51
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
52
|
Lin S, Pei L, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Yin L, Zhang L, Huang R, Chen S, Yuan Z, Fu H. Chitosan-poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor benefit for antibacterial and wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112450. [PMID: 34702529 DOI: 10.1016/j.msec.2021.112450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
Chitosan/poloxamer-based thermosensitive hydrogels containing zinc gluconate/recombinant human epidermal growth factor (ZnG/rhEGF@Chit/Polo) were developed as a convenient, safe and effective dressing for skin wound treatment. Their fabrication procedure and characterization were reported, and their morphology was examined by a scanning electron microscope. Antibacterial and biofilms activities were evaluated by in vitro tests to reveal the inhibitory effects and scavenging activity on the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. ZnG/rhEGF@Chit/Polo was also investigated as a potential therapeutic agent for wound healing therapy. In vivo wound healing studies on rats for 21 days proves that ZnG/rhEGF@Chit/Polo supplements the requisite Zn2+ and rhEGF for wound healing to promote the vascular remodeling and collagen deposition, facilitate fibrogenesis, and reduce the level of interleukin 6 for wound basement repair, and thus is a good wound therapy.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Linlin Pei
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lizi Yin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Li Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ruoyue Huang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhixiang Yuan
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
53
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 336] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
54
|
Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [PMID: 34504100 PMCID: PMC8429633 DOI: 10.1038/s41522-021-00243-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.
Collapse
|
55
|
Blicharz L, Rudnicka L, Czuwara J, Waśkiel-Burnat A, Goldust M, Olszewska M, Samochocki Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis-An Update. Int J Mol Sci 2021; 22:ijms22168403. [PMID: 34445108 PMCID: PMC8395079 DOI: 10.3390/ijms22168403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
- Correspondence:
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Zbigniew Samochocki
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| |
Collapse
|
56
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the basics of biofilm infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a working knowledge of conventional and emerging antibiofilm therapies and their modes of action as they pertain to wound care. 3. Understand the challenges associated with testing and marketing antibiofilm strategies and the context within which these strategies may have effective value. SUMMARY The Centers for Disease Control and Prevention estimate for human infectious diseases caused by bacteria with a biofilm phenotype is 65 percent and the National Institutes of Health estimate is closer to 80 percent. Biofilms are hostile microbial aggregates because, within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack from host defenses. Biofilm-infected wounds, even when closed, show functional deficits such as deficient extracellular matrix and impaired barrier function, which are likely to cause wound recidivism. The management of invasive wound infection often includes systemic antimicrobial therapy in combination with débridement of wounds to a healthy tissue bed as determined by the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false-negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. The use of topical and parenteral antimicrobial therapy without wound débridement have had limited impact on decreasing biofilm infection, which remains a major problem in wound care. Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, such data originate from limited experimental systems that lack host immune defense. In making decisions on the choice of commercial products to manage wound biofilm infection, it is important to critically appreciate the mechanism of action and significance of the relevant experimental system. In this work, the authors critically review different categories of antibiofilm products, with emphasis on their strengths and limitations as evident from the published literature.
Collapse
Affiliation(s)
- Chandan K Sen
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Sashwati Roy
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Gayle M Gordillo
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| |
Collapse
|
57
|
Bobrov AG, Getnet D, Swierczewski B, Jacobs A, Medina-Rojas M, Tyner S, Watters C, Antonic V. Evaluation of Pseudomonas aeruginosa pathogenesis and therapeutics in military-relevant animal infection models. APMIS 2021; 130:436-457. [PMID: 34132418 DOI: 10.1111/apm.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
Modern combat-related injuries are often associated with acute polytrauma. As a consequence of severe combat-related injuries, a dysregulated immune response results in serious infectious complications. The gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that often causes life-threatening bloodstream, lung, bone, urinary tract, and wound infections following combat-related injuries. The rise in the number of multidrug-resistant P. aeruginosa strains has elevated its importance to civilian clinicians and military medicine. Development of novel therapeutics and treatment options for P. aeruginosa infections is urgently needed. During the process of drug discovery and therapeutic testing, in vivo testing in animal models is a critical step in the bench-to-bedside approach, and required for Food and Drug Administration approval. Here, we review current and past literature with a focus on combat injury-relevant animal models often used to understand infection development, the interplay between P. aeruginosa and the host, and evaluation of novel treatments. Specifically, this review focuses on the following animal infection models: wound, burn, bone, lung, urinary tract, foreign body, and sepsis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brett Swierczewski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anna Jacobs
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Maria Medina-Rojas
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Stuart Tyner
- US Army Medical Research and Development Command Military Infectious Diseases Research Program, Frederick, Maryland, USA
| | - Chase Watters
- Naval Medical Research Unit-3, Ghana Detachment, Accra, Ghana
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
58
|
Sen CK, Roy S. The Hyperglycemia Stranglehold Stifles Cutaneous Epithelial‒Mesenchymal Plasticity and Functional Wound Closure. J Invest Dermatol 2021; 141:1382-1385. [PMID: 34024339 DOI: 10.1016/j.jid.2020.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023]
Abstract
Iterative cycles of epithelial‒mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) are responsible for epithelial plasticity necessary to achieve functional wound closure. Restoration of the barrier function of the repaired skin is a hallmark of functional wound closure. Both EMT and MET are subject to control by glycemic status. A new article by Tan et al (2020) supports the notion that hyperglycemia blunts epithelial plasticity.
