51
|
Molochkina EM, Treshchenkova YA. The Effect of Alpha-Tocopherol on the Activity of Acetylcholinesterases from Different Sources. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
52
|
RethnaPriya E, Ravichandran S, Gobinath T, Tilvi S, Devi SP. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem Phys Lipids 2019; 221:73-82. [PMID: 30922836 DOI: 10.1016/j.chemphyslip.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022]
Abstract
Sphingolipids have been considered for many years only as structural components of membranes. It is now acknowledged that they are also involved in controlling cellular processes such as proliferation.The present work was designed to find the anticancer activity of the crab Dromia dehanni hemolymph in in-vivo and in vitro with special reference to the anticancer compound sphingolipids isolation and characterization. The active fraction of the purified hemolymph was subjected to NMR and ESI-MS/MS analysis. The ESI-MS/MS spectrum exhibited intense signals for sodiated molecular ions [M + Na]+ of sphingomyelins (SM) identified as N-2-O-Acetyl-12 pentadecenoyl sphingosine phosphorylcholine, N-9-eicosenoyl- sphinganine phosphocholine and the corresponding dehydro sphingomyelin, N-9-eicosenoyl- dehydro- sphinganine phosphocholine along with the ions at m/z 147, 184 characteristic of phosphocholine. The present study revealed D. dehaani might be a great source for the novel anti-cancer compounds which can be used for human benefits.
Collapse
Affiliation(s)
- Elangovan RethnaPriya
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Samuthirapandian Ravichandran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India.
| | - Thilagar Gobinath
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, India
| | - Supriya Tilvi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| | - S Prabha Devi
- CSIR-National Institute of Oceanography, 403 004, Dona Paula, Goa, India
| |
Collapse
|
53
|
Firsov AM, Fomich MA, Bekish AV, Sharko OL, Kotova EA, Saal HJ, Vidovic D, Shmanai VV, Pratt DA, Antonenko YN, Shchepinov MS. Threshold protective effect of deuterated polyunsaturated fatty acids on peroxidation of lipid bilayers. FEBS J 2019; 286:2099-2117. [PMID: 30851224 DOI: 10.1111/febs.14807] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/06/2019] [Indexed: 01/08/2023]
Abstract
Autoxidation of polyunsaturated fatty acids (PUFAs) damages lipid membranes and generates numerous toxic by-products implicated in neurodegeneration, aging, and other pathologies. Abstraction of bis-allylic hydrogen atoms is the rate-limiting step of PUFA autoxidation, which is inhibited by replacing bis-allylic hydrogens with deuterium atoms (D-PUFAs). In cells, the presence of a relatively small fraction of D-PUFAs among natural PUFAs is sufficient to effectively inhibit lipid peroxidation (LPO). Here, we investigate the effect of various D-PUFAs on the stability of liposomes under oxidative stress conditions. The permeability of vesicle membranes to fluorescent dyes was measured as a proxy for bilayer integrity, and the formation of conjugated dienes was monitored as a proxy for LPO. Remarkably, both approaches reveal a similar threshold for the protective effect of D-PUFAs in liposomes. We show that protection rendered by D-PUFAs depends on the structure of the deuterated fatty acid. Our findings suggest that protection of PUFAs against autoxidation depends on the total level of deuterated bi-sallylic (CD2 ) groups present in the lipid bilayer. However, the phospholipid containing 6,6,9,9,12,12,15,15,18,18-d10 -docosahexaenoic acid exerts a stronger protective effect than should be expected from its deuteration level. These findings further support the application of D-PUFAs as preventive/therapeutic agents in numerous pathologies that involve LPO.
Collapse
Affiliation(s)
- Alexander M Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Maksim A Fomich
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Andrei V Bekish
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Olga L Sharko
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Elena A Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | | - Dragoslav Vidovic
- School of Chemistry, Monash University, Clayton, Melbourne, Australia
| | - Vadim V Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science, Minsk, Belarus
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Science, University of Ottawa, Canada
| | - Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
54
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
55
|
Huang X, Zhen J, Dong S, Zhang H, Van Halm-Lutterodt N, Yuan L. DHA and vitamin E antagonized the Aβ25–35-mediated neuron oxidative damage through activation of Nrf2 signaling pathways and regulation of CD36, SRB1 and FABP5 expression in PC12 cells. Food Funct 2019; 10:1049-1061. [DOI: 10.1039/c8fo01713a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study was designed to explore the neuroprotective effects of docosahexaenoic acid (DHA) and/or vitamin E (VE) in vitro.
Collapse
Affiliation(s)
- Xiaochen Huang
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Jie Zhen
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Shengqi Dong
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | - Huiqiang Zhang
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| | | | - Linhong Yuan
- School of Public Health
- Capital Medical University
- Beijing 100069
- P.R. China
| |
Collapse
|
56
|
Vitamin E-inspired multi-scale imaging agent. Bioorg Med Chem Lett 2019; 29:107-114. [PMID: 30459096 DOI: 10.1016/j.bmcl.2018.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
The production and use of multi-modal imaging agents is on the rise. The vast majority of these imaging agents are limited to a single length scale for the agent (e.g. tissues only), which is typically at the organ or tissue scale. This work explores the synthesis of such an imaging agent and discusses the applications of our vitamin E-inspired multi-modal and multi-length scale imaging agents TB-Toc ((S,E)-5,5-difluoro-7-(2-(5-((6-hydroxy-2,5,7,8-tetramethylchroman-2-yl) methyl) thiophen-2-yl) vinyl)-9-methyl-5H-dipyrrolo-[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide). We investigate the toxicity of TB-Toc along with the starting materials and lipid based delivery vehicle in mouse myoblasts and fibroblasts. Further we investigate the uptake of TB-Toc delivered to cultured cells in both solvent and liposomes. TB-Toc has low toxicity, and no change in cell viability was observed up to concentrations of 10 mM. TB-Toc shows time-dependent cellular uptake that is complete in about 30 min. This work is the first step in demonstrating our vitamin E derivatives are viable multi-modal and length scale diagnostic tools.
