51
|
Pal VK, Roy S. Cooperative Metal Ion Coordination to the Short Self-Assembling Peptide Promotes Hydrogelation and Cellular Proliferation. Macromol Biosci 2022; 22:e2100462. [PMID: 35257490 DOI: 10.1002/mabi.202100462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Indexed: 11/12/2022]
Abstract
Non-covalent interactions among short peptides and proteins led to their molecular self-assembly into supramolecular packaging, which provides the fundamental basis of life. These biomolecular assemblies are highly susceptible to the environmental conditions, including temperature, light, pH, and ionic concentration, thus inspiring the fabrication of a new class of stimuli-responsive biomaterials. Here, we report for the first time the cooperative effect of the divalent metal ions to promote hydrogelation in the short collagen inspired self-assembling peptide for developing advanced biomaterials. Introduction of the biologically relevant metal ions (Ca2+ /Mg2+ ) to the peptide surpasses its limitation to self-assemble into a multi-scale structure at physiological pH. In particular, in presence of metal ions, the negatively charged peptide showed a distinct shift in its equilibrium point of gelation and demonstrated conversion from sol to gel and thus enabling the scope of fabricating an advanced biomaterial for controlling cellular behaviour. Interestingly, tunable mechanical strength and improved cellular response were observed within ion-coordinated peptide hydrogels compared to the peptide gelator. Microscopic analyses, rheological assessment, and biological studies established the importance of utilizing a novel strategy by simply using metal ions to modulate the physical and biological attributes of CIPs to construct next-generation biomaterials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, Pin-140306
| |
Collapse
|
52
|
Zhai Z, Ye S, Song Z, Shang S, Song J. Novel Temperature-Responsive Rosin-Derived Supramolecular Hydrogels Constructed by New Semicircular Aggregates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2280-2289. [PMID: 35142497 DOI: 10.1021/acs.jafc.1c07397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly water-soluble rosin-based surfactant (C14-MPA-Na) was synthesized. Novel temperature-responsive supramolecular hydrogels were further prepared using C14-MPA-Na. The microstructure and the mechanical properties of the hydrogels were investigated. Unexpectedly, instead of the long one-dimensional structure, a new kind of twisted semicircular aggregate was formed in the hydrogels, which was rarely reported. Besides, the hydrogels possessed excellent shear-recovery properties. Upon heating to 40 °C, the hydrogels transformed into viscoelastic solutions, which were constructed by worm-like micelles. By adjusting the temperature, the hydrogels and the viscoelastic solutions could be freely transformed. Nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy were used to further explore the possible self-assembly mechanism of C14-MPA-Na. The curved alkane chain which partially overlapped with rosin's rigid skeleton became stretched when heated to 40 °C. The introduction of the rosin rigid skeleton endowed the supramolecular hydrogels with a novel microstructure and contributed to the development of strategies for the utilization of forest resources.
Collapse
Affiliation(s)
- Zhaolan Zhai
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shengfeng Ye
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; Key Laboratory of Biomass Energy and Material, Jiangsu Province; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Jie Song
- Department of Natural Sciences, University of Michigan-Flint, Flint, Michigan 48502, United States
| |
Collapse
|
53
|
Koziol MF, Nguyen PL, Gallo S, Olsen BD, Seiffert S. Hierarchy of relaxation times in supramolecular polymer model networks. Phys Chem Chem Phys 2022; 24:4859-4870. [PMID: 35136895 DOI: 10.1039/d1cp04213k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer gels are an evolving class of soft materials with a vast number of properties that can be tuned to desired applications. Despite continuous advances concerning polymer synthesis, sustainability or adaptability, a consistent understanding of the interplay between structure, dynamics, and diffusion processes within transient networks is lacking. In this study, the hierarchy of several relaxation processes is investigated, starting from a microscopic perspective of a single sticker dissociation event up to the center-of-mass diffusion of a star-shaped polymer building block on different length scales, as well as the resulting macroscopic mechanical response to applied external stress. In addition to that, a second focus is placed on the gel micro-structure that is analyzed by light scattering. Conversion of the dynamic light scattering (DLS) inverse length scale into real space allows for a combination of relaxation times with those obtained by forced Rayleigh scattering (FRS). For these investigations, a model-type metallo-supramolecular network consisting of narrowly dispersed tetra-arm poly(ethylene glycol)-terpyridine macromolecules that are interconnected via complexation with zinc ions is chosen. Assembling the obtained activation energies reveals that all complex dissociation-governed relaxation processes exhibit similar activation energies.
Collapse
Affiliation(s)
- Martha Franziska Koziol
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Phuong Loan Nguyen
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Shannon Gallo
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
54
|
Panja S. Dosimetric gelator probes and their application as sensors. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
55
|
Gilpin A, Zeng Y, Hoque J, Ryu JH, Yang Y, Zauscher S, Eward W, Varghese S. Self-Healing of Hyaluronic Acid to Improve In Vivo Retention and Function. Adv Healthc Mater 2021; 10:e2100777. [PMID: 34601809 PMCID: PMC8666142 DOI: 10.1002/adhm.202100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.
Collapse
Affiliation(s)
- Anna Gilpin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yuze Zeng
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Yong Yang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| | - William Eward
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Shyni Varghese
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710
- Department of Orthopaedic Surgery, Duke University School of Medicine, Duke University, Durham, NC 27710
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710
| |
Collapse
|
56
|
Kimura S, Haraya N, Komiyama T, Yokoya M, Yamanaka M. Formation of pH-Responsive Supramolecular Hydrogels in Basic Buffers: Self-assembly of Amphiphilic Tris-Urea. Chem Pharm Bull (Tokyo) 2021; 69:1131-1135. [PMID: 34719596 DOI: 10.1248/cpb.c21-00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An amphiphilic tris-urea compound (1) containing hydrophilic resorcinol units was designed and synthesized. Compound 1 formed supramolecular hydrogels in basic buffers, such as glycine-NaOH, phosphate-NaOH, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-NaOH, and borate-NaOH. The optimum pH range of the buffer solution for gelation was 10-11 and insoluble suspensions or solutions were formed when the pH was outside this range. When the borate-NaOH buffer was used, supramolecular hydrogels were formed over a wide pH range (7.5-11.0). The thermal stabilities and viscoelastic properties of the supramolecular hydrogels were determined from the gel-to-sol phase transition temperatures and rheological properties, respectively. The supramolecular hydrogel formed from compound 1 and the borate-NaOH buffer exhibited a pH-responsive reversible gel-to-sol phase transition property. Gel-to-sol phase transition could be achieved by adding NaOH and regelation of the sol was realized by adding an appropriate amount of boric acid. Increasing the amount of the acid resulted in a gel-to-sol phase transition.
