51
|
Schomberg J, Wang Z, Farhat A, Guo KL, Xie J, Zhou Z, Liu J, Kovacs B, Liu-Smith F. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochem Pharmacol 2020; 177:114025. [PMID: 32413425 DOI: 10.1016/j.bcp.2020.114025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Luteolin inhibited growth of several cancer cells in vitro in previous studies, with limited in vivo studies, and no comprehensive understanding of molecular mechanisms at genomics level. This study identified luteolin as an effective agent to inhibit melanoma cell growth in vitro and in vivo. Molecular studies and genomic profiling were used to identify the mechanism of action of luteolin in melanoma cells. As a ROS (reactive oxygen species) scavenger, luteolin unexpectedly induced ROS; but co-treatment with antioxidants NAC or mito-TEMPO did not rescue cell growth inhibition, although the levels of ROS levels were reduced. Next, we profiled luteolin-induced differentially expressed genes (DEGs) in 4 melanoma cell lines using RNA-Seq, and performed pathway analysis using a combination of bioinformatics software including PharmetRx which was especially effective in discovering pharmacological pathways for potential drugs. Our results show that luteolin induces changes in three main aspects: the cell-cell interacting pathway (extracellular matrix, ECM), the oncogenic pathway and the immune response signaling pathway. Based on these results, we further validated that luteolin was especially effective in inhibiting cell proliferation when cells were seeded at low density, concomitantly with down-regulation of fibronectin accumulation. In conclusion, through extensive DEG profiling in a total of 4 melanoma cell lines, we found that luteolin-mediated growth inhibition in melanoma cells was perhaps not through ROS induction, but likely through simultaneously acting on multiple pathways including the ECM (extracellular matrix) pathway, the oncogenic signaling and the immune response pathways. Further investigations on the mechanisms of this promising compound are warranted and likely result in application to cancer patients as its safety pharmacology has been validated in autism patients.
Collapse
Affiliation(s)
- John Schomberg
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Zi Wang
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ahmed Farhat
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States.
| | - Katherine L Guo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90024, United States.
| | - Jun Xie
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhidong Zhou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, United States.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Bruce Kovacs
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Feng Liu-Smith
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
52
|
Effects of Cocoa-Rich Chocolate on Blood Pressure, Cardiovascular Risk Factors, and Arterial Stiffness in Postmenopausal Women: A Randomized Clinical Trial. Nutrients 2020; 12:nu12061758. [PMID: 32545478 PMCID: PMC7353386 DOI: 10.3390/nu12061758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
This study aimed to evaluate the effects of the intake of 10 g of cocoa-rich chocolate on blood pressure, other cardiovascular risk factors, and vascular structure and function in postmenopausal women. A total of 140 postmenopausal women participated in this randomized and controlled parallel clinical trial. For six months, the intervention group (IG; n = 73) consumed daily 10 g of chocolate (99% cocoa) added to their usual food intake, whereas the control group (CG; n = 67) did not receive any intervention. Blood pressure, pulse pressure (PP), cardio-ankle vascular index (CAVI), ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), augmentation index, and laboratory variables were measured at baseline and six months. ANCOVA analyses adjusted for baseline values revealed no significant differences for systolic blood pressure (−1.45 mm Hg; 95% confidence interval (CI): −4.79, 1.88; p = 0.391) or baPWV (0.18 m/s; 95% CI: −0.14, 0.50; p = 0.263) between groups. A decrease in PP was observed in the IG compared to the CG (−2.05 mm Hg; 95% CI: −4.08, −0.02; p = 0.048). The rest of the vascular structure and function parameters and other measured variables remained unchanged. The daily intake of 10 g of cocoa-rich chocolate seems to provide little improvement to cardiovascular health, but neither does it cause any adverse effects on the parameters evaluated in postmenopausal women in the long term.
Collapse
|
53
|
Neobavaisoflavone Inhibits Melanogenesis through the Regulation of Akt/GSK-3β and MEK/ERK Pathways in B16F10 Cells and a Reconstructed Human 3D Skin Model. Molecules 2020; 25:molecules25112683. [PMID: 32527040 PMCID: PMC7321173 DOI: 10.3390/molecules25112683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have confirmed the anti-melanogenic effect of the aerial part of Pueraria lobata, however, due to its inherent color, P. lobata has limited commercial use. In this study, an extract (GALM-DC) of the aerial part of P. lobata having improved color by the use of activated carbon was obtained. Furthermore, the active compound neobavaisoflavone (NBI) was identified from GALM-DC. The effect of NBI on melanogenesis, tyrosinase activity, α-glucosidase activity, and mechanism of action in melanocytes was investigated. Tyrosinase activity, melanin contents and the expression of melanin-related genes and proteins were determined in B16F10 cells. NBI reduced melanin synthesis and tyrosinase activity. Furthermore, NBI treatment reduced the mRNA and protein expression levels of MITF, TRP-1, and tyrosinase. NBI also works by phosphorylating and activating proteins that inhibit melanogenesis, such as GSK3β and ERK. Specific inhibitors of Akt/GSK-3β (LY294002) and MEK/ERK (PD98059) signaling prevented the inhibition of melanogenesis by NBI. NBI inhibited melanin production through the regulation of MEK/ERK and Akt/GSK-3β signaling pathways in α-MSH-stimulated B16F10 cells. NBI suppresses tyrosinase activity and melanogenesis through inhibition of α-glucosidase activity. Besides, NBI significantly reduced melanogenesis in a reconstructed human 3D skin model. In conclusion, these results suggest that NBI has potential as a skin-whitening agent for hyperpigmentation.
Collapse
|
54
|
Taguchi N, Hata T, Kamiya E, Homma T, Kobayashi A, Aoki H, Kunisada T. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Int J Cosmet Sci 2020; 42:336-345. [PMID: 32324292 DOI: 10.1111/ics.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Yerba Santa (Eriodictyon angustifolium and Eriodictyon californicum) has been used for many years in traditional medicine. However, the effect of Yerba Santa on melanogenesis has not yet been investigated. We aimed to assess the biological effects of Yerba Santa on hair pigmentation. METHODS Yerba Santa extracts were assessed for their cytological effects following X-ray irradiation treatment and then tested directly for the prevention of human hair greying. Ultra-performance liquid chromatography (UPLC) was utilized to identify the individual extract components. RESULTS Eriodictyon angustifolium extract significantly increased melanin synthesis in the melanoma cell line through activation of the WNT/MITF/tyrosinase-signalling pathway. In contrast, E. californicum had no effect on melanin synthesis. E. angustifolium extract also demonstrated a protective effect against the damage induced by X-ray irradiation in human keratinocytes. Application of the extracts to subjects who had grey beards demonstrated a reduced number of grey beard hair per year specifically with the E. angustifolium extract. A significant decrease in grey head hair was also observed after application of E. angustifolium extract. Upregulation of gene expression related to melanin production and WNT signalling was observed after the application of E. angustifolium extract. Sterubin was the most abundant flavonoid detected by UPLC in E. angustifolium extract. In addition, sterubin showed the highest difference in terms of quantity, between E. angustifolium and E. californicum extract. CONCLUSION Eriodictyon angustifolium extract, which is abundant in sterubin, may be suitable as a potential cosmetic and medical agent for the prevention and improvement of hair greying.
Collapse
Affiliation(s)
- N Taguchi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan.,Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Hata
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - E Kamiya
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - T Homma
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - A Kobayashi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - H Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| |
Collapse
|
55
|
Magnus S, Gazdik F, Anjum NA, Kadlecova E, Lackova Z, Cernei N, Brtnicky M, Kynicky J, Klejdus B, Necas T, Zitka O. Assessment of Antioxidants in Selected Plant Rootstocks. Antioxidants (Basel) 2020; 9:E209. [PMID: 32138258 PMCID: PMC7139285 DOI: 10.3390/antiox9030209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 01/01/2023] Open
Abstract
The service tree (Sorbus domestica) is a wild fruit tree with immense medicinal and industrial value. This study aimed at determining the four major groups of antioxidants (flavonoids, phenolic acids and aldehydes, catechin and procyanidin) in rootstocks of Crataegus laevigata (genotypes O-LE-14 and O-LE-21), Aronia melanocarpa (genotypes O-LE-14 and O-LE-21), Chaenomeles japonica (genotype O-LE-9) and Cydonia oblonga (BA 29) (genotypes O-LE-14 and O-LE-21). Hyperoside (Quercetin 3-D-galactoside) was the most abundant flavonoid compound, since its average content in the rootstocks of Crataegus laevigata (O-LE-21) was 180.68 ± 0.04 μg·g-1. Dihydrokaempherol was the least frequently found flavonoid compound, with an average concentration of 0.43 ± 0.01 μg·g-1 in all the rootstocks of plants considered in this study. Among the phenolic compounds, the most represented one was protocatechuic acid, with 955.92 ± 10.25 μg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). On the other hand, the least represented p-Coumaric acid exhibited the average concentration of 0.34 ± 0.01 μg·g-1 in the plant rootstocks. Epicatechin was the most abundant catechin compound, with a content of 3196.37 ± 50.10 μg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). The lowest represented catechin compound was epigallocatechin, with the average concentration of 0.95 ± 0.08 μg·g-1 in the screened plant rootstocks. From the procyanidin compounds, the most abundant one was procyanidin b2 in the rootstocks of Crataegus laevigata (O-LE-14), with a concentration of 5550.40 ± 99.56 μg·g-1. On the contrary, procyanidin a2, with an average concentration of 40.35 ± 1.61 μg·g-1, represented the least frequent procyanidin compound in all the plant rootstocks screened herein.