Collapse
Affiliation(s)
- Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
59
|
Sen CK. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv Wound Care (New Rochelle) 2021; 10:281-292. [PMID: 33733885 PMCID: PMC8024242 DOI: 10.1089/wound.2021.0026] [Citation(s) in RCA: 481] [Impact Index Per Article: 120.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Significance: Chronic wounds impact the quality of life (QoL) of nearly 2.5% of the total population in the United States and the management of wounds has a significant economic impact on health care. Given the aging population, the continued threat of diabetes and obesity worldwide, and the persistent problem of infection, it is expected that chronic wounds will continue to be a substantial clinical, social, and economic challenge. In 2020, the coronavirus disease (COVID) pandemic dramatically disrupted health care worldwide, including wound care. A chronic nonhealing wound (CNHW) is typically correlated with comorbidities such as diabetes, vascular deficits, hypertension, and chronic kidney disease. These risk factors make persons with CNHW at high risk for severe, sometimes lethal outcomes if infected with severe acute respiratory syndrome coronavirus 2 (pathogen causing COVID-19). The COVID-19 pandemic has impacted several aspects of the wound care continuum, including compliance with wound care visits, prompting alternative approaches (use of telemedicine and creation of videos to help with wound dressing changes among others), and encouraging a do-it-yourself wound dressing protocol and use of homemade remedies/substitutions. Recent Advances: There is a developing interest in understanding how the social determinants of health impact the QoL and outcomes of wound care patients. Furthermore, addressing wound care in the light of the COVID-19 pandemic has highlighted the importance of telemedicine options in the continuum of care. Future Directions: The economic, clinical, and social impact of wounds continues to rise and requires appropriate investment and a structured approach to wound care, education, and related research.
Collapse
Affiliation(s)
- Chandan K. Sen
- Department of Surgery, Indiana University Health Comprehensive Wound Center, Indianapolis, Indiana, USA
- Editor-in-Chief, Advances in Wound Care
| |
Collapse
|
60
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
61
|
A surfactant polymer wound dressing protects human keratinocytes from inducible necroptosis. Sci Rep 2021; 11:4357. [PMID: 33623080 PMCID: PMC7902632 DOI: 10.1038/s41598-021-82260-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds show necroptosis from which keratinocytes must be protected to enable appropriate wound re-epithelialization and closure. Poloxamers, a class of synthetic triblock copolymers, are known to be effective against plasma membrane damage (PMD). The purpose of this study is to evaluate the efficacy of a specific poloxamer, surfactant polymer dressing (SPD), which is currently used clinically as wound care dressing, against PMD in keratinocytes. Triton X-100 (TX100) at sub-lytic concentrations caused PMD as demonstrated by the efflux of calcein and by the influx of propidium iodide and FM1-43. TX100, an inducer of necroptosis, led to mitochondrial fragmentation, depletion of nuclear HMGB1, and activation of signaling complex associated with necroptosis (i.e., activation of RIP3 and phosphorylation of MLKL). All responses following exposure of human keratinocytes to TX100 were attenuated by pre- or co-treatment with SPD (100 mg/ml). The activation and translocation of phospho-MLKL to the plasma membrane, taken together with depletion of nuclear HMGB1, characterized the observed cell death as necroptosis. Thus, our findings show that TX100-induced plasma membrane damage and death by necroptosis were both attenuated by SPD, allowing keratinocyte survival. The significance of such protective effects of SPD on keratinocytes in wound re-epithelialization and closure warrant further studies.
Collapse
|
62
|
Raizman R, Little W, Smith AC. Rapid Diagnosis of Pseudomonas aeruginosa in Wounds with Point-Of-Care Fluorescence Imaing. Diagnostics (Basel) 2021; 11:diagnostics11020280. [PMID: 33670266 PMCID: PMC7917920 DOI: 10.3390/diagnostics11020280] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a common bacterial pathogen in chronic wounds known for its propensity to form biofilms and evade conventional treatment methods. Early detection of PA in wounds is critical to the mitigation of more severe wound outcomes. Point-of-care bacterial fluorescence imaging illuminates wounds with safe, violet light, triggering the production of cyan fluorescence from PA. A prospective single blind clinical study was conducted to determine the positive predictive value (PPV) of cyan fluorescence for the detection of PA in wounds. Bacterial fluorescence using the MolecuLight i:X imaging device revealed cyan fluorescence signal in 28 chronic wounds, including venous leg ulcers, surgical wounds, diabetic foot ulcers and other wound types. To correlate the cyan signal to the presence of PA, wound regions positive for cyan fluorescence were sampled via curettage. A semi-quantitative culture analysis of curettage samples confirmed the presence of PA in 26/28 wounds, resulting in a PPV of 92.9%. The bacterial load of PA from cyan-positive regions ranged from light to heavy. Less than 20% of wounds that were positive for PA exhibited the classic symptoms of PA infection. These findings suggest that cyan detected on fluorescence images can be used to reliably predict bacteria, specifically PA at the point-of-care.
Collapse
Affiliation(s)
- Rose Raizman
- Department of Professional Practice, Scarborough Health Network, Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON M1E 4B9, Canada
- Correspondence: ; Tel.: +1-416-886-2328
| | - William Little
- Department of Honors Studies, Texas Tech University, Lubbock, TX 79409, USA; (W.L.); (A.C.S.)
| | - Allie Clinton Smith
- Department of Honors Studies, Texas Tech University, Lubbock, TX 79409, USA; (W.L.); (A.C.S.)
| |
Collapse
|
63
|
Zhao X, Zeng H, Lei L, Tong X, Yang L, Yang Y, Li S, Zhou Y, Luo L, Huang J, Xiao R, Chen J, Zeng Q. Tight junctions and their regulation by non-coding RNAs. Int J Biol Sci 2021; 17:712-727. [PMID: 33767583 PMCID: PMC7975691 DOI: 10.7150/ijbs.45885] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review.
Collapse
Affiliation(s)
- Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Ying Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, P.R. China.,Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Yuehua Road, Changsha, Hunan 410013, P.R. China.,Department of Dermatology, Second Xiangya Hospital, Central South University, 139 Renminzhong Road, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
64
|
Li X, Xu Landén N. Evaluation of MicroRNA Therapeutic Potential Using the Mouse In Vivo and Human Ex Vivo Wound Models. Methods Mol Biol 2021; 2193:67-75. [PMID: 32808259 DOI: 10.1007/978-1-0716-0845-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wound healing is a fundamental physiological process to keep the integrity of the skin; failure of wound healing leads to chronic wounds, which are a common and severe medical problem. MicroRNAs (miRNAs) are gene regulators important for multiple biological functions in the skin, and they play essential roles in different phases of wound repair. Many miRNAs have been found dysregulated in human chronic wounds. Therefore, miRNAs may serve as potential therapeutic targets for wound treatment. In this chapter, we describe a step-by-step protocol about how to evaluate the therapeutic potential of a miRNA in mouse in vivo and human ex vivo wound models. The findings from these preclinical wound models will serve as a basis for further clinical trials.