Collapse
Affiliation(s)
| | - Nana Haraya
- Department of Chemistry, Shizuoka University
| | - Tomoki Komiyama
- Meiji Pharmaceutical University.,Department of Chemistry, Shizuoka University
| | | | | |
Collapse
|
57
|
Kuosmanen RT, Truong K, Rissanen KT, Sievänen EI. The Effect of the Side Chain on Gelation Properties of Bile Acid Alkyl Amides. ChemistryOpen 2021; 10:1150-1157. [PMID: 34806846 PMCID: PMC8607806 DOI: 10.1002/open.202100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/02/2021] [Indexed: 11/06/2022] Open
Abstract
Six bile acid alkyl amide derivatives were studied with respect to their gelation properties. The derivatives were composed of three different bile acids with hexyl or cyclohexyl side chains. The gelation behaviour of all six compounds were studied for 36 solvents with varying polarities. Gelation was observed mainly in aromatic solvents, which is characteristic for bile-acid-based low molecular weight gelators. Out of 108 bile acid-solvent combinations, a total of 44 gel systems were formed, 28 of which from lithocholic acid derivatives, only two from deoxycholic acid derivatives, and 14 from cholic acid derivatives. The majority of the gel systems were formed from bile acids with hexyl side chains, contrary to the cyclohexyl group, which seems to be a poor gelation moiety. These results indicate that the spatial demand of the side chain is the key feature for the gelation properties of the bile acid amides.
Collapse
Affiliation(s)
- Riikka T. Kuosmanen
- Department of ChemistryUniversity of JyvaskylaP.O. Box 3540014JyväskyläFinland
| | - Khai‐Nghi Truong
- Department of ChemistryUniversity of JyvaskylaP.O. Box 3540014JyväskyläFinland
| | - Kari T. Rissanen
- Department of ChemistryUniversity of JyvaskylaP.O. Box 3540014JyväskyläFinland
| | - Elina I. Sievänen
- Department of ChemistryUniversity of JyvaskylaP.O. Box 3540014JyväskyläFinland
| |
Collapse
|
58
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
59
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
60
|
Yang YS, Yang C, Zhang YP, Guo HC, Cao JQ, Xue JJ. Novel coumarin-based pyrazoline derivatives organogels for Fe3+ detection and application in cell imaging. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
61
|
Supramolecular hydrogelation via host-guest anion recognition: Lamellar hydrogel materials for the release of cationic cargo. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
62
|
Panja S, Seddon A, Adams DJ. Controlling hydrogel properties by tuning non-covalent interactions in a charge complementary multicomponent system. Chem Sci 2021; 12:11197-11203. [PMID: 34522317 PMCID: PMC8386653 DOI: 10.1039/d1sc02854e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mixing small molecule gelators is a promising route to prepare useful and exciting materials that cannot be accessed from any of the individual components. Here, we describe pH-triggered hydrogelation by mixing of two non-gelling amphiphiles. The intermolecular interactions among the molecules can be tuned either by controlling the degree of ionization of the components or by a preparative pathway, which enables us to control material properties such as gel strength, gel stiffness, thermal stability, and an unusual shrinking/swelling behaviour.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol Tyndall Avenue Bristol BS8 1TL UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
63
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
64
|
Synthesis and Stimuli-Responsive Properties of Metallo-Supramolecular Phosphazene Polymers Based on Terpyridine Metal Complexes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. Int J Mol Sci 2021; 22:7402. [PMID: 34299020 PMCID: PMC8307912 DOI: 10.3390/ijms22147402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host-guest interactions, and metal-ligand coordination. These interactions determine the hydrogels' unique properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances. For this reason, supramolecular hydrogels have attracted considerable attention as carriers for active substance delivery systems. In this paper, we focused on the various types of non-covalent interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host-guest interactions between hydrogel components have been described. We also provided an overview of the recent studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels, antimicrobial activity, controlled gene drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland;
| |
Collapse
|
66
|
Nazarova A, Khannanov A, Boldyrev A, Yakimova L, Stoikov I. Self-Assembling Systems Based on Pillar[5]arenes and Surfactants for Encapsulation of Diagnostic Dye DAPI. Int J Mol Sci 2021; 22:6038. [PMID: 34204914 PMCID: PMC8199762 DOI: 10.3390/ijms22116038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
In this paper, we report the development of the novel self-assembling systems based on oppositely charged Pillar[5]arenes and surfactants for encapsulation of diagnostic dye DAPI. For this purpose, the aggregation behavior of synthesized macrocycles and surfactants in the presence of Pillar[5]arenes functionalized by carboxy and ammonium terminal groups was studied. It has been demonstrated that by varying the molar ratio in Pillar[5]arene-surfactant systems, it is possible to obtain various types of supramolecular systems: host-guest complexes at equimolar ratio of Pillar[5]arene-surfactant and interpolyelectrolyte complexes (IPECs) are self-assembled materials formed in aqueous medium by two oppositely charged polyelectrolytes (macrocycle and surfactant micelles). It has been suggested that interaction of Pillar[5]arenes with surfactants is predominantly driven by cooperative electrostatic interactions. Synthesized stoichiometric and non-stoichiometric IPECs specifically interact with DAPI. UV-vis, luminescent spectroscopy and molecular docking data show the structural feature of dye-loaded IPEC and key role of the electrostatic, π-π-stacking, cation-π interactions in their formation. Such a strategy for the design of supramolecular Pillar[5]arene-surfactant systems will lead to a synergistic interaction of the two components and will allow specific interaction with the third component (drug or fluorescent tag), which will certainly be in demand in pharmaceuticals and biomedical diagnostics.