Collapse
|
57
|
Hu R, He T, Zhang Z, Yang Y, Liu M. Safety analysis of edible oil products via Raman spectroscopy. Talanta 2019; 191:324-332. [PMID: 30262067 DOI: 10.1016/j.talanta.2018.08.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 02/03/2023]
Abstract
Raman spectroscopy is a spectroscopic technique based on Raman scattering effects and provide a structural fingerprint by which molecules can be identified. Owing to its non-destructive, high sensitivity and allowing on-line detection, Raman spectroscopy is now increasingly being applied in various fields from fundamental research to engineering in food safety. Edible oils provide high nutritional value in the human diet and their safety and quality have become a major concern and issue. Thus, edible oils have been the subject of a number of applications of Raman spectroscopy. This present review briefly evaluates Raman spectroscopy applications in the quality and safety analysis of oil products in the latest decade. In addition, by integrating the introduction of the detection of harmful substances and bioactive components in oil product, this paper also summarizes a series of emerging analytical technologies in applications of Raman spectroscopy.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaowei Zhang
- Oil Crops Research Institute of CAAS, Wuhan 430062, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
58
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
59
|
Boonnoy P, Karttunen M, Wong-ekkabut J. Does α-Tocopherol Flip-Flop Help to Protect Membranes Against Oxidation? J Phys Chem B 2018; 122:10362-10370. [DOI: 10.1021/acs.jpcb.8b09064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Jirasak Wong-ekkabut
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok 10400, Thailand
| |
Collapse
|
60
|
Leng X, Zhu F, Wassall SR. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study. J Phys Chem B 2018; 122:8351-8358. [PMID: 30111105 DOI: 10.1021/acs.jpcb.8b05016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin E is an essential micronutrient. The primary function of this lipid-soluble antioxidant is to protect membrane phospholipids from oxidation. Whether vitamin E preferentially interacts with polyunsaturated phospholipids to optimize protection of the lipid species most vulnerable to oxidative attack has been an unanswered question for a long time. In this work, we compared the binding of α-tocopherol (αtoc), the form of vitamin E retained by the human body, in bilayers composed of polyunsaturated 1-stearoyl-2-docosahexaenoylphosphatidylcholine (SDPC, 18:0-22:6PC) and, as a control, monounsaturated 1-stearoyl-2-oleoylphosphatidylcholine (SOPC, 18:0-18:1PC) by umbrella sampling molecular dynamics simulations. From the potential of mean force as a function depth within the bilayer, we find that the binding energy of αtoc is less in SDPC (Δ Gbind = 16.7 ± 0.3 kcal/mol) than that in SOPC (Δ Gbind = 18.3 ± 0.4 kcal/mol). The lower value in SDPC is ascribed to the high disorder of polyunsaturated fatty acids that produces a less tightly packed arrangement. Deformation of the bilayer is observed during desorption, indicating that phosphatidylcholine (PC)-PC and αtoc-PC interactions contribute to the binding energy. Our results do not support the proposal that vitamin E interacts more favorably with polyunsaturated phospholipids.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Fangqiang Zhu
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Stephen R Wassall
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| |
Collapse
|
61
|
Kanarovskii EY, Yaltychenko OV, Gorinchoy NN. Kinetics of Antioxidant Activity of α-Tocopherol and Some of Its Homologues: Part 1. Review: Theoretical Model. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2018. [DOI: 10.3103/s1068375518050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Bentsen H, Landrø NI. Neurocognitive effects of an omega-3 fatty acid and vitamins E+C in schizophrenia: A randomised controlled trial. Prostaglandins Leukot Essent Fatty Acids 2018; 136:57-66. [PMID: 29079039 DOI: 10.1016/j.plefa.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023]
Abstract
There is need for more efficient treatment of neurocognitive deficits in schizophrenia. In this 16 weeks randomised, placebo-controlled trial, we examined neurocognitive effects of adding ethyl-eicosapentaenoate 2g/day and/or vitamins E 364mg/day + C 1000mg/day to antipsychotics in 53 patients aged 18-39 years with acute schizophrenia. For the sake of validating neurocognitive tests, healthy subjects, not taking trial drugs, were also included in the study. Ethyl-EPA given alone to patients with low baseline RBC polyunsaturated fatty acids (PUFA), and Vitamins E+C given alone to high PUFA patients, impaired sustained attention (Continuous Performance Test, CPT-IP d prime score), standardised effect sizes d = 0.78 and d = 0.69, respectively. These adverse effects were paralleled by excessive increases in long-chain PUFA and serum alpha-tocopherol, respectively. They were counteracted by combining ethyl-EPA and vitamins, d = 0.80 and d = 0.74 in low and high PUFA patients, respectively. No other neurocognitive tests yielded significant results. Plausible mechanisms of harmful effects are oxidative stress and lipid raft disruption.
Collapse
Affiliation(s)
- H Bentsen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Specialised Psychosis Treatment, Psychiatric Clinic, Haukeland University Hospital, Bergen, Norway.
| | - N I Landrø
- Clinical Neuroscience Research Group, Department of Psychology, Faculty of Social Sciences, University of Oslo, Norway
| |
Collapse
|
63
|
Benhenia K, Rahab H, Smadi MA, Benmakhlouf H, Lamara A, Idres T, Iguer-Ouada M. Beneficial and harmful effects of cyclodextrin-vitamin E complex on cryopreserved ram sperm. Anim Reprod Sci 2018; 195:266-273. [PMID: 29891254 DOI: 10.1016/j.anireprosci.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Vitamin E is a potent molecule, especially when loaded in cyclodextrin, in modulating oxidative stress during the freeze-thawing process. The present study aimed to investigate the effect of different concentrations of cyclodextrin-vitamin E complex (CD-Vit E) on cryopreserved ram sperm. Ejaculates collected from five adult rams were pooled and divided into four aliquots. All aliquots were treated in Tris-extender (Tris-glucose-citric acid) containing 2 mg cholesterol-loaded methyl-β- cyclodextrin/120 × 106 spermatozoa and either 0 (Control), 2, 4 or 6 mg CD-Vit E/120 × 106 spermatozoa, corresponding to 0, 0.5, 1 or 1.5 of pure vitamin E, respectively. After incubation at 22 °C for 15 min and the addition of Tris-extender containing glycerol and egg yolk (v/v), all aliquots were frozen in liquid nitrogen. After thawing, motility (computer aided sperm analysis), viability (eosin staining), membrane integrity (HOST), acrosome integrity (Coomassie G-250 staining) and lipid peroxidation (Thiobarbituric acid assay) were evaluated. Compared to control, 2 mg CD-Vit E had a significant positive effect on total motility, progressive motility, movement linearity (LIN%), viability and lipid peroxidation. At 4 mg, however, CD-Vit E had a significant negative effect on total motility, progressive motility, membrane functionality and acrosome integrity. At a greater concentration (6 mg), the negative effects were greater as compared with inclusion of 4 mg in the cryoprotectant and the percentage of rapidly and moderately motile gametes and viability were also altered. In conclusion, the effect of CD-Vit E on cryopreserved ram sperm was concentration-dependent with the 2 mg amount having a beneficial effect while greater concentrations (4 and 6 mg) had a harmful effect on sperm motility and gamete integrity but without affecting oxidative stress status.
Collapse
Affiliation(s)
- Karim Benhenia
- National Center for Biotechnology Research (CRBt), Ali Mendjli Nouvelle Ville UV 03 BP E73 Constantine, Algeria; Superior National Veterinary School, BP 161, Algiers, Algeria.