Collapse
Affiliation(s)
- Xi Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
65
|
Weigelt MA, McNamara SA, Sanchez D, Hirt PA, Kirsner RS. Evidence-Based Review of Antibiofilm Agents for Wound Care. Adv Wound Care (New Rochelle) 2021; 10:13-23. [PMID: 32496980 PMCID: PMC7698998 DOI: 10.1089/wound.2020.1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Significance: Biofilms in vivo are small densely packed aggregations of microbes that are highly resistant to host immune responses and treatment. They attach to each other and to nearby surfaces. Biofilms are difficult to study and identify in a clinical setting as their quantification necessitates the use of advanced microscopy techniques such as confocal laser scanning microscopy. Nonetheless, it is likely that biofilms contribute to the pathophysiology of chronic skin wounds. Reducing, removing, or preventing biofilms is thus a logical approach to help clinicians heal chronic wounds. Recent Advances: Wound care products have demonstrated varying degrees of efficacy in destroying biofilms in in vitro and preclinical models, as well as in some clinical studies. Critical Issues: Controlled studies exploring the beneficial role of biofilm eradication and its relationship to healing in patients with chronic wounds are limited. This review aims to discuss the mode of action and clinical significance of currently available antibiofilm products, including surfactants, dressings, and others, with a focus on levels of evidence for efficacy in disrupting biofilms and ability to improve wound healing outcomes. Future Directions: Few available products have good evidence to support antibiofilm activity and wound healing benefits. Novel therapeutic strategies are on the horizon. More high-quality clinical studies are needed. The development of noninvasive techniques to quantify biofilms will facilitate increased ease of research about biofilms in wounds and how to combat them.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie A. McNamara
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daniela Sanchez
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Penelope A. Hirt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
66
|
Baidamshina DR, Koroleva VA, Trizna EY, Pankova SM, Agafonova MN, Chirkova MN, Vasileva OS, Akhmetov N, Shubina VV, Porfiryev AG, Semenova EV, Sachenkov OA, Bogachev MI, Artyukhov VG, Baltina TV, Holyavka MG, Kayumov AR. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int J Biol Macromol 2020; 164:4205-4217. [DOI: 10.1016/j.ijbiomac.2020.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
67
|
Zhou X, Brown BA, Siegel AP, El Masry MS, Zeng X, Song W, Das A, Khandelwal P, Clark A, Singh K, Guda PR, Gorain M, Timsina L, Xuan Y, Jacobson SC, Novotny MV, Roy S, Agarwal M, Lee RJ, Sen CK, Clemmer DE, Ghatak S. Exosome-Mediated Crosstalk between Keratinocytes and Macrophages in Cutaneous Wound Healing. ACS NANO 2020; 14:12732-12748. [PMID: 32931251 PMCID: PMC7970718 DOI: 10.1021/acsnano.0c03064] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.
Collapse
Affiliation(s)
- Xiaoju Zhou
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Brooke A. Brown
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Amanda P. Siegel
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Integrated Nanosystems Development Institute, Indiana University–Purdue University Indianapolis, IN, 46202, USA
| | - Mohamed S. El Masry
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Plastic and Reconstructive Surgery, Zagazig University, 44519, Egypt
| | - Xuyao Zeng
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Woran Song
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Amitava Das
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Puneet Khandelwal
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew Clark
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mahadeo Gorain
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lava Timsina
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Outcomes Research, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University–Purdue University Indianapolis, IN, 46202, USA
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- Corresponding Authors: Subhadip Ghatak, PhD, Tel: 317-278-2711; , David E. Clemmer, PhD, Tel: 812-855-8259;
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Corresponding Authors: Subhadip Ghatak, PhD, Tel: 317-278-2711; , David E. Clemmer, PhD, Tel: 812-855-8259;
| |
Collapse
|
68
|
Heald R, Bennett M, Subramaniam VV, Dusane D, Lochab V, Sundaram PM, Salyer S, West J, Stoodley P, Prakash S. Printed Electroceutical Dressings for the Inhibition of Biofilms and Treatment of Chronic Wounds. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2020; 29:918-923. [PMID: 33519170 PMCID: PMC7839981 DOI: 10.1109/jmems.2020.2999260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report on an innovative, fabric-based conformable, and easily fabricated electroceutical wound dressing that inhibits bacterial biofilm infections and shows significant promise for healing chronic wounds. Cyclic voltammetry demonstrates the ability of the electroceutical to produce reactive oxygen species, primarily HOCl that is responsible for bacterial inhibition. In vitro investigation with the lawn biofilm grown on a soft tissue mimic assay shows the efficacy of the dressing against both gram-positive and gram-negative bacteria in the biofilm form. In vivo, the printed electroceutical dressing was utilized as an intervention treatment for a canine subject with a non-healing wound due to a year-long persistent polymicrobial infection. The clinical case study with the canine subject exhibited the applicability in a clinical setting with the results showing infection inhibition within 11 days of initial treatment. This printed electroceutical dressing was integrated with a Bluetooth® enabled circuit allowing remote monitoring of the current flow within the wound bed. The potential to monitor wounds remotely in real-time with a Bluetooth® enabled circuit proposes a new physical biomarker for management of infected, chronic wounds.
