease in obese mice, except phosphatidylglycerol, which was increased in both lean and obese alcohol groups. Most lysophospholipids were increased in lean alcohol and obese mice without alcohol use only. Prostaglandin E2; 5-, 8-, and 11-hydroxyeicosatetraenoic acids; and 9- and 13-hydroxyoctadecadienoic acids were considerably increased in obese mice with alcohol use. Alcohol consumption produced distinct changes in lean and obese with profound effects of obesity and alcohol interaction on proinflammatory and oxidative stress-related eicosanoids.
Collapse
Affiliation(s)
- Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Jun Xu
- University of Southern California, Los Angeles, CA
| | | | | | | | - Kalyani Daita
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Hae-Ki Min
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | | | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA
| |
Collapse
|
91
|
Mathews S, Feng D, Maricic I, Ju C, Kumar V, Gao B. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol 2016; 13:206-16. [PMID: 25661730 PMCID: PMC4786627 DOI: 10.1038/cmi.2015.06] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/12/2022] Open
Abstract
Neutrophil infiltration is a hallmark of alcoholic steatohepatitis; however, the underlying mechanisms remain unclear. We previously reported that chronic-plus-binge ethanol feeding synergistically induces hepatic recruitment of neutrophils, which contributes to liver injury. In this paper, we investigated the roles of invariant natural killer T (iNKT) cells in chronic-plus-binge ethanol feeding-induced hepatic neutrophil infiltration and liver injury. Wild-type and two strains of iNKT cell-deficient mice (CD1d- and Jα18-deficient mice) were subjected to chronic-plus-binge ethanol feeding. Liver injury and inflammation were examined. Chronic-plus-binge ethanol feeding synergistically increased the number of hepatic iNKT cells and induced their activation, compared with chronic feeding or binge alone. iNKT cell-deficient mice were protected from chronic-plus-binge ethanol-induced hepatic neutrophil infiltration and liver injury. Moreover, chronic-plus-binge ethanol feeding markedly upregulated the hepatic expression of several genes associated with inflammation and neutrophil recruitment in wild-type mice, but induction of these genes was abrogated in iNKT cell-deficient mice. Importantly, several cytokines and chemokines (e.g., MIP-2, MIP-1, IL-4, IL-6 and osteopontin) involved in neutrophil infiltration were upregulated in hepatic NKT cells isolated from chronic-plus-binge ethanol-fed mice compared to pair-fed mice. Finally, treatment with CD1d blocking antibody, which blocks iNKT cell activation, partially prevented chronic-plus-binge ethanol-induced liver injury and inflammation. Chronic-plus-binge ethanol feeding activates hepatic iNKT cells, which play a critical role in the development of early alcoholic liver injury, in part by releasing mediators that recruit neutrophils to the liver, and thus, iNKT cells represent a potential therapeutic target for the treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Stephanie Mathews
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Cynthia Ju
- Skaggs School of Pharmacy and Pharmaceutical Sciences and Integrated Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
92
|
Weiskirchen R. Hepatoprotective and Anti-fibrotic Agents: It's Time to Take the Next Step. Front Pharmacol 2016; 6:303. [PMID: 26779021 PMCID: PMC4703795 DOI: 10.3389/fphar.2015.00303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/11/2015] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis and cirrhosis cause strong human suffering and necessitate a monetary burden worldwide. Therefore, there is an urgent need for the development of therapies. Pre-clinical animal models are indispensable in the drug discovery and development of new anti-fibrotic compounds and are immensely valuable for understanding and proofing the mode of their proposed action. In fibrosis research, inbreed mice and rats are by far the most used species for testing drug efficacy. During the last decades, several hundred or even a thousand different drugs that reproducibly evolve beneficial effects on liver health in respective disease models were identified. However, there are only a few compounds (e.g., GR-MD-02, GM-CT-01) that were translated from bench to bedside. In contrast, the large number of drugs successfully tested in animal studies is repeatedly tested over and over engender findings with similar or identical outcome. This circumstance undermines the 3R (Replacement, Refinement, Reduction) principle of Russell and Burch that was introduced to minimize the suffering of laboratory animals. This ethical framework, however, represents the basis of the new animal welfare regulations in the member states of the European Union. Consequently, the legal authorities in the different countries are halted to foreclose testing of drugs in animals that were successfully tested before. This review provides a synopsis on anti-fibrotic compounds that were tested in classical rodent models. Their mode of action, potential sources and the observed beneficial effects on liver health are discussed. This review attempts to provide a reference compilation for all those involved in the testing of drugs or in the design of new clinical trials targeting hepatic fibrosis.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy, and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
93
|