Collapse
Affiliation(s)
| | | | | | - Luidmila Yakimova
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| | - Ivan Stoikov
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia; (A.N.); (A.K.); (A.B.)
| |
Collapse
|
67
|
Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006582. [PMID: 33929771 PMCID: PMC8647870 DOI: 10.1002/adma.202006582] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.
Collapse
Affiliation(s)
- Carlos F. Guimarães
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Alexandra P. Marques
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
68
|
Torchio A, Cassino C, Lavella M, Gallina A, Stefani A, Boffito M, Ciardelli G. Injectable supramolecular hydrogels based on custom-made poly(ether urethane)s and α-cyclodextrins as efficient delivery vehicles of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112194. [PMID: 34225848 DOI: 10.1016/j.msec.2021.112194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A strategy to enhance drug effectiveness while minimizing controversial effects consists in exploiting host-guest interactions. Moreover, these phenomena can induce the self-assembly of physical hydrogels as effective tools to treat various pathologies (e.g., chronic wounds or cancer). Here, two Poloxamers®/Pluronics® (P407/F127 and P188/F68) were utilized to synthesize various LEGO-like poly(ether urethane)s (PEUs) to develop a library of tunable and injectable supramolecular hydrogels for drug delivery. Three PEUs were synthesized by chain extending Poloxamer/Pluronic with 1,6-cyclohexanedimethanol or N-Boc serinol. Other two amino-functionalized and highly responsive polymers were obtained thorough Boc-group cleavage. For hydrogel design, the spontaneous self-assembly of the poly(ethylene oxide) domains of PEUs with α-cyclodextrins was exploited to form poly(pseudo)rotaxanes (PPRs). PPR-derived channel-like crystals were characterized by X-Ray powder diffraction, Infra-Red and Proton Nuclear Magnetic Resonance spectroscopies. Cytocompatible hydrogel formulations were designed at PEU concentrations between 1% and 5% w/v and α-cyclodextrin at 10% w/v. Supramolecular gels showed good mechanical performances (storage modulus up to 20 kPa) coupled with marked thixotropic and self-healing properties (mechanical recovery over 80% within 30 s after cyclic rupture) as assessed through rheology. Hydrogels exhibited stability and high responsiveness in watery environment up to 5 days: the release of less stable components as suitable drug carriers was coupled with high swelling (doubling the content of fluids with respect to their dry mass) and shape retention. Curcumin was encapsulated into the hydrogels at high concentration (80 μg ml-1) through its complexation with α-cyclodextrins and delivery tests showed controllable and progressive release profiles up to four days.
Collapse
Affiliation(s)
- Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Surgical Sciences, Università degli Studi di Torino, Corso Dogliotti, 14, 10126 Torino, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mario Lavella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Management, Information and Production Engineering (DIGIP), Università degli Studi di Bergamo, Viale G. Marconi, 5, 24044 Dalmine, BG, Italy
| | - Andrea Gallina
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alice Stefani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Chemical and Biological Laboratory Safe S.r.l., Via di Mezzo 48, 41037 Mirandola, MO, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
69
|
Tumor cell invasion into Matrigel: optimized protocol for RNA extraction. Biotechniques 2021; 70:327-335. [PMID: 33969693 DOI: 10.2144/btn-2021-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
3D models are increasingly used to study mechanisms driving tumor progression and mimicking in vitro processes such as invasion and migration. However, there is a need to establish more protocols based on 3D culture systems that allow for downstream molecular biology investigations. Materials & methods: Here we present a method for optimal RNA extraction from highly aggressive primary glioma cells invading into Matrigel. The method has been established by comparing previously reported protocols, available commercial kits and optimizing specific steps for matrix dissociation, RNA separation and purification. Results and conclusion: The protocol allows RNA extraction from cells embedded into Matrigel, with optimal yield, purity and integrity suitable for subsequent sequencing analysis of both high and low molecular weight RNA.
Collapse
|
70
|
Development and Characterization of 3D Printed Multifunctional Bioscaffolds Based on PLA/PCL/HAp/BaTiO3 Composites. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone substitute materials are placed in bone defects and play an important role in bone regeneration and fracture healing. The main objective of the present research is fabrication through the technique of 3D printing and the characterization of innovative composite bone scaffolds composed of polylactic acid (PLA), poly (ε-caprolactone) (PCL) while hydroxyapatite (HAp), and/or barium titanate (BaTiO3—BT) used as fillers. Composite filaments were prepared using a single screw melt extruder, and finally, 3D composite scaffolds were fabricated using the fused deposition modeling (FDM) technique. Scanning electron microscopy (SEM) images showed a satisfactory distribution of the fillers into the filaments and the printed objects. Furthermore, differential scanning calorimetry (DSC) measurements revealed that PLA/PCL filaments exhibit lower glass transition and melting point temperatures than the pure PLA filaments. Finally, piezoelectric and dielectric measurements of the 3D objects showed that composite PLA/PCL scaffolds containing HAp and BT exhibited piezoelectric coefficient (d33) values close to the human bone and high dielectric permittivity values.
Collapse
|
71
|
Drozdov AD, Christiansen JD. Structure-property relations in linear viscoelasticity of supramolecular hydrogels. RSC Adv 2021; 11:16860-16880. [PMID: 35479676 PMCID: PMC9032333 DOI: 10.1039/d1ra02749b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023] Open
Abstract
Extraordinary mechanical properties of supramolecular gels (fracture toughness, fatigue resistance, injectability and self-healing ability) are strongly affected by their viscoelastic response driven by rearrangement (association and dissociation) of physical bonds. The kinetics of rearrangement is traditionally studied in small-amplitude shear oscillatory tests by analyzing the effect of the frequency of oscillations ω on the storage G' and loss G'' moduli. Conventional Maxwell-type models describe observations rather poorly when the gels reveal a pronounced flattening of the graphs G''(ω) at high frequencies. A simple model is derived in linear viscoelasticity of supramolecular gels. Its advantage is that the model reproduces experimental data correctly, on the one hand, and involves only four material constants, on the other. Based on the analysis of experimental data on gels cross-linked by coiled-coil complexes, covalent and ionic bonds, phenylboronic acid-diol complexes and metal-ligand coordination bonds, the model is applied to develop structure-property relations that describe the influence of chemical structure of supramolecular gels (concentration of polymer chains and type and molar fraction of temporary bonds) and environmental conditions (temperature, pH and ionic strength of buffer solutions) on their viscoelastic response.