Collapse
Affiliation(s)
- Rachel Heald
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Molly Bennett
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Vish V. Subramaniam
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Devendra Dusane
- Devendra Dusane was previously with the Department of Microbial Infection and Immunity, The Ohio State University and is now at the Nationwide Children’s Hospital, Columbus, OH, USA
| | - Varun Lochab
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Prashanth Mohana Sundaram
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Sarah Salyer
- Sarah Salyer is with the Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - J.D. West
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
| | - Paul Stoodley
- Paul Stoodley is with the Department of Microbial Infection and Immunity and the Department of Orthopedics, The Ohio State University, Columbus, OH, USA. He is also affiliated with the National Centre for Advanced Tribiology at Southampton and the National Biofilm Innovation Centre, Dept. Mechanical Engineering, University of Southampton, UK
| | - Shaurya Prakash
- Rachel Heald, Molly Bennett, Vish V. Subramaniam, Varun Lochab, Prashanth Mohana Sundaram, J. D. West
- Shaurya Prakash () are all with the Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
69
|
Sen CK, Mathew-Steiner SS, Das A, Sundaresan VB, Roy S. Electroceutical Management of Bacterial Biofilms and Surgical Infection. Antioxid Redox Signal 2020; 33:713-724. [PMID: 32466673 PMCID: PMC7475090 DOI: 10.1089/ars.2020.8086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023]
Abstract
Significance: In the host-microbe microenvironment, bioelectrical factors influence microbes and hosts as well as host-microbe interactions. This article discusses relevant mechanistic underpinnings of this novel paradigm. It also addresses how such knowledge may be leveraged to develop novel electroceutical solutions to manage biofilm infection. Recent Advances: Systematic review and meta-analysis of several hundred wound studies reported a 78.2% prevalence of biofilms in chronic wounds. Biofilm infection is a major cause of delayed wound healing. In the host-microbe microenvironment, bioelectrical factors influence interactions between microbes and hosts. Critical Issues: Rapid biological responses are driven by electrical signals generated by ion currents moving across cell membranes. Bacterial life, growth, and function rely on a bioelectrical milieu, which when perturbed impairs their ability to form a biofilm, a major threat to health care. Electrokinetic stability of several viral particles depend on electrostatic forces. Weak electrical field strength, otherwise safe for humans, can be anti-microbial in this context. In the host, the electric field enhanced keratinocyte migration, bolstered immune defenses, improved mitochondrial function, and demonstrated multiple other effects consistent with supporting wound healing. A deeper mechanistic understanding of bioelectrical principles will inform the design of next-generation electroceuticals. Future Directions: This is an opportune moment in time as there is a surge of interest in electroceuticals in medicine. Projected to reach $35.5 billion by 2025, electroceuticals are becoming a cynosure in the global market. The World Health Organization reports that more than 50% of surgical site infections can be antibiotic resistant. Electroceuticals offer a serious alternative.
Collapse
Affiliation(s)
- Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shomita S. Mathew-Steiner
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
70
|
Li D, Peng H, Qu L, Sommar P, Wang A, Chu T, Li X, Bi X, Liu Q, Gallais Sérézal I, Rollman O, Lohcharoenkal W, Zheng X, Eliasson Angelstig S, Grünler J, Pivarcsi A, Sonkoly E, Catrina SB, Xiao C, Ståhle M, Mi QS, Zhou L, Xu Landén N. miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. J Invest Dermatol 2020; 141:659-671. [PMID: 32949564 DOI: 10.1016/j.jid.2020.06.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Persistent and impaired inflammation impedes tissue healing and is a characteristic of chronic wounds. A better understanding of the mechanisms controlling wound inflammation is needed. In this study, we show that in human wound-edge keratinocytes, the expressions of microRNA (miR)-17, miR-18a, miR-19a, miR-19b, and miR-20a, which all belong to the miR-17∼92 cluster, are upregulated during wound repair. However, their levels are lower in chronic ulcers than in acute wounds at the proliferative phase. Conditional knockout of miR-17∼92 in keratinocytes as well as injection of miR-19a/b and miR-20a antisense inhibitors into wound edges enhanced inflammation and delayed wound closure in mice. In contrast, conditional overexpression of the miR-17∼92 cluster or miR-19b alone in mice keratinocytes accelerated wound closure in vivo. Mechanistically, miR-19a/b and miR-20a decreased TLR3-mediated NF-κB activation by targeting SHCBP1 and SEMA7A, respectively, reducing the production of inflammatory chemokines and cytokines by keratinocytes. Thus, miR-19a/b and miR-20a being crucial regulators of wound inflammation, the lack thereof may contribute to sustained inflammation and impaired healing in chronic wounds. In line with this, we show that a combinatory treatment with miR-19b and miR-20a improved wound healing in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hongmei Peng
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; MirnaTech International, LLC, Detroit, Michigan, USA
| | - Le Qu
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Pehr Sommar
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Tongbin Chu
- Department of Wound Repair, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xi Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Xinling Bi
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Queping Liu
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Irène Gallais Sérézal
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Genetics, Hôpital Henri Mondor, APHP, Créteil, France
| | - Ola Rollman
- Department of Dermatology, Academic University Hospital, Uppsala, Sweden
| | - Warangkana Lohcharoenkal
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jacob Grünler
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden; Centrum for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, USA
| | - Mona Ståhle
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Qing-Sheng Mi
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
71
|
Paus R, Ramot Y, Kirsner RS, Tomic-Canic M. Topical L-thyroxine: The Cinderella among hormones waiting to dance on the floor of dermatological therapy? Exp Dermatol 2020; 29:910-923. [PMID: 32682336 PMCID: PMC7722149 DOI: 10.1111/exd.14156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Topical hormone therapy with natural or synthetic ligands of nuclear hormone receptors such as glucocorticoids, vitamin D analogues and retinoids has a long and highly successful tradition in dermatology. Yet the dermatological potential of thyroid hormone receptor (TR) agonists has been widely ignored, despite abundant clinical, cell and molecular biology, mouse in vivo, and human skin and hair follicle organ culture data documenting a role of TR-mediated signalling in skin physiology and pathology. Here, we review this evidence, with emphasis on wound healing and hair growth, and specifically highlight the therapeutic potential of repurposing topical L-thyroxine (T4) for selected applications in future dermatological therapy. We underscore the known systemic safety and efficacy profile of T4 in clinical medicine, and the well-documented impact of thyroid hormones on, for example, human epidermal and hair follicle physiology, hair follicle epithelial stem cells and pigmentation, keratin expression, mitochondrial energy metabolism and wound healing. On this background, we argue that short-term topical T4 treatment deserves careful further preclinical and clinical exploration for repurposing as a low-cost, effective and widely available dermatotherapeutic, namely in the management of skin ulcers and telogen effluvium, and that its predictable adverse effects are well-manageable.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Centre for Dermatology Research, University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester, UK
- Monasterium Laboratory, Münster, Germany
| | - Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
72
|
Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg 2020; 271:1174-1185. [PMID: 30614873 DOI: 10.1097/sla.0000000000003053] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS Isogenic mutant strains of S. aureus with varying degree (ΔrexB > USA300 > ΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.