Xu MJ, Cai Y, Wang H, Altamirano J, Chang B, Bertola A, Odena G, Lu J, Tanaka N, Matsusue K, Matsubara T, Mukhopadhyay P, Kimura S, Pacher P, Gonzalez FJ, Bataller R, Gao B. Fat-Specific Protein 27/CIDEC Promotes Development of Alcoholic Steatohepatitis in Mice and Humans. Gastroenterology 2015; 149:1030-41.e6. [PMID: 26099526 PMCID: PMC4584194 DOI: 10.1053/j.gastro.2015.06.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcoholic steatohepatitis (ASH) is the progressive form of alcoholic liver disease and may lead to cirrhosis and hepatocellular carcinoma. We studied mouse models and human tissues to identify molecules associated with ASH progression and focused on the mouse fat-specific protein 27 (FSP-27)/human cell death-inducing DFF45-like effector C (CIDEC) protein, which is expressed in white adipose tissues and promotes formation of fat droplets. METHODS C57BL/6N mice or mice with hepatocyte-specific disruption of Fsp27 (Fsp27(Hep-/-) mice) were fed the Lieber-Decarli ethanol liquid diet (5% ethanol) for 10 days to 12 weeks, followed by 1 or multiple binges of ethanol (5 or 6 g/kg) during the chronic feeding. Some mice were given an inhibitor (GW9662) of peroxisome proliferator-activated receptor γ (PPARG). Adenoviral vectors were used to express transgenes or small hairpin (sh) RNAs in cultured hepatocytes and in mice. Liver tissue samples were collected from ethanol-fed mice or from 31 patients with alcoholic hepatitis (AH) with biopsy-proved ASH and analyzed histologically and immunohistochemically and by transcriptome, immunoblotting, and real-time PCR analyses. RESULTS Chronic-plus-binge ethanol feeding of mice, which mimics the drinking pattern of patients with AH, produced severe ASH and mild fibrosis. Microarray analyses revealed similar alterations in expression of many hepatic genes in ethanol-fed mice and humans with ASH, including up-regulation of mouse Fsp27 (also called Cidec) and human CIDEC. Fsp27(Hep-/-) mice and mice given injections of adenovirus-Fsp27shRNA had markedly reduced ASH following chronic-plus-binge ethanol feeding. Inhibition of PPARG and cyclic AMP-responsive element binding protein H (CREBH) prevented the increases in Fsp27α and FSP27β mRNAs, respectively, and reduced liver injury in this chronic-plus-binge ethanol feeding model. Overexpression of FSP27 and ethanol exposure had synergistic effects in inducing production of mitochondrial reactive oxygen species and damage to hepatocytes in mice. Hepatic CIDEC mRNA expression was increased in patients with AH and correlated with the degree of hepatic steatosis and disease severity including mortality. CONCLUSIONS In mice, chronic-plus-binge ethanol feeding induces ASH that mimics some histological and molecular features observed in patients with AH. Hepatic expression of FSP27/CIDEC is highly up-regulated in mice following chronic-plus-binge ethanol feeding and in patients with AH; this up-regulation contributes to alcohol-induced liver damage.
Collapse
Affiliation(s)
- Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - José Altamirano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Liver Unit-Internal Medicine Department, Vall d'Hebron Hospital, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Binxia Chang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Adeline Bertola
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Gemma Odena
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jim Lu
- GoPath Diagnostics, LLC, Chicago, Illinois
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka, Japan
| | - Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Partha Mukhopadhyay
- Section of Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pal Pacher
- Section of Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ramon Bataller
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Liver Unit-Internal Medicine Department, Vall d'Hebron Hospital, Vall d'Hebron Institut de Recerca, Barcelona, Spain; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
94
|
Abstract
Since its initial identification as one of the genes most highly upregulated upon T-cell activation, osteopontin (or Eta-1, as it was designated then) has been demonstrated to have many roles in the regulation of the immune response on multiple levels. It contributes to the development of immune-mediated and inflammatory diseases, and it regulates the host response to infection. In some cases, the mechanisms of these effects have been elucidated, while other mechanistic functions of the protein remain obscure. The protein itself makes these analyses complex, since it binds to a series of different integrins, and in addition to its classically secreted form, an intracellular form of osteopontin has been identified, which participates in several aspects of immune regulation. In this review, we focus on the role of osteopontin in a series of immune-related diseases, particularly those where significant advances have been made in recent years: multiple sclerosis, rheumatoid arthritis, lupus and related diseases, Sjögren's disease, colitis, and 1 area of inflammatory pathology, alcoholic and nonalcoholic liver diseases. A recurring theme in these diseases is a link between osteopontin and pathogenic T cells, particularly T helper 17 cells, where osteopontin produced by dendritic cells supports IL-17 expression, contributing to pathology. In addition, a role for osteopontin in B-cell differentiation is becoming clear. In general, osteopontin contributes to pathology in these diseases, but there are examples where it has a protective role; deciphering the mechanisms underlying these differences and the specific receptors for osteopontin will be a research challenge for the future. Aside from its newly discovered role in the development of Sjögren's disease, the role of osteopontin in inflammatory conditions in the oral cavity is still poorly understood. Elucidation of this role will be of interest.