Collapse
Affiliation(s)
- Aleksey D Drozdov
- Department of Materials and Production Aalborg University Fibigerstraede 16 Aalborg 9220 Denmark
| | | |
Collapse
|
72
|
Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021; 172:275-295. [PMID: 33450330 PMCID: PMC8107146 DOI: 10.1016/j.addr.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023]
Abstract
Hydrogels prepared via self-assembly offer scalable and tunable platforms for drug delivery applications. Molecular-scale self-assembly leverages an interplay of attractive and repulsive forces; drugs and other active molecules can be incorporated into such materials by partitioning in hydrophobic domains, affinity-mediated binding, or covalent integration. Peptides have been widely used as building blocks for self-assembly due to facile synthesis, ease of modification with bioactive molecules, and precise molecular-scale control over material properties through tunable interactions. Additional opportunities are manifest in stimuli-responsive self-assembly for more precise drug action. Hydrogels can likewise be fabricated from macromolecular self-assembly, with both synthetic polymers and biopolymers used to prepare materials with controlled mechanical properties and tunable drug release. These include clinical approaches for solubilization and delivery of hydrophobic drugs. To further enhance mechanical properties of hydrogels prepared through self-assembly, recent work has integrated self-assembly motifs with polymeric networks. For example, double-network hydrogels capture the beneficial properties of both self-assembled and covalent networks. The expanding ability to fabricate complex and precise materials, coupled with an improved understanding of biology, will lead to new classes of hydrogels specifically tailored for drug delivery applications.
Collapse
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556, USA.
| | - E Thomas Pashuck
- Lehigh University, Department of Bioengineering, Bethlehem, PA 18015, USA.
| |
Collapse
|
73
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
74
|
Chirality, Gelation Ability and Crystal Structure: Together or Apart? Alkyl Phenyl Ethers of Glycerol as Simple LMWGs. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chiral recognition plays an important role in the self-assembly of soft materials, in particular supramolecular organogels formed by low molecular weight gelators (LMWGs). Out of 14 pairs of the studied racemic and enantiopure samples of alkyl-substituted phenyl ethers of glycerol, only eight enantiopure diols form the stable gels in nonane. The formation of gels from solutions was studied by polarimetry, and their degradation with the formation of xerogels was studied by the PXRD method. The revealed crystalline characteristics of all studied xerogels corresponded to those for crystalline samples of the parent gelators. In addition to those previously investigated, crystalline samples of enantiopure para-n-alkylphenyl glycerol ethers [alkyl = pentyl (5), hexyl (6), heptyl (7), octyl (8), nonyl (9)] and racemic 3-(3,5-dimethylphenoxy)propane-1,2-diol (rac-14) have been examined by single crystal X-ray diffraction analysis. Among 22 samples of compounds 1–14 studied by SC-XRD, seven different types of supramolecular motifs are identified, of which only two are realized in crystals of supramolecular gelators. An attempt was made to relate the ability to gel formation with the characteristics of the supramolecular motif of a potential gelling agent, and the frequency of formation of the motif, required for gelation, with the chiral characteristics of the sample.
Collapse
|
75
|
Mizuno H, Hashimoto K, Shigenobu K, Kokubo H, Ueno K, Watanabe M. Direct Observation of Photo-Induced Reversible Sol-Gel Transition in Block Copolymer Self-Assembly Containing an Azobenzene Ionic Liquid. Macromol Rapid Commun 2021; 42:e2100091. [PMID: 33851443 DOI: 10.1002/marc.202100091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Using atomic force microscopy, the photo-induced reversible changes in a block copolymer self-assembly containing an azobenzene ionic liquid, which undergoes sol-gel transition is directly observed. This is the first report on the sol-gel transition of an ABA-type block copolymer consisting of upper critical solution temperature (UCST)-type A blocks in a photoresponsive ionic liquid mixture. The sol-gel transition is accompanied by an order-to-disorder structural change, which subsequently induces a change in the ionic conductivity. Surprisingly, the photo-induced ionic conductivity and rheological changes occurs rapidly (≈30 s) despite the dense (≈80 wt%) polymeric system. The rapid structural change is probably attributable to the fast diffusion of the ionic liquid.
Collapse
Affiliation(s)
- Haruna Mizuno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Kei Hashimoto
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Keisuke Shigenobu
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Hisashi Kokubo
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Masayoshi Watanabe
- Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| |
Collapse
|
76
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
77
|
Larik FA, Fillbrook LL, Nurttila SS, Martin AD, Kuchel RP, Al Taief K, Bhadbhade M, Beves JE, Thordarson P. Ultra-Low Molecular Weight Photoswitchable Hydrogelators. Angew Chem Int Ed Engl 2021; 60:6764-6770. [PMID: 33295683 DOI: 10.1002/anie.202015703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Two photoswitchable arylazopyrozoles form hydrogels at a concentration of 1.2 % (w/v). With a molecular weight of 258.28 g mol-1 , these are the lowest known molecular weight hydrogelators that respond reversibly to light. Photoswitching of the E- to the Z-form by exposure to 365 nm light results in a macroscopic gel→sol transition; nearly an order of magnitude reduction in the measured elastic and loss moduli. In the case of the meta-arylazopyrozole, cryogenic transmission electron microscopy suggests that the 29±7 nm wide sheets in the E-gel state narrow to 13±2 nm upon photoswitching to the predominantly Z-solution state. Photoswitching for meta-arylazopyrozole is reversible through cycles of 365 nm and 520 nm excitation with little fatigue. The release of a rhodamine B dye encapsulated in gels formed by the arylazopyrozoles is accelerated more than 20-fold upon photoswitching with 365 nm light, demonstrating these materials are suitable for light-controlled cargo release.