| | - Hamza Rahab
- National Center for Biotechnology Research (CRBt), Ali Mendjli Nouvelle Ville UV 03 BP E73 Constantine, Algeria; Superior National Veterinary School, BP 161, Algiers, Algeria
| | - Mustapha-Adnane Smadi
- National Center for Biotechnology Research (CRBt), Ali Mendjli Nouvelle Ville UV 03 BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna 05000, Algeria
| | - Hamza Benmakhlouf
- Institute of Animal Husbandry Techniques (ITELV), Ain M'lila, Algeria
| | - Ali Lamara
- Superior National Veterinary School, BP 161, Algiers, Algeria
| | | | - Mokrane Iguer-Ouada
- Associated Laboratory in Marine Ecosystems and Aquaculture, Department of Biological Sciences of the Environment, Faculty of Nature and Life Sciences, Abderrahmane-Mira-University, Route de Targua Ouzemmour, 06000 Bejaia, Algeria
| |
Collapse
|
64
|
Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med 2018; 120:425-440. [PMID: 29625172 DOI: 10.1016/j.freeradbiomed.2018.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
The unregulated oxidative modification of lipids, proteins, and nucleic acids induced by multiple oxidants has been implicated in the pathogenesis of many diseases. Antioxidants with diverse functions exert their roles either directly or indirectly in the physiological defense network to inhibit such deleterious oxidative modification of biological molecules and resulting damage. The efficacy of antioxidants depends on the nature of oxidants. Therefore, it is important to identify the oxidants which are responsible for modification of biological molecules. Some oxidation products produced selectively by specific oxidant enable to identify the responsible oxidants, while other products are produced by several oxidants similarly. In this review article, several oxidant-specific products produced selectively by peroxyl radicals, peroxynitrite, hypochlorous acid, lipoxygenase, and singlet oxygen were summarized and their potential role as biomarker is discussed. It is shown that the levels of specific oxidation products including hydroxylinoleate isomers, nitrated and chlorinated products, and oxysterols produced by the above-mentioned oxidants are elevated in the human atherosclerotic lesions, suggesting that all these oxidants may contribute to the development of atherosclerosis. Further, it was shown that the reactivities of physiological antioxidants toward the above-mentioned oxidants vary extensively, suggesting that multiple antioxidants effective against these different oxidants are required, since no single antioxidant alone can cope with these multiple oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- National Institute of Advanced Industrial Science & Technology, Takamatsu 761-0395, Japan.
| |
Collapse
|
65
|
Dietary Vitamin E Status Dictates Oxidative Stress Outcomes by Modulating Effects of Fish Oil Supplementation in Alzheimer Disease Model APPswe/PS1dE9 Mice. Mol Neurobiol 2018; 55:9204-9219. [DOI: 10.1007/s12035-018-1060-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
|
66
|
Cansev M, Turkyilmaz M, Sijben JWC, Sevinc C, Broersen LM, van Wijk N. Synaptic Membrane Synthesis in Rats Depends on Dietary Sufficiency of Vitamin C, Vitamin E, and Selenium: Relevance for Alzheimer's Disease. J Alzheimers Dis 2018; 59:301-311. [PMID: 28598848 PMCID: PMC5502840 DOI: 10.3233/jad-170081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic consumption of a diet enriched with nutritional precursors of phospholipids, including uridine and the polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), was shown previously to enhance levels of brain phospholipids and synaptic proteins in rodents. Vitamin C, vitamin E, and selenium may directly affect the breakdown or synthesis of membrane phospholipids. The present study investigated the necessity of antioxidants for the effectiveness of supplementation with uridine plus DHA and EPA (as fish oil) in rats. Rats were randomized to four treatment groups and received, for 6 weeks, one of four experimental diets, i.e., a diet low in antioxidants, a diet high in antioxidants, a diet low in antioxidants supplemented with DHA+EPA+uridine, or a diet high in antioxidants supplemented with DHA+EPA+uridine. On completion of dietary treatment, rats were sacrificed, and brain levels of phospholipids, synaptic proteins, and two enzymes involved in phospholipid synthesis (choline-phosphate cytidylyltransferase, PCYT1A, and choline/ethanolamine phosphotransferase, CEPT1) were analyzed. Levels of phospholipids, the pre- and post-synaptic proteins Synapsin-1 and PSD95, and the enzymes PCYT1A and CEPT1 were significantly enhanced by combined supplementation of DHA+EPA+uridine and antioxidants and not enhanced by supplementation of DHA+EPA+uridine with insufficient antioxidant levels. Our data suggest that dietary vitamin C, vitamin E, and selenium are essential for the phospholipid precursors' effects on increasing levels of membrane phospholipids and synaptic proteins, the indirect indicators of synaptogenesis. Their concomitant supply may be relevant in Alzheimer's disease patients, because the disease is characterized by synapse loss and lower plasma and brain levels of phospholipid precursors and antioxidants.
Collapse
Affiliation(s)
- Mehmet Cansev
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - Mesut Turkyilmaz
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - John W C Sijben
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Cansu Sevinc
- Department of Pharmacology, Uludag University Medical School, Gorukle, Bursa, Turkey
| | - Laus M Broersen
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Nick van Wijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| |
Collapse
|
67
|
Ausili A, Torrecillas A, de Godos AM, Corbalán-García S, Gómez-Fernández JC. Phenolic Group of α-Tocopherol Anchors at the Lipid-Water Interface of Fully Saturated Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3336-3348. [PMID: 29447442 DOI: 10.1021/acs.langmuir.7b04142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
α-Tocopherol is considered to carry on a very important role as an antioxidant for membranes and lipoproteins and other biological roles as membrane stabilizers and bioactive lipids. Given its essential role, it is very important to fully understand its location in the membrane. In this work, the vertical location of vitamin E in saturated membranes has been studied using biophysical techniques. Small- and wide-angle X-ray diffraction experiments show that α-tocopherol alters the water layer between bilayers in both 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), indicating its proximity to this surface. The quenching of the intrinsic fluorescence of α-tocopherol indicates a low quenching efficiency by acrylamide and a higher quenching by 5-doxyl-PC than by 9- and 16-doxyl-PC. These results suggest that in both DMPC and DPPC membranes, the chromanol ring is not far away from the surface of the membrane but within the bilayer. 1H nuclear Overhauser enhancement spectroscopy magic-angle spinning-nuclear magnetic resonance studies showed that α-tocopherol is localized in a similar manner in DMPC and DPPC membranes, with the chromanol ring embedded in the upper part of the hydrophobic bilayer. Using attenuated total reflection-Fourier transform infrared spectroscopy, it was observed that the tail chain of α-tocopherol lies nearly parallel to the acyl chains of DMPC and DPPC. Taking these results together, it was concluded that in both DMPC and DPPC, the hydroxyl group of the chromanol ring will establish hydrogen bonding with water on the membrane surface, and the main axis of the α-tocopherol molecule will be perpendicular to the bilayer plane.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence Mare Nostrum , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
68
|
Abstract
Lauryl gallate (LG) is an antioxidant agent. However, it exhibits poor solubility in water. Its interactions with the membrane result in structure evolution thus affecting the membrane functionality. In this paper the Brewster angle microscope coupled with the Langmuir trough was applied to determine the morphology, phase behaviour, thickness and miscibility of ternary Langmuir monolayers with equal mole fractions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and an increasing mole fraction of LG. The results were discussed as regards analogous systems where cholesterol (Chol) was the third component. Moreover, the phosphatidylcholine–lauryl gallate (PC–LG) interactions were monitored by the attenuated total reflectance Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry. Besides lipid composition, the addition of LG was found to be a significant factor to modulate the model membrane properties. The LG molecules adjust themselves to the PC monolayer structure. The hydrophobic fragment is dipped into the membrane interior while the hydroxyl groups of phenolic gallate moiety associate with the polar groups of PC mainly through hydrogen bonding inducing the compacting effect. LG is found to be deeply submerged within DOPC, closer to the double bonds, and its insertion practically does not affect the DPPC/DOPC membrane fluidity. This is crucial for getting more profound insight into the role of LG in stabilizing the non-raft domains, mostly exposed to oxidation in which LG can co-localize and serve its antioxidant function.