Collapse
Affiliation(s)
- Samuel Magnus
- Department of Fruit Science, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (S.M.); (T.N.)
| | - Filip Gazdik
- Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic; (F.G.); (E.K.)
| | - Naser A. Anjum
- Department of Botany, Aligarh Muslim University, Aligarh 202 002, U.P., India
| | - Eliska Kadlecova
- Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 691 44 Lednice, Czech Republic; (F.G.); (E.K.)
| | - Zuzana Lackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.L.); (N.C.); (B.K.)
- Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.L.); (N.C.); (B.K.)
- Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University, 613 00 Brno, Czech Republic;
- Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Faculty of Chemistry, Purkynova 118, 621 00 Brno, Czech Republic
| | - Jindrich Kynicky
- BIC Brno, Technology Innovation Transfer Chamber, 612 00 Brno, Czech Republic;
| | - Borivoj Klejdus
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.L.); (N.C.); (B.K.)
- Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Tomas Necas
- Department of Fruit Science, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (S.M.); (T.N.)
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (Z.L.); (N.C.); (B.K.)
- Central European Institute of Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
56
|
GSK-3β-Targeting Fisetin Promotes Melanogenesis in B16F10 Melanoma Cells and Zebrafish Larvae through β-Catenin Activation. Int J Mol Sci 2020; 21:ijms21010312. [PMID: 31906440 PMCID: PMC6982351 DOI: 10.3390/ijms21010312] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023] Open
Abstract
Fisetin is found in many fruits and plants such as grapes and onions, and exerts anti-inflammatory, anti-proliferative, and anticancer activity. However, whether fisetin regulates melanogenesis has been rarely studied. Therefore, we evaluated the effects of fisetin on melanogenesis in B16F10 melanoma cell and zebrafish larvae. The current study revealed that fisetin slightly suppressed in vitro mushroom tyrosinase activity; however, molecular docking data showed that fisetin did not directly bind to mushroom tyrosinase. Unexpectedly, fisetin significantly increased intracellular and extracellular melanin production in B16F10 melanoma cells regardless of the presence or absence of α-melanocyte stimulating hormone (α-MSH). We also found that the expression of melanogenesis-related genes such as tyrosinase and microphthalmia-associated transcription factor (MITF), were highly increased 48 h after fisetin treatment. Pigmentation of zebrafish larvae by fisetin treatment also increased at the concentrations up to 200 µM and then slightly decreased at 400 µM, with no alteration in the heart rates. Molecular docking data also revealed that fisetin binds to glycogen synthase kinase-3β (GSK-3β). Therefore, we evaluated whether fisetin negatively regulated GSK-3β, which subsequently activates β-catenin, resulting in melanogenesis. As expected, fisetin increased the expression of β-catenin, which was subsequently translocated into the nucleus. In the functional assay, FH535, a Wnt/β-catenin inhibitor, significantly inhibited fisetin-mediated melanogenesis in zebrafish larvae. Our data suggested that fisetin inhibits GSK-3β, which activates β-catenin, resulting in melanogenesis through the revitalization of MITF and tyrosinase.
Collapse
|
57
|
Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med Chem 2019; 11:2845-2867. [DOI: 10.4155/fmc-2019-0237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Flavonoids are polyphenolic compounds of natural origin. They are extensively studied within drug discovery programs due to their wide ranging biological activities such as antimicrobial, antioxidant, antitumor, neuroprotective and cardioprotective properties. The ability of flavonoids to coordinate with metal atoms has provided new leads for drug discovery programs, with better pharmacological activities and clinical profiles than the parent flavonoids. In this review, the enhanced antioxidant and anticancer activities of flavonoid metal complexes versus the parent flavonoids are discussed. Possible mechanisms of action for the metal complexes, such as DNA binding and apoptosis induction, are also presented alongside an overview of the synthesis of the metal complexes, and the different techniques used for their characterization.
Collapse
|
58
|
Pang B, Xu X, Lu Y, Jin H, Yang R, Jiang C, Shao D, Liu Y, Shi J. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. Food Funct 2019; 10:5339-5349. [PMID: 31393490 DOI: 10.1039/c9fo01168d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quercetin has been widely found to exhibit anticancer activity with low toxicity and prevalence in foods. Quercetin has been reported to inhibit digestive system cancers including pancreatic cancer (PAAD) and colon cancer (COAD), but rectal cancer (READ) has not been reported. The reported mechanisms and targets are divergent. In this study, new targets and mechanisms were predicted for the influence of quercetin on PAAD, COAD, and READ using bioinformatics methods. The results showed that quercetin may target CD36 and reduce the death rate caused by PAAD by enhancing the cell adhesion, mediating the uptake of fatty acids (FAs), regulating thrombospondin-1, and stimulating the immune response. Quercetin may lower the death rate from READ by targeting SLCO1B1 and producing enhanced effects from use of this compound, inhibiting cell growth, and inducing apoptosis in tumor cells. ACADS, ALDH3B2, UGT2A3, AMH, CDKN2A, FOSL1, CD36, CFL2, CYP3A4, and MAF were identified as targets for quercetin to reduce the death rate caused by COAD. Glutathione metabolism was mainly involved in the effect of quercetin on COAD, including the enhancement of the oxidation of fatty acids, the metabolism of anticancer medications, and the stiffness of cells, and the reduction of chemical carcinogenesis, the level of anti-Müllerian hormone, the proliferation of cancer cells and transcriptional misregulation, and mediation of the activity of glutathione transferases. The combined analyses of three databases can be referred to and used to seek medications and targets that can be applied to other diseases.
Collapse
Affiliation(s)
- Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Yao Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Rongrong Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | - Yanlin Liu
- College of Enology, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi Province 712100, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
59
|
Chamcheu JC, Roy T, Uddin MB, Banang-Mbeumi S, Chamcheu RCN, Walker AL, Liu YY, Huang S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019; 8:cells8080803. [PMID: 31370278 PMCID: PMC6721560 DOI: 10.3390/cells8080803] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
The mammalian or mechanistic target of rapamycin (mTOR) and associated phosphatidyl-inositiol 3-kinase (PI3K)/protein kinase B (Akt) pathways regulate cell growth, differentiation, migration, and survival, as well as angiogenesis and metabolism. Dysregulation of these pathways is frequently associated with genetic/epigenetic alterations and predicts poor treatment outcomes in a variety of human cancers including cutaneous malignancies like melanoma and non-melanoma skin cancers. Recently, the enhanced understanding of the molecular and genetic basis of skin dysfunction in patients with skin cancers has provided a strong basis for the development of novel therapeutic strategies for these obdurate groups of skin cancers. This review summarizes recent advances in the roles of PI3K/Akt/mTOR and their targets in the development and progression of a broad spectrum of cutaneous cancers and discusses the current progress in preclinical and clinical studies for the development of PI3K/Akt/mTOR targeted therapies with nutraceuticals and synthetic small molecule inhibitors.
Collapse
Affiliation(s)
| | - Tithi Roy
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Sergette Banang-Mbeumi
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
- Division for Research and Innovation, POHOFI Inc., P.O. Box 44067, Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | | | - Anthony L Walker
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Yong-Yu Liu
- College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
60
|
Ombra MN, Paliogiannis P, Stucci LS, Colombino M, Casula M, Sini MC, Manca A, Palomba G, Stanganelli I, Mandalà M, Gandini S, Lissia A, Doneddu V, Cossu A, Palmieri G. Dietary compounds and cutaneous malignant melanoma: recent advances from a biological perspective. Nutr Metab (Lond) 2019; 16:33. [PMID: 31139235 PMCID: PMC6528337 DOI: 10.1186/s12986-019-0365-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Cutaneous malignant melanoma is a heterogeneous disease, being the consequence of specific genetic alterations along several molecular pathways. Despite the increased knowledge about the biology and pathogenesis of melanoma, the incidence has grown markedly worldwide, making it extremely important to develop preventive measures. The beneficial role of correct nutrition and of some natural dietary compounds in preventing malignant melanoma has been widely demonstrated. This led to numerous studies investigating the role of several dietary attitudes, patterns, and supplements in the prevention of melanoma, and ongoing research investigates their impact in the clinical management and outcomes of patients diagnosed with the disease. This article is an overview of recent scientific advances regarding specific dietary compounds and their impact on melanoma development and treatment.