Collapse
|
73
|
Arisandi D, Ogai K, Urai T, Aoki M, Minematsu T, Okamoto S, Sanada H, Nakatani T, Sugama J. Development of recurrent pressure ulcers, risk factors in older patients: a prospective observational study. J Wound Care 2020; 29:S14-S24. [DOI: 10.12968/jowc.2020.29.sup4.s14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Prevention of recurrent pressure ulcers (PU) is one of the most important challenges in wound care, furthermore, the risk factors for recurrent PUs are still not fully understood. This study aimed to explore the risk factors for recurrent PU development within two weeks, including biophysical skin properties, pro-inflammatory cytokine (tumour necrosis factor [TNF]-α) levels and bacterial species, in older patients. Method: This prospective study was conducted in a long-term care facility with patients whose PU had healed within two months. Biophysical skin properties were evaluated by stratum corneum hydration, pH, sebum content and transepidermal water loss. TNF-α level was measured using skin blotting. Skin bacteria were collected using tape stripping and determined by species-specific gene amplification. These parameters, along with Braden scale and interface pressure, were evaluated every two weeks for a total period of eight weeks. A penalised generalised estimating equation analysis was used to determine the risk factors for recurrent PUs. Results: In total, 20 patients were included in this study, with 57 observations. Of these, recurrent PU was seen in eight observations. Elevation of pH (p=0.049; odds ratio [OR] per 1 unit=3.91, 95% confidence interval [CI]:1.01–15.15), presence of Acinetobacter spp. (p=0.039; OR versus culture-negative=6.28, 95%CI:1.10–35.86) and higher interface pressure (p=0.008; OR per 1 mmHg=1.06, 95%CI:1.01–1.10) on the healed PU were significantly related to the development of recurrent PU. Conclusion: Higher pH, existence of Acinetobacter spp. and higher interface pressure on the site of the healed PU were associated with the development of recurrent PUs in older patients undergoing conservative treatments.
Collapse
Affiliation(s)
- Defa Arisandi
- Department of Clinical Nursing, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
- Kitamura Wound Care Clinic Pontianak, West Borneo, Indonesia
| | - Kazuhiro Ogai
- Wellness Promotion Science Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tamae Urai
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miku Aoki
- Department of Clinical Nursing, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigefumi Okamoto
- Wellness Promotion Science Center, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Laboratory Sciences, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hiromi Sanada
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshio Nakatani
- Department of Clinical Nursing, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Junko Sugama
- Advanced Health Care Science Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
74
|
Hydrogen Peroxide-Generating Electrochemical Scaffold Activity against Trispecies Biofilms. Antimicrob Agents Chemother 2020; 64:AAC.02332-19. [PMID: 31964793 DOI: 10.1128/aac.02332-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/12/2020] [Indexed: 01/29/2023] Open
Abstract
The antibiofilm activity of a hydrogen peroxide-generating electrochemical scaffold (e-scaffold) was determined against mono- and trispecies biofilms of methicillin-resistant Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, and Candida albicans Significant time-dependent decreases were found in the overall CFU of biofilms of all three monospecies and the trispecies forms. Confocal laser scanning microscopy showed dramatic reductions in fluorescence intensities of biofilm matrix protein and polysaccharide components of e-scaffold-treated biofilms. The described e-scaffold has potential as a novel antibiotic-free strategy for treating wound biofilms.
Collapse
|
75
|
Hadian Y, Fregoso D, Nguyen C, Bagood MD, Dahle SE, Gareau MG, Isseroff RR. Microbiome-skin-brain axis: A novel paradigm for cutaneous wounds. Wound Repair Regen 2020; 28:282-292. [PMID: 32034844 DOI: 10.1111/wrr.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Chronic wounds cause a significant burden on society financially, medically, and psychologically. Unfortunately, patients with nonhealing wounds often suffer from comorbidities that further compound their disability. Given the high rate of depressive symptoms experienced by patients with chronic wounds, further studies are needed to investigate the potentially linked pathophysiological changes in wounds and depression in order to improve patient care. The English literature on wound healing, inflammatory and microbial changes in chronic wounds and depression, and antiinflammatory and probiotic therapy was reviewed on PubMed. Chronic wound conditions and depression were demonstrated to share common pathologic features of dysregulated inflammation and altered microbiome, indicating a possible relationship. Furthermore, alternative treatment strategies such as immune-targeted and probiotic therapy showed promising potential by addressing both pathophysiological pathways. However, many existing studies are limited to a small study population, a cross-sectional design that does not establish temporality, or a wide range of confounding variables in the context of a highly complex and multifactorial disease process. Therefore, additional preclinical studies in suitable wound models, as well as larger clinical cohort studies and trials are necessary to elucidate the relationship between wound microbiome, healing, and depression, and ultimately guide the most effective therapeutic and management plan for chronic wound patients.