Collapse
|
69
|
Ausili A, de Godos AM, Torrecillas A, Aranda FJ, Corbalán-García S, Gómez-Fernández JC. The vertical location of α-tocopherol in phosphatidylcholine membranes is not altered as a function of the degree of unsaturation of the fatty acyl chains. Phys Chem Chem Phys 2018; 19:6731-6742. [PMID: 28211935 DOI: 10.1039/c6cp08872d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
α-Tocopherol is a natural preservative that prevents free radical chain oxidations in biomembranes. We have studied the location of α-tocopherol in model membranes formed by different unsaturated phosphatidylcholines, namely 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC), 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC). Small angle X-ray diffraction revealed that α-tocopherol was well mixed with all the phospholipids. In all the cases only one lamellar phase was detected. Very modest changes occasioned by α-tocopherol were observed in the electron density profiles. The results obtained from quenching of α-tocopherol intrinsic fluorescence by acrylamide showed that this vitamin was inefficiently quenched in the four types of membranes, indicating that the fluorescent chromanol ring was poorly accessible for this hydrophilic quencher. Compatible with that, quenching by doxyl derivatives of phosphatidylcholines indicated that the chromanol ring was close in the four membranes to the nitroxide probe located at position 5. Quenching by doxyl-phosphatidylcholines also indicated that the efficiency of quenching was higher in POPC than in the other unsaturated phospholipids. 1H-MAS-NMR showed that α-tocopherol induced chemical shifts of protons from the phospholipids, especially of those bonded to carbons 2 and 3 of the acyl chains of the four phospholipids studied. The 1H-MAS-NMR NOESY results suggested that the lower part of the chromanol ring was located between the C3 of the fatty acyl chains and the centre of the hydrophobic monolayer for the four phospholipid membranes studied. Taken together, these results suggest that α-tocopherol is located, in all the membranes studied, with the chromanol ring within the hydrophobic palisade but not far away from the lipid-water interface.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| | - Ana M de Godos
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| | - Alejandro Torrecillas
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain.
| |
Collapse
|
70
|
Breton M, Mir LM. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry 2018; 119:76-83. [DOI: 10.1016/j.bioelechem.2017.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/01/2022]
|
71
|
Mohn ES, Kuchan MJ, Erdman JW, Neuringer M, Matthan NR, Chen CYO, Johnson EJ. The Subcellular Distribution of Alpha-Tocopherol in the Adult Primate Brain and Its Relationship with Membrane Arachidonic Acid and Its Oxidation Products. Antioxidants (Basel) 2017; 6:antiox6040097. [PMID: 29186823 PMCID: PMC5745507 DOI: 10.3390/antiox6040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
The relationship between α-tocopherol, a known antioxidant, and polyunsaturated fatty acid (PUFA) oxidation, has not been directly investigated in the primate brain. This study characterized the membrane distribution of α-tocopherol in brain regions and investigated the association between membrane α-tocopherol and PUFA content, as well as brain PUFA oxidation products. Nuclear, myelin, mitochondrial, and neuronal membranes were isolated using a density gradient from the prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC) of adult rhesus monkeys (n = 9), fed a stock diet containing vitamin E (α-, γ-tocopherol intake: ~0.7 µmol/kg body weight/day, ~5 µmol/kg body weight/day, respectively). α-tocopherol, PUFAs, and PUFA oxidation products were measured using high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography-gas chromatography/mass spectrometry (LC-GC/MS) respectively. α-Tocopherol (ng/mg protein) was highest in nuclear membranes (p < 0.05) for all regions except HC. In PFC and ST, arachidonic acid (AA, µg/mg protein) had a similar membrane distribution to α-tocopherol. Total α-tocopherol concentrations were inversely associated with AA oxidation products (isoprostanes) (p < 0.05), but not docosahexaenoic acid oxidation products (neuroprostanes). This study reports novel data on α-tocopherol accumulation in primate brain regions and membranes and provides evidence that α-tocopherol and AA are similarly distributed in PFC and ST membranes, which may reflect a protective effect of α-tocopherol against AA oxidation.
Collapse
Affiliation(s)
- Emily S. Mohn
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | | | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA;
| | - Nirupa R. Matthan
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Chung-Yen Oliver Chen
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Elizabeth J. Johnson
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
72
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
73
|
Park JE, Gallagher T. Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides. Virology 2017; 511:9-18. [PMID: 28802158 PMCID: PMC7112077 DOI: 10.1016/j.virol.2017.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
Coronaviruses (CoVs) can cause life-threatening respiratory diseases. Their infectious entry requires viral spike (S) proteins, which attach to cell receptors, undergo proteolytic cleavage, and then refold in a process that catalyzes virus-cell membrane fusion. Fusion-inhibiting peptides bind to S proteins, interfere with refolding, and prevent infection. Here we conjugated fusion-inhibiting peptides to various lipids, expecting this to secure peptides onto cell membranes and thereby increase antiviral potencies. Cholesterol or palmitate adducts increased antiviral potencies up to 1000-fold. Antiviral effects were evident after S proteolytic cleavage, implying that lipid conjugates affixed the peptides at sites of protease-triggered fusion activation. Unlike lipid-free peptides, the lipopeptides suppressed CoV S protein-directed virus entry taking place within endosomes. Cell imaging revealed intracellular peptide aggregates, consistent with their endocytosis into compartments where CoV entry takes place. These findings suggest that lipidations localize antiviral peptides to protease-rich sites of CoV fusion, thereby protecting cells from diverse CoVs. Lipidation increases antiviral activities of CoV fusion-inhibiting peptides. Fusion-inhibiting peptides target proteolytically-triggered CoV spike proteins. Lipidated peptides suppress CoVs that are occluded within endosomes before cytosolic entry.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
74
|
Azouzi S, Santuz H, Morandat S, Pereira C, Côté F, Hermine O, El Kirat K, Colin Y, Le Van Kim C, Etchebest C, Amireault P. Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophys J 2017; 112:1863-1873. [PMID: 28494957 DOI: 10.1016/j.bpj.2017.03.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.
Collapse
Affiliation(s)
- Slim Azouzi
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hubert Santuz
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sandrine Morandat
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire FRE 3580, Centre de Recherche Royallieu, Compiègne, France
| | - Catia Pereira
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Francine Côté
- Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Karim El Kirat
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de BioMécanique et BioIngénierie UMR 7338, Centre de Recherche Royallieu, Compiègne cedex, France
| | - Yves Colin
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Etchebest
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France.
| | - Pascal Amireault
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France; Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France.
| |
Collapse
|
75
|
Tsai C, Rezamand P, Loucks W, Scholte C, Doumit M. The effect of dietary fat on fatty acid composition, gene expression and vitamin status in pre-ruminant calves. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
76
|
Nonalcoholic fatty liver disease impairs the cytochrome P-450-dependent metabolism of α-tocopherol (vitamin E). J Nutr Biochem 2017. [PMID: 28628909 DOI: 10.1016/j.jnutbio.2017.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aims to investigate in in vivo and in vitro models of nonalcoholic fatty liver disease (NAFLD) the enzymatic metabolism of α-tocopherol (vitamin E) and its relationship to vitamin E-responsive genes with key role in the lipid metabolism and detoxification of the liver. The experimental models included mice fed a high-fat diet combined or not with fructose (HFD+F) and HepG2 human hepatocarcinoma cells treated with the lipogenic agents palmitate, oleate or fructose. CYP4F2 protein, a cytochrome P-450 isoform with proposed α-tocopherol ω-hydroxylase activity, decreased in HFD and even more in HFD+F mice liver; this finding was associated with increased hepatic levels of α-tocopherol and decreased formation of the corresponding long-chain metabolites α-13-hydroxy and α-13-carboxy chromanols. A decreased expression was also observed for PPAR-γ and SREBP-1 proteins, two vitamin E-responsive genes with key role in lipid metabolism and CYP4F2 gene regulation. A transient activation of CYP4F2 gene followed by a repression response was observed in HepG2 cells during the exposure to increasing levels of the lipogenic and cytotoxic agent palmitic acid; such gene repression effect was further exacerbated by the co-treatment with oleic acid and α-tocopherol and was also observed for PPAR-γ and the SREBP isoforms 1 and 2. Such gene response was associated with increased uptake and ω-hydroxylation of α-tocopherol, which suggests a minor role of CYP4F2 in the enzymatic metabolism of vitamin E in HepG2 cells. In conclusion, the liver metabolism and gene response of α-tocopherol are impaired in experimental NAFLD.
