51
|
Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 2015; 149:213-26. [PMID: 25562580 DOI: 10.1016/j.pharmthera.2015.01.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/28/2022]
Abstract
Increasing epidemiological and experimental evidence implicates gestational infections as one important factor involved in the pathogenesis of several neuropsychiatric disorders. Corresponding preclinical model systems based upon maternal immune activation (MIA) by treatment of the pregnant female have been developed. These MIA animal model systems have been successfully used in basic and translational research approaches, contributing to the investigation of the underlying pathophysiological mechanisms at the molecular, cellular and behavioral levels. The present article focuses on the application of a specific MIA rodent paradigm, based upon treatment of the gestating dam with the viral mimic polyinosinic-polycytidilic acid (Poly(I:C)), a synthetic analog of double-stranded RNA (dsRNA) which activates the Toll-like receptor 3 (TLR3) pathway. Important advantages and constraints of this animal model will be discussed, specifically in light of gestational infection as one vulnerability factor contributing to the complex etiology of mood and psychotic disorders, which are likely the result of intricate multi-level gene×environment interactions. Improving our currently incomplete understanding of the molecular pathomechanistic principles underlying these disorders is a prerequisite for the development of alternative therapeutic approaches which are critically needed in light of the important drawbacks and limitations of currently available pharmacological treatment options regarding efficacy and side effects. The particular relevance of the Poly(I:C) MIA model for the discovery of novel drug targets for symptomatic and preventive therapeutic strategies in mood and psychotic disorders is highlighted in this review article.
Collapse
Affiliation(s)
- Sonali Reisinger
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Deeba Khan
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Eryan Kong
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Austria.
| |
Collapse
|
52
|
Wischhof L, Irrsack E, Osorio C, Koch M. Prenatal LPS-exposure--a neurodevelopmental rat model of schizophrenia--differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:17-30. [PMID: 25455585 DOI: 10.1016/j.pnpbp.2014.10.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023]
Abstract
Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. Gender differences can be seen in various features of the illness and sex steroid hormones (e.g. estrogen) have strongly been implicated in the disease pathology. In the present study, we evaluated sex differences in the effects of prenatal exposure to a bacterial endotoxin (lipopolysaccharide, LPS) in rats. Pregnant dams received LPS-injections (100 μg/kg) at gestational day 15 and 16. The offspring was then tested for prepulse inhibition (PPI), locomotor activity, anxiety-like behavior and object recognition memory at various developmental time points. At postnatal day (PD) 33 and 60, prenatally LPS-exposed rats showed locomotor hyperactivity which was similar in male and female offspring. Moreover, prenatal LPS-treatment caused PPI deficits in pubertal (PD45) and adult (PD90) males while PPI impairments were found only at PD45 in prenatally LPS-treated females. Following prenatal LPS-administration, recognition memory for objects was impaired in both sexes with males being more severely affected. Additionally, we assessed prenatal infection-induced alterations of parvalbumin (Parv) expression and myelin fiber density. Male offspring born to LPS-challenged mothers showed decreased myelination in cortical and limbic brain regions as well as reduced numbers of Parv-expressing cells in the medial prefrontal cortex (mPFC), hippocampus and entorhinal cortex. In contrast, LPS-exposed female rats showed only a modest decrease in myelination and Parv immunoreactivity. Collectively, our data indicate that some of the prenatal immune activation effects are sex dependent and further strengthen the importance of taking into account gender differences in animal models of schizophrenia.
Collapse
Affiliation(s)
- Lena Wischhof
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany.
| | - Ellen Irrsack
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Carmen Osorio
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| | - Michael Koch
- Brain Research Institute, Department of Neuropharmacology, University of Bremen, Hochschulring 18, 28359 Bremen, Germany
| |
Collapse
|
53
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
54
|
Vorhees CV, Graham DL, Braun AA, Schaefer TL, Skelton MR, Richtand NM, Williams MT. Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine. Neurotoxicol Teratol 2014; 47:54-65. [PMID: 25450663 DOI: 10.1016/j.ntt.2014.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 01/05/2023]
Abstract
Prenatal maternal immune activation increases risk for schizophrenia and/or autism. Previous data suggest that maternal weight change in response to the immune activator polyinosinic-polycytidylic (Poly IC) in rats influences the severity of effect in the offspring as does the exposure period. We treated gravid Sprague-Dawley rats from E14 to 18 with 8mg/kg/day Poly IC or saline. The Poly IC group was divided into those that gained the least weight or lost (Poly IC (L)) and those that gained the most (Poly IC (H)) weight. There were no effects of Poly IC on anxiety (elevated zero-maze, open-field, object burying), or Morris water maze cued learning or working memory or Cincinnati water maze egocentric learning. The Poly IC (H) group males had decreased acoustic startle whereas Poly IC (L) females had reduced startle and increased PPI. Poly IC offspring showed exaggerated hyperactivity in response to amphetamine (primarily in the Poly IC (H) group) and attenuated hyperactivity in response to MK-801 challenge (primarily in the Poly IC (L) group). Poly IC (L) males showed reduced cued conditioned freezing; both sexes showed less time in the dark in a light-dark test, and the Poly IC groups showed impaired Morris water maze hidden platform acquisition and probe performance. The data demonstrate that offspring from the most affected dams were more affected than those from less reactive dams indicating that degree of maternal immune activation predicts severity of effects on offspring behavior.
Collapse
Affiliation(s)
- Charles V Vorhees
- Division of Child Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, United States.
| | - Devon L Graham
- Department of Pharmacology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, United States
| | - Amanda A Braun
- Division of Child Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, United States
| | - Tori L Schaefer
- Division of Child Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, United States
| | - Matthew R Skelton
- Division of Child Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, United States
| | - Neil M Richtand
- Psychiatry Service, V-116A, VA San Diego Healthcare System, 3350 La Jolla Village Dr., San Diego, CA 92161, United States
| | - Michael T Williams
- Division of Child Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Department of Pediatrics, College of Medicine, University of Cincinnati, United States
| |
Collapse
|
55
|
Bitanihirwe BKY, Woo TUW. Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci Biobehav Rev 2014; 45:85-99. [PMID: 24709070 DOI: 10.1016/j.neubiorev.2014.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Schizophrenia is a complex brain disorder associated with deficits in synaptic connectivity. The insidious onset of this illness during late adolescence and early adulthood has been reported to be dependent on several key processes of brain development including synaptic refinement, myelination and the physiological maturation of inhibitory neural networks. Interestingly, these events coincide with the appearance of perineuronal nets (PNNs), reticular structures composed of components of the extracellular matrix that coat a variety of cells in the mammalian brain. Until recently, the functions of the PNN had remained enigmatic, but are now considered to be important in development of the central nervous system, neuronal protection and synaptic plasticity, all elements which have been associated with schizophrenia. Here, we review the emerging evidence linking PNNs to schizophrenia. Future studies aimed at further elucidating the functions of PNNs will provide new insights into the pathophysiology of schizophrenia leading to the identification of novel therapeutic targets with the potential to restore normal synaptic integrity in the brain of patients afflicted by this illness.