Collapse
Affiliation(s)
- S R Rittling
- The Forsyth Institute, Cambridge, MA, USA Harvard School of Dental Medicine, Boston, MA, USA
| | - R Singh
- The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
95
|
Gao B, Shah VH. Combination therapy: New hope for alcoholic hepatitis? Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S7-S11. [PMID: 26193867 PMCID: PMC5451267 DOI: 10.1016/j.clinre.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 02/04/2023]
Abstract
Alcoholic hepatitis (AH) is a severe form of alcoholic liver disease with high mortality. The pathogenesis of AH is not fully understood, but it is generally believed that inflammation is a key factor leading to liver failure in AH. Steroids, which have broad immunosuppressive effects, have been used for the treatment of AH over the last forty years. Steroids elicit modest improvement in short-term survival rate in patients with severe AH, but also cause severe side effects. Several specific inflammatory targets (e.g., IL-1, LPS, and gut microbiota) are currently under investigation for the treatment of AH with the goal to obviate or reduce steroid administration. In addition to inflammation, impaired liver regeneration is another major cause of liver failure in AH, which deteriorates further after steroid treatment because inflammation plays a key role in promoting liver repair. Interleukin-22 (IL-22) is a promising drug for the treatment of AH because of its hepatoprotective and anti-fibrotic functions and relatively few known side effects. In addition, IL-22 treatment also ameliorates bacterial infection and kidney injury, two major complications associated with severe AH. IL-22 is currently under investigation in preclinical and clinical studies and may hold great promise for AH by providing more beneficial effects and fewer side effects than current therapies.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
96
|
Tsukamoto H. Metabolic reprogramming and cell fate regulation in alcoholic liver disease. Pancreatology 2015; 15:S61-5. [PMID: 25800177 PMCID: PMC4515387 DOI: 10.1016/j.pan.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Alcoholic liver disease (ALD) should be defined as a life-style metabolic disease. Its pathogenesis is driven by altered cell fate of both parenchymal and non-parenchymal liver cell types, contributing to different pathologic spectra. A critical turning point in progression of ALD is chronic alcoholic steatohepatitis (ASH) or alcoholic neutrophilic hepatitis (AH), which markedly predisposes patients to most devastating ALD sequela, cirrhosis and liver cancer. RESULTS Our research identifies the pivotal roles of unique metabolic reprogramming in M1 activation of hepatic macrophages (HM) and myofibroblastic activation (MF) of hepatic stellate cells (HSC) in the genesis of inflammation and fibrosis, the two key histological features of chronic ASH and neutrophilic AH. For M1 HM activation, heightened proinflammatory iron redox signaling in endosomes or caveosomes results from altered iron metabolism and storage, promoting IKK/NF-kB activation via interactive activation of p21ras, TAK1, and PI3K. For MF cell fate regulation of HSC, activation of the morphogen Wnt pathway caused by the nuclear protein NECDIN or the single-pass trans-membrane protein DLK1, reprograms lipid metabolism via MeCP2-mediated epigenetic repression of the key HSC quiescence gene Ppar-γ. CONCLUSIONS The findings from these studies re-enforce the importance of metabolic reprogramming in cell fate regulation required for the pathogenesis of ALD.
Collapse
Affiliation(s)
- Hidekazu Tsukamoto
- Southern California Research Center ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine of the University of Southern California, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| |
Collapse
|
97
|
Affiliation(s)
- Jason D Coombes
- Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Wing-Kin Syn
- Institute of Hepatology, Foundation for Liver Research, London, UK.,Barts Health NHS Trust, London, UK.,Department of Surgery, Loyola University, Chicago, IL, USA
| |
Collapse
|
98
|
SANYAL ARUNJ, GAO BIN, SZABO GYONGYI. Gaps in Knowledge and Research Priorities for Alcoholic Hepatitis. Gastroenterology 2015; 149:4-9. [PMID: 26008859 PMCID: PMC5510030 DOI: 10.1053/j.gastro.2015.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - BIN GAO
- Virginia Commonwealth University, Richmond, Virginia
| | - GYONGYI SZABO
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda, Maryland and University of Massachusetts, Medical School, Worcester, Massachusetts
| |
Collapse
|
99
|
Asatryan L, Khoja S, Rodgers KE, Alkana RL, Tsukamoto H, Davies DL. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice. J Neuroimmunol 2015. [PMID: 26198936 DOI: 10.1016/j.jneuroim.2015.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.
Collapse
Affiliation(s)
- Liana Asatryan
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and PolicySchool of PharmacyUniversity of Southern California1985 Zonal Avenue, Los Angeles, CA, 90033, United States.
| | - Sheraz Khoja
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, United States
| | - Kathleen E Rodgers
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and PolicySchool of PharmacyUniversity of Southern California1985 Zonal Avenue, Los Angeles, CA, 90033, United States
| | - Ronald L Alkana
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, United States
| | - Hidekazu Tsukamoto
- Southern California Research Center for Alcoholic Liver and Pancreatic Disease and Cirrhosis, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, Los Angeles, CA 90033, United States
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and PolicySchool of PharmacyUniversity of Southern California1985 Zonal Avenue, Los Angeles, CA, 90033, United States
| |
Collapse
|