51
|
Correction: Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2315-2317. [PMID: 32901820 PMCID: PMC7484393 DOI: 10.1042/cs-20200904_cor] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Bai L, Li W, Zheng W, Xu D, Chen N, Cui J. Promising targets based on pattern recognition receptors for cancer immunotherapy. Pharmacol Res 2020; 159:105017. [DOI: 10.1016/j.phrs.2020.105017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
53
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate target gene expression by binding to sequences in messenger RNA processing. Inflammation is a protective reaction from harmful stimuli. MiRNAs can be biomarkers of diseases related to inflammation and are widely expressed in serum. However, overall changes in serum miRNA levels during inflammation have yet to be observed. Here, we selected studies published until 20 January 2020 that examined miRNAs in mouse models of inflammation. Serum microRNA, inflammation, inflammatory and mouse were used as search terms to select articles from PubMed and MEDLINE. Among the articles, sepsis and 18 related miRNAs were mainly examined. Eleven miRNAs were related to brain disease and 10 with fibrosis. Seventeen injury-induced inflammatory disease studies were included, as well as other inflammatory diseases, such as metabolic disease, vascular disease, arthritis, asthma, autoimmune disease, inflammatory bowel disease, and thyroiditis. The data described miRNA-associated downstream pathways associated with inflammation as well as mitochondrial responses, oxidative responses, apoptosis, cell signalling, and cell differentiation. We expect that the data will inform future animal inflammation-related miRNA studies.
Collapse
Affiliation(s)
- Areum Lee
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
54
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
55
|
Raval U, Harary J, Zeng E, Pasinetti GM. The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert Rev Neurother 2020; 20:673-686. [PMID: 32459513 PMCID: PMC7387222 DOI: 10.1080/14737175.2020.1775585] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Age related neurodegenerative disorders affect millions of people around the world. The role of the gut microbiome (GM) in neurodegenerative disorders has been elucidated over the past few years. Dysbiosis of the gut microbiome ultimately results in neurodegeneration. However, the gut microbiome can be modulated to promote neuro-resilience. AREAS COVERED This review is focused on demonstrating the role of the gut microbiome in host physiology in Parkinson's disease (PD) and other neurodegenerative disorders. We will discuss how the microbiome will impact neurodegeneration in PD, Alzheimer's Disease (AD), Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and finally discuss how the gut microbiome can be influenced through diet and lifestyle. EXPERT OPINION Currently, much of the focus has been to study the mechanisms by which the microbiome induces neuroinflammation and neurodegeneration in PD, AD, MS, ALS. In particular, the role of certain dietary flavonoids in regulation of gut microbiome to promote neuro-resilience. Polyphenol prebiotics delivered in combination with probiotics (synbiotics) present an exciting new avenue to harness the microbiome to attenuate immune inflammatory responses which ultimately may influence brain cascades associated with promotion of neurodegeneration across the lifespan.
Collapse
Affiliation(s)
- Urdhva Raval
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Joyce Harary
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Emma Zeng
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Giulio M. Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
56
|
Cian RE, Hernández-Chirlaque C, Gámez-Belmonte R, Drago SR, Sánchez de Medina F, Martínez-Augustin O. Molecular action mechanism of anti-inflammatory hydrolysates obtained from brewers' spent grain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2880-2888. [PMID: 32020613 DOI: 10.1002/jsfa.10313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Brewers' spent grain (BSG) is a relevant, protein-rich by-product of the brewing process. Protein hydrolysates from different sources exert immune-regulatory actions activating toll-like receptors (TLRs), nuclear factor kappa B (NFκB), and mitogen-activated protein kinases (MAPKs). Effects of gastrointestinal digestion have been poorly studied. Here, we studied the immune-regulatory effect of BSG hydrolysates, and their in-vitro-digested products, on rat splenocytes, macrophages, and T lymphocytes RESULTS: In primary cultures of rat spleen cells, BSG hydrolysates induced interleukin 10 and tumor necrosis factor production in basal conditions. Under stimulation with lipopolysaccharide or concanavalin A, hydrolysates further induced interleukin 10 production. Tumor necrosis factor and interferon-γ were inhibited in lipopolysaccharide- and concanavalin-A-stimulated cells respectively. In vitro gastrointestinal digestion attenuated the observed effects. Splenic macrophages and T lymphocytes behaved in a similar fashion. In spleen cells from TLR2-/- and TLR4-/- mice, immune-regulatory effects were greatly reduced or abrogated. The study of signal transduction pathways indicated a major involvement of NFκB, and the contribution of MAPKs p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinases 1 and 2. CONCLUSION BSG hydrolysates, like those obtained from other food sources, regulate the immune response, involving TLR2 and TLR4 and the activation of NFκB and MAPKs, an effect partly maintained after in vitro gastrointestinal digestion. Our data support the hypothesis of a shared, rather unspecific, mechanism of action of protein hydrolysates. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raúl E Cian
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación, Biosanitaria (ibs.GRANADA), University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, Granada, Spain
| | - Silvina R Drago
- Instituto de Tecnología de Alimentos, CONICET, FIQ - UNL, Santa Fe, Argentina
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria (ibs.GRANADA), University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, CIBERehd, School of Pharmacy, Instituto de Investigación, Biosanitaria (ibs.GRANADA), University of Granada, Granada, Spain
| |
Collapse
|
57
|
OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6. Biochem Biophys Res Commun 2020; 523:924-930. [PMID: 31964525 DOI: 10.1016/j.bbrc.2019.12.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 01/15/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury can cause serious liver damage, leading to liver dysfunction after liver surgery, which is associated with NF-κB-mediated inflammation. The K63-linked auto-polyubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB. Here, we found that OTU domain-containing protein 4 (OTUD4), a deubiquitinating enzyme (DUB), interacts with TRAF6 and decreases the K63 auto-polyubiquitination of TRAF6. In addition, the data showed that NF-κB activation was impaired and inflammatory factor levels were reduced after overexpressing OTUD4 in a hypoxia/reoxygenation (HR) model and a hepatic IR model. Additionally, the liver inflammatory response and tissue damage were ameliorated in mice overexpressing OTUD4.Taken together, these results show that OTUD4 can negatively regulate NF-κB activation by suppressing the K63-linked ubiquitination of TRAF6, thus alleviating hepatic ischemia-reperfusion injury.
Collapse
|
58
|
The RPE Cell and the Immune System. RETINAL PIGMENT EPITHELIUM IN HEALTH AND DISEASE 2020. [PMCID: PMC7121222 DOI: 10.1007/978-3-030-28384-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The RPE cell plays a pivotal role in retinal immunity. In fact, the RPE cell orchestrates both innate and adaptive immunity and contains a plethora of factors to regulate the immune response. Many immunoregulatory activities of the RPE cell are accomplished through cytokine production, toll-like receptor (TLR) activation, complement regulation and antigen presentation. The RPE cells immune regulatory network plays an essential role in retinal immunity and autoimmunity, retinal infections and in a variety of retinal degenerative disorders. Understanding the immune regulatory properties of this cell may provide additional clues to disease mechanisms that may lead to future treatments for many human retinal diseases.
Collapse
|
59
|
Xue M, Liang H, Ji X, Liu Y, Ge Y, Hou L, Sun T. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr Metab (Lond) 2019; 16:87. [PMID: 31889967 PMCID: PMC6916240 DOI: 10.1186/s12986-019-0392-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background This study was to investigate the effect and its possible mechanism of fucoidan on the development of spontaneous autoimmune diabetes in non-obese diabetic (NOD) mice. Methods 7-week-old NOD mice were randomly divided into three groups: control group, low-dose (300 mg/kg) and high-dose (600 mg/kg) fucoidan-treatment groups. After 5 weeks of treatment, 10 mice per group were randomly selected to be sacrificed after feces collection. The remaining 12 mice per group were fed until 26 weeks of age to assess the incidence of diabetes. Results Treatment with fucoidan increased serum insulin level, delayed the onset and decreased the development of diabetes in NOD mice. Fucoidan reduced the levels of strong Th1 proinflammatory cytokines, but induced Th2-bias ed. cytokine response. And dentridic cells (DCs) in fucoidan treatment group were characterized as low expression of MHC class II and CD86 molecules. TLR4 expressions and the downstream molecules in pancreas were down-regulated in fucoidan-treated groups. There were significant differences in the composition of gut flora between NOD control group and fucoidan group. Lactobacillus and Akkermansia were significantly enriched in fucoidan group. Conclusions Fucoidan could prevent the development of autoimmune diabetes in NOD mice via regulating DC/Treg induced immune tolerance, improving gut microecology, down-regulating TLR4 signaling pathway, and maintaining pancreatic internal environment.