Collapse
|
77
|
Xiang C, Xu Z, Liu J, Li T, Yang Z, Ding C. Quality, composition, and antioxidant activity of virgin olive oil from introduced varieties at Liangshan. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
78
|
Fiorino S, Bacchi-Reggiani ML, Leandri P, Loggi E, Andreone P. Vitamin E for the treatment of children with hepatitis B e antigen-positive chronic hepatitis: A systematic review and meta-analysis. World J Hepatol 2017; 9:333-342. [PMID: 28293383 PMCID: PMC5332423 DOI: 10.4254/wjh.v9.i6.333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/24/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess vitamin E efficacy, defined as its ability to induce hepatitis B e antigen (HBeAg) seroconversion, in children with HBeAg-positive persistent hepatitis. METHODS In July 2016, we extracted articles published in MEDLINE and the Cochrane Library using the following search terms: "chronic hepatitis B", "children", "childhood", "therapy", "treatment", "vitamin E", "tocopherols", "tocotrienols". Only randomized controlled trials (RCTs) published in English language were collected. RESULTS Three RCTs met inclusion criteria and were considered in the present meta-analysis. Overall, 23/122 children in the treatment group underwent HBeAg seroconversion vs 3/74 in the control group (OR = 3.96, 95%CI: 1.18-13.25, P = 0.025). CONCLUSION Although our meta-analysis has several limits, including the very small number of available studies and enrolled children with HBeAg positivity-related hepatitis, it suggests that vitamin E use may enhance the probability to induce HBeAg seroconversion in these patients. Further well designed and adequately sized trials are required to confirm or deny these very preliminary results.
Collapse
Affiliation(s)
- Sirio Fiorino
- Sirio Fiorino, Paolo Leandri, Unità Operativa di Medicina Interna C, Ospedale Maggiore, AUSL Bologna, 40100 Bologna, Italy
| | - Maria Letizia Bacchi-Reggiani
- Sirio Fiorino, Paolo Leandri, Unità Operativa di Medicina Interna C, Ospedale Maggiore, AUSL Bologna, 40100 Bologna, Italy
| | - Paolo Leandri
- Sirio Fiorino, Paolo Leandri, Unità Operativa di Medicina Interna C, Ospedale Maggiore, AUSL Bologna, 40100 Bologna, Italy
| | - Elisabetta Loggi
- Sirio Fiorino, Paolo Leandri, Unità Operativa di Medicina Interna C, Ospedale Maggiore, AUSL Bologna, 40100 Bologna, Italy
| | - Pietro Andreone
- Sirio Fiorino, Paolo Leandri, Unità Operativa di Medicina Interna C, Ospedale Maggiore, AUSL Bologna, 40100 Bologna, Italy
| |
Collapse
|
79
|
Zarei M, Fakher S, Tabei SMB, Javanbakht MH, Derakhshanian H, Farahbakhsh-Farsi P, Sadeghi MR, Mostafavi E, Djalali M. Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates. Singapore Med J 2017; 57:153-6. [PMID: 26996784 DOI: 10.11622/smedj.2015102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION This study was designed and conducted to evaluate the effects of vitamin A, C and E supplementation, and omega-3 fatty acid supplementation on the activity of paraoxonase and arylesterase in an experimental model of diabetes mellitus. METHODS A total of 64 male Sprague Dawley® rats, each weighing 250 g, were randomly distributed into four groups: (a) normal control; (b) diabetic control; (c) diabetic with vitamin A, C and E supplementation; and (d) diabetic with omega-3 fatty acid supplementation. The animals were anaesthetised after four weeks of intervention, and paraoxonase and arylesterase activity in blood plasma, and liver and heart homogenates were measured. RESULTS Arylesterase activity in the heart and liver homogenates was significantly lower in the diabetic control group than in the normal control group (p < 0.01). Vitamin A, C and E supplementation, and omega-3 fatty acid supplementation significantly increased liver arylesterase activity (p < 0.05). No significant change was observed in paraoxonase activity and other investigated factors. CONCLUSION Vitamin A, C and E, or omega-3 fatty acid supplementation were found to increase liver arylesterase activity in streptozotocin-induced diabetic rats. These supplements may be potential agents for the treatment of diabetes mellitus complications.
Collapse
Affiliation(s)
- Mahnaz Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Fakher
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Derakhshanian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Farahbakhsh-Farsi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Department of Reproductive Endocrinology and Embryology, Avesina Research Institute, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Pathology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
80
|
Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, Rosignoli P, Rossi T, Taticchi A, Servili M, Galli F. Nutrigenomics of extra-virgin olive oil: A review. Biofactors 2017; 43:17-41. [PMID: 27580701 DOI: 10.1002/biof.1318] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017.
Collapse
Affiliation(s)
- Marta Piroddi
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| | - Adriana Albini
- IRCCS MultiMedica, Scientific and Technology Pole, Milan, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Lisa Giovannelli
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Cristina Luceri
- NEUROFARBA - Section of Phamacology and Toxicology, University of Firenze, Italy
| | - Fausta Natella
- CREA-NUT, Consiglio per La Ricerca in Agricoltura E L'Analisi Dell'Economia Agraria, Food and Nutrition Research Centre, via Ardeatina 546, 00178, Roma, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Italy
| | - Teresa Rossi
- Research and Statistics, Department, IRCCS "Tecnologie Avanzate E Modelli Assistenziali in Oncologia", Laboratory of Translational Research, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Agnese Taticchi
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural Food and Environmental Sciences, University of Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Nutrition and Clinical Biochemistry Lab, University of Perugia, Italy
| |
Collapse
|
81
|
Ambrogini P, Betti M, Galati C, Di Palma M, Lattanzi D, Savelli D, Galli F, Cuppini R, Minelli A. α-Tocopherol and Hippocampal Neural Plasticity in Physiological and Pathological Conditions. Int J Mol Sci 2016; 17:E2107. [PMID: 27983697 PMCID: PMC5187907 DOI: 10.3390/ijms17122107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022] Open
Abstract
Neuroplasticity is an "umbrella term" referring to the complex, multifaceted physiological processes that mediate the ongoing structural and functional modifications occurring, at various time- and size-scales, in the ever-changing immature and adult brain, and that represent the basis for fundamental neurocognitive behavioral functions; in addition, maladaptive neuroplasticity plays a role in the pathophysiology of neuropsychiatric dysfunctions. Experiential cues and several endogenous and exogenous factors can regulate neuroplasticity; among these, vitamin E, and in particular α-tocopherol (α-T), the isoform with highest bioactivity, exerts potent effects on many plasticity-related events in both the physiological and pathological brain. In this review, the role of vitamin E/α-T in regulating diverse aspects of neuroplasticity is analyzed and discussed, focusing on the hippocampus, a brain structure that remains highly plastic throughout the lifespan and is involved in cognitive functions. Vitamin E-mediated influences on hippocampal synaptic plasticity and related cognitive behavior, on post-natal development and adult hippocampal neurogenesis, as well as on cellular and molecular disruptions in kainate-induced temporal seizures are described. Besides underscoring the relevance of its antioxidant properties, non-antioxidant functions of vitamin E/α-T, mainly involving regulation of cell signaling molecules and their target proteins, have been highlighted to help interpret the possible mechanisms underlying the effects on neuroplasticity.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michele Betti
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Claudia Galati
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| | - Andrea Minelli
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy.