Collapse
Affiliation(s)
| | - Tsung-Ung W Woo
- Program in Cellular Neuropathology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
56
|
Kumar SRP, Biswas M, Elankumaran S. Pandemic H1N1 Influenza A Virus Induces A Potent Innate Immune Response In Human Chorionic Cells. Viral Immunol 2014; 27:129-37. [DOI: 10.1089/vim.2013.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sandeep R. P. Kumar
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Moanaro Biswas
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Subbiah Elankumaran
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
57
|
Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ, Pollak DD. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry 2014; 4:e363. [PMID: 24548878 PMCID: PMC3944633 DOI: 10.1038/tp.2013.132] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/29/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023] Open
Abstract
Depression is a debilitating mental disease affecting a large population worldwide, the pathophysiological mechanisms of which remain incompletely understood. Prenatal infection and associated activation of the maternal immune system (MIA) are prominently related to an increased risk for the development of several psychiatric disorders including schizophrenia and autism in the offsprings. However, the role of MIA in the etiology of depression and its neurobiological basis are insufficiently investigated. Here we induced MIA in mice by challenge with polyinosinic:polycytidylic phosphate salt-a synthetic analog of double-stranded RNA, which enhances maternal levels of the cytokine interleukin-6 (IL-6)-and demonstrate a depression-like behavioral phenotype in adult offsprings. Adult offsprings additionally show deficits in cognition and hippocampal long-term potentiation (LTP) accompanied by disturbed proliferation of newborn cells in the dentate gyrus and compromised neuronal maturation and survival. The behavioral, neurogenic and functional deficiencies observed are associated with reduced hippocampal expression of vascular endothelial growth factor (VEGF)A-VEGFR2. IL-6-STAT3-dependent aberrant VEGFA-VEGFR2 signaling is proposed as neurobiological mechanism mediating the effects of MIA on the developing fetal brain and ensuing consequences in adulthood.
Collapse
Affiliation(s)
- D Khan
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - P Fernando
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - A Berger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - A Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - F J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - D D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
58
|
Smyth AM, Lawrie SM. The neuroimmunology of schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2013; 11:107-17. [PMID: 24465246 PMCID: PMC3897758 DOI: 10.9758/cpn.2013.11.3.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023]
Abstract
Schizophrenia (SCZ) is a polygenic, multi-factorial disorder and a definitive understanding of its pathophysiology has been lacking since it was first described more than a century ago. The predominant pharmacological approach used to treat SCZ is the use of dopamine receptor antagonists. The fact that many patients remain symptomatic, despite complying with medication regimens, emphasises the need for a more encompassing explanation for both the causes and treatment of SCZ. Recent neuroanatomical, neurobiological, environmental and genetic studies have revived the idea that inflammatory pathways are involved in the pathogenesis of SCZ. These new insights have emerged from multiple lines of evidence, including the levels of inflammatory proteins in the central nervous system of patients with SCZ and animal models. This review focuses on aberrant inflammatory mechanisms present both before and during the onset of the psychotic symptoms that characterise SCZ and discusses recent research into adjunctive immune system modulating therapies for its more effective treatment.
Collapse
Affiliation(s)
- Annya M. Smyth
- Department of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M. Lawrie
- Department of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
59
|
Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol 2013; 74:11-9. [PMID: 23907982 DOI: 10.1002/ana.23898] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/02/2013] [Accepted: 03/15/2013] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Maternal immune activation (MIA) triggered by infections has been identified as a cause of autism in offspring. Considering the involvement of perturbations in innate immunity in epilepsy, we examined whether MIA represents a risk factor for epilepsy as well. The role of specific MIA components interleukin (IL)-6 and IL-1β was also addressed. METHODS MIA was induced in C57BL/6 mice by polyinosinic-polycytidylic acid (PIC) injected during embryonic days 12 to 16. Beginning from postnatal day 40, the propensity of the offspring to epilepsy was examined using hippocampal kindling; autismlike behavior was studied using the sociability test. The involvement of IL-6 and IL-1β in PIC-induced effects was studied by the coadministration of the cytokine antibodies with PIC, and by delivering recombinant cytokines in lieu of PIC. RESULTS The offspring of PIC-exposed mice exhibited increased hippocampal excitability, accelerated kindling rate, prolonged increase of seizure susceptibility after kindling, and diminished sociability. Epileptic impairments were abolished by antibodies to IL-6 or IL-1β. Neither of the recombinant cytokines alone increased the propensity to seizures; however, when combined, they produced effects similar to those induced by PIC. PIC-induced behavioral deficits were abolished by IL-6 antibodies and were mimicked by recombinant IL-6; IL-1β was not involved. INTERPRETATION In addition to confirming the previously established critical role of IL-6 in the development of autismlike behavior following MIA, the present study shows that concurrent involvement of IL-6 and IL-1β is required for priming the offspring for epilepsy. These data shed light on mechanisms of comorbidity between autism and epilepsy.
Collapse
Affiliation(s)
- Eduardo Pineda
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.
Collapse
Affiliation(s)
- Michael Pazos
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
61
|
Wilson M, Offenberger JB. Intermittent neutropenia and leucopenia unrelated to clozapine in a 12-year-old girl with schizophrenia. J Child Adolesc Psychopharmacol 2013; 23:136-8. [PMID: 23480326 DOI: 10.1089/cap.2011.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
62
|
Donohoe G, Walters J, Hargreaves A, Rose E, Morris D, Fahey C, Bellini S, Cummins E, Giegling I, Hartmann A, Möller HJ, Muglia P, Owen M, Gill M, O'Donovan M, Tropea D, Rujescu D, Corvin A. Neuropsychological effects of theCSMD1genome-wide associated schizophrenia risk variant rs10503253. GENES BRAIN AND BEHAVIOR 2013; 12:203-9. [DOI: 10.1111/gbb.12016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 11/29/2022]
Affiliation(s)
| | - J. Walters
- Department of Psychological Medicine; University of Cardiff; Cardiff; UK
| | - A. Hargreaves
- Neuropsychiatric Genetics Group, Department of Psychiatry; Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital; Dublin; Ireland
| | | | | | - C. Fahey
- Neuropsychiatric Genetics Group, Department of Psychiatry; Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital; Dublin; Ireland
| | - S. Bellini
- Neuropsychiatric Genetics Group, Department of Psychiatry; Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital; Dublin; Ireland
| | - E. Cummins
- Neuropsychiatric Genetics Group, Department of Psychiatry; Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital; Dublin; Ireland
| | - I. Giegling
- Department of Psychiatry and Psychotherapy; University of Munich (LMU); Munich; Germany
| | - A.M. Hartmann
- Department of Psychiatry and Psychotherapy; University of Munich (LMU); Munich; Germany
| | - H.-J. Möller
- Department of Psychiatry and Psychotherapy; University of Munich (LMU); Munich; Germany
| | - P. Muglia
- Medical Genetics; GlaxoSmithKline R&D; Verona; Italy
| | - M.J. Owen
- Department of Psychological Medicine; University of Cardiff; Cardiff; UK
| | | | - M.C. O'Donovan
- Department of Psychological Medicine; University of Cardiff; Cardiff; UK
| | - D. Tropea
- Neuropsychiatric Genetics Group, Department of Psychiatry; Institute of Molecular Medicine, Trinity College Dublin, St. James Hospital; Dublin; Ireland
| | - D. Rujescu
- Department of Psychiatry and Psychotherapy; University of Munich (LMU); Munich; Germany
| | | |
Collapse
|
63
|
Monk C, Georgieff MK, Osterholm EA. Research review: maternal prenatal distress and poor nutrition - mutually influencing risk factors affecting infant neurocognitive development. J Child Psychol Psychiatry 2013; 54:115-30. [PMID: 23039359 PMCID: PMC3547137 DOI: 10.1111/jcpp.12000] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Accumulating data from animal and human studies indicate that the prenatal environment plays a significant role in shaping children's neurocognitive development. Clinical, epidemiologic, and basic science research suggests that two experiences relatively common in pregnancy - an unhealthy maternal diet and psychosocial distress - significantly affect children's future neurodevelopment. These prenatal experiences exert their influence in the context of one another and yet, almost uniformly, are studied independently. SCOPE AND METHOD OF REVIEW In this review, we suggest that studying neurocognitive development in children in relation to both prenatal exposures is ecologically most relevant, and methodologically most sound. To support this approach, we selectively review two research topics that demonstrate the need for dual exposure studies, including exemplar findings on (a) the associations between pregnant women's inadequate maternal intake of key nutrients - protein, fat, iron, zinc, and choline - as well as distress in relation to overlapping effects on children's neurocognitive development; and (b) cross-talk between the biology of stress and nutrition that can amplify each experience for the mother and fetus,. We also consider obstacles to this kind of study design, such as questions of statistical methods for 'disentangling' the exposure effects, and aim to provide some answers. CONCLUSION Studies that specifically include both exposures in their design can begin to determine the relative and/or synergistic impact of these prenatal experiences on developmental trajectories - and thereby contribute most fully to the understanding of the early origins of health and disease.