Collapse
Affiliation(s)
- Fayaz Ali Larik
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lucy L Fillbrook
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sandra S Nurttila
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Adam D Martin
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rhiannon P Kuchel
- Electron Microscopy Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Karrar Al Taief
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohan Bhadbhade
- Solid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jonathon E Beves
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Pall Thordarson
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.,The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
78
|
Kimura S, Yokoya M, Yamanaka M. Biological-stimuli-responsive Supramolecular Hydrogels toward Medicinal and Pharmaceutical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
79
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
80
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
81
|
Morris J, Bietsch J, Bashaw K, Wang G. Recently Developed Carbohydrate Based Gelators and Their Applications. Gels 2021; 7:24. [PMID: 33652820 PMCID: PMC8006029 DOI: 10.3390/gels7010024] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate based low molecular weight gelators have been an intense subject of study over the past decade. The self-assembling systems built from natural products have high significance as biocompatible materials and renewable resources. The versatile structures available from naturally existing monosaccharides have enriched the molecular libraries that can be used for the construction of gelators. The bottom-up strategy in designing low molecular weight gelators (LMWGs) for a variety of applications has been adopted by many researchers. Rational design, along with some serendipitous discoveries, has resulted in multiple classes of molecular gelators. This review covers the literature from 2017-2020 on monosaccharide based gelators, including common hexoses, pentoses, along with some disaccharides and their derivatives. The structure-based design and structure to gelation property relationships are reviewed first, followed by stimuli-responsive gelators. The last section focuses on the applications of the sugar based gelators, including their utilization in environmental remediation, ion sensing, catalysis, drug delivery and 3D-printing. We will also review the available LMWGs and their structure correlations to the desired properties for different applications. This review aims at elucidating the design principles and structural features that are pertinent to various applications and hope to provide certain guidelines for researchers that are working at the interface of chemistry, biochemistry, and materials science.
Collapse
Affiliation(s)
| | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (J.M.); (J.B.); (K.B.)
| |
Collapse
|
82
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
83
|
Liu Z, Liu L, Zhong Z, Ran Y, Xi J, Wang J. Ultralight hybrid silica aerogels derived from supramolecular hydrogels self-assembled from insoluble nano building blocks. RSC Adv 2021; 11:7331-7337. [PMID: 35423243 PMCID: PMC8695017 DOI: 10.1039/d1ra00418b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022] Open
Abstract
Supramolecular hydrogels are a type of hydrogel cross-linked by non-chemical bonds and they have been widely applied in the field of smart systems, sensors, tissue engineering, and controlled drug delivery. Most supramolecular hydrogels are formed by soluble molecules, polymers, and metal ions. In this work, supramolecular hydrogels self-assembled between two insoluble nano building blocks (ISNBBs), graphene oxide (GO) and amino-functionalized silica nanoparticles (SiO2-NH2), have been discovered and synthesized. The gelation conditions of the two ISNBBs have been investigated. A step further, ultralight hybrid silica aerogels are obtained by supercritical drying of the physical hydrogels. No visible volume shrinkage is observed, due to the fact that the hydrogel networks are formed by rigid ISNBBs. Thus the hybrid aerogels possess ultralow density (down to 7.5 mg cm-3), high specific surface areas (178.6 m2 g-1), and extremely high porosity (99.6%). The present work shows an alternative strategy to design and synthesize supramolecular hydrogels and aerogels using predetermined building blocks, together with designable morphology and physical properties for the target aerogels.
Collapse
Affiliation(s)
- Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University Beijing 100144 P. R. China
| | - Ling Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Zhenggen Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 P. R. China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University Beijing 100144 P. R. China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University Beijing 100144 P. R. China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 P. R. China
| |
Collapse
|
84
|
Sheikhi M, Rafiemanzelat F, Moroni L, Setayeshmehr M. Ultrahigh-water-content biocompatible gelatin-based hydrogels: Toughened through micro-sized dissipative morphology as an effective strategy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111750. [PMID: 33545891 DOI: 10.1016/j.msec.2020.111750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 11/19/2022]
Abstract
Fabrication of simultaneously robust and superabsorbent gelatin-based hydrogels for biomedical applications still remains a challenge due to lack of locally dissipative points in the presence of large water content. Here, we apply a synthesis strategy through which water absorbency and energy dissipative points are separated, and toughening mechanism is active closely at the crack tip. For this, gelatin-based microgels (GeMs) were synthesized in a way that concentrated supramolecular interactions were present to increase the energy necessary to propagate a macroscopic crack. The microgels were interlocked to each other via both temporary hydrophobic associations and permanent covalent crosslinks, in which the sacrificial binds sustained the toughness due to the mobility of the junction zones and particles sliding. However, chemical crosslinking points preserved the integrity and fast recoverability of the hydrogel. Hysteresis increased strongly with increasing supramolecular interactions within the network. The prepared hydrogels showed energy loss and swelling ratio up to 3440 J. m-3 and 830%, respectively, which was not achievable with conventional network fabrication methods. The microgels were also assessed for their in vivo biocompatibility in a rat subcutaneous pocket assay. Results of hematoxylin and eosin (H&E) staining demonstrated regeneration of the tissue around the scaffolds without incorporation of growth factors. Also, vascularization within the scaffolds was observed after 4 weeks implantation. These results indicate that our strategy is a promising method to manipulate those valuable polymers, which lose their toughness and applicability with increasing their water content.