Collapse
Affiliation(s)
- Meilan Xue
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Hui Liang
- 2The Institute of Human Nutrition, Qingdao University of Medicine, Qingdao, 266021 People's Republic of China
| | - Xinqiang Ji
- 3Department of Gynaecology, the Affiliated Hospital of Qingdao University, Qingdao, 266021 People's Republic of China
| | - Ying Liu
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Yinlin Ge
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Lin Hou
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| | - Ting Sun
- 1Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, 38 Dengzhou Road, Qingdao, 266021 People's Republic of China
| |
Collapse
|
60
|
Kikis EA. The intrinsic and extrinsic factors that contribute to proteostasis decline and pathological protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:145-161. [PMID: 31928724 DOI: 10.1016/bs.apcsb.2019.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteostasis refers to the ability of cells to maintain the health of the proteome. Highly conserved quality control mechanisms exist to maintain proteostasis. These include the heat shock response, the unfolded protein response, and protein clearance/degradation pathways. Together, these mechanisms and others comprise the proteostasis network. This network is under constant assault and is strikingly sensitive to changes in the protein folding environment, resulting in proteostasis collapse under certain conditions. Here, the intrinsic and extrinsic stresses experienced by the proteostasis network are explored. The intrinsic stresses include genetic background as well as transcriptional and translational fidelity. These cause changes in the abundance or amino acid sequence of cellular proteins. Extrinsic stresses refer to environmental perturbation of the proteome, such as those caused by temperature stress, oxidative stress, air pollution and cigarette smoke. As the stress to the proteome exceeds the capacity of the proteostasis network, progressive neurodegenerative diseases of aging, such as Alzheimer's disease and Huntington's disease are more likely to ensue.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, Sewanee, TN, United States
| |
Collapse
|
61
|
Teodorczyk-Injeyan JA, Triano JJ, Injeyan HS. Nonspecific Low Back Pain: Inflammatory Profiles of Patients With Acute and Chronic Pain. Clin J Pain 2019; 35:818-825. [PMID: 31283548 PMCID: PMC6735949 DOI: 10.1097/ajp.0000000000000745] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/15/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of low back pain (LBP) remains unclear. However, recent studies suggest that the inflammatory response may be inherent in spinal pain. The purpose of this study was to discern inflammatory profiles in patients with nonspecific acute and chronic LBP in relation to those in asymptomatic individuals. MATERIALS AND METHODS Peripheral blood samples were obtained from asymptomatic controls and patients with nonspecific acute and chronic LBP reporting a minimum pain score of 3 on a 10-point Visual Analogue Scale (VAS). The levels of in vitro production of proinflammatory (tumor necrosis factor α [TNFα], interleukin [IL] 1β, IL-6, IL-2, interferon γ) and anti-inflammatory (IL-1 receptor antagonist, soluble receptors of TNF2, and IL-10) mediators were determined by specific immunoassays. RESULTS The mean VAS scores were comparable between the acute and chronic LBP patient groups. Compared with asymptomatic group, the production of TNFα, IL-1β, IL-6 and their ratios to IL-10 levels were significantly elevated in both patient groups (P=0.0001 to 0.003). In acute LBP group, the ratio of IL-2:IL-10 was also significantly increased (P=0.02). In contrast, the production of interferon γ was significantly reduced compared with the other study groups (P=0.005 to 0.01), nevertheless, it was positively correlated (P=0.006) with pain scores. In chronic LBP patients, the production of TNFα, IL-1 receptor antagonist, and soluble receptors of TNF2 was significantly increased (P=0.001 to 0.03) in comparison with the control and acute LBP groups, and TNFα and IL-1β levels were positively correlated (P<0.001) with VAS scores. CONCLUSIONS The inflammatory profiles of patients with acute and chronic LBP are distinct. Nonetheless, in both patient groups, an imbalance between proinflammatory and anti-inflammatory mediator levels favors the production of proinflammatory components.
Collapse
Affiliation(s)
| | | | - H. Stephen Injeyan
- Research and Clinical Education Programs, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| |
Collapse
|
62
|
Xue BB, Chen BH, Tang YN, Weng CW, Lin LN. Dexmedetomidine protects against lung injury induced by limb ischemia-reperfusion via the TLR4/MyD88/NF-κB pathway. Kaohsiung J Med Sci 2019; 35:672-678. [PMID: 31373750 DOI: 10.1002/kjm2.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Dexmedetomidine (DEX) can protect the lung from ischemia-reperfusion (I/R) injury, but the underlying mechanisms are not fully understood. The aims of this study were to determine whether DEX attenuates lung injury following lower extremity I/R and to investigate the related toll-like receptor 4 (TLR4) signaling pathway. Twenty-eight SD rats were divided into four groups (n = 7): Sham, I/R, I/R + DEX (25 μg/kg prior to ischemia), and I/R + DEX + Atip (250 μg/kg atipamezole before DEX treatment). Lower extremity I/R was induced by left femoral artery clamping for 3 hours and followed by 2 hours reperfusion. Quantitative alveolar damage and the wet/dry (W/D) ratio were calculated. Interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) and serum and myeloperoxidase (MPO) in the lung were measured. The TLR4 and MyD88 mRNA expression levels were measured by RT-PCR, nuclear factor (NF)-κB, and phosphorylated NF-κB by western blot, respectively. Quantitative alveolar damage, W/D ratio, MPO, BALF and serum IL-1, IL-6, and TNF-α, and TLR4, MyD88, NF-κB, and p-NF-κB expression significantly increased in the I/R group relative to the Sham group. DEX preconditioning significantly reduced lung edema, and histological injury relative to the I/R group. Serum and BALF IL-1, IL-6, and TNF-α levels, MPO activity and TLR4, MyD88, NF-κB, and p-NF-κB expression were also significantly reduced in the I/R + DEX group compared with the I/R group. Atipamezole partially reversed all the aforementioned effects. DEX preconditioning protects the lungs against lower extremity I/R injury via α2-adrenoceptor-dependent and α2-adrenoceptor-independent mechanisms. It also suppresses the TLR4 pathway and reduces inflammation.
Collapse
Affiliation(s)
- Bin-Bin Xue
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bai-Hui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Ning Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Wei Weng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Na Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
63
|
Yildirim İH, Uzen R. Investigation of the Asp299Gly and Thr399Ile polymorphisms of TLR4 gene in Rheumatoid Arthritis. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.540004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
64
|
Zhang X, Xue C, Xu Q, Zhang Y, Li H, Li F, Liu Y, Guo C. Caprylic acid suppresses inflammation via TLR4/NF-κB signaling and improves atherosclerosis in ApoE-deficient mice. Nutr Metab (Lond) 2019; 16:40. [PMID: 31182969 PMCID: PMC6555760 DOI: 10.1186/s12986-019-0359-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background As reported previously by our group, medium-chain triglycerides can ameliorate atherosclerosis. Given that TLR4 is closely related to atherosclerosis, we hypothesized herein that caprylic acid (C8:0) would suppress inflammation via TLR4/NF-κB signaling and further promote the amelioration of atherosclerosis in apoE- deficient (apoE-/-) mice. Methods Fifty 6-week male apoE-/- mice were randomly allocated into five diet groups: a high-fat diet (HFD) without or with 2% caprylic acid (C8:0), capric acid (C10:0), stearic acid (C18:0), or linolenic acid (C18:3). RAW246.7 cells were treated with caprylic acid (C8:0), docosahexenoic acid (DHA), palmitic acid (C16:0), and lipopolysaccharide (LPS) with or without TLR4 knock-down (TLR4-KD). The serum lipid profiles, inflammatory biomolecules, and mRNA and protein expression levels were measured. Atherosclerotic lesions that occurred in the aorta and aortic sinuses were evaluated and quantified. Results Our results indicated that C8:0 reduced body fat, improved the lipid profiles, suppressed inflammatory cytokine production, downregulated aortic TLR4, MyD88, NF-κB, TNF-α, IKKα, and IKKβ mRNA expression, and alleviated atherosclerosis in the apoE-/- mice (P < 0.05). In RAW 264.7 cells, C8:0 diminished the inflammatory response and both mRNA and protein expression of TLR4, MyD88, NF-κB, and TNF-α compared to those in the LPS and C16:0 groups (P < 0.05). However, in the TLR4-KD RAW 264.7 cells, C8:0 significantly upregulated NF-κB mRNA and protein expression compared to those in the C16:0 and DHA groups. Conclusions These results suggest that C8:0 functions via TLR4/NF-κB signaling to improve the outcomes of apoE-/- mice through suppressing inflammation and ameliorating atherosclerosis. Thus, C8:0 may represent as a promising nutrient against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Xinsheng Zhang
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China.,2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Changyong Xue
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Qing Xu
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Yong Zhang
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Huizi Li
- 3Department of Nutrition, PLA Rocket Force Characteristic Medical Center, Beijing, 100088 China
| | - Feng Li
- 4Department of Nutrition, Air Force Medical Center, PLA, Beijing, 100142 China
| | - Yinghua Liu
- 2Department of Nutrition, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Changjiang Guo
- Department of Nutrition, Tianjin Institute of Environmental & Operational Medicine, Tianjin, 300050 China
| |
Collapse
|
65
|
Chung HY, Kim DH, Lee EK, Chung KW, Chung S, Lee B, Seo AY, Chung JH, Jung YS, Im E, Lee J, Kim ND, Choi YJ, Im DS, Yu BP. Redefining Chronic Inflammation in Aging and Age-Related Diseases: Proposal of the Senoinflammation Concept. Aging Dis 2019; 10:367-382. [PMID: 31011483 PMCID: PMC6457053 DOI: 10.14336/ad.2018.0324] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/24/2018] [Indexed: 12/13/2022] Open
Abstract
Age-associated chronic inflammation is characterized by unresolved and uncontrolled inflammation with multivariable low-grade, chronic and systemic responses that exacerbate the aging process and age-related chronic diseases. Currently, there are two major hypotheses related to the involvement of chronic inflammation in the aging process: molecular inflammation of aging and inflammaging. However, neither of these hypotheses satisfactorily addresses age-related chronic inflammation, considering the recent advances that have been made in inflammation research. A more comprehensive view of age-related inflammation, that has a scope beyond the conventional view, is therefore required. In this review, we discuss newly emerging data on multi-phase inflammatory networks and proinflammatory pathways as they relate to aging. We describe the age-related upregulation of nuclear factor (NF)-κB signaling, cytokines/chemokines, endoplasmic reticulum (ER) stress, inflammasome, and lipid accumulation. The later sections of this review present our expanded view of age-related senescent inflammation, a process we term "senoinflammation", that we propose here as a novel concept. As described in the discussion, senoinflammation provides a schema highlighting the important and ever-increasing roles of proinflammatory senescence-associated secretome, inflammasome, ER stress, TLRs, and microRNAs, which support the senoinflammation concept. It is hoped that this new concept of senoinflammation opens wider and deeper avenues for basic inflammation research and provides new insights into the anti-inflammatory therapeutic strategies targeting the multiple proinflammatory pathways and mediators and mediators that underlie the pathophysiological aging process.