Collapse
Affiliation(s)
- Catherine Monk
- Psychiatry and Obstetrics & Gynecology, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
64
|
Barichello T, Generoso JS, Milioli G, Elias SG, Teixeira AL. Pathophysiology of Bacterial Infection of the Central Nervous System and its Putative Role in the Pathogenesis of Behavioral Changes. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35:81-7. [DOI: 10.1016/j.rbp.2012.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/09/2012] [Indexed: 01/19/2023]
|
65
|
Schuurmans C, Kurrasch DM. Neurodevelopmental consequences of maternal distress: what do we really know? Clin Genet 2012; 83:108-17. [PMID: 23140231 DOI: 10.1111/cge.12049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A simple internet search of 'maternal stress and pregnancy' turns up hundreds of hits explaining that an adverse intrauterine environment can affect fetal development and potentially lead to various learning, behavioral, and mood disorders in childhood, as well as complex diseases such as obesity and cardiovascular conditions later in life. Indeed, a growing body of literature now links several intrauterine challenges, including maternal obesity and stress, with adverse developmental outcomes in the child. Over the past 5 years, nearly 5000 publications have explored the consequences of maternal distress on young offspring, a marked increase from the 475 published studies over a comparable period 20 years ago. Yet, despite this explosion of research and widespread warnings to pregnant mothers, we still lack a basic understanding of the pathophysiology linking adverse maternal health to the onset of disease in the child, especially regarding how prenatal and perinatal challenges might affect brain development. Recent studies have begun to explore the cellular basis of the abnormal brain cytoarchitecture associated with fetal exposure to intrauterine challenges. Here, our goal is to review the scientific evidence that maternal distress interferes with key neurodevelopmental steps, as an entry point toward mapping the pathophysiology of pre- and perinatal stress on the unborn child's brain.
Collapse
Affiliation(s)
- C Schuurmans
- Department of Biochemistry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
66
|
Saxena V, Ramdas S, Ochoa CR, Wallace D, Bhide P, Kohane I. Structural, genetic, and functional signatures of disordered neuro-immunological development in autism spectrum disorder. PLoS One 2012; 7:e48835. [PMID: 23239965 PMCID: PMC3514226 DOI: 10.1371/journal.pone.0048835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 10/05/2012] [Indexed: 01/07/2023] Open
Abstract
Background Numerous linkage studies have been performed in pedigrees of Autism Spectrum Disorders, and these studies point to diverse loci and etiologies of autism in different pedigrees. The underlying pattern may be identified by an integrative approach, especially since ASD is a complex disorder manifested through many loci. Method Autism spectrum disorder (ASD) was studied through two different and independent genome-scale measurement modalities. We analyzed the results of copy number variation in autism and triangulated these with linkage studies. Results Consistently across both genome-scale measurements, the same two molecular themes emerged: immune/chemokine pathways and developmental pathways. Conclusion Linkage studies in aggregate do indeed share a thematic consistency, one which structural analyses recapitulate with high significance. These results also show for the first time that genomic profiling of pathways using a recombination distance metric can capture pathways that are consistent with those obtained from copy number variations (CNV).
Collapse
Affiliation(s)
- Vishal Saxena
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
67
|
Melnik A, Tauber S, Dumrese C, Ullrich O, Wolf SA. Murine adult neural progenitor cells alter their proliferative behavior and gene expression after the activation of Toll-like-receptor 3. Eur J Microbiol Immunol (Bp) 2012; 2:239-48. [PMID: 24688771 DOI: 10.1556/eujmi.2.2012.3.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Viral infections during pregnancy significantly increase the risk for psychological pathologies like schizophrenia in the offspring. One of the main morphological hallmarks of schizophrenia is a reduced size of the hippocampus. Since new neurons are produced in this particular brain compartment throughout life, it might be possible that low neurogenesis levels triggered by a maternal viral infection contribute to developmental deficits of the hippocampus. We injected polyinosinic:polycytidylic acid (Poly I:C) in pregnant C57Bl/6 mice to stimulate an anti-viral response through TLR3 and examined gene expressions in the neuronal progenitor cells (NPCs) of the offspring at different ages. Additionally, we treated adult NPC lines with Poly I:C to investigate its direct effect. We could show for the first time that TLR3 and its downstream effector molecule IRF3 are expressed in adult NPCs. Poly I:C treatment in vitro and in vivo led to the regulation of proliferation and genes involved in antiviral response, migration, and survival. These findings indicate that NPCs of the fetus are able to react towards an in utero immune response, and thus, changes in the neuronal stem cell pool can contribute to the development of neurological diseases like schizophrenia.
Collapse
|
68
|
Smith SEP, Elliott RM, Anderson MP. Maternal immune activation increases neonatal mouse cortex thickness and cell density. J Neuroimmune Pharmacol 2012; 7:529-32. [PMID: 22570011 PMCID: PMC3672058 DOI: 10.1007/s11481-012-9372-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/25/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Stephen E. P. Smith
- Departments of Neurology and Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Center for Life Sciences, 330 Brookline Ave, E/CLS-717, Boston, MA 02215, USA
| | - Robin M. Elliott
- Departments of Neurology and Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Center for Life Sciences, 330 Brookline Ave, E/CLS-717, Boston, MA 02215, USA
| | - Matthew P. Anderson
- Departments of Neurology and Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Center for Life Sciences, 330 Brookline Ave, E/CLS-717, Boston, MA 02215, USA
| |
Collapse
|
69
|
Abstract
The peak in incidence for schizophrenia is during late adolescence for both sexes, but within this time frame the peak is both earlier and steeper for males. Additionally, women have a second peak in incidence following menopause. Two meta-analyses have reported that men have an overall ∼40% greater chance of developing schizophrenia than do women (Aleman et al., 2003; McGrath et al., 2004). These and other findings have led to the suggestion that ovarian hormones may be protective against schizophrenia. Less explored is the potential role of testosterone in schizophrenia, although disruptions in steroid levels have also been reported in men with the illness. The relationship between increased gonadal hormone release per se and peri-adolescent vulnerability for psychiatric illness is difficult to tease apart from other potentially contributory factors in clinical studies, as adolescence is a turbulent period characterized by many social and biological changes. Despite the obvious opportunity provided by animal research, surprisingly little basic science effort has been devoted to this important issue. On the other hand, the animal work offers an understanding of the many ways in which gonadal steroids exert a powerful impact on the brain, both shaping its development and modifying its function during adulthood. Recently, investigators using preclinical models have described a greater male vulnerability to neurodevelopmental insults that are associated with schizophrenia; such studies may provide clinically relevant insights into the role of gonadal steroids in psychiatric illness.
