51
|
Takahashi K, Ginis I, Nishioka R, Klimanis D, Barone FC, White RF, Chen Y, Hallenbeck JM. Glucosylceramide synthase activity and ceramide levels are modulated during cerebral ischemia after ischemic preconditioning. J Cereb Blood Flow Metab 2004; 24:623-7. [PMID: 15181369 DOI: 10.1097/01.wcb.0000119990.06999.a9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After 24-hour middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats, brain ceramide level increased from baseline reached 595% (ischemic core) and 460% (perifocal/penumbral areas); brain glucosylceramide synthase (GCS) activities in these areas simultaneously decreased by 70% and 50%, respectively. Ten-minute MCAO preconditioning significantly attenuated 24-hour MCAO-induced ceramide accumulation by 40% to 60% in ischemic core and perifocal areas, and GCS activities improved by 60% to 70% in both areas. Thus, potentially toxic levels of brain ceramide induced by MCAO were attenuated to intermediate levels in preconditioned animals; brain GCS activity was relatively preserved. In ischemic tolerance, GCS appears to modulate otherwise high levels of brain ceramide.
Collapse
Affiliation(s)
- Kenzo Takahashi
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Cernak I, Vink R, Natale J, Stoica B, Lea PM, Movsesyan V, Ahmed F, Knoblach SM, Fricke ST, Faden AI. The "dark side" of endocannabinoids: a neurotoxic role for anandamide. J Cereb Blood Flow Metab 2004; 24:564-78. [PMID: 15129189 DOI: 10.1097/00004647-200405000-00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endocannabinoids, including 2-arachidonoylglycerol and anandamide (N-arachidonoylethanolamine; AEA), have neuroprotective effects in the brain through actions at CB1 receptors. However, AEA also binds to vanilloid (VR1) receptors and induces cell death in several cell lines. Here we show that anandamide causes neuronal cell death in vitro and exacerbates cell loss caused by stretch-induced axonal injury or trophic withdrawal in rat primary neuronal cultures. Administered intracerebroventricularly, AEA causes sustained cerebral edema, as reflected by diffusion-weighted magnetic resonance imaging, regional cell loss, and impairment in long-term cognitive function. These effects are mediated, in part, through VR1 as well as through calpain-dependent mechanisms, but not through CB1 receptors or caspases. Central administration of AEA also significantly upregulates genes involved in pro-inflammatory/microglial-related responses. Thus, anandamide produces neurotoxic effects both in vitro and in vivo through multiple mechanisms independent of the CB1 receptor.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dawson G, Moskal JR, Dawson SA. Transfection of 2,6 and 2,3‐sialyltransferase genes and GlcNAc‐transferase genes into human glioma cell line U‐373 MG affects glycoconjugate expression and enhances cell death. J Neurochem 2004; 89:1436-44. [PMID: 15189346 DOI: 10.1111/j.1471-4159.2004.02435.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human glioma cell line U-373 MG expresses CMP-NeuAc : Galbeta1,3GlcNAc alpha2,3-sialyltransferase [EC No. 2.4.99.6] (alpha2,3ST), UDP-GlcNAc : beta-d-mannoside beta1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: beta-d-mannoside beta1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galbeta1,4GlcNAc alpha2,6-sialyltransferase [EC 2.4.99.1] (alpha2,6ST) under normal culture conditions. We have previously shown that transfection of the alpha2,6ST gene into U-373 cells replaced alpha2,3-linked sialic acids with alpha2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (< 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either alpha2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as alpha2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- G Dawson
- Department of Pediatrics MC 4068, University of Chicago School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
54
|
Song MS, Posse de Chaves EI. Inhibition of rat sympathetic neuron apoptosis by ceramide. Role of p75NTR in ceramide generation. Neuropharmacology 2003; 45:1130-50. [PMID: 14614956 DOI: 10.1016/s0028-3908(03)00284-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
C6-ceramide protects sympathetic neurons from apoptosis caused by nerve growth factor (NGF) deprivation. Here, we report for the first time that ceramide generated "de novo" is also anti-apoptotic. Moreover, C6-ceramide is converted to long-chain ceramides in a process inhibited by fumonisin B1. The anti-apoptotic effect of C6-ceramide is due to the short analogue as to the long-chain ceramides. C6-ceramide shares mechanisms of action with NGF. C6-ceramide induces TrkA phosphorylation and selective activation of the phosphatidyl inositol 3-kinase (PI3-kinase)/Akt pathway but not the MAPK/ERK pathway. Importantly, the PI3-kinase inhibitor LY294002 abolishes the pro-survival effect of C6-ceramide. We identified a novel way to activate retrograde-mediated neuronal survival in the absence of NGF. Using compartmented cultures we show that addition of C6-ceramide exclusively to distal axons is sufficient to abort nuclear apoptosis. Our system offers a very unique alternative to understand the molecular bases of retrograde signaling in the absence of retrograde transport of neurotrophins. In search for a natural ligand that leads to ceramide generation we examined the activation of the sphingomyelin (SM) cycle downstream the p75 neurotrophin receptor (p75NTR). We found that in sympathetic neurons, selective activation of p75NTR by brain-derived neurotrophin factor or NGF plus K252a induces elevation of ceramide that correlates with SM hydrolysis. However, p75NTR activation does not generate sufficient ceramide to block apoptosis probably due to the rapid decrease in p75NTR expression that occurs upon NGF withdrawal.