| |
Collapse
|
82
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
83
|
Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8679469. [PMID: 27313834 PMCID: PMC4899610 DOI: 10.1155/2016/8679469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/29/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023]
Abstract
Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane-liposomes of pure bovine heart CL-we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature.
Collapse
|
84
|
Interactions of lauryl gallate with phospholipid components of biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1821-32. [PMID: 27117642 DOI: 10.1016/j.bbamem.2016.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022]
Abstract
The effect of different amounts of lauryl gallate (LG) on properties of the model membranes of phosphatidylcholines (PC), differing in the presence of double bonds in the hydrocarbon chains, and phosphatidylglycerol (PG) was described in terms of phase behaviour of mixtures, interactions between both components, monolayers stability and their organization. The Langmuir monolayer technique was used to monitor the surface thermodynamics (i.e. the excess area and excess Gibbs energy of mixing) on the basis of surface pressure-area per molecule (π-A) isotherms. Simultaneously, morphology of the studied monolayers was visualized by the Brewster angle microscopy (BAM). This allowed evaluating the kind and magnitude of interactions which influence on the phase behaviour and structural properties of the monolayers. The obtained results can be helpful to reveal the mechanism of phospholipid antioxidant protection and important pharmacological (antimicrobial) role of lauryl gallate for production of effective therapeutic substances.
Collapse
|
85
|
Fabre G, Bayach I, Berka K, Paloncýová M, Starok M, Rossi C, Duroux JL, Otyepka M, Trouillas P. Synergism of antioxidant action of vitamins E, C and quercetin is related to formation of molecular associations in biomembranes. Chem Commun (Camb) 2016; 51:7713-6. [PMID: 25851839 DOI: 10.1039/c5cc00636h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vitamins E, C and polyphenols (flavonoids and non-flavonoids) are major natural antioxidants capable of preventing damage generated by oxidative stress. Here we show the capacity of these antioxidants to form non-covalent association within lipid bilayers close to the membrane/cytosol interface. Antioxidant regeneration is significantly enhanced in these complexes.
Collapse
Affiliation(s)
- Gabin Fabre
- LCSN EA1069, Univ. Limoges, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Cui L, Decker EA. Phospholipids in foods: prooxidants or antioxidants? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:18-31. [PMID: 26108454 DOI: 10.1002/jsfa.7320] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 05/25/2023]
Abstract
Lipid oxidation is one of the major causes of quality deterioration in natural and processed foods and thus a large economic concern in the food industry. Phospholipids, especially lecithins, are already widely used as natural emulsifiers and have been gaining increasing interest as natural antioxidants to control lipid oxidation. This review summarizes the fatty acid composition and content of phospholipids naturally occurring in several foods. The role of phospholipids as substrates for lipid oxidation is discussed, with a focus on meats and dairy products. Prooxidant and antioxidant mechanisms of phospholipids are also discussed to get a better understanding of the possible opportunities for using phospholipids as food antioxidants.
Collapse
Affiliation(s)
- Leqi Cui
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Bioactive Natural Products Research Group, Department of Biochemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
87
|
Søfteland L, Berntssen MH, Kirwan JA, Størseth TR, Viant MR, Torstensen BE, Waagbø R, Olsvik PA. Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon ( Salmo salar L.) than omega-6 and gamma tocopherol. Toxicol Rep 2016; 3:211-224. [PMID: 28959541 PMCID: PMC5615787 DOI: 10.1016/j.toxrep.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
Extended use of plant ingredients in Atlantic salmon farming has increased the need for knowledge on the effects of new nutrients and contaminants in plant based feeds on fish health and nutrient-contaminant interactions. Primary Atlantic salmon hepatocytes were exposed to a mixture of PAHs and pesticides alone or in combination with the nutrients ARA, EPA, α-tocopherol, and γ-tocopherol according to a factorial design. Cells were screened for effects using xCELLigence cytotoxicity screening, NMR spectroscopy metabolomics, mass spectrometry lipidomics and RT-qPCR transcriptomics. The cytotoxicity results suggest that adverse effects of the contaminants can be counteracted by the nutrients. The lipidomics suggested effects on cell membrane stability and vitamin D metabolism after contaminant and fatty acid exposure. Co-exposure of the contaminants with EPA or α-tocopherol contributed to an antagonistic effect in exposed cells, with reduced effects on the VTG and FABP4 transcripts. ARA and γ-tocopherol strengthened the contaminant-induced response, ARA by contributing to an additive and synergistic induction of CYP1A, CYP3A and CPT2, and γ-tocopherol by synergistically increasing ACOX1. Individually EPA and α-tocopherol seemed more beneficial than ARA and γ-tocopherol in preventing the adverse effects induced by the contaminant mixture, though a combination of all nutrients showed the greatest ameliorating effect.
Collapse
Affiliation(s)
- Liv Søfteland
- National Institute of Nutrition and Seafood Research, Norway
| | | | | | | | - Mark R. Viant
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Rune Waagbø
- National Institute of Nutrition and Seafood Research, Norway
| | - Pål A. Olsvik
- National Institute of Nutrition and Seafood Research, Norway
| |
Collapse
|
88
|
Lor C, Hirst LS. Effects of Low Concentrations of Docosahexaenoic Acid on the Structure and Phase Behavior of Model Lipid Membranes. MEMBRANES 2015; 5:857-74. [PMID: 26690231 PMCID: PMC4704016 DOI: 10.3390/membranes5040857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/25/2015] [Indexed: 11/21/2022]
Abstract
In this paper we report an X-ray diffraction study on the phase behavior of binary lipid mixtures of 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (DHA-PE) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at low concentrations below 5.0 mol% DHA-PE. Our results show that DHA-PE induces phase separation into a DHA rich liquid crystalline (Lα) phase and a DHA poor gel (Lβ') phase at overall DHA-PE concentrations as low as 0.1 mol%. In addition, we find that the structure of the Lβ' phase, from which the DHA-PE molecules are largely excluded, is modified in the phase-separated state at low DHA-PE concentrations, with a decrease in bilayer thickness of 1.34 nm for 0.1 mol% at room temperature, compared to pure DPPC bilayers. This result is contrary to that seen in similar studies on mono-unsaturated lipids where an increase in bilayer thickness is observed. The surprising effect of such low DHA-PE concentrations on membrane structure may be important in understanding the role of highly polyunsaturated lipids in biological membrane-based structures and similar artificial surfactant systems.