Collapse
Affiliation(s)
- Yasmin Hadian
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| | - Daniel Fregoso
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Chuong Nguyen
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Michelle D Bagood
- Department of Dermatology, School of Medicine, University of California, Davis, California
| | - Sara E Dahle
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Podiatry Section, VA Northern California Health Care System, Mather, California
| | - Melanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Roslyn Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California, Davis, California.,Dermatology Section, VA Northern California Health Care System, Mather, California
| |
Collapse
|
76
|
Electric Field Based Dressing Disrupts Mixed-Species Bacterial Biofilm Infection and Restores Functional Wound Healing. Ann Surg 2020; 269:756-766. [PMID: 29099398 DOI: 10.1097/sla.0000000000002504] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study was designed to employ electroceutical principles, as an alternative to pharmacological intervention, to manage wound biofilm infection. Mechanism of action of a United States Food and Drug Administration-cleared wireless electroceutical dressing (WED) was tested in an established porcine chronic wound polymicrobial biofilm infection model involving inoculation with Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii 19606. BACKGROUND Bacterial biofilms represent a major wound complication. Resistance of biofilm toward pharmacologic interventions calls for alternative therapeutic strategies. Weak electric field has anti-biofilm properties. We have previously reported the development of WED involving patterned deposition of Ag and Zn on fabric. When moistened, WED generates a weak electric field without any external power supply and can be used as any other disposable dressing. METHODS WED dressing was applied within 2 hours of wound infection to test its ability to prevent biofilm formation. Alternatively, WED was applied after 7 days of infection to study disruption of established biofilm. Wounds were treated with placebo dressing or WED twice a week for 56 days. RESULTS Scanning electron microscopy demonstrated that WED prevented and disrupted wound biofilm aggregates. WED accelerated functional wound closure by restoring skin barrier function. WED blunted biofilm-induced expression of (1) P. aeruginosa quorum sensing mvfR (pqsR), rhlR and lasR genes, and (2) miR-9 and silencing of E-cadherin. E-cadherin is critically required for skin barrier function. Furthermore, WED rescued against biofilm-induced persistent inflammation by circumventing nuclear factor kappa B activation and its downstream cytokine responses. CONCLUSION This is the first pre-clinical porcine mechanistic study to recognize the potential of electroceuticals as an effective platform technology to combat wound biofilm infection.
Collapse
|
77
|
Efficacy of Using Probiotics with Antagonistic Activity against Pathogens of Wound Infections: An Integrative Review of Literature. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7585486. [PMID: 31915703 PMCID: PMC6930797 DOI: 10.1155/2019/7585486] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The skin and its microbiota serve as physical barriers to prevent invasion of pathogens. Skin damage can be a consequence of illness, surgery, and burns. The most effective wound management strategy is to prevent infections, promote healing, and prevent excess scarring. It is well established that probiotics can aid in skin healing by stimulating the production of immune cells, and they also exhibit antagonistic effects against pathogens via competitive exclusion of pathogens. Our aim was to conduct a review of recent literature on the efficacy of using probiotics against pathogens that cause wound infections. In this integrative review, we searched through the literature published in the international following databases: PubMed, ScienceDirect, Web of Science, and Scopus using the search terms “probiotic” AND “wound infection.” During a comprehensive review and critique of the selected research, fourteen in vitro studies, 8 animal studies, and 19 clinical studies were found. Two of these in vitro studies also included animal studies, yielding a total of 39 articles for inclusion in the review. The most commonly used probiotics for all studies were well-known strains of the species Lactobacillus plantarum, Lactobacillus casei, Lactobacillus acidophilus, and Lactobacillus rhamnosus. All in vitro studies showed successful inhibition of chosen skin or wound pathogens by the selected probiotics. Within the animal studies on mice, rats, and rabbits, probiotics showed strong opportunities for counteracting wound infections. Most clinical studies showed slight or statistically significant lower incidence of surgical site infections, foot ulcer infection, or burn infections for patients using probiotics. Several of these studies also indicated a statistically significant wound healing effect for the probiotic groups. This review indicates that exogenous and oral application of probiotics has shown reduction in wound infections, especially when used as an adjuvant to antibiotic therapy, and therefore the potential use of probiotics in this field remains worthy of further studies, perhaps focused more on typical skin inhabitants as next-generation probiotics with high potential.
Collapse
|
78
|
Sen CK, Roy S. Sociogenomic Approach to Wound Care: A New Patient-Centered Paradigm. Adv Wound Care (New Rochelle) 2019; 8:523-526. [PMID: 31637098 DOI: 10.1089/wound.2019.1101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
Psychoneuroendocrinology studies provided first insight into social determinants of wound healing. Social stressors impede wound healing. In 2005, we first reported that the transcriptome of wound-site neutrophil is highly responsive to psychological stress in young men. Bioinformatics processing of transcriptome-wide data from neutrophils provided first insight into social transduction pathways relevant to wound healing. In 2010, Idaghdour et al. presented striking evidence demonstrating that genetic factors are responsible for only 5% of the variation in genomic expression. In contrast, the living environment of the individual, urban or rural, was responsible for as much as 50% of such variation. Genetic and environmental factors acted in a largely additive manner. This observation may be credited as the foundation stone of human social genomics. The environment of a patient, including social factors, influences gene expression relevant to wound healing. The nonhealing wound itself and its worsening outcome, including pain, are likely to cause stress. Conversely, positive social interactions may circumvent barriers to wound healing. Thus, interventions directed at the social environment of a wound care patient are likely to help manage wound chronicity. The genomic and related Big Data technology platforms have vastly improved during the past 5 years during which these technologies have also become widely accessible and affordable. Thus, this is the right time to revisit the choice of technologies for the study of social genomics of wound healing. Against the backdrop of our current understanding of the mechanisms of wound healing, such precision approach is likely to transform wound care and its outcomes making it patient-centered and, therefore, more effective.
Collapse
Affiliation(s)
- Chandan K. Sen
- The Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sashwati Roy
- The Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
79
|
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019; 4:2146-2154. [PMID: 31611643 PMCID: PMC7157942 DOI: 10.1038/s41564-019-0581-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Collapse
|
80
|
Roes C, Calladine L, Morris C. Biofilm management using monofilament fibre debridement technology: outcomes and clinician and patient satisfaction. J Wound Care 2019; 28:608-622. [PMID: 31513491 DOI: 10.12968/jowc.2019.28.9.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: Best practice in wound bed preparation and biofilm-based wound management includes debridement to create a clean wound bed and to assist in minimising the redevelopment of biofilm. Biofilm that is not removed inhibits healing and redevelops if not prevented from doing so with topical antimicrobial agents. Monofilament fibre debriding technology (MFDT) is used for effective and rapid mechanical debridement of loose material, slough and biofilm. The objective of this evaluation was to determine the clinical effect and consequential levels of health professional and patient satisfaction with the results of a biofilm pathway that included MFDT to achieve debridement. Methods: This non-comparative, open label evaluation was conducted in static and non-static wounds that required debridement. MFDT was used to debride in a two-week evaluation of a biofilm pathway. Wounds were debrided three times in week one and twice in week two. Each debridement was followed by treatment with an antimicrobial dressing. Other care included secondary dressings and compression delivered according to local practice, guidelines and formularies. After the clinical evaluation, health professionals were invited to complete an online survey of the clinical outcomes and their satisfaction with the biofilm pathway. Results: There were 706 health professionals who provided answers to the survey questions. Wound types evaluated were leg ulcers (67.4%), pressure ulcers (10%), dehisced surgical wounds (1.7%), diabetic foot ulcers (7.4%) and other wounds (13.4%). Of the wounds, 9% were reported as non-static despite the eligibility criteria. Not all wounds followed the pathway. The most frequently-used antimicrobial was silver. Non-antimicrobial products used included all-in-one dressings, other secondary dressings and compression. There was a change in 77% of wounds overall after two weeks. Change was reported almost equally for both static and non-static wounds. Health professionals who did or did not follow the pathway were ‘completely satisfied’ or ‘satisfied’ with the overall clinical outcome 96% and 95%, respectively. Of the patients, 77% were ‘completely satisfied’ or ‘satisfied’ with healing after following the pathway, as reported by the treating health professional. Conclusion: The biofilm pathway that includes MFDT appears effective. Wounds managed on the pathway were debrided effectively and healing progressed to the satisfaction of both health professionals and patients.