Collapse
Affiliation(s)
- M Sheikhi
- Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan 81746-73441, Islamic Republic of Iran
| | - F Rafiemanzelat
- Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan 81746-73441, Islamic Republic of Iran.
| | - L Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands.
| | - M Setayeshmehr
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Universiteitssingel 40, 6229ER Maastricht, the Netherlands; Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
85
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
86
|
Larik FA, Fillbrook LL, Nurttila SS, Martin AD, Kuchel RP, Al Taief K, Bhadbhade M, Beves JE, Thordarson P. Ultra‐Low Molecular Weight Photoswitchable Hydrogelators. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fayaz Ali Larik
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Lucy L. Fillbrook
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sandra S. Nurttila
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Adam D. Martin
- Dementia Research Centre Department of Biomedical Science Faculty of Medicine and Health Sciences Macquarie University Sydney NSW 2109 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Karrar Al Taief
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| | - Mohan Bhadbhade
- Solid State & Elemental Analysis Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Jonathon E. Beves
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Pall Thordarson
- School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
- The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
87
|
Kurbasic M, Parisi E, Garcia AM, Marchesan S. Self-Assembling, Ultrashort Peptide Gels as Antimicrobial Biomaterials. Curr Top Med Chem 2021; 20:1300-1309. [PMID: 32178611 DOI: 10.2174/1568026620666200316150221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
Supramolecular antimicrobial hydrogels based on peptides are attractive soft materials for the treatment of infections, considering their ease of preparation and benign fate in biological settings and in the environment. In particular, stimuli-responsive systems that can be assembled/disassembled ad hoc could offer the opportunity to switch on/off their bioactivity as needed. Besides, the shorter is the peptide, the lower its cost of production. However, a structure-to-function relationship is yet to be defined and reported activities are generally not yet competitive relative to traditional antibiotics. Inspiration for their design can be found in host defense peptides (HDPs), which can self-assemble to exert their function. This article reviews research developments in this emerging area, and it examines features, differences and similarities between antimicrobial and amyloid peptides to open the avenue towards the next generation of supramolecular antimicrobial peptides as innovative therapeutic materials.
Collapse
Affiliation(s)
- Marina Kurbasic
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Evelina Parisi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ana M Garcia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
88
|
Cell preservation methods and its application to studying rare disease. Mol Cell Probes 2021; 56:101694. [PMID: 33429040 DOI: 10.1016/j.mcp.2021.101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
The ability to preserve and transport human cells in a stable medium over long distances is critical to collaborative efforts and the advancement of knowledge in the study of human disease. This is particularly important in the study of rare diseases. Recently, advancements in the understanding of renal ciliopathies has been achieved via the use of patient urine-derived cells (UDCs). However, the traditional method of cryopreservation, although considered as the gold standard, can result in decreased sample viability of many cell types, including UDCs. Delays in transportation can have devastating effects upon the viability of samples, and may even result in complete destruction of cells following evaporation of dry ice or liquid nitrogen, leaving samples in cryoprotective agents, which are cytotoxic at room temperature. The loss of any patient sample in this manner is detrimental to research, however it is even more so when samples are from patients with a rare disease. In order to overcome the associated limitations of traditional practices, new methods of preservation and shipment, including cell encapsulation within hydrogels, and transport in specialised devices are continually being investigated. Here we summarise and compare traditional methods with emerging novel alternatives for the preservation and shipment of cells, and consider the effectiveness of such methods for use with UDCs to further enable the study and understanding of kidney diseases.
Collapse
|
89
|
Mao J, Yu QJ, Wang S. Preparation of multifunctional hydrogels with pore channels using agarose sacrificial templates and its applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Mao
- Department of Basic Zhejiang Pharmaceutical College Ningbo China
| | - Qi Jian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering Ningbo University Ningbo China
| |
Collapse
|
90
|
Karcher J, Kirchner S, Leistner AL, Hald C, Geng P, Bantle T, Gödtel P, Pfeifer J, Pianowski ZL. Selective release of a potent anticancer agent from a supramolecular hydrogel using green light. RSC Adv 2021. [DOI: 10.1039/d0ra08893e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Selective green-light triggered release of an anticancer agent under physiological conditions from a supramolecular hydrogel.
Collapse
Affiliation(s)
- Johannes Karcher
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Susanne Kirchner
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Anna-Lena Leistner
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Christian Hald
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Philipp Geng
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Tobias Bantle
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Peter Gödtel
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
| | - Juliana Pfeifer
- Institut für Funktionelle Grenzflächen IFG
- Karlsruher Institut für Technologie
- Germany
| | - Zbigniew L. Pianowski
- Institut für Organische Chemie
- Karlsruher Institut für Technologie
- 76131 Karlsruhe
- Germany
- Institute of Biological and Chemical Systems – FMS
| |
Collapse
|
91
|
Wang X, Qian S, Wang D, Wang C, Qin H, Peng L, Lu W, Zhang Y, Qing G. Self-assembly gel-based dynamic response system for specific recognition of N-acetylneuraminic acid. J Mater Chem B 2021; 9:4690-4699. [PMID: 34076032 DOI: 10.1039/d1tb00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialic acids located at the terminal end of glycans are densely attached to cell surfaces and play crucial and distinctive roles in a variety of physiological and pathological processes, such as neural development, cell-cell interactions, autoimmunity and cancers. However, due to the subtle structural differences of sialic acid species and the complicated composition of glycans, the precise recognition of sialylated glycans is difficult. Here, a fluorescent dynamic response system based on a pyrene-conjugated histidine (PyHis) supramolecular gel is proposed. Driven by π-π stacking and intermolecular hydrogen bonds, PyHis exhibits a strong self-assembly ability and forms stable gels. It is found that introduction of N-acetylneuraminic acid (a typical sialic acid) can prevent this self-assembly process, whereas other monosaccharides or sialic acid analogs have no significant effect on it. Interestingly, a sialylated glycan also has a remarkable inhibitory effect on the gel formation, which highlights the high selectivity of the gel dynamic response system. Analysis of the mechanism reveals that the sialic acid or sialylated glycan can interact closely with two PyHis molecules stacked together in the assemblies via hydrogen bonding interactions, thereby preventing the ordered accumulation of the gelators. It is worth noting that the high-efficiency sialic acid recognition effect is not observed at the single molecule level but at the supramolecular level, indicating the unique superiority of the supramolecular self-assembly system in biomolecular recognition and response. This work shows the promising prospects of using supramolecular gels in assembly engineering, regenerative medicine, tumour cell sorting and cancer diagnosis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China and Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Shengxu Qian