Collapse
Affiliation(s)
- Chai Lor
- Bioengineering and Small Scale Technologies, School of Engineering, University of California, Merced, CA 95343, USA.
| | - Linda S Hirst
- Department of Physics, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
89
|
Leng X, Kinnun JJ, Marquardt D, Ghefli M, Kučerka N, Katsaras J, Atkinson J, Harroun TA, Feller SE, Wassall SR. α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations. Biophys J 2015; 109:1608-18. [PMID: 26488652 PMCID: PMC4624157 DOI: 10.1016/j.bpj.2015.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Drew Marquardt
- Department of Physics, Brock University, St. Catharines, Ontario, Canada; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Mikel Ghefli
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada
| | - Norbert Kučerka
- Canadian Neutron Beam Centre, National Research Council, Chalk River, Ontario, Canada; Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - John Katsaras
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Joint Institute for Neutron Sciences, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, Ontario, Canada
| | - Thad A Harroun
- Department of Physics, Brock University, St. Catharines, Ontario, Canada
| | - Scott E Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana.
| |
Collapse
|
90
|
Broniatowski M, Flasiński M, Hąc-Wydro K. Antagonistic effects of α-tocopherol and ursolic acid on model bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2154-62. [PMID: 26003534 DOI: 10.1016/j.bbamem.2015.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/13/2015] [Indexed: 12/25/2022]
Abstract
α-tocopherol (Toc), the most active component of vitamin E can exert antagonistic effects disabling the therapy of cancers and bacterial infections. Such antagonisms were observed also between Toc and bioactive pentacyclic triterpenes (PT) exhibiting anticancer and antibacterial properties. Both Toc and PT are water-insoluble membrane active substances. Thus, our idea was to emulate their interactions with model Escherichia coli membranes. E. coli inner membranes were selected for the experiments because their lipid composition is quite simple and well characterized and the two main components are phosphatidylethanolamine and phosphatidylglycerol. As a model of E. coli membranes we applied Langmuir monolayers formed by the E. coli total extract of polar lipids (Etotal) as well as by the main lipid components: phosphatidylethanolamine (POPE) and phosphatidylglycerol (ECPG). The antagonistic effects of ursolic acid (Urs) and Toc were investigated with the application of ternary Langmuir monolayers formed by Urs, Toc and one of the phospholipids POPE or ECPG. Our studies indicated that the affinities of Urs and Toc towards the POPE molecule are comparable; whereas there are profound differences in the interactions of Urs and Toc with ECPG. Thus, the model experiments prove that in the case of E. coli membrane, the differences in the interactions between Urs and Toc with the anionic bacterial phosphatidylglycerol can be the key factor responsible for the antagonistic effects observed between PT and Toc in vivo.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland.
| | - Michał Flasiński
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
91
|
Abstract
Vitamin E (α-tocopherol) is recognised as a key essential lipophilic antioxidant in humans protecting lipoproteins, PUFA, cellular and intra-cellular membranes from damage. The aim of this review was to evaluate the relevant published data about vitamin E requirements in relation to dietary PUFA intake. Evidence in animals and humans indicates a minimal basal requirement of 4–5 mg/d of RRR-α-tocopherol when the diet is very low in PUFA. The vitamin E requirement will increase with an increase in PUFA consumption and with the degree of unsaturation of the PUFA in the diet. The vitamin E requirement related to dietary linoleic acid, which is globally the major dietary PUFA in humans, was calculated to be 0·4–0·6 mg of RRR-α-tocopherol/g of linoleic acid. Animal studies show that for fatty acids with a higher degree of unsaturation, the vitamin E requirement increases almost linearly with the degree of unsaturation of the PUFA in the relative ratios of 0·3, 2, 3, 4, 5 and 6 for mono-, di-, tri-, tetra-, penta- and hexaenoic fatty acids, respectively. Assuming a typical intake of dietary PUFA, a vitamin E requirement ranging from 12 to 20 mg of RRR-α-tocopherol/d can be calculated. A number of guidelines recommend to increase PUFA intake as they have well-established health benefits. It will be prudent to assure an adequate vitamin E intake to match the increased PUFA intake, especially as vitamin E intake is already below recommendations in many populations worldwide.
Collapse
|
92
|
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136-6129;
| |
Collapse
|
93
|
Ciesielska A, Kwiatkowska K. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target. Bioessays 2015; 37:789-801. [PMID: 25966354 DOI: 10.1002/bies.201500017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Anna Ciesielska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, Warsaw, Poland
| | - Katarzyna Kwiatkowska
- Nencki Institute of Experimental Biology, Laboratory of Molecular Membrane Biology, Warsaw, Poland
| |
Collapse
|
94
|
Miyake T, Honma Y, Urano T, Kato N, Suzumiya J. Combined treatment with tamoxifen and a fusicoccin derivative (ISIR-042) to overcome resistance to therapy and to enhance the antitumor activity of 5-fluorouracil and gemcitabine in pancreatic cancer cells. Int J Oncol 2015; 47:315-24. [PMID: 25936828 DOI: 10.3892/ijo.2015.2979] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/31/2015] [Indexed: 11/05/2022] Open
Abstract
Although progress has been made in chemotherapeutic strategies against pancreatic cancer, overall survival has not significantly improved over the past decade. Thus, the development of better therapeutic regimens remains a high priority. Pancreatic cancer cell lines were treated with tamoxifen, a novel antitumor fusicoccin derivative (ISIR-042), and anticancer drugs, and their effects on cell growth, signaling and gene expression were determined. Xenografts of Panc-1 cells were treated with tamoxifen, ISIR-042 and 5-fluorouracil (5FU) to determine the effects on tumor growth. The inhibition of the growth of pancreatic cancer cells induced by tamoxifen was effectively reduced by α-tocopherol, a membrane stabilizer. ISIR-042 produced synergistic effects with tamoxifen in inhibiting cell growth. Tamoxifen elevated lipid peroxidation and the release of cytochrome c, and these effects of tamoxifen were reduced by α-tocopherol. ISIR-042 significantly inhibited colony formation and the expression of stemness-related genes of pancreatic cancer cells. The triple combination of tamoxifen, ISIR-042, and 5FU or gemcitabine was effective at inhibiting cell growth and the appearance of drug-resistant cells. This combined treatment significantly inhibited the growth of Panc-1 cells as xenografts without apparent adverse effects. The triple combination of tamoxifen and ISIR-042 with 5FU or gemcitabine may be highly effective against pancreatic cancer by overcoming resistance to therapy.
Collapse
Affiliation(s)
- Takaaki Miyake
- Department of Oncology/Hematology, School of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Yoshio Honma
- Department of Oncology/Hematology, School of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, School of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, School of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
95
|
Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis 2015; 84:78-83. [PMID: 25913028 DOI: 10.1016/j.nbd.2015.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is a plant-derived antioxidant that is essential for human health. Studies with humans and with animal models of vitamin E deficiency established the critical roles of the vitamin in protecting the central nervous system, and especially the cerebellum, from oxidative damage and motor coordination deficits. We review here the established roles of vitamin E in protecting cerebellar functions, as well as emerging data demonstrating the critical roles of alpha-tocopherol in preserving learning, memory and emotive responses. We also discuss the importance of vitamin E adequacy in seemingly unrelated neurological disorders.