Collapse
Affiliation(s)
- Maria Neve Ombra
- 1Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Panagiotis Paliogiannis
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Luigia Stefania Stucci
- 3Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Colombino
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Milena Casula
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria Cristina Sini
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Antonella Manca
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Grazia Palomba
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Ignazio Stanganelli
- 5Istituto Scientifico Romagnolo per Studio e Cura Tumori (IRST-IRCCS), Meldola, Italy
| | - Mario Mandalà
- 6Medical Oncology, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - Sara Gandini
- 7Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Amelia Lissia
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Valentina Doneddu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Antonio Cossu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | |
Collapse
|
61
|
Feng LL, Xu LS, Guo MM, Huang W, Zhu JZ, Kong LD, Wu XD, Xu Q. 5, 7, 2', 4', 5'-Pentamethoxyflavanone regulates M1/M2 macrophage phenotype and protects the septic mice. Chin J Nat Med 2019; 17:363-371. [PMID: 31171271 DOI: 10.1016/s1875-5364(19)30042-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Indexed: 11/18/2022]
Abstract
Flavonoids have been reported to exert protective effect against many inflammatory diseases, while the underlying cellular mechanisms are still not completely known. In the present study, we explored the anti-inflammation activity of 5, 7, 2', 4', 5'-pentamethoxyflavanone (abbreviated as Pen.), a kind of polymethoxylated flavonoid, both in vitro and in vivo experiments. Pen. was showed no obvious toxicity in macrophages even at high dosage treatment. Our results indicated that Pen. significantly inhibited both mRNA and protein level of proinflammatory cytokines, IL-1β, IL-6, TNF-α and iNOS, which was characteristic expressed on M1 polarized macrophages. These effects of Pen. were further confirmed by diminished expression of CD11c, the M1 macrophage surface marker. Further researches showed that the mechanism was due to that Pen. downregulated the activity of p65, key transcription factor for M1 polarization. On the other hand, Pen. also enhanced M2 polarization with upregulation of anti-inflammatory factors and increase of M2 macrophage surface markers, which lead to the balance of M1 and M2 macrophages. Moreover, in vivo research verified that Pen. treatment alleviated LPS-induced sepsis in mice by increasing survival rate, decreasing inflammatory cytokines and improving lung tissue damage. In summary, our results suggested that Pen. modulated macrophage phenotype via suppressing p65 signal pathway to exert the anti-inflammation activity.
Collapse
Affiliation(s)
- Li-Li Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Sha Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Meng-Meng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia-Zhen Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
62
|
Lee SW, Kim JH, Song H, Seok JK, Hong SS, Boo YC. Luteolin 7-Sulfate Attenuates Melanin Synthesis through Inhibition of CREB- and MITF-Mediated Tyrosinase Expression. Antioxidants (Basel) 2019; 8:antiox8040087. [PMID: 30987288 PMCID: PMC6523068 DOI: 10.3390/antiox8040087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
Antioxidants with antimelanogenic activity are potentially useful for the attenuation of skin hyperpigmentation disorders. In a previous study, luteolin 7-sulfate isolated from Phyllospadix iwatensis Makino, a marine plant, was shown to inhibit cellular melanin synthesis. The aim of the present study was to examine its action mechanism, focusing on the regulation of tyrosinase (TYR) expression in cells. Cell-based assay was undertaken using murine melanoma B16-F10 cells and primary human epidermal melanocytes (HEMs). Luteolin 7-sulfate showed lower toxicity compared to luteolin in B16-F10 cells. At the non-toxic concentration ranges, luteolin 7-sulfate attenuated melanin synthesis, stimulated by α-melanocyte-stimulating hormone or forskolin. Luteolin 7-sulfate attenuated forskolin-induced microphthalmia-associated transcription factor (MITF) and TYR expressions at the mRNA and protein levels in B16-F10 cells. It also attenuated the phosphorylation of cAMP-responsive element binding protein (CREB) stimulated by forskolin. Luteolin 7-sulfate also attenuated melanin synthesis in primary HEMs. This study demonstrates that luteolin 7-sulfate attenuates TYR gene expression through the intervention of a CREB- and MITF-mediated signaling pathway, leading to the decreased melanin synthesis.
Collapse
Affiliation(s)
- Seok Won Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jae Heon Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Hyerim Song
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Jin Kyung Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea.
| | - Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea.
| |
Collapse
|
63
|
Kagawa N, Iguchi H, Henzan M, Hanaoka M. Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Sci Nutr 2019; 7:1494-1501. [PMID: 31024723 PMCID: PMC6475738 DOI: 10.1002/fsn3.993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023] Open
Abstract
A regular intake of plant-derived bioactive agents has gained popularity because of the health benefits. Fresh leafy greens, however, normally have a low concentration of such bioactive agents. In this study, we found that drying markedly affected the accumulation of secondary metabolites and that dried leaves of Perilla frutescens L. (perilla) contained more anticancer flavonoids than fresh leaves. Drying is a major method of food preparation, particularly for plant-based foods, but the quality of the bioactive agents contained in the fresh and dried leaves of perilla has received only scant attention. Quantitative analysis of the concentrations of perillaldehyde, rosmarinic acid, apigenin, luteolin, 4-hydroxyphenyllactic acid, and 4-coumaric acid, some of which are known as nutraceuticals, revealed that the effect of drying significantly increased apigenin (28-fold) and luteolin (86-fold), but decreased rosmarinic acid in all leaf stages. We examined the positive effect on flavonoid levels on perilla leaves and confirmed that, by comparison with fresh perilla leaves, the dried leaves contained greater concentrations of anticancer flavonoids regardless of variety, form, or manner of cultivation. This indicates that drying can significantly increase the level of flavonoids in perilla leaves without a loss of flavor. Therefore, drying is a simple and effective method to improve the concentrations of bioactive agents, which increases the intake of beneficial substances derived from herbs and edible plants. This finding serves as a method for the supply of raw plant materials rich in bioactive agents that are suitable for labeling as edible nutraceuticals.
Collapse
Affiliation(s)
- Natsuko Kagawa
- Center for Environment, Health and Field SciencesChiba UniversityChibaJapan
| | - Hiroya Iguchi
- Division of Applied Biological Chemistry, Graduate School of HorticultureChiba UniversityChibaJapan
| | - Masahumi Henzan
- Division of Applied Biological Chemistry, Graduate School of HorticultureChiba UniversityChibaJapan
| | - Mitsumasa Hanaoka
- Division of Applied Biological Chemistry, Graduate School of HorticultureChiba UniversityChibaJapan
| |
Collapse
|
64
|
Arredondo V, Roa DE, Yan S, Liu-Smith F, Van Vranken DL. Total Synthesis of (±)-Pestalachloride C and (±)-Pestalachloride D through a Biomimetic Knoevenagel/Hetero-Diels–Alder Cascade. Org Lett 2019; 21:1755-1759. [DOI: 10.1021/acs.orglett.9b00323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Vanessa Arredondo
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Daniel E. Roa
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Songyuan Yan
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Feng Liu-Smith
- Department of Medicine, School of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California 92697, United States
| | - David L. Van Vranken
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
65
|
Pinpointing the l-phenylalanine binding sites of TyrR using biosensors and computer-aided simulation. Biotechnol Lett 2019; 41:401-408. [DOI: 10.1007/s10529-019-02645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
66
|
Woo SM, Choi WR, Lee DR, Kim HS, Yi C, Kim KH, Kim HL, Cheng J, Le B, Yang SH, Suh JW. Leukodin isolated from Artemisia capillaris inhibits alpha-melanocyte stimulating hormone induced melanogenesis in B16F10 melanoma cells. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
67
|
Jeter JM, Bowles TL, Curiel-Lewandrowski C, Swetter SM, Filipp FV, Abdel-Malek ZA, Geskin LJ, Brewer JD, Arbiser JL, Gershenwald JE, Chu EY, Kirkwood JM, Box NF, Funchain P, Fisher DE, Kendra KL, Marghoob AA, Chen SC, Ming ME, Albertini MR, Vetto JT, Margolin KA, Pagoto SL, Hay JL, Grossman D, Ellis DL, Kashani-Sabet M, Mangold AR, Markovic SN, Meyskens FL, Nelson KC, Powers JG, Robinson JK, Sahni D, Sekulic A, Sondak VK, Wei ML, Zager JS, Dellavalle RP, Thompson JA, Weinstock MA, Leachman SA, Cassidy PB. Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer 2019; 125:18-44. [PMID: 30281145 PMCID: PMC6860362 DOI: 10.1002/cncr.31719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Recent progress in the treatment of advanced melanoma has led to unprecedented improvements in overall survival and, as these new melanoma treatments have been developed and deployed in the clinic, much has been learned about the natural history of the disease. Now is the time to apply that knowledge toward the design and clinical evaluation of new chemoprevention agents. Melanoma chemoprevention has the potential to reduce dramatically both the morbidity and the high costs associated with treating patients who have metastatic disease. In this work, scientific and clinical melanoma experts from the national Melanoma Prevention Working Group, composed of National Cancer Trials Network investigators, discuss research aimed at discovering and developing (or repurposing) drugs and natural products for the prevention of melanoma and propose an updated pipeline for translating the most promising agents into the clinic. The mechanism of action, preclinical data, epidemiological evidence, and results from available clinical trials are discussed for each class of compounds. Selected keratinocyte carcinoma chemoprevention studies also are considered, and a rationale for their inclusion is presented. These data are summarized in a table that lists the type and level of evidence available for each class of agents. Also included in the discussion is an assessment of additional research necessary and the likelihood that a given compound may be a suitable candidate for a phase 3 clinical trial within the next 5 years.