Collapse
Affiliation(s)
- Claas Roes
- 1 Scientific Support Manager, Lohmann & Rauscher GmbH & Co. KG, Global Scientific Support, Rengsdorf, Germany
| | - Leanne Calladine
- 2 Communications and Events Manager, Lohmann & Rauscher, Burton on Trent, Staffordshire, UK
| | - Clare Morris
- 2 Senior Clinical Services Manager, Lohmann & Rauscher, Burton on Trent, Staffordshire, UK
| |
Collapse
|
81
|
Gloag ES, Marshall CW, Snyder D, Lewin GR, Harris JS, Santos-Lopez A, Chaney SB, Whiteley M, Cooper VS, Wozniak DJ. Pseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a Chronic Infection. mBio 2019; 10:e01698-19. [PMID: 31409682 PMCID: PMC6692513 DOI: 10.1128/mbio.01698-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Opportunistic pathogens establishing new infections experience strong selection to adapt, often favoring mutants that persist. Capturing this initial dynamic is critical for identifying the first adaptations that drive pathogenesis. Here we used a porcine full-thickness burn wound model of chronic infection to study the evolutionary dynamics of diverse Pseudomonas aeruginosa infections. Wounds were infected with a mixed community of six P. aeruginosa strains, including the model PA14 strain (PA14-1), and biopsies taken at 3, 14, and 28 days postinfection. Hyperbiofilm-forming rugose small-colony variants (RSCVs) were the earliest and predominant phenotypic variant. These variants were detected on day 3 and persisted, with the majority evolved from PA14-1. Whole-genome sequencing of PA14-1 RSCV isolates revealed driver mutations exclusively in the wsp pathway, conferring hyperbiofilm phenotypes. Several of the wsp mutant RSCVs also acquired CRISPR-Cas adaptive immunity to prophages isolated from the P. aeruginosa wound isolate (B23-2) that was also present in the inoculum. These observations emphasize the importance of interstrain dynamics and the role of lysogenic phages in the survival of an invading pathogen. Rather than being a side effect of chronicity, the rapid rise of RSCVs in wounds is evidence of positive selection on the Wsp chemosensory system to produce mutants with elevated biofilm formation capacity. We predict that RSCVs provide a level of phenotypic diversity to the infecting bacterial community and are common, early adaptations during infections. This would likely have significant consequences for clinical outcomes.IMPORTANCE Bacteria adapt to infections by evolving variants that are more fit and persistent. These recalcitrant variants are typically observed in chronic infections. However, it is unclear when and why these variants evolve. To address these questions, we used a porcine chronic wound model to study the evolutionary dynamics of Pseudomonas aeruginosa in a mixed-strain infection. We isolated hyperbiofilm variants that persisted early in the infection. Interstrain interactions were also observed, where adapted variants acquired CRISPR-mediated immunity to phages. We show that when initiating infection, P. aeruginosa experiences strong positive selection for hyperbiofilm phenotypes produced by mutants of a single chemosensory system, the Wsp pathway. We predict that hyperbiofilm variants are early adaptations to infection and that interstrain interactions may influence bacterial burden and infection outcomes.
Collapse
Affiliation(s)
- Erin S Gloag
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Christopher W Marshall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gina R Lewin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Jacob S Harris
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Alfonso Santos-Lopez
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah B Chaney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
82
|
Khansa I, Schoenbrunner AR, Kraft CT, Janis JE. Silver in Wound Care-Friend or Foe?: A Comprehensive Review. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2390. [PMID: 31592393 PMCID: PMC6756674 DOI: 10.1097/gox.0000000000002390] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022]
Abstract
Due to its strong antimicrobial activity, silver is a commonly used adjunct in wound care. However, it also has the potential to impair healing by exerting toxic effects on keratinocytes and fibroblasts. The published literature on the use of silver in wound care is very heterogeneous, making it difficult to generate useful treatment guidelines. METHODS A search of high-quality studies on the use of silver in wound care was performed on PubMed. A detailed qualitative analysis of published articles was performed to evaluate the evidence for the use of silver in infected wounds, clean wounds, burns, and over closed surgical incisions. RESULTS Fifty-nine studies were included in this qualitative analysis. We found that, overall, the quality of the published research on silver is poor. While there is some evidence for short-term use of dressings containing nanocrystalline silver in infected wounds, the use of silver-containing dressings in clean wounds and over closed surgical incisions is not indicated. Negative-pressure wound therapy accelerates the healing of contaminated wounds, especially when silver is used as an adjunct. For burns, silver sulfadiazine slows healing and should not be used. Instead, nanocrystalline silver, or alternatives such as octenidine and polyhexanide, lead to less infection and faster healing. CONCLUSIONS In infected wounds, silver is beneficial for the first few days/weeks, after which nonsilver dressings should be used instead. For clean wounds and closed surgical incisions, silver confers no benefit. The ideal silver formulations are nanocrystalline silver and silver-coated polyurethane sponge for negative-pressure wound therapy. Silver sulfadiazine impairs wound healing. Proper use of silver-containing dressings is essential to optimize wound healing.