Collapse
Affiliation(s)
- Julie A Markham
- Maryland Psychiatric Research Center, University of Maryland-Baltimore School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
| |
Collapse
|
70
|
Xiu MH, Chen DC, Wang D, Zhang K, Dong A, Tang W, Zhang F, Liu LJ, Liu JH, Liu HB, Yang FD, Kosten TR, Zhang XY. Elevated interleukin-18 serum levels in chronic schizophrenia: Association with psychopathology. J Psychiatr Res 2012; 46:1093-8. [PMID: 22647522 DOI: 10.1016/j.jpsychires.2012.04.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/13/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Schizophrenia is associated with various abnormalities in the immune system including elevated levels of Interleukin-18 (IL-18), a potent inflammatory cytokine in T-helper 1 (Th1) responses. The aim of this study was to assess the clinical significance of serum IL-18 levels in various stages of schizophrenia. METHODS We measured serum IL-18 levels using a sandwich enzyme-linked immunosorbent assay (ELISA) from 78 never-medicated first-episode schizophrenia, 79 medicated chronic schizophrenia and 78 healthy control subjects. The symptoms of schizophrenia were assessed by the Positive and Negative Syndrome Scale (PANSS). RESULTS The chronic patients had significantly greater serum IL-18 levels than both first-episode patients and controls. Serum IL-18 was also positively correlated with the PANSS general psychopathology subscore in chronic schizophrenic patients. CONCLUSIONS Our results showed elevated IL-18 pathway activity may be involved in the psychopathology of schizophrenia.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Vicente B, de la Barra F, Saldivia S, Kohn R, Rioseco P, Melipillan R. Prevalence of child and adolescent psychiatric disorders in Santiago, Chile: a community epidemiological study. Soc Psychiatry Psychiatr Epidemiol 2012; 47:1099-109. [PMID: 21796366 DOI: 10.1007/s00127-011-0415-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/06/2011] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the prevalence of DSM-IV psychiatric disorders in a representative sample of children and adolescents living in Santiago, Chile, as part of a national sample. METHOD Subjects aged 4-18 were selected using a stratified multistage design. First, ten municipalities/comunas of Santiago were selected; then the blocks, homes, and child or adolescent to be interviewed were chosen. Psychology graduate students administered the Spanish-language, computer-assisted version of DISC-IV that estimated DSM-IV 12-month prevalence. RESULTS A total of 792 children and adolescents were evaluated, with a participation rate of 76.7%. The most stringent impairment DSM-IV DISC algorithm for psychiatric disorders revealed a prevalence of 25.4% (20.7% for boys and 30.3% for girls). The majority of the diagnoses corresponded to anxiety and affective disorders. Prevalence was higher in children aged 4-11 (31.9%) than in adolescents aged 12-18 (18.2%). This difference was mainly accounted for by disruptive disorders in the younger age group. Anxiety disorders had the highest prevalence, although impairment was low. In contrast, most children and adolescents with affective disorders were impaired. CONCLUSIONS In Santiago, the prevalence of psychiatric disorders in children and adolescents was high. This study helps raise awareness of child and adolescent mental health issues in Spanish-speaking Latin America and serves as a basis for improving mental health services.
Collapse
Affiliation(s)
- Benjamin Vicente
- Department of Psychiatry and Mental Health, University of Concepción, Casilla 160-C, Concepción, Chile.
| | | | | | | | | | | |
Collapse
|
72
|
Macêdo DS, Araújo DP, Sampaio LRL, Vasconcelos SMM, Sales PMG, Sousa FCF, Hallak JE, Crippa JA, Carvalho AF. Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: a systematic review. Braz J Med Biol Res 2012; 45:179-86. [PMID: 22392187 PMCID: PMC3854194 DOI: 10.1590/s0100-879x2012007500031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/10/2012] [Indexed: 11/21/2022] Open
Abstract
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Collapse
Affiliation(s)
- D S Macêdo
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol 2012; 67:287-94. [PMID: 22380481 DOI: 10.1111/j.1600-0897.2012.01110.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/23/2012] [Indexed: 01/10/2023] Open
Abstract
Intrauterine infection and inflammation are known risk factors for brain damage in the neonate irrespective of the gestational age. Infection-induced maternal immune activation leads to a fetal inflammatory response mediated by cytokines that has been implicated in the development of not only periventricular leukomalacia and cerebral palsy but also a spectrum of neurodevelopmental disorders such as autism and schizophrenia (Behav Brain Res 2009; 204:313, Ann Neurol 2005; 57:67, Am J Obstet Gynecol 2000; 182:675). A common link among the neurobehavioral disorders associated with intrauterine inflammation appears to be the evidence for immune dysregulation in the developing brain (Behav Brain Res 2009; 204:313). The timing of the immune challenge with respect to the gestational age and neurologic development of the fetus may be crucial in the elicited response (J Neurosci 2006; 26:4752). Studies involving animal models of maternal inflammation serve a key role in elucidation of mechanisms involved in fetal brain injury associated with exposure to the maternal milieu. These animal models have been shown to result in fetal microglial activation, neurotoxicity as well motor deficits and behavioral abnormalities in the offspring (J Neurosci 2006; 26:4752, J Neurosci Res 2010; 88:172, Am J Obstet Gynecol 2009; 201:279, Am J Obstet Gynecol 2008; 199:651). A better understanding of the mechanisms of perinatal brain injury will allow discoveries of novel neuroprotective agents, better outcomes following preterm birth and stratification of fetuses and neonates for therapies in cases of preterm birth, preterm premature rupture of membranes, and chorioamnionitis.
Collapse
Affiliation(s)
- Irina Burd
- Department of Gynecology, Johns Hopkins University, Baltimore, MD 20905, USA.
| | | | | |
Collapse
|
74
|
Koutra K, Chatzi L, Roumeliotaki T, Vassilaki M, Giannakopoulou E, Batsos C, Koutis A, Kogevinas M. Socio-demographic determinants of infant neurodevelopment at 18 months of age: Mother–Child Cohort (Rhea Study) in Crete, Greece. Infant Behav Dev 2012; 35:48-59. [DOI: 10.1016/j.infbeh.2011.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 10/16/2022]
|
75
|
Kambarova DK, Golubev AG. Biochemical and genetic aspects of pathogenesis of schizophrenia. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011050021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Mortensen PB, Pedersen CB, McGrath JJ, Hougaard DM, Nørgaard-Petersen B, Mors O, Børglum AD, Yolken RH. Neonatal antibodies to infectious agents and risk of bipolar disorder: a population-based case-control study. Bipolar Disord 2011; 13:624-9. [PMID: 22085475 DOI: 10.1111/j.1399-5618.2011.00962.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE There is a substantial evidence base linking prenatal exposure to infectious agents and an increased risk of schizophrenia. However, there has been less research examining the potential for these exposures to also contribute to risk for bipolar disorder. The aim of this study was to examine the association between neonatal markers of selected prenatal infections and risk for bipolar disorder. METHODS Using population-based Danish registers, we examined 127 individuals with a diagnosis of bipolar disorder, and 127 sex and day-of-birth individually matched controls. Based on neonatal dried blood spots, we measured antibodies to herpes simplex virus type 1 (HSV-1) and 2 (HSV-2), cytomegalovirus (CMV), and Toxoplasma gondii. Relative risks were calculated for the matched pairs when examined for optical density units for antibodies to each of the infectious agents. RESULTS There was no association between any of the neonatal markers of prenatal infection and risk of bipolar disorder. CONCLUSIONS In contrast with studies of schizophrenia, our analysis does not support maternal infection with HSV-1, HSV-2, CMV, or Toxoplasma gondii as risk factors for bipolar disorder. However, larger study samples are needed, and data on, for example, specific serotypes of Toxoplasma and indicators of the timing of maternal infection are still warranted.
Collapse
Affiliation(s)
- Preben Bo Mortensen
- National Centre for Register-based Research, Faculty of Social Sciences, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Prenatal exposure to cigarette smoke causes persistent changes in the oxidative balance and in DNA structural integrity in rats submitted to the animal model of schizophrenia. J Psychiatr Res 2011; 45:1497-503. [PMID: 21733528 DOI: 10.1016/j.jpsychires.2011.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/24/2011] [Accepted: 06/10/2011] [Indexed: 12/18/2022]
Abstract
Epidemiological studies have indicated that prenatal exposure to environmental insults can bring an increased risk of schizophrenia. The objective of our study was to determine biochemical parameters in rats exposed to cigarette smoke (CS) in the prenatal period, evaluated in adult offspring submitted to animal model of schizophrenia induced by acute subanaesthetic doses of ketamine (5 mg/kg, 15 mg/kg and 25 mg/kg). Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day, daily for a period of 28 days. We evaluated the oxidative damage in lipid and protein in the rat brain, and DNA damage in the peripheral blood of male adult offspring rats. To determine oxidative damage in the lipids, we measured the formation of thiobarbituric acid reactive species (TBARS) and the oxidative damage to the proteins was assessed by the determination of carbonyl groups content. We also evaluated DNA damage using single-cell gel electrophoresis (comet assay). Our results showed that rats exposed to CS in the prenatal period presented a significant increase of the lipid peroxidation, protein oxidation and DNA damage in adult age. We can observe that the animals submitted at acute doses of ketamine also presented an increase of the lipid peroxidation and protein oxidation at different doses and structures. Finally, we suggest that exposure to CS during the prenatal period affects two essential cerebral processes during development: redox regulation and DNA integrity, evaluated in adult offspring. These effects can leads to several neurochemical changes similar to the pathophysiology of schizophrenia.