Collapse
Affiliation(s)
- Joanne M Jeter
- Department of Medicine, Divisions of Genetics and Oncology, The Ohio State University, Columbus, Ohio
| | - Tawnya L Bowles
- Department of Surgery, Intermountain Health Care, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Susan M Swetter
- Department of Dermatology, Pigmented Lesion and Melanoma Program, Stanford University Medical Center Cancer Institute, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California
| | | | - Larisa J Geskin
- Department of Dermatology, Cutaneous Oncology Center, Columbia University Medical Center, New York, New York
| | - Jerry D Brewer
- Department of Dermatologic Surgery, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Jeffrey E Gershenwald
- Departments of Surgical Oncology and Cancer Biology, Melanoma and Skin Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Neil F Box
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kari L Kendra
- Department of Internal Medicine, Medical Oncology Division, The Ohio State University, Columbus, Ohio
| | - Ashfaq A Marghoob
- Memorial Sloan Kettering Skin Cancer Center and Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suephy C Chen
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Michael E Ming
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Kim A Margolin
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Sherry L Pagoto
- Department of Allied Health Sciences, UConn Institute for Collaboration in Health, Interventions, and Policy, University of Connecticut, Storrs, Connecticut
| | - Jennifer L Hay
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas Grossman
- Departments of Dermatology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Darrel L Ellis
- Department of Dermatology, Vanderbilt University Medical Center and Division of Dermatology, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Tennessee Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California
| | | | | | | | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - June K Robinson
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Debjani Sahni
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
| | | | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Sarcoma, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Martin A Weinstock
- Center for Dermatoepidemiology, Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Dermatology, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Sancy A Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
68
|
Flavonoid Productivity Optimized for Green and Red Forms of Perilla frutescens via Environmental Control Technologies in Plant Factory. J FOOD QUALITY 2018. [DOI: 10.1155/2018/4270279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Perilla frutescens (Lamiaceae) is a dietary staple in Asia. It is an abundant source of flavonoids that are bioactively beneficial to human health and fitness. The current popularity of plant-based consumption is being driven by the healthful benefits of bioactive nutrition, and the concentration of bioactive agents found in raw plant materials is an important factor in the assessment of food quality. To test the feasibility of promoting flavonoid productivity in perilla plants via environmental treatment, plant factory technology was applied to perilla plant cultivation. Apigenin (AG) and luteolin (LT) are two of the most potent anticarcinogenic flavonoids in perilla, and these are also found in many vegetables and fruits. Quantitative analysis of AG and LT was conducted on plants cultivated under nine environmental forms of treatment imposed by three levels of light intensity (100, 200, and 300 µmol·m−2·s−1) combined with three levels of nutrient-solution concentration (1.0, 2.0, and 3.0 dS·m−1) for hydroculture. The contents of AG in green and red perilla plant were increased by high nutrient-solution levels under the same light intensity. In green perilla, the highest concentration of AG (8.50 µg·g−1) was obtained under treatment of the highest level of nutrient-solution (3.0 dS·m−1) and 200 µmol·m−2·s−1 of light intensity, whereas in red perilla, the highest concentration of AG (6.38 µg·g−1) was achieved from the highest levels of both of these forms of treatment (300 µmol·m−2·s−1 and 3.0 dS·m−1). The increase in AG content per plant between the lowest and the highest levels was recorded by 6.4-fold and 8.6-fold in green and red perilla, respectively. The behavior of LT concentration differed between green and red forms of perilla. LT concentration in red perilla was enhanced under nutrient deficiency (1.0 dS·m−1) and affected by light intensity. Different responses were observed in the accumulations of AG and LT in red and green perilla during treatments, and this phenomenon was discussed in terms of biosynthetic pathways that involve the expressions of phenylpropanoids and anthocyanins. The total yield of flavonoids (AG and LT) was improved with the optimization of those forms of treatment, with the best total yields: 33.9 mg·plant−1 in green Perilla; 10.0 mg·plant−1 in red perilla, and a 4.9-fold and a 5.4-fold increase was recorded in green and red perilla, respectively. This study revealed that flavone biosynthesis and accumulation in perilla plants could be optimized via environmental control technologies, and this approach could be applicable to leafy vegetables with bioactive nutrition to produce a stable industrial supply of high flavonoid content.
Collapse
|
69
|
Mantso T, Trafalis DT, Botaitis S, Franco R, Pappa A, Rupasinghe HPV, Panayiotidis MI. Novel Docosahexaenoic Acid Ester of Phloridzin Inhibits Proliferation and Triggers Apoptosis in an In Vitro Model of Skin Cancer. Antioxidants (Basel) 2018; 7:antiox7120188. [PMID: 30544916 PMCID: PMC6316153 DOI: 10.3390/antiox7120188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Skin cancer is among the most common cancer types accompanied by rapidly increasing incidence rates, thus making the development of more efficient therapeutic approaches a necessity. Recent studies have revealed the potential role of decosahexaenoic acid ester of phloridzin (PZDHA) in suppressing proliferation of liver, breast, and blood cancer cell lines. In the present study, we investigated the cytotoxic potential of PZDHA in an in vitro model of skin cancer consisting of melanoma (A375), epidermoid carcinoma (A431), and non-tumorigenic (HaCaT) cell lines. Decosahexaenoic acid ester of phloridzin led to increased cytotoxicity in all cell lines as revealed by cell viability assays. However, growth inhibition and induction of both apoptosis and necrosis was more evident in melanoma (A375) and epidermoid carcinoma (A431) cells, whereas non-tumorigenic keratinocytes (HaCaT) appeared to be more resistant as detected by flow cytometry. More specifically, PZDHA-induced cell cycle growth arrest at the G2/M phase in A375 and A431 cells in contrast to HaCaT cells, which were growth arrested at the G0/G1 phase. Elevated intracellular generation of reactive oxygen species ROS was detected in all cell lines. Overall, our findings support the potential of PZDHA as a novel therapeutic means against human skin cancer.
Collapse
Affiliation(s)
- Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska, Lincoln, NE 68588, USA.
- Department of Veterinary & Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece.
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Halifax, NS B2N 5E3, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
70
|
A Newly Authenticated Compound from Traditional Chinese Medicine Decoction Induces Melanogenesis in B16-F10 Cells by Increasing Tyrosinase Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8485670. [PMID: 30581488 PMCID: PMC6276395 DOI: 10.1155/2018/8485670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
Vitiligo is a kind of skin dysfunction on melanogenesis. The highly prevalent, chronic, and distinctive complexion changes on patients have imposed enormous psychic and economic burden on both individuals and society. Traditional Chinese Medicine (TCM) is a kind of precious source on chronic disease treatment, including skin dysfunctional diseases. In our previous study, a new compound named apigenin-7-butylene glucoside has been authenticated and purified from a prescription of Chinese traditional medicine formula which has been used clinically in vitiligo treatment. The aim of this work is to evaluate the effects of this compound on melanogenesis using melanoma cell B16-F10 in vitro. The results showed that apigenin-7-butylene glucoside had almost no cytotoxicity on B16-F10 cells within a lower dose of 5.0 μg ml−1 and enhanced the melanin level to about 41% and tyrosinase activity to 1.32-fold when compared with controls. The compound showed minor cytotoxicity to B16-F10 cells at the higher concentration of 10 μg ml−1 and 50 μg ml−1, the inhibition rate was 8.4% and 11.8%, and the melanin level and tyrosinase activity showed a decreased trend because of the lower cell number at the higher concentrations. The results indicated that apigenin-7-butylene glucoside was safe to B16-F10 cells within a lower concentration, <5.0 μg ml−1. Incubated with 5.0 ug ml−1of apigenin-7-butylene glucoside for 48 hours, the mRNA and protein levels of Tyr, Trp-1, and Trp-2 genes were all increased except Mitf in B16-F10 cells. The stimulation of apigenin-7-butylene glucoside on melanogenesis of B16-F10 cells through Tyr, Trp-1, and Trp-2 pathway highlighted the potential usage of the compound in vitiligo treatment.