Collapse
Affiliation(s)
- Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
- Pathological and Analytical Center, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Sangwoon Chung
- Department of Internal Medicine, Pulmonary, Allergy, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea.
| | - Arnold Y. Seo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Jae Heun Chung
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - Young Suk Jung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Jaewon Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Nam Deuk Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea.
| | - Dong Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, Korea.
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA.
| |
Collapse
|
66
|
Wang W, Wu L, Du X, Zhang F, Ullah SH, Lei T, Li D, Yan X. Anti-Toll-like receptor 2 antibody inhibits nuclear factor kappa B activation and attenuates cardiac damage in high-fat-feeding rats. Acta Biochim Biophys Sin (Shanghai) 2019; 51:347-355. [PMID: 30877771 DOI: 10.1093/abbs/gmz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 01/07/2023] Open
Abstract
Long-time consumption of high-fat food is a direct cause of cardiovascular diseases, and high-fat-related inflammation plays an important role in it. Toll-like receptors (TLRs), especially TLR2 and TLR4, play important roles in high-fat-related inflammation. However, the impact of TLR2 on high-fat-associated cardiovascular complications is still unknown. In this study, we try to investigate the relationship between TLR2 and high-fat-related cardiac injury. SD rats were allocated to either a control group which were fed with normal diet or a high-fat group which were fed with high-fat diet for 5 months. At the last month, rats fed with high-fat diet were intraperitoneally injected with control normal mouse IgG or anti-TLR2 antibody. Heart tissues were collected for further analysis. RT-qPCR and western blot analysis results revealed that TLR2 expression was increased in the heart tissues from rats fed with high-fat diet and anti-TLR2 antibody had no effect on TLR2 expression. However, anti-TLR2 antibody alleviated masson staining area, levels of TGF-β1 and Collagen I mRNA, and decreased TUNEL-positive myocardial cells and caspase-3 activity, suggesting that anti-TLR2 antibody protected cardiac cells against high-fat-induced cardiac fibrosis and cell apoptosis. By using immunohistochemistry, RT-qPCR and ELISA, we found that anti-TLR2 antibody blocked NF-κB activation, inhibited the expression of inflammatory factors such as TNF-α, IL-1β, IL-6 and IL-18 in the heart tissues from rats fed with high-fat diet. These results hinted that anti-TLR2 antibody might exert its protective effect via inhibition of the TLR2/NF-κB/inflammation pathway. Our findings suggest that anti-TLR2 antibody has a preventive function against high-fat-induced deleterious effects in the heart, and anti-TLR2 antibody may be used as an attractive therapeutic option for high-fat-induced cardiac injury.
Collapse
Affiliation(s)
- Wanzheng Wang
- Department of Pathology, Medical College of Xi’an Jiaotong University, Xi’an, China
- The Hanjiang River Hospital Affiliated of Xi’an Medical University, Hanzhong, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Sayyed Hanif Ullah
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Ting Lei
- The Hanjiang River Hospital Affiliated of Xi’an Medical University, Hanzhong, China
| | - Dongming Li
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
67
|
Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother 2018; 108:1866-1878. [PMID: 30372892 DOI: 10.1016/j.biopha.2018.10.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/09/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammation as a second line of defense of innate immunity plays a crucial role in eliminating invading pathogens (bacteria, viruses, fungi as well as other parasites). The inflammatory response may also activate adaptive immune system involving lymphocytes to mount either antibody dependent or cell-mediated immune responses to clear pathogenic insult. However, if continued, the inflammatory processes may become uncontrolled culminating in cellular injury and tissue destruction, thereby manifesting itself in chronic form. The chronic inflammation has been associated with numerous human pathological conditions like allergies and autoimmune diseases, atherosclerosis, arthritis, Alzheimer's disease, cancer, obesity, type 2 diabetes, schizophrenia, neuro-degenerative diseases and numerous others. The dysregulated inflammatory process is associated with overproduction of free radicals leading to oxidative stress and activation of different cell signaling pathways. The regulation of inflammation by TLR signaling as well as Nrf2 pathways separately is widely documented. Since both these major signaling pathways modulate inflammation, they may crosstalk to bring about coordinated inflammatory responses. The linkage between TLR signaling and Nrf2-Keap1 pathway may serve as a bridge between immune regulation and oxidative stress responses through regulation of inflammation. Also, inflammation is reportedly responsible for the plethora of diseased conditions; a study of its regulation by targeting the TLR-Nrf2 cross-talks may also be beneficial for the development of therapeutic therapies or prophylactic treatments. Hence, present review focuses on the crosstalk between TLR signaling and Nrf2 pathway with respect to their role in modulation of inflammation in normal as well as pathologic conditions.
Collapse
|
68
|
Vildagliptin Attenuates Hepatic Ischemia/Reperfusion Injury via the TLR4/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3509091. [PMID: 30405876 PMCID: PMC6204182 DOI: 10.1155/2018/3509091] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022]
Abstract
The Toll-like receptor-4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway is vital in the pathogenesis of hepatic ischemia/reperfusion (HIR) injury. Dipeptidyl peptidase-4 (DPP4) inhibitors exert protective effects on IR injury of the kidney, heart, and lung; however, their effect on the liver is still unknown. Thus, the purpose of this study was to examine whether pretreatment with vildagliptin (Vilda), a DPP4 inhibitor, produces hepatic protection against IR injury and to investigate its influence on TLR4/NF-κB signaling in a rat model. Thirty male Wistar rats were divided into 3 groups: the sham group: subjected to a sham operation and received normal saline; the HIR group: subjected to HIR and received normal saline; and the Vilda + HIR group: subjected to HIR with pretreatment of 10 mg/kg/day Vilda for 10 days intraperitoneally. Hepatic ischemia lasted for 45 minutes followed by 3-hour reperfusion; then blood and liver samples were collected for biochemical and histopathological examination. The HIR group produced a significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA), nitric oxide (NO), and tumor necrosis factor alpha (TNF-α) levels and a significant reduction in the hepatic catalase level in comparison to the sham group. Moreover, a significant upregulation of gene and protein expressions of TLR4, NF-κB, and high-mobility group box-1 (HMGB1) along with caspase-3 protein expression was observed in the HIR group when compared with the sham group. Histopathological examination of the liver from the HIR group showed necrosis, sinusoidal congestion, hemorrhage, and hepatocyte degeneration. Administration of Vilda ameliorated the biochemical and histopathological changes caused by HIR. Vildagliptin showed for the first time a hepatoprotective effect in HIR injury through downregulation of TLR4/NF-κB/HMGB1 and caspase-3 hepatic expressions.
Collapse
|
69
|
Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol 2018; 835:132-139. [DOI: 10.1016/j.ejphar.2018.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/11/2023]
|
70
|
Pu J, Chen D, Tian G, He J, Zheng P, Mao X, Yu J, Huang Z, Zhu L, Luo J, Luo Y, Yu B. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1829632. [PMID: 30225247 PMCID: PMC6129782 DOI: 10.1155/2018/1829632] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
The use of antibiotics as growth promoters in feed has been fully or partially banned in several countries. The objective of this study was to investigate the effects of benzoic acid (A), bacillus coagulans (B) and oregano oil (O) combined supplementation on growth performance and intestinal barrier in piglets challenged with enterotoxigenic Escherichia coli (ETEC). Thirty piglets were randomly assigned to 6 treatments: (1) nonchallenged control (CON); (2) ETEC-challenged control (ETEC); (3) antibiotics + ETEC (AT); (4) A + B + ETEC (AB); (5) A + O + ETEC (AO); (6) A + B + O + ETEC (ABO). On day 22, piglets were orally challenged with ETEC or saline. The trial lasted 26 days. Dietary AO and ABO inhibited the reduction of growth performance and the elevation of diarrhoea incidence in piglets induced by ETEC (P<0.05). AB, AO, and ABO prevented the elevation of serum TNF-α and LPS concentrations in piglets induced by ETEC (P<0.05). ABO alleviated the elevation of TNF-α and IL-1β concentrations and the reduction of sIgA level in jejunal mucosa induced by ETEC (P<0.05). Furthermore, ABO upregulated mRNA expressions of Claudin-1 and Mucin2 (P<0.05), downregulated mRNA abundances of TLR4 and NOD2 signaling pathways related genes in jejunal mucosa (P<0.05), and improved the microbiota in jejunal and cecal digesta (P<0.05) compared with ETEC group. These results indicated that benzoic acid, bacillus coagulans, and oregano oil combined supplementation could improve growth performance and alleviate diarrhoea of piglets challenged with ETEC via improving intestinal mucosal barrier integrity, which was possibly associated with the improvement of intestinal microbiota and immune status. The combination of 3000 g/t benzoic acid + 400 g/t bacillus coagulans + 400 g/t oregano oil showed better effects than other treatments in improving growth performance and intestinal health of piglets, which could be used as a viable substitute for antibiotic.