Collapse
|
78
|
Buss C, Davis EP, Hobel CJ, Sandman CA. Maternal pregnancy-specific anxiety is associated with child executive function at 6-9 years age. Stress 2011; 14:665-76. [PMID: 21995526 PMCID: PMC3222921 DOI: 10.3109/10253890.2011.623250] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Because fetal brain development proceeds at an extremely rapid pace, early life experiences have the potential to alter the trajectory of neurodevelopment, which may increase susceptibility for developmental and neuropsychiatric disorders. There is evidence that prenatal maternal stress and anxiety, especially worries specifically related to being pregnant, influence neurodevelopmental outcomes. In the current prospective longitudinal study, we included 89 women for whom serial data were available for pregnancy-specific anxiety, state anxiety, and depression at 15, 19, 25, 31, and 37 weeks gestation. When the offspring from the target pregnancy were between 6 and 9 years of age, their executive function was assessed. High levels of mean maternal pregnancy-specific anxiety over the course of gestation were associated with lower inhibitory control in girls only and lower visuospatial working memory performance in boys and girls. Higher-state anxiety and depression also were associated with lower visuospatial working memory performance. However, neither state anxiety nor depression explained any additional variance after accounting for pregnancy-specific anxiety. The findings contribute to the literature supporting an association between pregnancy-specific anxiety and cognitive development and extend our knowledge about the persistence of this effect until middle childhood.
Collapse
Affiliation(s)
- C Buss
- Department of Pediatrics, University of California Irvine, Orange 92868, USA.
| | | | | | | |
Collapse
|
79
|
Is there an anatomical endophenotype for neurodevelopmental disorders? A review of dual disorder anatomical likelihood estimation (ALE) meta-analyses of grey matter volumes. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4743-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
80
|
Eyles D, Burne T, McGrath J. Vitamin D in fetal brain development. Semin Cell Dev Biol 2011; 22:629-636. [PMID: 21664981 DOI: 10.1016/j.semcdb.2011.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/26/2011] [Indexed: 01/02/2023]
Abstract
In this review we will provide a concise summary of the evidence implicating a role for vitamin D in the developing brain. Vitamin D is known to affect a diverse array of cellular functions. Over the past 10 years data has emerged implicating numerous ways in which this vitamin could also affect the developing brain including its effects on cell differentiation, neurotrophic factor expression, cytokine regulation, neurotransmitter synthesis, intracellular calcium signaling, anti-oxidant activity, and the expression of genes/proteins involved in neuronal differentiation, structure and metabolism. Dysfunction in any of these processes could adversely affect development. Although there are many ways to study the effects of vitamin D on the developing CNS in vivo, we will concentrate on one experimental model that has examined the impact of the dietary absence of vitamin D in utero. Finally, we discuss the epidemiological data that suggests that vitamin D deficiency either in utero or in early life may have adverse neuropsychiatric implications.
Collapse
Affiliation(s)
- Darryl Eyles
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.
| | | | | |
Collapse
|
81
|
Håvik B, Le Hellard S, Rietschel M, Lybæk H, Djurovic S, Mattheisen M, Mühleisen TW, Degenhardt F, Priebe L, Maier W, Breuer R, Schulze TG, Agartz I, Melle I, Hansen T, Bramham CR, Nöthen MM, Stevens B, Werge T, Andreassen OA, Cichon S, Steen VM. The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol Psychiatry 2011; 70:35-42. [PMID: 21439553 DOI: 10.1016/j.biopsych.2011.01.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Patients with schizophrenia often suffer from cognitive dysfunction, including impaired learning and memory. We recently demonstrated that long-term potentiation in rat hippocampus, a mechanistic model of learning and memory, is linked to gene expression changes in immunity-related processes involved in complement activity and antigen presentation. We therefore aimed to examine whether key regulators of these processes are genetic susceptibility factors in schizophrenia. METHODS Analysis of genetic association was based on data mining of genotypes from a German genome-wide association study and a multiplex GoldenGate tag single nucleotide polymorphism (SNP)-based assay of Norwegian and Danish case-control samples (Scandinavian Collaboration on Psychiatric Etiology), including 1133 patients with schizophrenia and 2444 healthy control subjects. RESULTS Allelic associations were found across all three samples for eight common SNPs in the complement control-related gene CSMD2 (CUB and Sushi Multiple Domains 2) on chromosome 1p35.1-34.3, of which rs911213 reached a statistical significance comparable to that of a genome wide threshold (p value = 4.0 × 10(-8); odd ratio = .73, 95% confidence interval = .65-.82). The second most significant gene was CSMD1 on chromosome 8p23.2, a homologue to CSMD2. In addition, we observed replicated associations in the complement surface receptor CD46 as well as the major histocompatibility complex genes HLA-DMB and HLA-DOA. CONCLUSIONS These data demonstrate a significant role of complement control-related genes in the etiology of schizophrenia and support disease mechanisms that involve the activity of immunity-related pathways in the brain.
Collapse
Affiliation(s)
- Bjarte Håvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Piontkewitz Y, Arad M, Weiner I. Tracing the development of psychosis and its prevention: what can be learned from animal models. Neuropharmacology 2011; 62:1273-89. [PMID: 21703648 DOI: 10.1016/j.neuropharm.2011.04.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder manifested symptomatically after puberty whose pharmacotherapy remains unsatisfactory. In recent years, longitudinal structural neuroimaging studies have revealed that neuroanatomical aberrations occur in this disorder and in fact precede symptom onset, raising the exciting possibility that SCZ can be prevented. There is some evidence that treatment with atypical antipsychotic drugs (APDs) prior to the development of the full clinical phenotype reduces the risk of transition to psychosis, but results remain controversial. It remains unknown whether progressive structural brain aberrations can be halted. Given the diagnostic, ethical, clinical and methodological problems of pharmacological and imaging studies in patients, getting such information remains a major challenge. Animal neurodevelopmental models of SCZ are invaluable for investigating such questions because they capture the notion that the effects of early brain damage are progressive. In recent years, data derived from such models have converged on key neuropathological and behavioral deficits documented in SCZ attesting to their strong validity, and making them ideal tools for evaluating progression of pathology following in-utero insults as well as its prevention. We review here our recent studies that use longitudinal in vivo structural imaging to achieve this aim in the prenatal immune stimulation model that is based on the association of prenatal infection and increased risk for SCZ. Pregnant rats were injected on gestational day 15 with the viral mimic polyriboinosinic-polyribocytidylic acid (poly I:C) or saline. Male and female offspring were imaged and tested behaviorally on postnatal days (PNDs) 35, 46, 56, 70 and 90. In other experiments, offspring of poly I:C- and saline-treated dams received the atypical antipsychotic drugs (APDs) clozapine or risperidone in two developmental windows: PND 34-47 and PND 48-61, and underwent behavioral testing and imaging at adulthood. Prenatal poly I:C-induced interference with fetal brain development led to aberrant postnatal brain development as manifested in structural abnormalities in the hippocampus, the striatum, the prefrontal cortex and lateral ventricles (LV), as seen in SCZ. The specific trajectories were region-, age- and sex-specific, with females having delayed onset of pathology compared to males. Brain pathology was accompanied by development of behavioral abnormalities phenotypic of SCZ, attentional deficit and hypersensitivity to amphetamine, with same sex difference. Hippocampal volume loss and LV volume expansion as well as behavioral abnormalities were prevented in the offspring of poly I:C mothers who received clozapine or risperidone during the asymptomatic period of adolescence (PND 34-47). Administration at a later window, PNDs 48-61, exerted sex-, region- and drug- specific effects. Our data show that prenatal insult leads to progressive postnatal brain pathology, which gradually gives rise to "symptoms"; that treatment with atypical APDs can prevent both brain and behavioral pathology; and that the earlier the intervention, the more pathological outcomes can be prevented.