Collapse
|
71
|
Zhou Z, Hou J, Xiong J, Li M. Characterization of sulfuretin as a depigmenting agent. Fundam Clin Pharmacol 2018; 33:208-215. [PMID: 30216535 DOI: 10.1111/fcp.12414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
Sulfuretin is a major flavonoid found in Rhus verniciflua and carries anti-oxidative and anti-inflammatory properties, but its potential use in the control of skin pigmentation is unknown. The purpose of the present study was to elucidate sulfuretin as a new active compound inhibiting melanogenesis and the underlying mechanism. The effects of sulfuretin on melanin production, tyrosinase activity, cAMP level, and MITF expression were examined in murine melanoma B16 cells challenged with forskolin or α-MSH. The inhibitory effect of sulfuretin on melanogenesis was further validated on neonatal human melanocytes. When tested in melanoma B16 cells treated with forskolin or α-MSH, sulfuretin inhibited the cellular melanogenesis. Sulfuretin also showed direct inhibitory effect on tyrosinase activity in vitro. In human primary melanocytes, the inhibitory effect of sulfuretin on melanin synthesis was also confirmed. Our current results support the depigmenting effect of sulfuretin and suggest a clinical strategy for using sulfuretin in the topical treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Zhike Zhou
- Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao, 266011, China
| | - Jun Hou
- Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao, 266011, China
| | - Juanjuan Xiong
- XiangYang Central Hospital, Affiliated Hospital of Hubei College of Arts and Sciences, XiangYang, 441000, China
| | - Min Li
- Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao, 266011, China
| |
Collapse
|
72
|
Kim PS, Shin JH, Jo DS, Shin DW, Choi DH, Kim WJ, Park K, Kim JK, Joo CG, Lee JS, Choi Y, Shin YW, Shin JJ, Jeon HB, Seo JH, Cho DH. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochem Biophys Res Commun 2018; 503:309-315. [DOI: 10.1016/j.bbrc.2018.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
|
73
|
Genistein reduces proliferation of EP3-expressing melanoma cells through inhibition of PGE2-induced IL-8 expression. Int Immunopharmacol 2018; 62:86-95. [DOI: 10.1016/j.intimp.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/17/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
|
74
|
Hu WB, Ouyang KH, Wu GQ, Chen H, Xiong L, Liu X, Wang N, Wang WJ. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018; 48:337-350. [DOI: 10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
75
|
Hu WB, Ouyang KH, Wu GQ, Chen H, Xiong L, Liu X, Wang N, Wang WJ. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018. [DOI: https://doi.org/10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
76
|
Li W, Shi M, Wang P, Guo X, Li C, Kang W. Efficient determination of three flavonoids in Malus pumila flowers by ionic liquid-HPLC. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.04.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
77
|
Nanni V, Canuti L, Gismondi A, Canini A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:1-10. [PMID: 30097108 DOI: 10.1016/j.phymed.2018.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/21/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ultraviolet light exposure generates, in human tissues, radical species, which represent the main cause of photo-aging, DNA damage and skin cancer onset. On the other hand, Mediterranean plants, being continuously subjected to high solar radiation levels, are naturally adapted to take on this type of abiotic stress, thanks to the production of antioxidant secondary metabolites. For these reasons, several plant extracts were documented to be excellent antineoplastic drugs. PURPOSE We investigated the potential antitumor activity of the flower extract obtained by Spartium junceum L., a Mediterranean shrub, correlating it with the plant metabolic profile. STUDY DESIGN After selecting the best extraction method to obtain as more secondary metabolites as possible from S. junceum flowers, we characterized the extract metabolic content. Then, by in vitro analyses, the antioxidant profile and the antineoplastic activity on B16-F10 murine melanoma cell of our extract were investigated. METHODS Spectrophotometric assays, HPLC-DAD and GC-MS analyses provided us information about flower extract composition and antioxidant activity. MTT assay and Trypan Blue exclusion test were performed to assess the extract toxicity and the viability, after treatments, of B16-F10 cancer cells and of C2C12 murine myoblasts. In vitro experiments (i.e. cytofluorimetry, protein analysis and qPCR) allowed us to analyze the effect of the plant extract on B16-F10 cell redox state, melanogenesis and cell cycle. Senescence induction was investigated by using a specific kit. RESULTS We observed that the hydroalcoholic extract of S. junceum flowers (HFE) strongly inhibited B16-F10 murine melanoma cell proliferation, while just a feeble effect was observed on C2C12 murine myoblasts. Moreover, we found that HFE exerted a pro-oxidant activity on melanoma cells, inhibited melanogenesis and caused cell cycle arrest in G2/M phase, inducing senescence. These anti-cancer properties of HFE could be related to the rich metabolic profile of the extract that we characterized by HPLC-DAD and GC-MS analyses. CONCLUSION This evidence suggests that S. junceum phytocomplex can be used as a selective, nontoxic, economic and easily available anticancer drug.
Collapse
Affiliation(s)
- Valentina Nanni
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Lorena Canuti
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Antonella Canini
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome 00133, Italy.
| |
Collapse
|
78
|
Zhang L, Wang H, Zhou Y, Zhu Y, Fei M. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. Neurochem Int 2018; 118:304-313. [PMID: 29792955 DOI: 10.1016/j.neuint.2018.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
Abstract
Fisetin, a natural flavonoid, has neuroprotection properties in many brain injury models. However, its role in traumatic brain injury (TBI) has not been fully explained. In the present study, we aimed to explore the neuroprotective effects of fisetin in a mouse model of TBI. We found that fisetin improved neurological function, reduced cerebral edema, attenuated brain lesion and ameliorated blood-brain barrier (BBB) disruption after TBI. Moreover, the up-regulation of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were reversed by fisetin treatment. Furthermore, administration of fisetin suppressed neuron cell death and apoptosis, increased the expression of B-cell lymphoma 2 (Bcl-2), while decreased the expression of Bcl-2-associated X protein (Bax) and caspase-3 after TBI. In addition, fisetin activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway following TBI. However, fisetin only failed to suppress oxidative stress in Nrf2-/- mice. In conclusion, our data provided the first evidence that fisetin played a critical role in neuroprotection after TBI partly through the activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Yali Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Maoxin Fei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
79
|
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129:375-387. [DOI: 10.1016/j.phrs.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
80
|
Salmani JMM, Zhang XP, Jacob JA, Chen BA. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med 2018; 15:321-329. [PMID: 28558867 DOI: 10.1016/s1875-5364(17)30052-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Indexed: 01/31/2023]
Abstract
Cancer is a major health concern and leading burden on economy worldwide. An increasing effort is devoted to isolation and development of plant-derived dietary components as effective chemo-preventive products. Phytochemical compounds from natural resources such as fruits and vegetables are responsible for decreasing the risk of certain cancers among the consuming populations. Apigenin, a flavonoid phytochemical found in many kinds of fruits and vegetables, has been shown to exert significant biological effects, such as anti-oxidant, anti-inflammatory and most particularly anti-neoplastic properties. This review is intended to summarize the most recent advances in the anti-proliferative and chemo-preventive effects of apigenin in different cancer models. Analysis of the data from the studied cancer models has revealed that apigenin exerts its anti-proliferative effects through multiple and complex pathways. This guided us to discover some controversial results about the exact role of certain molecular pathways such as autophagy in the anticancer effects of apigenin. Further, there were cumulative positive evidences supporting the involvement of certain pathways such as apoptosis, ROS and DNA damage and repair. Apigenin possesses a high potential to be used as a chemosensitizing agent through the up-regulation of DR5 pathway. According to these preclinical findings we recommend that further robust unbiased studies should consider the possible interactions between different molecular pathways.