Collapse
Affiliation(s)
- Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Ling Zhu
- Key Laboratory of Animal Biotechnology Center of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611134, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, 46# Xinkang Road, Yucheng District, Yaan, Sichuan 625014, China
| |
Collapse
|
71
|
Wan Y, Fu Y, Wang F, Sinclair AJ, Li D. Protective Effects of a Lipid Extract from Hard-Shelled Mussel ( Mytilus coruscus) on Intestinal Integrity after Lipopolysaccharide Challenge in Mice. Nutrients 2018; 10:nu10070860. [PMID: 29970837 PMCID: PMC6073703 DOI: 10.3390/nu10070860] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 06/27/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023] Open
Abstract
This study investigated the protective effects of a lipid extract from hard-shelled mussel (HMLE) on intestinal integrity and the underlying mechanisms after a lipopolysaccharide (LPS) challenge in mice by using a 3 × 2 factorial design. Mice received olive oil, fish oil, and HMLE (n = 12 per group) by using gastric gavage for six weeks, respectively. Then half the mice in each group was injected intraperitoneally with LPS and the other half with phosphate buffered saline. Four hours after injection, mice were sacrificed and samples were collected. n-3 PUFAs were significantly enriched in erythrocytes following fish oil and HMLE supplementation. Both fish oil and HMLE improved intestinal morphology by restoring the ileac villus height and barrier function, which is indicated by decreased colonic myeloperoxidase activity and increased diamine oxidase activity as well as enhanced mRNA expression of intestinal tight junction proteins known as occludin and claudin-1 when compared with olive oil. In addition, both fish oil and HMLE increased colon production and the expression of anti-inflammatory cytokine, IL-10, while they inhibited the abnormal production and expression of pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6 relative to the olive oil. Lastly, in comparison with olive oil, both fish oil and HMLE downregulated the TLR-4 signaling pathway by reducing the expression of two key molecules in this pathway, which are called TLR-4 and MyD88. These results suggest that HMLE had a protective effect on intestinal integrity after the LPS challenge, which was equivalent to that of fish oil. This effect might be associated with the regulation of inflammatory mediators and the inhibition of the TLR-4 signaling pathway.
Collapse
Affiliation(s)
- Yi Wan
- Institution of Nutrition and Health, Qingdao University, Qingdao 266071, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Yuanqing Fu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
- Department of Maternal and Infant Nutrition Research, Beingmate Baby and Child Food Co., Ltd., Hangzhou 311106, China.
| | - Fenglei Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Andrew J Sinclair
- School of Medicine, Deakin University, Locked Bag, Geelong 20000, Australia.
| | - Duo Li
- Institution of Nutrition and Health, Qingdao University, Qingdao 266071, China.
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
72
|
Hu L, Cheng S, Li Y, Geng S, Ma Y, Han X. Chitosan-Zn Chelate Downregulates TLR4-NF-κB Signal Pathway of Inflammatory Response and Cell Death-Associated Proteins Compared to Inorganic Zinc. Biol Trace Elem Res 2018; 184:92-98. [PMID: 29019078 DOI: 10.1007/s12011-017-1174-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/27/2017] [Indexed: 11/27/2022]
Abstract
The study was conducted to investigate the effect of chitosan-zinc chelate (CS-Zn) on TLR4-NF-κB signaling pathway and cell death-associated proteins in a weanling pig model. A total of 90 weaned piglets were allotted to three dietary treatments (the dietary treatments were as follows: (1) experimental diet with supplemental ZnSO4 (150 mg Zn/kg diet), (2) experimental diet with supplemental CS-Zn (150 mg Zn/kg diet), and (3) experimental diet with a supplemental mixture of chitosan and ZnSO4 (150 mg/kg Zn; the content of chitosan was equal to CS-Zn, which is according to molar basis)). The feeding trial lasted 30 days. The results showed that compared with ZnSO4 or CS+ZnSO4, CS-Zn decreased the expressions of the cell death-associated proteins Beclin-1, and Cleaved-Caspase3 and the ratio of LC3II/LC3I. The intestinal expressions of TLR4 and its downstream signals NF-κB, IKKβ, and IκBα were down-regulated simultaneously. Moreover, the contents of pro-inflammatory cytokines IL-2, TNF-α, and IFN-γ were decreased. The results indicated that as organic zinc source, CS-Zn was more effective than ZnSO4 and the mixture of chitosan and ZnSO4 for inhibiting inflammatory response and decreasing the expressions of proteins associated with cell death. The great anti-inflammatory effect of CS-Zn was modulated by inhibiting the TLR4-NF-κB signaling pathway, and the effect of CS-Zn on down-regulating the expression of cell death-associated proteins might also closely be associated with the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Luansha Hu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Saisai Cheng
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yuan Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shijie Geng
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yuanfei Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
73
|
Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A, Sewald N, Ruysschaert JM, Dodero VI. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1417-1427. [DOI: 10.1016/j.nano.2018.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
|
74
|
Yan J, Li J, Zhang L, Sun Y, Jiang J, Huang Y, Xu H, Jiang H, Hu R. Nrf2 protects against acute lung injury and inflammation by modulating TLR4 and Akt signaling. Free Radic Biol Med 2018; 121:78-85. [PMID: 29678610 DOI: 10.1016/j.freeradbiomed.2018.04.557] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Lung injury, which is associated with systemic inflammatory responses, is a common problem with significant morbidity and mortality. Here, we examined the involvement of toll-like receptor 4 (TLR4) and nuclear factor erythroid 2-related factor 2 (Nrf2) on intestinal ischemia-reperfusion (I/R)-induced lung injury in vivo and in vitro. Analysis of lung tissues in Nrf2-knockout mice by western blotting, immunohistochemistry, and TUNEL assay, and analysis of bronchoalveolar lavage fluid showed that Nrf2 deficiency upregulated TLR4, enhanced I/R-induced lung injury, apoptosis, inflammation, and autophagy, and increased the I/R-induced inactivation of Akt. In mouse lung epithelial cells subjected to oxygen and glucose deprivation/reperfusion (OGD/Rep), Nrf2 silencing increased the OGD/Rep-induced upregulation of TLR4 and MyD88 and downregulation of HO-1, and exacerbated OGD/Rep-induced apoptosis, autophagy, and the downregulation of phospho-Akt. TLR4 silencing and Akt inhibition experiments indicated that OGD/Rep-induced cell death by suppressing Akt signaling, and Nrf2 protected lung cells by modulating TLR4 and Akt signaling. These results indicated that the Nrf2/TLR4/Akt axis plays a role in inflammation-associated lung damage, suggesting potential therapeutic targets for the treatment of lung injury.
Collapse
Affiliation(s)
- Jia Yan
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jingjie Li
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yu Sun
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jue Jiang
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yan Huang
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Hui Xu
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China.
| | - Rong Hu
- Department of Anesthesiology, Shanghai JiaoTong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai Ninth People's Hospital, No. 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
75
|
Muñoz-Rodríguez C, Fernández S, Osorio JM, Olivares F, Anfossi R, Bolivar S, Humeres C, Boza P, Vivar R, Pardo-Jimenez V, Hemmings KE, Turner NA, Díaz-Araya G. Expression and function of TLR4- induced B1R bradykinin receptor on cardiac fibroblasts. Toxicol Appl Pharmacol 2018; 351:46-56. [PMID: 29775649 DOI: 10.1016/j.taap.2018.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.