Collapse
Affiliation(s)
- Yael Piontkewitz
- Department of Psychology, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
83
|
Abstract
The incidence of psychotic disorders is extremely high in several immigrant groups in Europe. This article describes the epidemiological evidence for increased incidence rates among immigrants compared with nonimmigrant populations and explores possible explanations for this excess risk. Potential causes not only involve factors acting at the level of the individual, but encompass the broader social context of neighborhoods and ethnic groups. Growing up and living in a disadvantaged ethnic minority position, characterized by a low social status, high degree of discrimination against the group and low neighborhood ethnic density, may lead to an increased risk of psychotic disorders, especially when individuals reject their minority status and when their social resources are insufficient to buffer the impact of adverse social experiences. Future research should refine measures of the social context, adopt a life-course perspective and should integrate social and neurobiological pathways.
Collapse
Affiliation(s)
- Wim Veling
- Center for Early Psychosis, Parnassia Psychiatric Institute, The Hague, The Netherlands
| | | |
Collapse
|
84
|
Mattai A, Hosanagar A, Weisinger B, Greenstein D, Stidd R, Clasen L, Lalonde F, Rapoport J, Gogtay N. Hippocampal volume development in healthy siblings of childhood-onset schizophrenia patients. Am J Psychiatry 2011; 168:427-35. [PMID: 21245087 PMCID: PMC3289129 DOI: 10.1176/appi.ajp.2010.10050681] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Previous anatomic studies have established a reduction in hippocampal volume in schizophrenia, but few have investigated the progressive course of these changes and whether they are trait markers. In the present study, the authors examined hippocampal volumes in relation to age for patients with childhood-onset schizophrenia, their nonpsychotic healthy siblings, and healthy comparison subjects. METHOD Anatomic brain magnetic resonance scans were obtained in childhood-onset schizophrenia probands (N=89, 198 scans), their nonpsychotic full siblings (N=78, 172 scans), and matched healthy comparison subjects (N=79, 198 scans) between the ages of 10 and 29 years. Total, left, and right hippocampal volumes were measured using FreeSurfer software and analyzed using a linear mixed-model regression covarying for sex and intracranial volume. RESULTS Childhood-onset schizophrenia probands had a fixed reduction in hippocampal volumes (total, left, and right) relative to both nonpsychotic siblings and healthy comparison subjects, whereas there were no significant volumetric or trajectory differences between nonpsychotic siblings and healthy comparison subjects. CONCLUSIONS Fixed hippocampal volume loss seen in childhood-onset schizophrenia, which is not shared by healthy siblings, appears to be related to the illness. Decreased hippocampal volume is not strongly genetically related but represents an important intermediate disease phenotype.
Collapse
Affiliation(s)
- Anand Mattai
- Child Psychiatry Branch, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats. Neuropharmacology 2011; 62:1299-307. [PMID: 21376064 DOI: 10.1016/j.neuropharm.2011.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 01/02/2023]
Abstract
Current understanding of the etiology of neurodevelopmental disorders is limited; however, recent epidemiological studies demonstrate a strong correlation between prenatal infection during pregnancy and the development of schizophrenia in adult offspring. In particular, schizophrenia patients subjected to prenatal infection exhibit impairments in executive functions greater than schizophrenia patients not exposed to an infection while in utero. Acute prenatal treatment of rodents with the viral mimetic polyinosinic-polycytidylic acid (PolyI:C) induces behavioural and neuropathological alterations in the adult offspring similar to schizophrenia. However, impairments on tasks of executive function that involve the prefrontal cortex (PFC) have been rarely examined for the prenatal infection model. Hence, we investigated the effects of acute prenatal injection of PolyI:C (4.0 mg/kg, i.v., gestational day 15) on strategy set-shifting and reversal learning in an operant-based task. Our results show male, but not female, PolyI:C-treated adult offspring require more trials to reach criterion and perseverate during set-shifting. An opposite pattern was seen on the reversal day where the PolyI:C-treated male rats made fewer regressive errors. Females took more pre-training days and were slower to respond during the trials when compared to males regardless of prenatal treatment. The present findings validate the utility of the prenatal infection model for examining alterations of executive function, one of the most prominent cognitive symptoms of schizophrenia.
Collapse
|
86
|
Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology (Berl) 2011; 214:89-106. [PMID: 20949351 PMCID: PMC3050113 DOI: 10.1007/s00213-010-2035-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/26/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE The birth of neurons, their migration to appropriate positions in the brain, and their establishment of the proper synaptic contacts happen predominately during the prenatal period. Environmental stressors during gestation can exert a major impact on brain development and thereby contribute to the pathogenesis of neuropsychiatric illnesses, such as depression and psychotic disorders including schizophrenia. OBJECTIVE The objectives here are to present recent preclinical studies of the impact of prenatal exposure to gestational stressors on the developing fetal brain and discuss their relevance to the neurobiological basis of mental illness. The focus is on maternal immune activation, psychological stresses, and malnutrition, due to the abundant clinical literature supporting their role in the etiology of neuropsychiatric illnesses. RESULTS Prenatal maternal immune activation, viral infection, unpredictable psychological stress, and malnutrition all appear to foster the development of behavioral abnormalities in exposed offspring that may be relevant to the symptom domains of schizophrenia and psychosis, including sensorimotor gating, information processing, cognition, social function, and subcortical hyperdopaminergia. Depression-related phenotypes, such as learned helplessness or anxiety, are also observed in some model systems. These changes appear to be mediated by the presence of proinflammatory cytokines and/or corticosteroids in the fetal compartment that alter the development the neuroanatomical substrates involved in these behaviors. CONCLUSION Prenatal exposure to environmental stressors alters the trajectory of brain development and can be used to generate animal preparations that may be informative in understanding the pathophysiological processes involved in several human neuropsychiatric disorders.