Collapse
Affiliation(s)
- Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Ping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
81
|
Heo JR, Lee GA, Kim GS, Hwang KA, Choi KC. Phytochemical-induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis and differentiation in malignant melanoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:100-110. [PMID: 29433671 DOI: 10.1016/j.phymed.2017.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/03/2017] [Accepted: 12/06/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Phytochemicals are derived from plants, vegetables and daily products and exert chemopreventive effects. Malignant melanoma is highly metastatic, and melanoma patients can develop chemotherapeutic resistance against conventional melanoma therapies. METHODS In the present study, we investigated the anti-cancer effect of the phytochemicals kaempferol (Kaem), genistein (Gen), and 3'3-diindolylmethane (DIM) on melanoma cell viability. We also evaluated the altered expression of cell cycle-related genes. We verified the production of intracellular reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress at both the protein and cellular level using a western blot, TUNEL assay, and Dihydrodichlorofluorescein diacetate (DCF-DA) assay. RESULTS Treatment of A375SM melanoma cells with phytochemicals resulted in inhibition of cell growth. Treatment with phytochemicals increased the gene expression of p21 and decreased the gene expression of cyclin E and/or cyclin B. The three phytochemicals activated the ROS-p38-p53 apoptotic pathway by increasing the level of phosphorylated p38 MAPK and p53, and they activated the ER stress-mediated apoptotic pathway by increasing the level of phosphorylated eIF2α and C/EBP homologous protein (CHOP). Both the ROS-p38-p53 and ER stress-mediated pathway induced the mitochondrial apoptotic pathway by attenuating Bcl-2 expression and upregulating BAX. Detection of morphological changes demonstrated that Kaem and Gen can induce differentiation in A375SM cell line. CONCLUSION These results indicate that phytochemicals are potentially useful in treatments for melanoma due to their ability to inhibit melanoma cell growth and division via the ROS and ER stress pathway.
Collapse
Affiliation(s)
- Jae-Rim Heo
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Geum-A Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Sik Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
82
|
Eghbali-Feriz S, Taleghani A, Al-Najjar H, Emami SA, Rahimi H, Asili J, Hasanzadeh S, Tayarani-Najaran Z. Anti-melanogenesis and anti-tyrosinase properties of Pistacia atlantica subsp. mutica extracts on B16F10 murine melanoma cells. Res Pharm Sci 2018; 13:533-545. [PMID: 30607151 PMCID: PMC6288995 DOI: 10.4103/1735-5362.245965] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pistacia atlantica (P. atlantica) subsp. mutica has been used in traditional medicine and is famous for its medicinal properties. The aim of this study was to evaluate the effect of methanol (MeOH), n-hexane, dichloromethane (CH2Cl2), n-butanol (BuOH), ethyl acetate (EtOAc), water extracts and essential oil of P. atlantica subsp. mutica on melanin synthesis and oxidative stress in B16F10 melanoma cell line. The B16F10 cells viability after treatment with increasing concentrations of different extracts of the plant (0.2-200 μg/mL) was measured using resazurin. Essential oil composition was identified by gas-chromatography-mass spectrometry (GC-MS) analysis and inhibitory effect on synthesis of melanin, mushroom tyrosinase activity, cellular tyrosinase, and oxidative stress were evaluated by the colorimetric and fluorometric methods. The data showed extracts at concentrations 0.2-200 μg/mL, did not show significant toxicity on melanoma cells but concentrations of 200 μg/mL of essential oil had cytotoxic effect. Pistacia atlantica subsp. mutica could inhibit the mushroom tyrosinase activity. Also the amount of melanin in B16F10 cells declined. In addition, the ability of P. atlantica subsp. mutica extracts in decreasing the amount of reactive oxygen species in melanoma cells revealed remarkable antioxidant activity. In addition, all concentrations of essential oil had no significant effect in this study. The melanogenesis inhibitory and antioxidant effects of P. atlantica subsp. mutica on B16F10 cells may suggest the potential whitening activity of the plant for using in dermatological skin care products and for prevention of skin aging in cosmetic industry.
Collapse
Affiliation(s)
- Samira Eghbali-Feriz
- Department of Pharmacognosy, School of pharmacy, Mashhad university of Medical Sciences, Mashhad, I.R. Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, I.R. Iran
| | - Hadi Al-Najjar
- Department of Pharmacy, College of Health Science, Public Authority for Applied Education and Training (PAAET), Kuwait
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, School of pharmacy, Mashhad university of Medical Sciences, Mashhad, I.R. Iran
| | - Homa Rahimi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Javad Asili
- Department of Pharmacognosy, School of pharmacy, Mashhad university of Medical Sciences, Mashhad, I.R. Iran
| | - Samira Hasanzadeh
- Department of Pharmacognosy, School of pharmacy, Mashhad university of Medical Sciences, Mashhad, I.R. Iran
| | - Zahra Tayarani-Najaran
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
83
|
Holliday LS. Vacuolar H +-ATPases (V-ATPases) as therapeutic targets: a brief review and recent developments. ACTA ACUST UNITED AC 2017; 1. [PMID: 30957075 DOI: 10.21037/biotarget.2017.12.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes that play housekeeping roles in eukaryotic cells by acidifying lysosomes, late endosomes, Golgi, and other membrane-bounded compartments. Beyond that, V-ATPases have specialized functions in certain cell types linked to diseases including osteoporosis and cancer. Efforts to identify strategies to develop inhibitors selective for V-ATPases that are involved in disease progression have been ongoing for more than two decades, but so far have not yielded a therapeutic agent that has been translated to the clinic. Recent basic science studies have identified unexpected roles for V-ATPases in nutrient and energy sensing, and renin/angiotensin signaling, which offer additional incentives for considering V-ATPases as therapeutic targets. This article briefly reviews efforts to utilize inhibitors of V-ATPases as drugs. Primary focus is on recent "rational" efforts to identify small molecule inhibitors of the V-ATPases that are selectively expressed in osteoclasts and cancer cells. Enoxacin and bis-enoxacin are two molecules that emerged from these efforts. These molecules block a binding interaction between V-ATPases and microfilaments that occurs in osteoclasts, but not most other cell types, which relates to the specialized function of V-ATPases in bone resorption. Enoxacin and bis-enoxacin have proven useful in the treatment of bone diseases and cancer in animal models and display therapeutic effects that are different, and perhaps better, than current drugs. These results provide evidence that agents targeting subsets of V-ATPases may prove useful in the clinic.
Collapse
Affiliation(s)
- L Shannon Holliday
- Departments of Orthodontics and Anatomy & Cell Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
84
|
Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay. Bioorg Med Chem 2017; 26:509-515. [PMID: 29254897 DOI: 10.1016/j.bmc.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022]
Abstract
In the screening of natural products for the development as cosmetic ingredients, the EtOAc-soluble fraction of Humulus japonicus showed tyrosinase inhibitory activity. HPLC-MS/MS coupled online tyrosinase assay of EtOAc-soluble fraction of H. japonicus characterized the twenty-eight constituents including two unknown ones and their tyrosinase inhibitory activity. Fractionation of H. japonicus using various chromatographic techniques yielded thirty-eight compounds. The chemical structures of isolated compounds were identified by spectroscopic analysis. As characterized by HPLC-MS/MS analysis, we isolated twenty-four predicted compounds and further identified two unknown ones, named humulusides A (1) and B (2). Additional ten compounds were also identified by purification. Tyrosinase inhibitory activity of isolated compounds were evaluated, which was closely correlated with the results from HPLC-MS/MS coupled online tyrosinase assay. Consistent with predicted data, two major compounds, trans-N-coumaroyltyramine (14) and cis-N-coumaroyltyramine (15) showed tyrosinase inhibition with IC50 values of 40.6 and 36.4 μM. Taken together, H. japonicus is suggested as whitening ingredient in cosmetic products. In addition, HPLC-MS/MS coupled tyrosinase assay is powerful tool for predicting active compounds with short time and limited amounts, although identification of new compounds and verification of predicted data are also needs to be demonstrated by further experiment.