Collapse
Affiliation(s)
- Mee-Sook Song
- Signal Transduction Research Group and Department of Pharmacology, Faculty of Medicine, University of Alberta, 928 Medical Science Building, Edmonton, Alta, Canada T6G 2S2
| | | |
Collapse
|
55
|
Pascual M, Valles SL, Renau-Piqueras J, Guerri C. Ceramide pathways modulate ethanol-induced cell death in astrocytes. J Neurochem 2003; 87:1535-45. [PMID: 14713309 DOI: 10.1046/j.1471-4159.2003.02130.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We showed previously that alcohol exposure during in vivo brain development induced astroglial damage and caused cell death. Because ceramide modulates a number of biochemical and cellular responses to stress, including apoptosis, we now investigate whether ethanol-induced cell death in astrocytes is mediated by ceramide signalling pathways triggering apoptosis. Here we show that both ethanol and ceramide are able to induce apoptotic death in cultured astrocytes, in a dose-dependent manner, and that C2-ceramide addition potentiates the apoptotic effects of ethanol. Cell death induced by ethanol is associated with stimulation of neutral and acidic sphingomyelinase (SMase) and ceramide generation, as well as with activation of stress-related kinases, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK) pathways. We also provide evidence for the participation of JNK and p38 in ethanol-induced cell death, because pharmacological inhibitors of these kinases largely prevent the apoptosis induced by ethanol or by ethanol and C2-ceramide. Furthermore, we show that ethanol-induced ERK activation triggers the stimulation of cyclo-oxygenase-2 (COX-2) and the release of prostaglandin E2, and that blockade of the mitogen-activated protein kinase kinase (MEK)/ERK pathway by PD98059 abolishes the up-regulation of COX-2 induced by ethanol plus ceramide, and decreases the ethanol-induced apoptosis. These results strongly suggest that ethanol is able to stimulate the SMase-ceramide pathway, leading to the activation of signalling pathways implicated in cell death. These findings provide an insight into the mechanisms involved in ethanol-induced astroglial cell death during brain development.
Collapse
Affiliation(s)
- María Pascual
- Instituto de Investigaciones Citológicas Centro Investigación Hospital 'La Fe', Valencia, Spain
| | | | | | | |
Collapse
|
56
|
Bektas M, Jolly PS, Milstien S, Spiegel S. A specific ceramide kinase assay to measure cellular levels of ceramide. Anal Biochem 2003; 320:259-65. [PMID: 12927832 DOI: 10.1016/s0003-2697(03)00388-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human ceramide kinase was recently cloned and characterized. Recombinant ceramide kinase is highly active and ceramide is the only lipid that it phosphorylates, indicating that it should be useful for the measurement of ceramide levels in biological samples by conversion to ceramide-1-phosphate, in a manner analogous to that of the widely used Escherichia coli diacylglycerol kinase method. Using recombinant ceramide kinase, we have now developed a rapid and specific enzymatic method to quantify mass levels of long-chain ceramides in cellular lipid extracts. This new ceramide kinase assay is more specific than the commonly used diacylglycerol kinase method because the ubiquitous lipid diacylglycerol, the preferred substrate for diacyglycerol kinase which is usually present at higher concentrations than ceramide and can interfere with ceramide phosphorylation, is completely inactive with ceramide kinase. Moreover, this high specificity eliminates the need for analysis of the lipid product by thin-layer chromatography since ceramide-1-phosphate is the only radiolabeled lipid in organic solvent extracts of ceramide kinase reactions.