Collapse
Affiliation(s)
- Claudia Muñoz-Rodríguez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samuel Fernández
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - José Miguel Osorio
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Francisco Olivares
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Renatto Anfossi
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Samir Bolivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Claudio Humeres
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Pía Boza
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Raúl Vivar
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Viviana Pardo-Jimenez
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile
| | - Karen E Hemmings
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago, Chile.
| |
Collapse
|
76
|
Pang Z, Junkins RD, Raudonis R, MacNeil AJ, McCormick C, Cheng Z, Lin TJ. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways. PLoS One 2018; 13:e0197491. [PMID: 29799862 PMCID: PMC5969770 DOI: 10.1371/journal.pone.0197491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
77
|
Wan J, Zhang J, Chen D, Yu B, Huang Z, Mao X, Zheng P, Yu J, He J. Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv 2018; 8:13482-13492. [PMID: 35542522 PMCID: PMC9079839 DOI: 10.1039/c8ra01943f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/02/2018] [Indexed: 01/13/2023] Open
Abstract
Alginate oligosaccharide (AOS), prepared from depolymerised alginate, a natural polysaccharide occurring in the cell walls of brown algae, provides beneficial effects for intestinal health. However, the underlying mechanisms by which AOS supplementation maintains the intestinal integrity of weaned pigs remain obscure. Here, we aimed to determine how AOS modulates the intestinal integrity of weaned pigs. Twenty-four weaned pigs were assigned to two treatments: a control group (basal diet) and an AOS group (the basal diet supplemented with 100 mg kg-1 AOS). On day 15, eight pigs per treatment were randomly selected and sacrificed for serum and intestinal samples. We observed that AOS supplementation enhanced the intestinal integrity, as evidenced by the increased (P < 0.05) intestinal occludin protein abundance. Compared to the control group, AOS ingestion both elevated (P < 0.05) the jejunal and ileal catalase activity and decreased (P < 0.05) the duodenal and jejunal tumour necrosis factor-α concentration and mast cell tryptase expression. Furthermore, AOS down-regulated (P < 0.05) the duodenal toll-like receptor 4 (TLR4) and its down-stream signals, myeloid differentiation factor 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1) and tumour necrosis factor receptor-associated factor 6 (TRAF6) mRNA levels, as well as jejunal nucleotide-binding oligomerisation domain protein 1 (NOD1) and its adaptor molecule, receptor-interacting serine/threonine-protein kinase 2 (RIPK2), mRNA levels. Additionally, phospho-nuclear factor-κB (p-NF-κB) p65 protein abundance in the duodenum and jejunum was down-regulated (P < 0.05) following AOS supplementation. According to the above results, the enhanced intestinal integrity in AOS-supplemented pigs appears to be associated with the elevated antioxidant capacity and the reduced mast cell degranulation, as well as the inhibited pro-inflammatory cytokines production via inhibiting the TLR4/NF-κB and NOD1/NF-κB signalling pathways.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jiao Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University Chengdu 611130 Sichuan People's Republic of China +86-28-86290920 +86-13-419354223
| |
Collapse
|
78
|
Rozmus J, Ivison S, Kariminia A, Leung VM, Sung S, Subrt P, Lee SJ, Boilard E, Walker I, Foley R, Lipton J, Gallagher G, Couban S, Schultz KR. Higher levels of free plasma mitochondrial DNA are associated with the onset of chronic GvHD. Bone Marrow Transplant 2018; 53:1263-1269. [PMID: 29563589 DOI: 10.1038/s41409-018-0156-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Toll-like receptor-9 (TLR9) responsive B cells have previously been associated with the onset of extensive chronic graft-versus-host disease (cGvHD). We hypothesized that the onset of cGvHD associated with a higher level of plasma-free mitochondrial DNA (mtDNA), a putative TLR9 agonist. Plasma cell-free mtDNA levels were measured in 39 adult patients post-HSCT with and without cGvHD. mtDNA was isolated from plasma and quantified by Q-PCR amplification. We correlated B cell responsiveness to CpG-DNA, a prototypical TLR9 agonist, and previously identified cGVHD biomarkers with mtDNA levels. Free plasma mtDNA were elevated in patients post-HSCT without cGvHD compared to normal non-HSCT adults. There was a significantly higher level of free plasma mtDNA associated with the onset of cGvHD (3080 ± 1586 versus 1834 ± 1435 copies/μL; p = 0.02) compared to 6 months post-HSCT controls. Free mtDNA levels post-HSCT correlated with B cell responsiveness to CpG-DNA and known cGvHD biomarkers: CXCL10 (p = 0.003), ICAM-1 (p = 0.007), CXCL9 (p = 0.03), sCD25 (p = 0.05) and sBAFF (p = 0.05), and percentage of CD21low B cells. Plasma levels of free mtDNA are increased in cGvHD and may represent an endogenous inflammatory stimulus for TLR9 expressing B cells.
Collapse
Affiliation(s)
- Jacob Rozmus
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Sabine Ivison
- CFRI, University of British Columbia, Vancouver, BC, Canada
| | - Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Vivian M Leung
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Susanna Sung
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Peter Subrt
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie J Lee
- Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA, USA
| | - Eric Boilard
- Centre Hospitalier de l'Université Laval, Quebec City, QC, Canada
| | - Irwin Walker
- Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Ronan Foley
- Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Jeff Lipton
- Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada
| | | | - Stephen Couban
- Capital District Health Authority and Dalhousie University, Halifax, NB, Canada
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
79
|
Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses. Oncotarget 2018; 8:7420-7440. [PMID: 28088779 PMCID: PMC5352332 DOI: 10.18632/oncotarget.14558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/31/2016] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.
Collapse
|
80
|
Targeted delivery of puerarin/glycyrrhetinic acid-PEG-PBLA complex attenuated liver ischemia/reperfusion injury via modulating Toll-like receptor 4/nuclear factor-κB pathway. Ther Deliv 2018. [PMID: 29540127 DOI: 10.4155/tde-2017-0106] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To synthesize a puerarin nanoparticle based on glycyrrhetinic acid (GA)-PEG-PBLA and evaluate it in vivo. Materials & methods: In this study, drug nanoparticle was synthesized, characterized and assessed as puerarin delivery system. Nanoparticle GA-PEG-PBLA could combine with puerarin via hydrophobic interaction to form the compound. Puerarin could be quickly and efficiently loaded via the nanoparticle GA-PEG-PBLA at pH 7.4. Further, GA-PEG-PBLA-mediated puerarin delivery system could target for the liver that had GA receptor binding. The antiliver ischemia/reperfusion injury role of puerarin/GA-PEG-PBLA was measured in rats using free puerarin and puerarin/PEG-PBLA as the controls. Results: GA-PEG-PBLA displayed efficient loading and sustained release. Puerarin/GA-PEG-PBLA showed strengthened antiliver ischemia/reperfusion injury characteristics. Conclusion: Overall, the results show that GA-PEG-PBLA could be regarded as an underlying puerarin nanoparticle.
Collapse
|
81
|
Neri M, Sansone L, Pietrasanta L, Kisialiou A, Cabano E, Martini M, Russo MA, Ugolini D, Tafani M, Bonassi S. Gene and protein expression of CXCR4 in adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis undergoing thermal water nasal inhalations. IMMUNITY & AGEING 2018; 15:10. [PMID: 29497453 PMCID: PMC5828426 DOI: 10.1186/s12979-018-0114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 01/01/2023]
Abstract
Background Chronic rhinitis, pharyngitis and sinusitis are common health problems with a significant impact on public health, and are suspected to be influenced by ageing factors. Nasal inhalation with thermal water may be used to reduce symptoms, inflammation and drug intake. A pre-post clinical study was conducted in 183 consecutive adult and elderly patients with chronic rhinitis, pharyngitis or sinusitis, to evaluate whether thermal water nasal inhalations could improve their symptoms, clinical signs and rhinomanometry measurements, and influence inflammatory biomarkers levels in nasal epithelial cells. Results Participants profile revealed that they were aged on average (mean age and SD 60.6 ± 15.2 years, median 65, range 20–86, 86 aged ≤ 65 years (47%), 96 aged > 65 years (53%)) and extremely concerned about wellbeing. Older age was associated with better compliance to inhalation treatment. Total symptom and clinical evaluation scores were significantly ameliorated after treatment (p < 0.001), with no substantial difference according to age, while rhinomanometry results were inconsistent. Persistence of symptom improvement was confirmed at phone follow up 1 year later (n = 74). The training set of 48 inflammatory genes (40 patients) revealed a strong increase of CXCR4 gene expression after nasal inhalations, confirmed both in the validation set (143 patients; 1.2 ± 0.68 vs 3.3 ± 1.2; p < 0.0001) and by evaluation of CXCR4 protein expression (40 patients; 1.0 ± 0.39 vs 2.6 ± 0.66; p < 0.0001). CXCR4 expression was consistently changed in patients with rhinitis, pharyngitis or sinusitis. The increase was smaller in current smokers compared to non-smokers. Results were substantially unchanged when comparing aged subjects (≥ 65 years) or the eldest quartile (≥ 71 years) to the others. Other genes showed weaker variations (e.g. FLT1 was reduced only in patients with sinusitis). Conclusions These results confirm the clinical impact of thermal water nasal inhalations on upper respiratory diseases both in adults and elders, and emphasize the role of genes activating tissue repair and inflammatory pathways. Future studies should evaluate CXCR4 as possible therapeutic target or response predictor in patients with chronic rhinitis, pharyngitis or sinusitis. Trial registration Communication to Italian Ministry of Health - ICPOM 000461. Registered 10/11/2014. Electronic supplementary material The online version of this article (10.1186/s12979-018-0114-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Neri
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Luigi Sansone
- 2Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,3Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Pietrasanta
- Terme di Genova, Genoa, Italy.,Terme di Acqui, AcquiTerme (AL), Italy
| | - Aliaksei Kisialiou
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | | | - Marina Martini
- Terme di Genova, Genoa, Italy.,Terme di Acqui, AcquiTerme (AL), Italy
| | | | | | - Marco Tafani
- 2Department of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, Rome, Italy.,3Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Bonassi
- 1Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy.,9Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| |
Collapse
|
82
|
Zhang P, Yang CL, Liu RT, Li H, Zhang M, Zhang N, Yue LT, Wang CC, Dou YC, Duan RS. Toll-like receptor 9 antagonist suppresses humoral immunity in experimental autoimmune myasthenia gravis. Mol Immunol 2018; 94:200-208. [PMID: 29331804 DOI: 10.1016/j.molimm.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 01/28/2023]
Abstract
Recent studies have demonstrated the important role of toll-like receptor 9 (TLR9) signalling in autoimmune diseases, but its role in myasthenia gravis (MG) has not been fully established. We show herein that blocking TLR9 signalling via the suppressive oligodeoxynucleotide (ODN) H154 alleviated the symptoms of experimental autoimmune myasthenia gravis (EAMG). With the downregulation of dendritic cells (DCs), TLR9 interruption reduced follicular helper T cells (Tfh) and germinal centre (GC) B cells, leading to decreased antibody production. In addition, TLR9+ B cells as well as total B cells in the spleen were inhibited by H154. These findings highlight the critical role of TLR9 in EAMG and suggest that the inhibition of the TLR9 pathway might be a potential pharmacological strategy for the treatment of myasthenia gravis.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ru-Tao Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Na Zhang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Long-Tao Yue
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
83
|
Zenke K, Muroi M, Tanamoto KI. AKT1 distinctively suppresses MyD88-depenedent and TRIF-dependent Toll-like receptor signaling in a kinase activity-independent manner. Cell Signal 2017; 43:32-39. [PMID: 29242168 DOI: 10.1016/j.cellsig.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022]
Abstract
We found that AKT1, a primary effector molecule of PI3K-AKT signaling, distinctively suppressed Toll-like receptor (TLR)-mediated MyD88-dependent and Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling by inhibiting NF-κB activation and IRF3 activity independently of its kinase activity. In AKT1 knockout RAW264.7 cells, lipopolysaccharide (LPS)-induced transcription and protein production of cytokines including IL-1β and TNF-α (regulated by the MyD88-dependent pathway), as well as IFN-β and RANTES (C-C motif chemokine ligand 5: CCL-5; regulated by the TRIF-dependent pathways) was enhanced compared to wild type cells. In response to LPS stimulation, AKT1 knockout cells also exhibited enhanced NF-κB and IFN-β promoter activities, which were reduced to a level comparable to that in wild type cells by complementation with either AKT1 or its kinase-dead mutant (AKT1-KD). Expression of AKT1 or AKT1-KD similarly suppressed NF-κB and IFN-β promoter activities induced by LPS and other TLR ligands in wild type cells. Analysis of NF-κB activation caused by transient expression of proteins involved in the MyD88-dependent pathway in TLR signaling revealed that AKT1 suppressed signaling that occurs between activation of IKKβ and that of NF-κB. In contrast, AKT1 appeared to suppress the IFN-β promoter through inhibition of IRF3 activity itself. These results demonstrate a novel, non-kinase function of AKT1 that inhibits TLR signaling, and suggest the multifunctional nature of AKT1.