Collapse
|
87
|
Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation. PLoS One 2011; 6:e16638. [PMID: 21347362 PMCID: PMC3037372 DOI: 10.1371/journal.pone.0016638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/30/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear. METHODOLOGY/PRINCIPAL FINDINGS Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC. CONCLUSIONS/SIGNIFICANCE This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michelle Y. Deng
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Sylvia Lam
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Urs Meyer
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Joram Feldon
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Qi Li
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ran Wei
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Lawrence Luk
- Genome Research Centre, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Siew Eng Chua
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yu Wang
- Department of Pharmacology, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Grainne Mary McAlonan
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|
88
|
Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 2011; 62:1308-21. [PMID: 21238465 DOI: 10.1016/j.neuropharm.2011.01.009] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/05/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
The neurodevelopmental hypothesis of schizophrenia has been highly influential in shaping our current thinking about modeling the disease in animals. Based on the findings provided by human epidemiological studies, a great deal of recent interest has been centered upon the establishment of neurodevelopmental rodent models in which the basic experimental manipulation takes the form of prenatal exposure to infection and/or immune activation. One such model is based on prenatal treatment with the inflammatory agent poly(I:C) (=polyriboinosinic-polyribocytidilic acid), a synthetic analog of double-stranded RNA. Since its initial establishment and application to basic schizophrenia research, the poly(I:C) model has made a great impact on researchers concentrating on the neurodevelopmental and neuroimmunological basis of complex human brain disorders such as schizophrenia, and as a consequence, the model now enjoys wide recognition in the international scientific community. The present article emphasizes that the poly(I:C) model has gained such impact because it successfully accounts for several aspects of schizophrenia epidemiology, pathophysiology, symptomatology, and treatment. The numerous features of this experimental system make the poly(I:C) model a very powerful neurodevelopmental animal model of schizophrenia-relevant brain disease which is expected to be capable of critically advancing our knowledge of how the brain, following an (immune-associated) triggering event in early life, can develop into a "schizophrenia-like brain" over time. Furthermore, the poly(I:C) model seems highly suitable for the exploration of novel pharmacological and neuro-immunomodulatory strategies for both symptomatic and preventive treatments against psychotic disease, as well as for the identification of neurobiological mechanisms underlying gene-environment and environment-environment interactions presumably involved in the etiology of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Urs Meyer
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology (ETH) Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | | |
Collapse
|
89
|
Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KLK, Nucifora F, Pogorelov V, Ladenheim B, Yang C, Krasnova IN, Cadet JL, Pardo C, Mori S, Kamiya A, Vogel M, Sawa A, Ross CA, Pletnikov MV. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 2010; 68:1172-81. [PMID: 21130225 PMCID: PMC3026608 DOI: 10.1016/j.biopsych.2010.09.022] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gene-environment interactions (GEI) are involved in the pathogenesis of mental diseases. We evaluated interaction between mutant human disrupted-in-schizophrenia 1 (mhDISC1) and maternal immune activation implicated in schizophrenia and mood disorders. METHODS Pregnant mice were treated with saline or polyinosinic:polycytidylic acid at gestation day 9. Levels of inflammatory cytokines were measured in fetal and adult brains; expression of mhDISC1, endogenous DISC1, lissencephaly type 1, nuclear distribution protein nudE-like 1, glycoprotein 130, growth factor receptor-bound protein 2, and glycogen synthase kinase-3beta were assessed in cortical samples of newborn mice. Tissue content of monoamines, volumetric brain abnormalities, dendritic spine density in the hippocampus, and various domains of the mouse behavior repertoire were evaluated in adult male mice. RESULTS Prenatal interaction produced anxiety, depression-like responses, and altered social behavior that were accompanied by decreased reactivity of the hypothalamic-pituitary-adrenal axis, attenuated serotonin neurotransmission in the hippocampus, reduced enlargement of lateral ventricles, decreased volumes of amygdala and periaqueductal gray matter and density of spines on dendrites of granule cells of the hippocampus. Prenatal interaction modulated secretion of inflammatory cytokines in fetal brains, levels of mhDISC1, endogenous mouse DISC1, and glycogen synthase kinase-3beta. The behavioral effects of GEI were observed only if mhDISC1 was expressed throughout the life span. CONCLUSIONS Prenatal immune activation interacted with mhDISC1 to produce the neurobehavioral phenotypes that were not seen in untreated mhDISC1 mice and that resemble aspects of major mental illnesses. Our DISC1 mouse model is a valuable system to study GEI relevant to mental illnesses.
Collapse
Affiliation(s)
- B. Abazyan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J. Nomura
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - G. Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - K. Ishizuka
- Program in Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - K. L. K. Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - F. Nucifora
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - V. Pogorelov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - B. Ladenheim
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, MD
| | - C. Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - I. N. Krasnova
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, MD
| | - J. L. Cadet
- Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, MD
| | - C. Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - S. Mori
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A. Kamiya
- Program in Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - M. Vogel
- Maryland Psychiatric Research Center, University of Maryland, Baltimore, MD
| | - A. Sawa
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, Program in Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - C. A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - M. V. Pletnikov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD,The corresponding author: Mikhail V. Pletnikov, MD; PhD, Johns Hopkins University School of Medicine, 600 North Wolfe Street; CMSC 8-121, Baltimore, MD 21287, USA, Phone: 410-502-3760, FAX: 410-614-0013,
| |
Collapse
|
90
|
Bitanihirwe BKY, Woo TUW. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 2010; 35:878-93. [PMID: 20974172 DOI: 10.1016/j.neubiorev.2010.10.008] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/17/2010] [Indexed: 01/17/2023]
Abstract
Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioral and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-d-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons. Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Schorenstrasse 16, Schwerzenbach CH 8603, Switzerland.
| | | |
Collapse
|
91
|
Oh-Nishi A, Obayashi S, Sugihara I, Minamimoto T, Suhara T. Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring. Brain Res 2010; 1363:170-9. [PMID: 20863817 DOI: 10.1016/j.brainres.2010.09.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
It has been suggested that maternal immune activation increases the risk of psychiatric disorders such as schizophrenia in offspring. There are many reports about hippocampal structural pathology in schizophrenia. Antipsychotic drug administration in adolescence prevented postpubertal hippocampal structural pathology in the maternal immune activation animal model. These findings suggest the possibility that maternal immune activation induces hippocampal dysfunction in juvenile offspring. To test this hypothesis, we investigated hippocampal function in juvenile offspring of maternal immune activation model rat. A synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C; 4 mg/kg/day, I.P.) was injected to pregnant rats on gestation days 15 and 17, in order to cause immune activation by stimulating Toll-like receptor 3. Hippocampal synaptic function and morphology in their juvenile offspring (postnatal days 28-31) were compared to those in vehicle-injected control offspring. Field responses were recorded in the hippocampal CA1 region by stimulating commissural/Schaffer collaterals. Pre-synaptic fiber volley amplitudes (mV) and field excitatory post-synaptic potential slopes (mV/ms) were significantly lower in treated offspring. In addition, short-term synaptic plasticity, namely, the paired-pulse facilitation ratio, was significantly higher and long-term synaptic plasticity (long-term potentiation) was significantly impaired in treated offspring. Furthermore, major pre-synaptic protein (synaptophysin) expressions were decreased, but not major post-synaptic proteins (GluR1, GluR2/3, and NR1), in hippocampal CA1 of treated offspring, whereas neuronal loss was not detected in the hippocampal CA1-CA3 regions. These results indicate that maternal immune activation leads to synaptic dysfunction without neuronal loss in the hippocampus of juvenile offspring, and this may be one of the early stages of schizophrenia pathologies.
Collapse
Affiliation(s)
- Arata Oh-Nishi
- Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
92
|
Cognitive impairment following prenatal immune challenge in mice correlates with prefrontal cortical AKT1 deficiency. Int J Neuropsychopharmacol 2010; 13:981-96. [PMID: 20219156 DOI: 10.1017/s1461145710000192] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence indicates that genetically determined deficiency in the expression of the cytoplasmic serine-threonine protein kinase AKT1 may contribute to abnormal prefrontal cortical structure and function relevant to the cognitive disturbances in schizophrenia. However, it remains essentially unknown whether prefrontal AKT1 expression may also be influenced by environmental factors implicated in the aetiology of this mental illness. One of the relevant environmental risk factors of schizophrenia and related disorders is prenatal exposure to infection and/or immune activation. This study therefore explored whether prenatal immune challenge may lead to prefrontal AKT1 deficiency and associated changes in cognitive functions attributed to the prefrontal cortex. For these purposes, we used a well-established experimental mouse model of prenatal exposure to a viral-like acute phase response induced by the synthetic analogue of double-stranded RNA, polyriboinosinic-polyribocytidilic acid (PolyI:C). We found that adult offspring born to PolyI:C-treated mothers showed delay-dependent impairments in spatial working memory and recognition memory together with a marked reduction of AKT1-positive cells in the prefrontal cortex. These effects emerged in the absence of concomitant changes in prefrontal catechol-O-methyltransferase (COMT) density. Correlative analyses further demonstrated a significant positive correlation between the number of AKT1-positive cells in distinct prefrontal cortical subregions and cognitive performance under high storage load in the temporal domain. Our findings thus highlight that schizophrenia-related alterations in AKT1 signalling and associated cognitive dysfunctions may not only be precipitated by genetically determined factors, but may also be produced by (immune-associated) environmental insults implicated in the aetiology of this disabling brain disorder.