Collapse
Affiliation(s)
- Meryem Bektas
- Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
57
|
Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG. Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 2003; 162:469-79. [PMID: 12885759 PMCID: PMC2172704 DOI: 10.1083/jcb.200212067] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell death and survival of neural progenitor (NP) cells are determined by signals that are largely unknown. We have analyzed pro-apoptotic signaling in individual NP cells that have been derived from mouse embryonic stem cells. NP formation was concomitant with elevated apoptosis and increased expression of ceramide and prostate apoptosis response 4 (PAR-4). Morpholino oligonucleotide-mediated antisense knockdown of PAR-4 or inhibition of ceramide biosynthesis reduced stem cell apoptosis, whereas PAR-4 overexpression and treatment with ceramide analogs elevated apoptosis. Apoptotic cells also stained for proliferating cell nuclear antigen (a nuclear mitosis marker protein), but not for nestin (a marker for NP cells). In mitotic cells, asymmetric distribution of PAR-4 and nestin resulted in one nestin(-)/PAR-4(+) daughter cell, in which ceramide elevation induced apoptosis. The other cell was nestin(+), but PAR-4(-), and was not apoptotic. Asymmetric distribution of PAR-4 and simultaneous elevation of endogenous ceramide provides a possible mechanism underlying asymmetric differentiation and apoptosis of neuronal stem cells in the developing brain.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Room CB-2803, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
58
|
Romero AA, Gross SR, Cheng KY, Goldsmith NK, Geller HM. An age-related increase in resistance to DNA damage-induced apoptotic cell death is associated with development of DNA repair mechanisms. J Neurochem 2003; 84:1275-87. [PMID: 12614328 DOI: 10.1046/j.1471-4159.2003.01629.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.
Collapse
Affiliation(s)
- Alejandro A Romero
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
59
|
Stoica BA, Movsesyan VA, Lea PM, Faden AI. Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol Cell Neurosci 2003; 22:365-82. [PMID: 12691738 DOI: 10.1016/s1044-7431(02)00028-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuronal apoptosis has been implicated as an important mechanism of cell death in acute and chronic neurodegenerative disorders. Ceramide is a product of sphingolipid metabolism which induces neuronal apoptosis in culture, and ceramide levels increase in neurons during various conditions associated with cell death. In this study we investigate the mechanism of ceramide-induced apoptosis in primary cortical neuronal cells. We show that ceramide treatment initiates a cascade of biochemical alterations associated with cell death: earliest signal transduction changes involve Akt dephosphorylation and inactivation followed by dephosphorylation of proapoptotic regulators such as BAD (proapoptotic Bcl-2 family member), Forkhead family transcription factors, glycogen synthase kinase 3-beta, mitochondrial depolarization and permeabilization, release of cytochrome c into the cytosol, and caspase-3 activation. Bongkrekic acid, an agent that inhibits mitochondrial depolarization, significantly reduces ceramide-induced cell death and correlated caspase-3 activation. Together, these data demonstrate the importance of the mitochondrial-dependent intrinsic pathway of caspase activation for ceramide-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Bogdan A Stoica
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
60
|
Movsesyan VA, Yakovlev AG, Dabaghyan EA, Stoica BA, Faden AI. Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem Biophys Res Commun 2002; 299:201-7. [PMID: 12437970 DOI: 10.1016/s0006-291x(02)02593-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
C(2)-ceramide, a cell-permeable analog of ceramide, caused cell death in cultured rat cortical neuronal cells. C(2)-ceramide-induced neuronal loss was accompanied by upregulation of caspase-3 activity, measured by cleavage of its fluorogenic substrate Ac-DEVD-AMC. Similar results were obtained when cortical neuronal cultures were treated with sphingomyelinase, an enzyme responsible for ceramide formation in the cell. Morphological evaluation of C(2)-ceramide-treated cortical neurons showed nuclear condensation and fragmentation as visualized by Hoechst 33258 staining. Co-administration of the selective caspase-3 inhibitor z-DEVD-fmk or caspase-9 inhibitor z-LEHD-fmk significantly reduced C(2)-ceramide-induced cell death, while co-application of the caspase-8, inhibitor z-IETD-fmk, was without effect. Immunoblot analysis of protein extracts from C(2)-ceramide-treated cortical neuronal cultures revealed upregulation of active caspase-9 and caspase-3 protein levels, whereas presence of active caspase-8 immunoreactivity was undetectable in this system. Administration of C(2)-ceramide to SH-SY5Y human neuroblastoma cells also caused apoptotic cell death. Moreover, ceramide-induced cell death was significantly decreased in caspase-9 dominant-negative SH-SY5Y cells, while both caspase-8 dominant-negative cultures and mock-transfected cells showed equally high levels of cell death following C(2)-ceramide treatment. Taken together, these data suggest that neuronal death induced by ceramide may be linked to the caspase-9/caspase-3 regulated intrinsic pathway of cellular apoptosis.
Collapse
Affiliation(s)
- Vilen A Movsesyan
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Road, N.W., Research Building, Rm. EP12, 20057, Washington, DC, USA
| | | | | | | | | |
Collapse
|