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lang Peng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| | - Wenqi Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| |
Collapse
|
92
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
93
|
Quigley E, Johnson J, Liyanage W, Nilsson BL. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels. SOFT MATTER 2020; 16:10158-10168. [PMID: 33035281 DOI: 10.1039/d0sm01217c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular hydrogels formed by noncovalent self-assembly of low molecular weight (LMW) agents are promising next-generation biomaterials. Thixotropic shear response and mechanical stability are two emergent properties of hydrogels that are critical for biomedical applications including drug delivery and tissue engineering in which injection of the hydrogel will be necessary. Herein, we demonstrate that the emergent thixotropic properties of supramolecular phenylalanine-derived hydrogels are dependent on the conditions in which they are formulated. Specifically, hydrogels formed from fluorenylmethoxycarbonyl (Fmoc) modified phenylalanine derivatives, 3-fluorophenylalanine (Fmoc-3F-Phe) and pentafluorophenylalanine (Fmoc-F5-Phe), were characterized as a function of gelation conditions to examine how shear response and mechanical stability properties correlate to mode of gelation. Two distinct methods of gelation were compared. First, spontaneous self-assembly and gelation was triggered by a solvent exchange method in which a concentrated solution of the gelator in dimethylsulfoxide was diluted in water. Second, gelation was promoted by dissolution of the gelator in water at basic pH followed by gradual pH adjustment from basic to mildly acidic by the hydrolysis of glucono-delta-lactone. Hydrogels formed under solvent exchange conditions were mechanically unstable and poorly shear-responsive whereas hydrogels formed by gradual acidification were temporally stable and had highly shear-responsive viscoelastic character. These studies confirm that gelation environment and mechanism have a significant influence on the emergent properties of supramolecular hydrogels and offer insight into how gelation conditions can be used to tune hydrogel properties for specific applications.
Collapse
Affiliation(s)
- Elena Quigley
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | | | | | |
Collapse
|
94
|
Choi H, Baek K, Toenjes ST, Gustafson JL, Smith DK. Redox-Responsive H-Bonding: Amplifying the Effect of Electron Transfer Using Proton-Coupled Electron Transfer. J Am Chem Soc 2020; 142:17271-17276. [PMID: 32981317 DOI: 10.1021/jacs.0c07841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new strategy to create highly redox-responsive H-bond dimers based on proton-coupled electron transfer is proposed that capitalizes on the importance of secondary H-bonds in determining overall binding strength in H-bond dimers. Electron transfer induced proton transfer across a H-bond can be used to significantly strengthen the overall binding by both creating strong ionic H-bonds and changing the secondary H-bonds from unfavorable to favorable. The viability and potency of this approach are demonstrated with an electroactive DAD (A = H-acceptor, D = H-donor) array, H(MQ+)H, paired with an electroinactive ADA array, O(NH)O. NMR titration of H(MQ+)H with O(NH)O in 0.1 M NBu4PF6/CD2Cl2 gives a Kassoc of 500 M-1, typical of DAD-ADA dimers. However, upon two-electron reduction in 0.1 M NBu4PF6/CH2Cl2, cyclic voltammetry studies indicate a 1.8 × 105 increase in binding strength, corresponding to a very large Kassoc of 9 × 107 M-1. The latter value is typical of DDD-AAA H-bond dimers, consistent with proton transfer across the central H-bond upon reduction.
Collapse
Affiliation(s)
- Hyejeong Choi
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Kiyeol Baek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Sean T Toenjes
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Diane K Smith
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| |
Collapse
|
95
|
Carayon I, Gaubert A, Mousli Y, Philippe B. Electro-responsive hydrogels: macromolecular and supramolecular approaches in the biomedical field. Biomater Sci 2020; 8:5589-5600. [PMID: 32996479 DOI: 10.1039/d0bm01268h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are soft materials of the utmost importance in the biomedical and healthcare fields. Two approaches can be considered to obtain such biomaterials: the macromolecular one and the supramolecular one. In the first, the chemical gel is based on crosslinking while in the second the physical hydrogel is stabilized thanks to noncovalent interactions. Recently, new trends rely on smart devices able to modify their physico-chemical properties under stimulation. Such stimuli-responsive systems can react to internal (i.e. pH, redox potential, enzyme, etc.) or external (i.e. magnetic field, light, electric field, etc.) triggers leading to smart drug release and drug delivery systems, 3D scaffolds or biosensors. Even if some stimuli-responsive biomaterials are currently widely studied, other ones represent a real challenge. Among them, electro-responsive hydrogels, especially obtained via supramolecular approach, are under-developped leaving room for improvement. Indeed, currently known macromolecular electro-responsive systems are reaching some limitations related to their chemical composition, physicochemical properties, mechanical strength, processing technologies, etc. In contrast, the interest for supramolecular hydrogels has risen for the past few years suggesting that they may provide new solutions as electro-responsive soft materials. In this short review, we give a recent non exhaustive survey on macromolecular and supramolecular approaches for electro-responsive hydrogels in the biomedical field.
Collapse
Affiliation(s)
- Iga Carayon
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | | | | | | |
Collapse
|
96
|
Azimi B, Maleki H, Zavagna L, De la Ossa JG, Linari S, Lazzeri A, Danti S. Bio-Based Electrospun Fibers for Wound Healing. J Funct Biomater 2020; 11:E67. [PMID: 32971968 PMCID: PMC7563280 DOI: 10.3390/jfb11030067] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Being designated to protect other tissues, skin is the first and largest human body organ to be injured and for this reason, it is accredited with a high capacity for self-repairing. However, in the case of profound lesions or large surface loss, the natural wound healing process may be ineffective or insufficient, leading to detrimental and painful conditions that require repair adjuvants and tissue substitutes. In addition to the conventional wound care options, biodegradable polymers, both synthetic and biologic origin, are gaining increased importance for their high biocompatibility, biodegradation, and bioactive properties, such as antimicrobial, immunomodulatory, cell proliferative, and angiogenic. To create a microenvironment suitable for the healing process, a key property is the ability of a polymer to be spun into submicrometric fibers (e.g., via electrospinning), since they mimic the fibrous extracellular matrix and can support neo- tissue growth. A number of biodegradable polymers used in the biomedical sector comply with the definition of bio-based polymers (known also as biopolymers), which are recently being used in other industrial sectors for reducing the material and energy impact on the environment, as they are derived from renewable biological resources. In this review, after a description of the fundamental concepts of wound healing, with emphasis on advanced wound dressings, the recent developments of bio-based natural and synthetic electrospun structures for efficient wound healing applications are highlighted and discussed. This review aims to improve awareness on the use of bio-based polymers in medical devices.