Collapse
|
93
|
Abstract
OBJECTIVE Clinic-based studies of immune function, as well as comorbidity of autoimmune diseases, bipolar disorder, and schizophrenia, suggest a possible autoimmune etiology. Studies of non-affective psychosis and schizophrenia suggest common etiologies. The objective was to determine the degree to which 30 different autoimmune diseases are antecedent risk factors for bipolar disorder, schizophrenia, and non-affective psychosis. METHODS A cohort of 3.57 million births in Denmark was linked to the Psychiatric Case Register and the National Hospital Register. There were 20,317 cases of schizophrenia, 39,076 cases of non-affective psychosis, and 9,920 cases of bipolar disorder. RESULTS As in prior studies, there was a range of autoimmune diseases which predicted raised risk of schizophrenia in individuals who had a history of autoimmune diseases, and also raised risk in persons whose first-degree relatives had an onset of autoimmune disease prior to onset of schizophrenia in the case. These relationships also existed for the broader category of non-affective psychosis. Only pernicious anemia in the family was associated with raised risk for bipolar disorder (relative risk: 1.7), suggesting a small role for genetic linkage. A history of Guillain-Barré syndrome, Crohn's disease, and autoimmune hepatitis in the individual was associated with raised risk of bipolar disorder. CONCLUSIONS The familial relationship of schizophrenia to a range of autoimmune diseases extends to non-affective psychosis, but not to bipolar disorder. The data suggest that autoimmune processes precede onset of schizophrenia, but also non-affective psychosis and bipolar disorder.
Collapse
Affiliation(s)
- William W Eaton
- Department of Mental Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Marianne G Pedersen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Philip R Nielsen
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Preben Bo Mortensen
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA, National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| |
Collapse
|
94
|
Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010; 24:881-97. [PMID: 20230889 DOI: 10.1016/j.bbi.2010.03.005] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Verdun, Quebec, Canada.
| |
Collapse
|
95
|
Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice. Int J Neuropsychopharmacol 2010; 13:877-89. [PMID: 19835658 DOI: 10.1017/s1461145709990757] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.
Collapse
|
96
|
Gene-gene interaction in maternal and perinatal research. J Biomed Biotechnol 2010; 2010. [PMID: 20798776 PMCID: PMC2926762 DOI: 10.1155/2010/853612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 12/26/2022] Open
|
97
|
Marco EM, Macrì S, Laviola G. Critical Age Windows for Neurodevelopmental Psychiatric Disorders: Evidence from Animal Models. Neurotox Res 2010; 19:286-307. [DOI: 10.1007/s12640-010-9205-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 01/28/2023]
|
98
|
Shibre T, Alem A, Abdulahi A, Araya M, Beyero T, Medhin G, Deyassa N, Negash A, Nigatu A, Kebede D, Fekadu A. Trimethoprim as adjuvant treatment in schizophrenia: a double-blind, randomized, placebo-controlled clinical trial. Schizophr Bull 2010; 36:846-51. [PMID: 19193743 PMCID: PMC2894598 DOI: 10.1093/schbul/sbn191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various infectious agents, such as Toxoplasma gondii, have been hypothesized to be potentially relevant etiological factors in the onset of some cases of schizophrenia. We conducted a randomized, double-blind, placebo-controlled treatment trial in an attempt to explore the hypothesis that the symptoms of schizophrenia may be related to infection of the central nervous system with toxoplasma gondii. Systematically selected patients with ongoing and at least moderately severe schizophrenia from Butajira, in rural Ethiopia, were randomly allocated to trimethoprim or placebo, which were added on to participants' regular antipsychotic treatments. Trial treatments were given for 6 months. The Positive and Negative Syndrome Scale (PANSS) was used to assess outcome. Ninety-one patients were included in the study, with 80 cases (87.9%) positive for T. gondii immunoglobulin G antibody. Seventy-nine subjects (87.0%) completed the trial. The mean age of subjects was 35.3 (SD = 8.0) years, with a mean duration of illness of 13.2 (SD = 6.7) years. Both treatment groups showed significant reduction in the overall PANSS score with no significant between-group difference. In this sample of patients with chronic schizophrenia, trimethoprim used as adjuvant treatment is not superior to placebo. However, it is not possible to draw firm conclusion regarding the etiological role of toxoplasmosis on schizophrenia based on this study because the timing and the postulated mechanisms through which toxoplasmosis produces schizophrenia are variable.
Collapse
Affiliation(s)
- Teshome Shibre
- Department of Psychiatry, Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Archer T. Effects of exogenous agents on brain development: stress, abuse and therapeutic compounds. CNS Neurosci Ther 2010; 17:470-89. [PMID: 20553311 DOI: 10.1111/j.1755-5949.2010.00171.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The range of exogenous agents likely to affect, generally detrimentally, the normal development of the brain and central nervous system defies estimation although the amount of accumulated evidence is enormous. The present review is limited to certain types of chemotherapeutic and "use-and-abuse" compounds and environmental agents, exemplified by anesthetic, antiepileptic, sleep-inducing and anxiolytic compounds, nicotine and alcohol, and stress as well as agents of infection; each of these agents have been investigated quite extensively and have been shown to contribute to the etiopathogenesis of serious neuropsychiatric disorders. To greater or lesser extent, all of the exogenous agents discussed in the present treatise have been investigated for their influence upon neurodevelopmental processes during the period of the brain growth spurt and during other phases uptill adulthood, thereby maintaining the notion of critical phases for the outcome of treatment whether prenatal, postnatal, or adolescent. Several of these agents have contributed to the developmental disruptions underlying structural and functional brain abnormalities that are observed in the symptom and biomarker profiles of the schizophrenia spectrum disorders and the fetal alcohol spectrum disorders. In each case, the effects of the exogenous agents upon the status of the affected brain, within defined parameters and conditions, is generally permanent and irreversible.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
100
|
Short SJ, Lubach GR, Karasin AI, Olsen CW, Styner M, Knickmeyer RC, Gilmore JH, Coe CL. Maternal influenza infection during pregnancy impacts postnatal brain development in the rhesus monkey. Biol Psychiatry 2010; 67:965-73. [PMID: 20079486 PMCID: PMC3235476 DOI: 10.1016/j.biopsych.2009.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 01/22/2023]
Abstract
BACKGROUND Maternal infection with influenza and other pathogens during pregnancy has been associated with increased risk for schizophrenia and neurodevelopmental disorders. In rodent studies, maternal inflammatory responses to influenza affect fetal brain development. However, to verify the relevance of these findings to humans, research is needed in a primate species with more advanced prenatal corticogenesis. METHODS Twelve pregnant rhesus monkeys were infected with influenza, A/Sydney/5/97 (H3N2), 1 month before term (early third trimester) and compared with 7 control pregnancies. Nasal swabs and blood samples confirmed viral shedding and immune activation. Structural magnetic resonance imaging was conducted at 1 year; behavioral development and cortisol reactivity were also assessed. RESULTS Maternal infections were mild and self-limiting. At birth, maternally derived influenza-specific immunoglobulin G was present in the neonate, but there was no evidence of direct viral exposure. Birth weight and gestation length were not affected, nor were infant neuromotor, behavioral, and endocrine responses. However, magnetic resonance imaging analyses revealed significant reductions in cortical gray matter in flu-exposed animals. Regional analyses indicated the largest gray matter reductions occurred bilaterally in cingulate and parietal areas; white matter was also reduced significantly in the parietal lobe. CONCLUSIONS Influenza infection during pregnancy affects neural development in the monkey, reducing gray matter throughout most of the cortex and decreasing white matter in parietal cortex. These brain alterations are likely to be permanent, given that they were still present at the monkey-equivalent of older childhood and thus might increase the likelihood of later behavioral pathology.
Collapse
Affiliation(s)
- Sarah J Short
- Department of Psychology, Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | |
Collapse
|