Collapse
Affiliation(s)
- Kosuke Zenke
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masashi Muroi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichi Tanamoto
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
84
|
Lee EK, Chung KW, Kim YR, Ha S, Kim SD, Kim DH, Jung KJ, Lee B, Im E, Yu BP, Chung HY. Small RNAs induce the activation of the pro-inflammatory TLR7 signaling pathway in aged rat kidney. Aging Cell 2017; 16:1026-1034. [PMID: 28665028 PMCID: PMC5595700 DOI: 10.1111/acel.12629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
We have recently reported that TLR-related genes, including TLR7, are upregulated during aging. However, the role of TLR7 and its endogenous ligand in inflammation related to aging is not well defined. Here, we established that small RNAs trigger age-related renal inflammation via TLR7 signaling pathway. We first investigated the expression changes of nine different TLRs in kidney of 6-month-old young rats and 20-month-old aged rats. The results revealed that the expression of TLR7 was the highest among nine TLRs in kidney of old rats compared to the young aged rats. Next, to assess the role of cellular RNA as a TLR7 ligand, we treated a renal tubular epithelial cell line with total RNA isolated from the kidney of young and old rats. The results showed that RNA isolated from old rats showed higher expression of TLR7, IL1β, and TNFα compared to that from young rats. Furthermore, RNA isolated from old rats induced IKKα/β/JNK/NF-κB activation. To identify RNA that activates TLR7, we isolated small and large RNAs from old rat kidney and found that small RNAs increased TLR7 expression in cells. Finally, to investigate the local inflammatory response by small RNA, C57B/L6 mice were intraperitoneally injected with small RNAs isolated from young and old rats; thereby, RNA isolated from old rats induced higher inflammatory responses. Our study demonstrates that renal small RNAs from aged rats induce pro-inflammatory processes via the activation of the TLR7/IKKα/β/JNK/NF-κB signaling pathway, and highlights its causative role as a possible therapeutic target in age-related chronic renal inflammation.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Ki Wung Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Ye Ra Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Sugyeong Ha
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Sung Dae Kim
- Research Center; Dongnam Institute of Radiological & Medical Sciences; Busan Korea
| | - Dae Hyun Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Kyung Jin Jung
- Pathological and Analytical Center; Korea Institute of Toxicology; 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Korea
| | - Bonggi Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
- Korean Medicine (KM)-Application Center; Korea Institute of Oriental Medicine (KIOM); Daegu 41062 Korea
| | - Eunok Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| | - Byung Pal Yu
- Department of Physiology; The University of Texas Health Science Center at San Antonio; San Antonio TX 78229-3900 USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); College of Pharmacy; Pusan National University; Busan 46241 Korea
| |
Collapse
|
85
|
Wang SL, Duan L, Xia B, Liu Z, Wang Y, Wang GM. Dexmedetomidine preconditioning plays a neuroprotective role and suppresses TLR4/NF-κB pathways model of cerebral ischemia reperfusion. Biomed Pharmacother 2017; 93:1337-1342. [PMID: 28753906 DOI: 10.1016/j.biopha.2017.06.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dexmedetomidine has been reported to play an efficient role on multi-organ protection. Our study aims to investigate the neuroprotective of dexmedetomidine preconditioning on cerebral ischemic reperfusion (I/R) injury and investigate the underlining signaling mechanisms. METHODS Cerebral I/R models were established with SD rats through middle cerebral artery occlusion (MCAO). After 2h of ischemia followed by 7days of reperfusion, the degree of cerebral tissue injury was detected by HE, Nissl and TUNEL staining. Glial fibrillary acidic protein (GFAP) positive and TNF-α positive cells were stained by immunohistochemistry and counted under microscope. TLR4, NF-κB and TIR-domain containing adapter-inducing interferon-β (TRIF) expression were detected by real time PCR and western blot. RESULTS Dexmedetomidine preconditioning markedly prevented the ischemia-induced cellular damage observed from HE and Nissl staining in hippocampus and cortex. Dexmedetomidine observably decreased the number of apoptotic cells in TUNEL staining. Besides, yohimbine could specifically suppress the protective effect of dexmedetomidine. GFAP expression was distinctly inhibited by dexmedetomidine preconditioning (10μg/kg, 20μg/kg) in cerebral ischemia area. Dexmedetomidine preconditioning inhibited the expression of TLR4 and NF-κB and increased that of TRIF. CONCLUSION The results of this study suggest that dexmedetomidine preconditioning plays a neuroprotective role against I/R injury. Dexmedetomidine might suppress TLR4/NF-??B pathway and drive TLR4/TRIF signaling pathway to reduce the inflammatory injury.
Collapse
Affiliation(s)
- Shou-Liang Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lian Duan
- Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Xia
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhifei Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yu Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Gong-Ming Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
86
|
Ma SR, Xie XW. NLRC5 deficiency promotes myocardial damage induced by high fat diet in mice through activating TLR4/NF-κB. Biomed Pharmacother 2017; 91:755-766. [PMID: 28499247 DOI: 10.1016/j.biopha.2017.03.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome could be induced by high fat diet, leading to cardiovascular diseases, such as myocardial damage. Inflammation response and oxidative stress have been reported to be involved in high fat-induced heart injury, and the molecular mechanism is not fully understood. The NOD-like protein family member, NLRC5, could interact with IKKα to inhibit IKK complex activation. In our study, high fat diet-feeding mice showed cardiac fibrosis, inflammation and oxidative stress through collagen accumulation, TLR4/NF-κB and MAPKs signaling pathways activation. NLRC5 knockout mice fed with high fat showed accelerated fibrosis and inflammation response by promoting α-SMA, Collagen I, Collagen III, TLR4/MyD88, phosphorylated IKKα, IκBα and NF-κB expression. And no effect on oxidative stress was observed in wild type and NLRC5-deficiency samples in in vivo studies. Moreover, NLRC5-knockout and -knockdown cardiac muscle cells challenged with LPS also exhibited aggravated fibrosis levels and inflammatory response without any influences on ROS production in in vitro studies. In conclusion, the findings indicated that NLRC5 showed important effects on high fat-induced heart injury via fibrosis and inflammation modulation, providing an essential target for improving myocardial damage induced by high fat diet.