Collapse
|
85
|
Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms. Mar Drugs 2017; 15:E297. [PMID: 28946635 PMCID: PMC5666405 DOI: 10.3390/md15100297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Korea.
| | - Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
86
|
Meng S, Zhu Y, Li JF, Wang X, Liang Z, Li SQ, Xu X, Chen H, Liu B, Zheng XY, Xie LP. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017; 8:19834-19842. [PMID: 28423637 PMCID: PMC5386726 DOI: 10.18632/oncotarget.15771] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/22/2017] [Indexed: 12/28/2022] Open
Abstract
Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Zhen Liang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shi-Qi Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Hong Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiang-Yi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| |
Collapse
|
87
|
Wang ST, Chang WC, Hsu C, Su NW. Antimelanogenic Effect of Urolithin A and Urolithin B, the Colonic Metabolites of Ellagic Acid, in B16 Melanoma Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6870-6876. [PMID: 28726389 DOI: 10.1021/acs.jafc.7b02442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Antimelanogenic agents from natural sources have been widely investigated. Urolithin A (UA) and B (UB), the main gut microflora metabolites of dietary ellagic acid derivatives, have various bioactivities such as anti-inflammatory and antiaging effects. In this study, the metabolites were found to possess depigmentation efficacy by suppressing tyrosinase activity. Both UA and UB could attenuate melanogenesis in B16 melanoma cells to 55.1 ± 3.8 and 76.4 ± 17.4% of control at noncytotoxic dosage, 10 μM, respectively. UA showed comparable efficacy to positive control, 5 μM of kojic acid treatment (51.2 ± 7.8). RT-PCR results revealed that UA and UB inhibited melanin formation by affecting the catalytic activity of tyrosinase rather than its mRNA expression. Kinetics for UA and UB on tyrosinase activity revealed that their inhibition behavior toward cellular tyrosinase involved competitive inhibition. UA and UB may be potent tyrosinase inhibitors and they possess significant antimelanogenesis ability as novel skin-whitening ingredients.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Chia Chang
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
88
|
Park JR, Lee MC, Moon SC, Kim J, Ha KT, Park EJ, Hong C, Seo BD, Kim BJ. Scutellaria baicalensis Georgi induces caspase-dependent apoptosis via mitogen activated protein kinase activation and the generation of reactive oxygen species signaling pathways in MCF-7 breast cancer cells. Mol Med Rep 2017; 16:2302-2308. [PMID: 28627691 DOI: 10.3892/mmr.2017.6798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Scutellaria baicalensis Georgi extract (SBGE) is used in traditional herbal medicine and has also been used clinically to ameliorate the symptoms of various inflammatory diseases and cancer. In women, breast cancer is one of the most common diseases and numerous women succumb to it. The present study was undertaken to investigate the mechanism responsible for the SBGE‑induced apoptosis of MCF‑7 human breast cancer cells. SBGE was administered to cells at concentrations between 100 and 500 mg/ml, and cell viabilities were identified using an MTT assay. B‑cell lymphoma 2 (Bcl-2) and Bcl-2 X‑associated protein (Bax) family members were identified by western blotting, and the mRNA expression levels of the pro‑apoptosis genes Fas, Fas ligand (FasL) and tumor necrosis factor (TNF)‑α were assessed by reverse transcription‑polymerase chain reaction. It was identified that SBGE treatment for 24 h inhibited MCF‑7 proliferation and increased the sub‑G1 phase ratio. SBGE suppressed mitochondrial membrane potentials and SBGE‑induced apoptotic cell death was identified to be associated with downregulation of Bcl‑2, but upregulation of Bax. SBGE‑activated caspases 3 and 9, and increased reactive oxygen species generation. However, SBGE had no effect on the expression levels of Fas, FasL or TNF‑α. Furthermore, mitogen‑activated protein kinase and C‑Jun N‑terminal kinase inhibitors inhibited SBGE‑induced cell death. These results suggested that SBGE be considered as an agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jin Ryeong Park
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Min Cheol Lee
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Seong-Cheol Moon
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Junghoon Kim
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Ki-Tae Ha
- Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Eun Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 110‑799, Republic of Korea
| | - Chansik Hong
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Byoung-Do Seo
- Department of Physical Therapy, Kyungwoon University College of Health, Gumi 730‑739, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
89
|
Lin B, Gong C, Song H, Cui Y. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017; 174:1226-1243. [PMID: 27646173 PMCID: PMC5429338 DOI: 10.1111/bph.13627] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Anthocyanins are a class of water-soluble flavonoids, which show a range of pharmacological effects, such as prevention of cardiovascular disease, obesity control and antitumour activity. Their potential antitumour effects are reported to be based on a wide variety of biological activities including antioxidant; anti-inflammation; anti-mutagenesis; induction of differentiation; inhibiting proliferation by modulating signal transduction pathways, inducing cell cycle arrest and stimulating apoptosis or autophagy of cancer cells; anti-invasion; anti-metastasis; reversing drug resistance of cancer cells and increasing their sensitivity to chemotherapy. In this review, the latest progress on the anticancer activities of anthocyanins and the underlying molecular mechanisms is summarized using data from basic research in vitro and in vivo, from clinical trials and taking into account theory and practice. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Bo‐Wen Lin
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Cheng‐Chen Gong
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Hai‐Fei Song
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
| | - Ying‐Yu Cui
- Department of Regenerative MedicineTongji University School of MedicineShanghaiChina
- Key Laboratory of ArrhythmiasMinistry of Education (Tongji University)ShanghaiChina
- Institute of Medical GeneticsTongji University School of MedicineShanghaiChina
| |
Collapse
|
90
|
Cömert ED, Gökmen V. Antioxidants Bound to an Insoluble Food Matrix: Their Analysis, Regeneration Behavior, and Physiological Importance. Compr Rev Food Sci Food Saf 2017; 16:382-399. [DOI: 10.1111/1541-4337.12263] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Ezgi Doğan Cömert
- Food Quality and Safety (FoQuS) Research Group, Dept. of Food Engineering; Hacettepe Univ.; 06800 Beytepe Ankara Turkey
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Dept. of Food Engineering; Hacettepe Univ.; 06800 Beytepe Ankara Turkey
| |
Collapse
|
91
|
Lambert MR, Edwards TM. Hormonally active phytochemicals and vertebrate evolution. Evol Appl 2017; 10:419-432. [PMID: 28515776 PMCID: PMC5427676 DOI: 10.1111/eva.12469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies Yale University New Haven CT USA
| | - Thea M Edwards
- Department of Biology University of the South Sewanee TN USA
| |
Collapse
|
92
|
Choi EO, Cho EJ, Jeong JW, Park C, Hong SH, Hwang HJ, Moon SK, Son CG, Kim WJ, Choi YH. Baicalein Inhibits the Migration and Invasion of B16F10 Mouse Melanoma Cells through Inactivation of the PI3K/Akt Signaling Pathway. Biomol Ther (Seoul) 2017; 25:213-221. [PMID: 27530117 PMCID: PMC5340547 DOI: 10.4062/biomolther.2016.094] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/26/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Baicalein, a natural flavonoid obtained from the rhizome of Scutellaria baicalensis Georgi, has been reported to have anticancer activities in several human cancer cell lines. However, its antimetastatic effects and associated mechanisms in melanoma cells have not been extensively studied. The current study examined the effects of baicalein on cell motility and anti-invasive activity using mouse melanoma B16F10 cells. Within the noncytotoxic concentration range, baicalein significantly inhibited the cell motility and invasiveness of B16F10 cells in a concentration-dependent manner. Baicalein also reduced the activity and expression of matrix metalloproteinase (MMP)-2 and -9; however, the levels of tissue inhibitor of metalloproteinase-1 and -2 were concomitantly increased. The inhibitory effects of baicalein on cell motility and invasiveness were found to be associated with its tightening of tight junction (TJ), which was demonstrated by an increase in transepithelial electrical resistance and downregulation of the claudin family of proteins. Additionally, treatment with baicalein markedly reduced the expression levels of lipopolysaccharide-induced phosphorylated Akt and the invasive activity in B16F10 cells. Taken together, these results suggest that baicalein inhibits B16F10 melanoma cell migration and invasion by reducing the expression of MMPs and tightening TJ through the suppression of claudin expression, possibly in association with a suppression of the phosphoinositide 3-kinase/Akt signaling pathway.