Collapse
Affiliation(s)
- Bahareh Azimi
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Homa Maleki
- Department of Carpet, University of Birjand, Birjand 9717434765, Iran
| | - Lorenzo Zavagna
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
| | | | | | - Andrea Lazzeri
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Interuniversity National Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy; (B.A.); (L.Z.); (A.L.)
- Department of Civil and Industrial Engineering, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
97
|
Deepthi K, R B AR, Prasad VS, Gowd EB. Co-assembly of functionalized donor-acceptor molecules within block copolymer microdomains via the supramolecular assembly approach with an improved charge carrier mobility. SOFT MATTER 2020; 16:7312-7322. [PMID: 32672783 DOI: 10.1039/d0sm00894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we demonstrate the three-component self-assembly of functionalized small molecules (donor and acceptor) and a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer using the supramolecular approach. The introduction of functional groups on both the donor (1-pyrenebutyric acid, PBA) and acceptor (functionalized naphthalene diimide, FNDI) molecules can form stable charge-transfer (CT) complexes within the block copolymer domains and these supramolecules exhibited a charge carrier mobility of around 1.01 × 10-4 cm2 (V s)-1. In this case, both the molecules can form H-bonding with P4VP chains, and as well as π-π stacking between the PBA and FNDI molecules is also possible within the block copolymer domains. These noncovalent interactions lead to the formation of stable hierarchical structures and CT complexes between PBA and FNDI, where bilayer donor-acceptor (D-A) stacks formed within the block copolymer microdomains. Overall, the organization of both functionalized donor and acceptor molecules within the block copolymer domain exhibits an enhanced charge carrier mobility, which is potentially useful in the fabrication of organic photovoltaic cells and organic light-emitting diodes.
Collapse
Affiliation(s)
- Krishnan Deepthi
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | | | | | | |
Collapse
|
98
|
Zou L, Addonizio CJ, Su B, Sis MJ, Braegelman AS, Liu D, Webber MJ. Supramolecular Hydrogels via Light-Responsive Homoternary Cross-Links. Biomacromolecules 2020; 22:171-182. [PMID: 32804483 DOI: 10.1021/acs.biomac.0c00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Host-guest physical cross-linking has been used to prepare supramolecular hydrogels for various biomedical applications. More recent efforts to endow these materials with stimuli-responsivity offers an opportunity to precisely tune their function for a target use. In the context of light-responsive materials, azobenzenes are one prevailing motif. Here, an asymmetric azobenzene was explored for its ability to form homoternary complexes with the cucurbit[8]uril macrocycle, exhibiting an affinity (Keq) of 6.21 × 1010 M-2 for sequential binding, though having negative cooperativity. Copolymers were first prepared from different and tunable ratios of NIPAM and DMAEA, and DMAEA groups were then postsynthetically modified with this asymmetric azobenzene. Upon macrocycle addition, these polymers formed supramolecular hydrogels; relaxation dynamics increased with temperature due to temperature-dependent affinity reduction for the ternary complex. Application of UV light disrupted the supramolecular motif through azobenzene photoisomerization, prompting a gel-to-sol transition in the hydrogel. Excitingly, within several minutes at room temperature, thermal relaxation of azobenzene to its trans state afforded rapid hydrogel recovery. By revealing this supramolecular motif and employing facile means for its attachment onto pre-synthesized polymers, the approach described here may further enable stimuli-directed control of supramolecular hydrogels for a number of applications.
Collapse
Affiliation(s)
- Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Christopher J Addonizio
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Bo Su
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Sis
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Adam S Braegelman
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Dongping Liu
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| |
Collapse
|
99
|
Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle-hydrogel superstructures for biomedical applications. J Control Release 2020; 324:505-521. [PMID: 32464152 PMCID: PMC7429280 DOI: 10.1016/j.jconrel.2020.05.041] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
The incorporation of nanoparticles into hydrogels yields novel superstructures that have become increasingly popular in biomedical research. Each component of these nanoparticle-hydrogel superstructures can be easily modified, resulting in platforms that are highly tunable and inherently multifunctional. The advantages of the nanoparticle and hydrogel constituents can be synergistically combined, enabling these superstructures to excel in scenarios where employing each component separately may have suboptimal outcomes. In this review, the synthesis and fabrication of different nanoparticle-hydrogel superstructures are discussed, followed by an overview of their use in a range of applications, including drug delivery, detoxification, immune modulation, and tissue engineering. Overall, these platforms hold significant clinical potential, and it is envisioned that future development along these lines will lead to unique solutions for addressing areas of pressing medical need.
Collapse
Affiliation(s)
- Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jiyoung Heo
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
100
|
Hata Y, Kojima T, Maeda T, Sawada T, Serizawa T. pH‐Triggered Self‐Assembly of Cellulose Oligomers with Gelatin into a Double‐Network Hydrogel. Macromol Biosci 2020; 20:e2000187. [DOI: 10.1002/mabi.202000187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tomoya Kojima
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Tohru Maeda
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| | - Toshiki Sawada
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
- Precursory Research for Embryonic Science and TechnologyJapan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi‐shi Saitama 332‐0012 Japan
| | - Takeshi Serizawa
- Department of Chemical Science and EngineeringSchool of Materials and Chemical TechnologyTokyo Institute of Technology 2‐12‐1‐H121 Ookayama Meguro‐ku Tokyo 152‐8550 Japan
| |
Collapse
|