Collapse
Affiliation(s)
- Shu-Ren Ma
- Department of Cardiology, Huai'an First Affiliated Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Xiong-Wei Xie
- Department of Cardiology, Huai'an First Affiliated Hospital, Nanjing Medical University, Huai'an 223300, China.
| |
Collapse
|
87
|
Curcumin protects against hepatic ischemia/reperfusion induced injury through inhibiting TLR4/NF-κB pathway. Oncotarget 2017; 8:65414-65420. [PMID: 29029441 PMCID: PMC5630341 DOI: 10.18632/oncotarget.18676] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/12/2017] [Indexed: 01/21/2023] Open
Abstract
The TLR4/NF-κB pathway had important roles in hepatic ischemia/reperfusion (I/R) injury. In this study, we reported a protective effect of curcumin against hepatic I/R injury via TLR4/NF-κB pathway. Curcumin significantly inhibited cell apoptosis, and decreased levels of LDH and production of TNF-a, IL-1b, and IL-6 in the cell supernatant. In addition, curcumin ameliorated elevated TLR4 and NF-κB caused by hypoxia/reoxygenation stimulation in BRL-3A cells. In vivo assays revealed that curcumin reduce levels of ALT and AST, and reversed TLR4/NF-κB signaling pathway caused by hepatic I/R stimulation in liver tissues. These results suggested that curcumin ameliorates hepatic I/R injury, which may be mediated in part via the TLR4/NF-κB signaling pathway.
Collapse
|
88
|
Hwang JH, Kim KJ, Lee BY. Crude Ecklonia cava Flake Extracts Attenuate Inflammation through the Regulation of TLR4 Signaling Pathway in LPS-Induced RAW264.7 Cells. Molecules 2017; 22:E777. [PMID: 28489052 PMCID: PMC6154687 DOI: 10.3390/molecules22050777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
We investigated the beneficial effects of the crude Ecklonia cava flake (CEF), which is a residual product after polyphenol extraction from Ecklonia cava, on inflammation in LPS-stimulated RAW264.7 cells. A group of five different CEF extracts was obtained by a preparation process using water, hydrochloric acid or temperature. We observed that large-size (>19 kDa) CEF extract, which was extracted with water at 95 °C (CEF-W, 95 °C), suppressed the production of inflammatory cytokines by inhibiting its mRNA expression in LPS-induced RAW264.7 cells. TLR4 signaling involvements were negatively regulated by CEF-W, 95 °C. CEF-W, 95 °C repressed the translocation of NF-κB from cytoplasm into nucleus in LPS-induced RAW264.7 cells. CEF-W, 95 °C attenuated the phosphorylation of TBK1 and IRF3 by inhibiting the phosphorylation of ERK. Taken together, we demonstrated that large-size CEF-W, 95 °C may act as a negative regulator of inflammation through the suppression of TLR4 signaling constituents in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Ji-Hyun Hwang
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| |
Collapse
|
89
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
90
|
Heterogeneity of Toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med 2017; 15:51. [PMID: 28241765 PMCID: PMC5329966 DOI: 10.1186/s12967-017-1152-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is expressed in a variety of B-cell malignancies and works as a bridge between innate and adaptive immunity. CpG oligodeoxynucleotides (CpG ODNs), TLR9 agonists, are able to induce anticancer immune responses and exert direct effects against cancer cells, serving as cancer therapeutic agents. Therefore, TLR9 might be a potential therapeutic target for drug development. However, several new evidences have revealed that direct effects of TLR9 agonists on B-cell malignancies is controversial. For example, CpG ODNs can induce apoptosis in certain type of chronic lymphocytic leukemia and lymphoma cells, while induce proliferation in multiple myeloma and other types of lymphoma cells. In this review, we summarize current understanding of the heterogeneity in responses of normal and malignant B cells to TLR9 agonists, due to differences in TLR9 expression levels, genetic alterations (such as MyD88 mutation), and signaling pathway activation. Especially, the downstream molecules of NF-κB signaling pathway play an important role in the heterogeneous response. In order to provide possibilities for therapeutic manipulation of TLR9 agonists in the treatment of these disorders, the preclinical and clinical advances in using CpG ODNs alone and in combination therapies are also summarized in this review.
Collapse
|
91
|
Mortazavi-Jahromi SS, Jamshidi MM, Farazmand A, Aghazadeh Z, Yousefi M, Mirshafiey A. Pharmacological effects of β-d-mannuronic acid (M2000) on miR-146a, IRAK1, TRAF6 and NF-κB gene expression, as target molecules in inflammatory reactions. Pharmacol Rep 2017; 69:479-484. [PMID: 28324845 DOI: 10.1016/j.pharep.2017.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Impaired expression and function of microRNAs (miRNAs) are involved in the pathogenesis of many autoimmune and inflammatory diseases. Moreover, there is a close relationship between TLRs and miRNAs and impairment in regulating their expression which can play a vital role in the immunopathogenesis of many inflammatory reactions. This research aimed to study the pharmaceutical effects of M2000 (β-d-mannuronic acid) on the expression of miR-146a and its two target molecules (IRAK1 and TRAF6), and the transcription factor NF-κB in the HEK-Blue hTLR2 cell line. METHODS The cytotoxicity of M2000 was assessed by the MTT assay, and the qRT-PCR technique was employed in the presence and absence of M2000 treatment to measure gene-expression levels of miR-146a, IRAK1, TRAF6, and NF-κB. RESULTS MTT assay indicated that M2000 (before the concentration of 500μg/ml) had no cytotoxic effect on HEK-Blue hTLR2 cells. Our results showed that M2000 at low and high doses (5 and 25μg/well) could significantly reduce gene expression levels of miR-146a (p<0.01). Furthermore, it was found that this medication at two different doses could considerably decrease IRAK1 and TRAF6 gene expression (p<0.001). Moreover, this study revealed that expression level of NF-κB also significantly declined at these two doses (p<0.01). CONCLUSIONS This study for the first time shows that M2000 as a novel NSAID with immunosuppressive properties is able to modify TLR signaling through suppressing the adaptor molecules IRAK1 and TRAF6, the transcription factor NF-κB and miR-146a as a new therapeutic approach.
Collapse
Affiliation(s)
- Seyed Shahabeddin Mortazavi-Jahromi
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran; School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Malek Jamshidi
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran; School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Ali Farazmand
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran; School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
92
|
Ma L, Yang J, Yang L, Shi J, Xue J, Li Y, Liu X. Developmental expression of Toll‑like receptors in the guinea pig lung. Mol Med Rep 2017; 15:1243-1251. [PMID: 28098883 PMCID: PMC5367368 DOI: 10.3892/mmr.2017.6129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 11/21/2016] [Indexed: 12/27/2022] Open
Abstract
The guinea pig is a useful model for investigating infectious and non‑infectious lung diseases due to the sensitivity of its respiratory system and susceptibility to infectious agents. Toll‑like receptors (TLRs) are important components of the innate immune response and are critical for lung immune function. In the present study, the differentiation of epithelial cells in the guinea pig lung was examined during gestation by studying anatomic morphology and the major epithelial cell types using cell type‑specific markers. The developmental expression of all 9 TLRs and the TLR signaling adaptors myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor associated factor 6 (TRAF‑6) were investigated by reverse transcription‑quantitative polymerase chain reaction and western blotting analysis. The formation of lung lobes in guinea pigs was observed at 45 days of gestation (dGA), along with the expression of the basal cell marker keratin 14 and the alveolar type II cell marker pro‑surfactant protein. However, the cube cell marker secretoglobin family1A member 1 and ciliated cell marker b‑tubulin IV were only detected in the lungs from 52 dGA onward. The expression levels of all TLRs, MyD88 and TRAF‑6 were determined in lung tissues harvested from embryos, newborn, postnatal and adult animals. The expression levels of all TLR signaling components displayed similar dynamic expression patterns with gestation age and postnatal maturation time, except for TLR‑4 and TLR‑7. mRNA expression levels of TLR components were significantly increased in the lungs at 45 and 52 dGA, compared with later developmental stages. These results suggest that TLR expression in the guinea pig lung is developmentally regulated, enhancing the understanding of lung biology in guinea pig models.
Collapse
Affiliation(s)
- Lingjie Ma
- Key Laboratory of The Ministry of Education for The Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Jiali Yang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Li Yang
- The Center of Experimental Animals, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Shi
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jing Xue
- Key Laboratory of The Ministry of Education for The Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Yong Li
- Key Laboratory of The Ministry of Education for The Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| | - Xiaoming Liu
- Key Laboratory of The Ministry of Education for The Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
| |
Collapse
|
93
|
Arias MA, Santiago L, Costas-Ramon S, Jaime-Sánchez P, Freudenberg M, Jiménez De Bagüés MP, Pardo J. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti. Front Cell Infect Microbiol 2017; 6:205. [PMID: 28119856 PMCID: PMC5220065 DOI: 10.3389/fcimb.2016.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti, was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8+ T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2-/-, TLR4-/-, TLR9-/-, TLR2×4-/- and TLR2×4×9-/-. WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4-/- and TLR2×4×9-/- mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti-infected dendritic cells from TLR2×4-/- and TLR2×4×9-/- mice. Finally, it was found that Tc cells from TLR2×4-/- and TLR2×4×9-/- mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8+ Tc cells.