Collapse
Affiliation(s)
- Eun-Ok Choi
- Department of Food and Nutrition, College of Human Ecology, Pusan National University, Busan 46241,
Republic of Korea
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 47340,
Republic of Korea
| | - Eun-Ju Cho
- Department of Food and Nutrition, College of Human Ecology, Pusan National University, Busan 46241,
Republic of Korea
| | - Jin-Woo Jeong
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 47340,
Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 47340,
Republic of Korea
| | - Su-Hyun Hong
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227,
Republic of Korea
| | - Hye-Jin Hwang
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 47340,
Republic of Korea
- Department of Food and Nutrition, College of Natural Sciences and Human Ecology, Dongeui University, Busan 47340,
Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546,
Republic of Korea
| | - Chang Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, Daejeon 34929,
Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 28644,
Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 47340,
Republic of Korea
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227,
Republic of Korea
| |
Collapse
|
93
|
Zhang K, Song W, Li D, Jin X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp Ther Med 2017; 13:1719-1724. [PMID: 28565758 PMCID: PMC5443212 DOI: 10.3892/etm.2017.4165] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023] Open
Abstract
Hyperlipidemia is a major independent risk factor for atherosclerosis. Seeking natural compounds in medicinal plants capable of reducing blood fat and studying their mechanisms of action has been the focus of research in recent years. The aim of the present study was to analyze the mechanisms of apigenin in regulating cholesterol metabolism and protecting blood vessels, and to provide a theoretical basis for the clinical application of apigenin. The mouse model of hyperlipidemia was established to verify the efficacy of apigenin in improving hyperlipidemia and to observe the mechanism of action of apigenin in reducing cholesterol content. In vitro cell experiments were conducted to evaluate the role of apigenin in mediating reverse cholesterol transport. Additionally, H2O2-injured human umbilical venous endothelial cells (EA.hy926 cells) were used for further study on the roles of apigenin in resisting oxidization and protecting vascular endothelial cells. Apigenin significantly regulated blood fat, reduced animal weight, and reduced total cholesterol (P=0.024), triglyceride (P=0.031) and low-density lipoprotein cholesterol (P=0.014) in the serum of the high-fat diet mice. Apigenin improved the blood lipid metabolism of the hyper-lipidemia model mice. Body weight and serum cholesterol content increased abnormally (P=0.003) as a consequence of high-fat diet. Apigenin increased the activity of superoxide dismutase in EA.hy926 cells (P=0.043) and increased the amount of nitric oxide secreted by the cells (P=0.038). Apigenin also inhibited the proliferation of vascular smooth muscle cells in a dose-dependent manner (P=0.036). In conclusion, apigenin can regulate cholesterol metabolism in vivo and plays a role in reducing the level of blood fat by promoting cholesterol absorption and conversion, and accelerating reverse cholesterol transport. Apigenin also has a role in resisting oxidization and protecting blood vessels.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wei Song
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Dalin Li
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
94
|
Liu HJ, Fan YL, Liao HH, Liu Y, Chen S, Ma ZG, Zhang N, Yang Z, Deng W, Tang QZ. Apigenin alleviates STZ-induced diabetic cardiomyopathy. Mol Cell Biochem 2017; 428:9-21. [PMID: 28176247 DOI: 10.1007/s11010-016-2913-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
Abstract
Apigenin is an important component of fruits and vegetables in human daily diets. Several cellular and animal models have been performed to demonstrate its anti-oxidant and anti-inflammatory bioactivities. However, the cardioprotective effects of apigenin in diabetic cardiomyopathy (DCM) remain unclear. In this study, we intended to explore the roles of apigenin in cardiac remodeling of DCM. Male C57BL/6 J mice were treated with streptozotocin (STZ, 50 mg/kg) for 5 consecutive days to induce DCM. The echocardiography and catheter-based measurements of hemodynamic parameters were performed to evaluate the cardiac function. Paraffin slices of harvested hearts were prepared for histological pathological analysis and TUNEL assay. Oxidative assay kits were used to detect Glutathione Peroxidase (GPx), Lipid Peroxidation Malondialdehyde (MDA), and Superoxide Dismutase (SOD). Western blot and real-time PCR were used for accessing the expressions of protein and mRNA. Diabetes mellitus exacerbated the cardiac dysfunction, fibrosis, and overaccumulation of 4-hydroxynonenal accompanying with down-regulation of Bcl2, GPx, and SOD, up-regulation of MDA, cleaved caspase3, and pro-apoptotic protein Bax, and contribution to the translocation of NF-κB. All these pathological changes could be effectively blunted by treatment of apigenin in vivo. Finally, H9c2 treated with high glucose or apigenin was used for further investigation of these effects in vitro; what is more, we also compared the effects between apigenin and Resveratrol in in vitro experiments. Our experiments have demonstrated that apigenin may be a potential drug for diabetic patients suffering from DCM.
Collapse
Affiliation(s)
- Huang-Jun Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yun-Lin Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Chen
- College of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, China. .,Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
95
|
Choi JM, Hahm E, Park K, Jeong D, Rho WY, Kim J, Jeong DH, Lee YS, Jhang SH, Chung HJ, Cho E, Yu JH, Jun BH, Jung S. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E8. [PMID: 28336842 PMCID: PMC5295198 DOI: 10.3390/nano7010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/02/2016] [Accepted: 12/30/2016] [Indexed: 01/16/2023]
Abstract
Ethylenediamine-modified β-cyclodextrin (Et-β-CD) was immobilized on aggregated silver nanoparticle (NP)-embedded silica NPs (SiO₂@Ag@Et-β-CD NPs) for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS) signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via host-guest inclusion complex formation, as indicated by enhanced ultraviolet absorption spectra. The resulting SiO₂@Ag@Et-β-CD NPs were used as the SERS substrate for detecting flavonoids, such as hesperetin, naringenin, quercetin, and luteolin. In particular, luteolin was detected more strongly in the linear range 10-7 to 10-3 M than various organic molecules, namely ethylene glycol, β-estradiol, isopropyl alcohol, naphthalene, and toluene. In addition, the SERS signal for luteolin captured by the SiO₂@Ag@Et-β-CD NPs remained even after repeated washing. These results indicated that the SiO₂@Ag@Et-β-CD NPs can be used as a rapid, sensitive, and selective sensor for flavonoids.
Collapse
Affiliation(s)
- Jae Min Choi
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Kyeonghui Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| | - Won-Yeop Rho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jaehi Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea.
| | - Sung Ho Jhang
- Department of Physics, Konkuk University, Seoul 05029, Korea.
| | - Hyun Jong Chung
- Department of Physics, Konkuk University, Seoul 05029, Korea.
| | - Eunae Cho
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Seunho Jung
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
96
|
Zhou Q, Feng C, Ruan Z. Inhibitory effect of a genistein derivative on pigmentation of guinea pig skin. RSC Adv 2017. [DOI: 10.1039/c6ra27106e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study demonstrated the mechanisms of the inhibitory effects of GD against UVB-induced pigmentation in guinea pig skin.
Collapse
Affiliation(s)
- Quancheng Zhou
- School of Food Science and Technology
- Nanchang University
- Nanchang
- China
- School of Agricultural Engineering and Food Science
| | - Chuanxing Feng
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo
- China
| | - Zheng Ruan
- School of Food Science and Technology
- Nanchang University
- Nanchang
- China
| |
Collapse
|
97
|
Affiliation(s)
- Y.S. Khotimchenko
- School of Biomedicine; Far Eastern Federal University; ul. Sukhanova 8 Vladivostok 690950 Russia
| |
Collapse
|
98
|
Marzagalli M, Montagnani Marelli M, Casati L, Fontana F, Moretti RM, Limonta P. Estrogen Receptor β in Melanoma: From Molecular Insights to Potential Clinical Utility. Front Endocrinol (Lausanne) 2016; 7:140. [PMID: 27833586 PMCID: PMC5080294 DOI: 10.3389/fendo.2016.00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is an aggressive tumor; its incidence has been reported to increase fast in the past decades. Melanoma is a heterogeneous tumor, with most patients harboring mutations in the BRAF or NRAS oncogenes, leading to the overactivation of the MAPK/ERK and PI3K/Akt pathways. The current therapeutic approaches are based on therapies targeting mutated BRAF and the downstream pathway, and on monoclonal antibodies against the immune checkpoint blockade. However, treatment resistance and side effects are common events of these therapeutic strategies. Increasing evidence supports that melanoma is a hormone-related cancer. Melanoma incidence is higher in males than in females, and females have a significant survival advantage over men. Estrogens exert their effects through estrogen receptors (ERα and ERβ) that affect cancer growth in an opposite way: ERα is associated with a proliferative action and ERβ with an anticancer effect. ERβ is the predominant ER in melanoma, and its expression decreases in melanoma progression, supporting its role as a tumor suppressor. Thus, ERβ is now considered as an effective molecular target for melanoma treatment. 17β-estradiol was reported to inhibit melanoma cells proliferation; however, clinical trials did not provide the expected survival benefits. In vitro studies demonstrate that ERβ ligands inhibit the proliferation of melanoma cells harboring the NRAS (but not the BRAF) mutation, suggesting that ERβ activation might impair melanoma development through the inhibition of the PI3K/Akt pathway. These data suggest that ERβ agonists might be considered as an effective treatment strategy, in combination with MAPK inhibitors, for NRAS mutant melanomas. In an era of personalized medicine, pretreatment evaluation of the expression of ER isoforms together with the concurrent oncogenic mutations should be considered before selecting the most appropriate therapeutic intervention. Natural compounds that specifically bind to ERβ have been identified. These phytoestrogens decrease the proliferation of melanoma cells. Importantly, these effects are unrelated to the oncogenic mutations of melanomas, suggesting that, in addition to their ERβ activating function, these compounds might impair melanoma development through additional mechanisms. A better identification of the role of ERβ in melanoma development will help increase the therapeutic options for this aggressive pathology.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Patrizia Limonta,
| |
Collapse
|