Collapse
Affiliation(s)
- Lynn M Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
96
|
Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E. CURRENT TOPICS IN MEMBRANES 2015; 75:209-31. [PMID: 26015284 DOI: 10.1016/bs.ctm.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - David A Brown
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
97
|
Hermann PM, Watson SN, Wildering WC. Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front Genet 2014; 5:419. [PMID: 25538730 PMCID: PMC4255604 DOI: 10.3389/fgene.2014.00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023] Open
Abstract
The aging brain undergoes a range of changes varying from subtle structural and physiological changes causing only minor functional decline under healthy normal aging conditions, to severe cognitive or neurological impairment associated with extensive loss of neurons and circuits due to age-associated neurodegenerative disease conditions. Understanding how biological aging processes affect the brain and how they contribute to the onset and progress of age-associated neurodegenerative diseases is a core research goal in contemporary neuroscience. This review focuses on the idea that changes in intrinsic neuronal electrical excitability associated with (per)oxidation of membrane lipids and activation of phospholipase A2 (PLA2) enzymes are an important mechanism of learning and memory failure under normal aging conditions. Specifically, in the context of this special issue on the biology of cognitive aging we portray the opportunities offered by the identifiable neurons and behaviorally characterized neural circuits of the freshwater snail Lymnaea stagnalis in neuronal aging research and recapitulate recent insights indicating a key role of lipid peroxidation-induced PLA2 as instruments of aging, oxidative stress and inflammation in age-associated neuronal and memory impairment in this model system. The findings are discussed in view of accumulating evidence suggesting involvement of analogous mechanisms in the etiology of age-associated dysfunction and disease of the human and mammalian brain.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
| | - Shawn N Watson
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Willem C Wildering
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
98
|
Nakamura T, Noma A, Terao J. Location of α-tocopherol and α-tocotrienol to heterogeneous cell membranes and inhibition of production of peroxidized cholesterol in mouse fibroblasts. SPRINGERPLUS 2014; 3:550. [PMID: 25279334 PMCID: PMC4182322 DOI: 10.1186/2193-1801-3-550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 12/03/2022]
Abstract
Background α-Tocopherol (α-T) and α-tocotrienol (α-T3) are well recognized as lipophilic antioxidants. Nevertheless, there is limited knowledge on their location in heterogeneous cell membranes. We first investigated the distribution of α-T and α-T3 to the cholesterol-rich microdomains (lipid rafts and caveolae) of heterogeneous cell membranes by incubating these antioxidants with cultured mouse fibroblasts. Findings Levels of cellular uptake for α-T and α-T3 were adjusted to the same order, as that of the latter was much more efficient than that of the former in the cultured cells. After ultracentrifugation, α-T and α-T3 were partitioned to the microdomain fractions. When the distribution of α-T and α-T3 was further confirmed by using methyl-β-cyclodextrin (which removes cholesterol from membranes), α-T was suggested to be distributed to the microdomains (approx. 9% of the total uptake). The same treatment did not affect α-T3 content in the microdomain fractions, indicating that α-T3 is not located in these cholesterol-rich domains. However, α-T and α-T3 significantly inhibited the production of peroxidized cholesterol when cells were exposed to ultraviolet-A light. Conclusions These results suggest that α-T and α-T3 can act as membranous antioxidants against photo-irradiated cholesterol peroxidation irrespective of their distribution to cholesterol-rich microdomains.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan ; School of Food and Nutrition Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ayako Noma
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Junji Terao
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
99
|
Stepanyan V, Crowe M, Haleagrahara N, Bowden B. Effects of vitamin E supplementation on exercise-induced oxidative stress: a meta-analysis. Appl Physiol Nutr Metab 2014; 39:1029-37. [DOI: 10.1139/apnm-2013-0566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tocopherols (commonly referred to as “vitamin E”) are frequently studied antioxidants in exercise research. However, the studies are highly heterogeneous, which has resulted in contradicting opinions. The aim of this review is to identify similar studies investigating the effects of tocopherol supplementation on exercise performance and oxidative stress and to perform minimally biased qualitative comparisons and meta-analysis. The literature search and study selection were performed according to Cochrane guidelines. A 2-dimensional study execution process was developed to enable selection of similar and comparable studies. Twenty relevant studies were identified. The high variability of study designs resulted in final selection of 6 maximally relevant studies. Markers of lipid peroxidation (malondialdehyde) and muscle damage (creatine kinase) were the 2 most frequently and similarly measured variables. Meta comparison showed that tocopherol supplementation did not result in significant protection against either exercise-induced lipid peroxidation or muscle damage. The complex antioxidant nature of tocopherols and low accumulation rates in muscle tissues could underlie an absence of protective effects.
Collapse
Affiliation(s)
- Vahan Stepanyan
- Institute of Sport and Exercise Science, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, 4811, Australia
| | - Melissa Crowe
- Institute of Sport and Exercise Science, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, 4811, Australia
| | - Nagaraja Haleagrahara
- School of Veterinary and Biomedical Sciences, James Cook University, 4811, Australia
| | - Bruce Bowden
- Discipline of Chemistry, School of Pharmacy and Molecular Sciences, James Cook University, 4811, Australia
| |
Collapse
|
100
|
Zingg JM, Libinaki R, Meydani M, Azzi A. Modulation of phosphorylation of tocopherol and phosphatidylinositol by hTAP1/SEC14L2-mediated lipid exchange. PLoS One 2014; 9:e101550. [PMID: 24983950 PMCID: PMC4077815 DOI: 10.1371/journal.pone.0101550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
The vitamin E derivative, alpha-tocopheryl phosphate (αTP), is detectable in cultured cells, plasma and tissues in small amounts, suggesting the existence of enzyme(s) with α-tocopherol (αT) kinase activity. Here, we characterize the production of αTP from αT and [γ-32P]-ATP in primary human coronary artery smooth muscle cells (HCA-SMC) using separation by thin layer chromatography (TLC) and subsequent analysis by Ultra Performance Liquid Chromatography (UPLC). In addition to αT, although to a lower amount, also γT is phosphorylated. In THP-1 monocytes, γTP inhibits cell proliferation and reduces CD36 scavenger receptor expression more potently than αTP. Both αTP and γTP activate the promoter of the human vascular endothelial growth factor (VEGF) gene with similar potency, whereas αT and γT had no significant effect. The recombinant human tocopherol associated protein 1 (hTAP1, hSEC14L2) binds both αT and αTP and stimulates phosphorylation of αT possibly by facilitating its transport and presentation to a putative αT kinase. Recombinant hTAP1 reduces the in vitro activity of the phosphatidylinositol-3-kinase gamma (PI3Kγ) indicating the formation of a stalled/inactive hTAP1/PI3Kγ heterodimer. The addition of αT, βT, γT, δT or αTP differentially stimulates PI3Kγ, suggesting facilitated egress of sequestered PI from hTAP1 to the enzyme. It is suggested that the continuous competitive exchange of different lipophilic ligands in hTAPs with cell enzymes and membranes may be a way to make these lipophiles more accessible as substrates for enzymes and as components of specific membrane domains.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Roksan Libinaki
- Dept. Biochem. and Mol. Biology, Monash University, Melbourne, VIC, Australia
| | - Mohsen Meydani
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Angelo Azzi
- Vascular Biology Laboratory, JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|