Collapse
Affiliation(s)
- Maykel A Arias
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Llipsy Santiago
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Santiago Costas-Ramon
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Paula Jaime-Sánchez
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of Zaragoza Zaragoza, Spain
| | - Marina Freudenberg
- Max-Planck Institute for Immunobiology and Epigenetics Freiburg, Germany
| | - Maria P Jiménez De Bagüés
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón - IA2, CITA-Universidad de Zaragoza Zaragoza, Spain
| | - Julián Pardo
- Cell Immunity in Cancer, Inflammation and Infection Group, Department of Biochemistry and Molecular and Cell Biology, Biomedical Research Centre of Aragon (CIBA), IIS Aragon, University of ZaragozaZaragoza, Spain; Nanoscience Institute of Aragon, University of ZaragozaZaragoza, Spain; Aragon I+D FoundationZaragoza, Spain
| |
Collapse
|
94
|
The TLR4–NOS1–AP1 signaling axis regulates macrophage polarization. Inflamm Res 2016; 66:323-334. [DOI: 10.1007/s00011-016-1017-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
|
95
|
Li R, Song J, Wu W, Wu X, Su M. Puerarin exerts the protective effect against chemical induced dysmetabolism in rats. Gene 2016; 595:168-174. [DOI: 10.1016/j.gene.2016.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/10/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023]
|
96
|
MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability. Acta Pharmacol Sin 2016; 37:889-97. [PMID: 27063215 DOI: 10.1038/aps.2016.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/06/2016] [Indexed: 12/20/2022]
Abstract
AIM MicroRNAs play pivotal roles in regulation of both innate and adaptive immune responses. In the present study, we investigated the effects of microRNA-124 (miR-124) on production of the pro-inflammatory cytokine TNF-α in lipopolysaccharide (LPS)-treated mouse macrophages. METHODS Mouse macrophage cell line RAW264.7 was stimulated with LPS (100 ng/mL). The levels of miR-124 and TNF-α mRNA were evaluated using q-PCR. ELISA and Western blotting were used to detect TNF-α protein level in cell supernatants and cells, respectively. 3'-UTR luciferase reporter assays were used to analyze the targets of miR-124. For in vivo experiments, mice were injected with LPS (30 mg/kg, ip). RESULTS LPS stimulation significantly increased the mRNA level of miR-124 in RAW264.7 macrophages in vitro and mice in vivo. In RAW264.7 macrophages, knockdown of miR-124 with miR-124 inhibitor dose-dependently increased LPS-stimulated production of TNF-α protein and prolonged the half-life of TNF-α protein, but did not change TNF-α mRNA levels, whereas overexpression of miR-124 with miR-124 mimic produced the opposite effects. Furthermore, miR-124 was found to directly target two components of deubiquitinating enzymes: ubiquitin-specific proteases (USP) 2 and 14. Knockdown of USP2 or USP14 accelerated protein degradation of TNF-α, and abolished the effect of miR-124 on TNF-α protein stability. CONCLUSION miR-124, targeting USP2 and USP14, negatively regulates LPS-induced TNF-α production in mouse macrophages, suggesting miR-124 as a new therapeutic target in inflammation-related diseases.
Collapse
|
97
|
Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. Rejuvenation Res 2016; 20:50-63. [PMID: 27245199 DOI: 10.1089/rej.2016.1828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 μL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Renato Iori
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Patrick Rollin
- 3 Université d'Orléans et CNRS , ICOA, UMR 7311, Orléans, France
| | | | | |
Collapse
|
98
|
Dexmedetomidine Protects Rat Liver against Ischemia-Reperfusion Injury Partly by the α2A-Adrenoceptor Subtype and the Mechanism Is Associated with the TLR4/NF-κB Pathway. Int J Mol Sci 2016; 17:ijms17070995. [PMID: 27347929 PMCID: PMC4964371 DOI: 10.3390/ijms17070995] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Abstract
Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling plays a dominant role in the pathogenesis of liver ischemia-reperfusion (IR) injury. Dexmedetomidine (Dex) protects the liver against IR injury via α2-adrenoceptor activation, but the contribution of TLR4 signaling remains unknown. The authors aimed to examine whether pretreatment with Dex produces hepatic protection and investigate the influence of Dex on TLR4/NF-κB signaling. Dex was given via intraperitoneal injection 30 min prior to orthotopic autologous liver transplantation (OALT) in rats, and three α2-adrenoceptor antagonists including atipamezole (a nonselective α2 receptor blocker), ARC-239 (a specific α2B/C blocker) and BRL-44408 (a specific α2A blocker) were injected intraperitoneally 10 min before Dex administration. Histopathologic evaluation of the liver and the measurement of serum alanine aminotransferase activity, TLR4/NF-κB expression in the liver, and pro-inflammatory factors (serum tumor necrosis factor-α, interleukin-1β and hepatic myeloperoxidase) concentrations were performed 8 h after OALT. Dex ameliorated liver injury after OALT probably by suppressing the TLR4/NF-κB pathway and decreasing inflammatory mediator levels. The protective effects of Dex were reversed by atipamezole and BRL-44408, but not by ARC-239, suggesting that these effects were mediated in part by the α2A subtype. In conclusion, Dex attenuates liver injury partly via the α2A-adrenoceptor subtype, and the mechanism is due to the suppression of the TLR4/NF-κB pathway.
Collapse
|
99
|
Abbas M, Berka N, Khraiwesh M, Ramadan A, Apprey V, Furbert-Harris P, Quinn T, Brim H, Dunston G. Genetic Polymorphisms of TLR4 and MICA are Associated with Severity of Trachoma Disease in Tanzania. ACTA ACUST UNITED AC 2016; 2. [PMID: 27559544 PMCID: PMC4993598 DOI: 10.16966/2470-1025.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim To examine the association of TLR4 Asp299Gly and MICA exon 5 microsatellites polymorphisms with severity of trachoma in a sub-Saharan East Africa population of Tanzanian villagers. Methods The samples were genotyped for MICA exon 5 microsatellites and the TLR4 299 A/G polymorphism by Restriction Fragment Length Polymorphism (RFLP), and GeneScan®, respectively. The association of TLR4 Asp299Gly and MICA exon 5 microsatellites with inflammatory trachoma (TI) and trichiasis (TI) were examined. Results The results showed an association between TLR4 and MICA polymorphisms and trachoma disease severity, as well as with protection. TLR4 an allele was significantly associated with inflammatory trachoma (p=0.0410), while the G allele (p=0.0410) was associated with protection. Conclusion TLR4 and MICA may modulate the risk of severity to trachoma disease by modulating the immune response to Ct. In addition; the increased frequency of MICA-A9 heterozygote in controls may suggest a positive selection of these alleles in adaptation to environments where Ct is endemic.
Collapse
Affiliation(s)
- Muneer Abbas
- Department of Microbiology, Howard University, Washington, DC, USA
| | | | - Mozna Khraiwesh
- Division of Experimental Therapeutics, Department of Drug Discovery, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ali Ramadan
- Department of Pathology, Howard University Hospital, Washington, DC, USA
| | - Victor Apprey
- Department of Microbiology, Howard University, Washington, DC, USA; Department of Community Health and Family Medicine, Howard University, Washington DC, USA
| | | | - Thomas Quinn
- International Health, School of Medicine, Johns Hopkins University, Baltimore Maryland, USA
| | - Hassan Brim
- Department of Pathology, Howard University Hospital, Washington, DC, USA
| | - Georgia Dunston
- Department of Microbiology, Howard University, Washington, DC, USA
| |
Collapse
|
100
|
Miyazaki R, Hoka S. Thiamylal sodium increased inflammation and the proliferation of vascular smooth muscle cells. Korean J Anesthesiol 2016; 69:262-9. [PMID: 27274372 PMCID: PMC4891539 DOI: 10.4097/kjae.2016.69.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background Thiamylal sodium is a common anesthetic barbiturate prepared in alkaline solution for clinical use. There is no previously reported study on the effects of barbiturates on the inflammation and proliferation of vascular smooth muscle cells (VSMCs). Here, we examined the effects of clinical-grade thiamylal sodium solution (TSS) on the inflammation and proliferation of rat VSMCs. Methods Expression levels of interleukin (IL)-1α, IL-1β, IL-6, and toll-like receptors in rat VSMCs were detected by quantitative reverse transcription-polymerase chain reaction and microarray analyses. The production of IL-6 by cultured VSMCs or ex vivo-cultured rat aortic segments was detected in supernatants by enzyme-linked immunosorbent assay. VSMC proliferation and viability were determined by the water-soluble tetrazolium-1 assay and trypan blue staining, respectively. Results TSS increased expression of IL-1α, IL-6, and TLR4 in VSMCs in a dose-dependent manner, and reduced IL-1β expression. Ex vivo TSS stimulation of rat aorta also increased IL-6. Low concentrations of TSS enhanced VSMC proliferation, while high concentrations reduced both cell proliferation and viability. Expression of IL-1 receptor antagonist, which regulates cell proliferation, was not increased by TSS stimulation. Exposure of cells to the TSS additive, sodium carbonate, resulted in significant upregulation of IL-1α and IL-6 mRNA levels, to a greater extent than TSS. Conclusions TSS-induced proinflammatory cytokine production by VSMCs is caused by sodium carbonate. However, pure thiamylal sodium has an anti-inflammatory effect in VSMCs. TSS exposure to VSMCs may promote vascular inflammation, leading to the progression of atherosclerosis or in-stent restenosis, resulting in vessel bypass graft failure.
Collapse
Affiliation(s)
- Ryohei Miyazaki
- Department of Anesthesiology and Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Sumio Hoka
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|