Collapse
Affiliation(s)
- Ibrahim Khansa
- From the Division of Plastic and Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Anna R. Schoenbrunner
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Casey T. Kraft
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jeffrey E. Janis
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
83
|
Bain MA, Thibodeaux KT, Speyrer MS, Carlson E, Koullias GJ. Effect of Native Type I Collagen with Polyhexamethylene Biguanide Antimicrobial on Wounds: Interim Registry Results. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2251. [PMID: 31624671 PMCID: PMC6635195 DOI: 10.1097/gox.0000000000002251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Biofilm can impair wound healing by maintaining an elevated, but ineffective, inflammatory state. This article describes interim results from the prospective RESPOND postmarketing registry evaluating the use of a native type 1, porcine collagen matrix with the embedded antimicrobial polyhexamethylene biguanide (PCMP) in the management of chronic wounds. METHODS Adults ≥18 years of age with ≥1 appropriate wound were eligible for inclusion. Data that were final on January 26, 2018 were included in this analysis. At week 0, wounds were cleaned, debrided, and prepared as necessary and PCMP was applied, with a dressing to fix it in place. Patients received standard wound care plus PCMP weekly, up to 24 weeks, at the investigator's discretion. At each visit, wounds were assessed for area and quality of granulation tissue. RESULTS Most common wound types (N = 63) were venous ulcers (28.6%), trauma and lacerations (22.2%), postsurgical open wounds (15.9%), pressure injuries (12.7%), and diabetic ulcers (9.5%). Median baseline wound area was 6.5 cm2; mean wound duration at baseline was 4 months. Of the 63 wounds, 43 (68.3%) achieved complete wound closure, 41 of 43 (95.3%) closed after PCMP treatment, and 2 of 43 (4.7%) after bridging to other modalities and surgical closure. Twelve out of 63 wounds were bridged to other modalities after PCMP treatment. Mean time to closure for PCMP wounds was 5.0 weeks. CONCLUSIONS PCMP appears to be a useful adjunct for treating various wound types. PCMP use should be considered when managing chronic or acute wounds.
Collapse
Affiliation(s)
- Michael A. Bain
- From Department of Plastic Surgery, Hoag Memorial Hospital, Newport Beach, Calif
| | - Kerry T. Thibodeaux
- The Wound Treatment Center LLC at Opelousas General Health System, Opelousas, La
| | - Marcus S. Speyrer
- The Wound Treatment Center LLC at Opelousas General Health System, Opelousas, La
| | - Emily Carlson
- From Department of Plastic Surgery, Hoag Memorial Hospital, Newport Beach, Calif
| | - George John Koullias
- Department of Surgery, Division of Vascular and Endovascular Surgery, Stony Brook School of Medicine, Stony Brook, N.Y
| |
Collapse
|
84
|
Ruffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol 2019; 9:182. [PMID: 31214514 PMCID: PMC6554286 DOI: 10.3389/fcimb.2019.00182] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/13/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial tissues protecting organs from the environment are the first-line of defense against pathogens. Therefore, efficient repair mechanisms after injury are crucial to maintain epithelial integrity. However, these healing processes can be insufficient to restore epithelial integrity, notably in infectious conditions. Pseudomonas aeruginosa infections in cutaneous, corneal, and respiratory tract epithelia are of particular concern because they are the leading causes of hospitalizations, disabilities, and deaths worldwide. Pseudomonas aeruginosa has been shown to alter repair processes, leading to chronic wounds and infections. Because of the current increase in the incidence of multi-drug resistant isolates of P. aeruginosa, complementary approaches to decrease the negative impact of these bacteria on epithelia are urgently needed. Here, we review the recent advances in the understanding of the impact of P. aeruginosa infections on the integrity and repair mechanisms of alveolar, airway, cutaneous and corneal epithelia. Potential therapeutic avenues aimed at counteracting this deleterious impact of infection are also discussed.
Collapse
Affiliation(s)
- Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada.,INSERM, Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, Paris, France
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
85
|
Treatment with the Pseudomonas aeruginosa Glycoside Hydrolase PslG Combats Wound Infection by Improving Antibiotic Efficacy and Host Innate Immune Activity. Antimicrob Agents Chemother 2019; 63:AAC.00234-19. [PMID: 30988141 DOI: 10.1128/aac.00234-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/04/2019] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic, nosocomial bacterial pathogen that forms persistent infections due to the formation of protective communities, known as biofilms. Once the biofilm is formed, the bacteria embedded within it are recalcitrant to antimicrobial treatment and host immune defenses. Moreover, the presence of biofilms in wounds is correlated with chronic infection and delayed healing. The current standard of care for chronic wound infections typically involves physical disruption of the biofilm via debridement and subsequent antimicrobial treatment. The glycoside hydrolases PelAh and PslGh have been demonstrated in vitro to disrupt biofilm integrity through degradation of the key biofilm matrix exopolysaccharides Pel and Psl, respectively. Herein, we demonstrate that PslGh hydrolase therapy is a promising strategy for controlling P. aeruginosa wound infections. Hydrolase treatment of P. aeruginosa biofilms resulted in increased antibiotic efficacy and penetration into the biofilm. PslGh treatment of P. aeruginosa biofilms also improved innate immune activity leading to greater complement deposition, neutrophil phagocytosis, and neutrophil reactive oxygen species production. Furthermore, when P. aeruginosa-infected wounds were treated with a combination of PslGh and tobramycin, we observed an additive effect leading to greater bacterial clearance than treatments of tobramycin or PslGh alone. This study demonstrates that PelAh and PslGh have promising therapeutic potential and that PslGh may aid in the treatment of P. aeruginosa wound infections.
Collapse
|
86
|
Roy S, Prakash S, Mathew-Steiner SS, Das Ghatak P, Lochab V, Jones TH, Mohana Sundaram P, Gordillo GM, Subramaniam VV, Sen CK. Disposable Patterned Electroceutical Dressing (PED-10) Is Safe for Treatment of Open Clinical Chronic Wounds. Adv Wound Care (New Rochelle) 2019; 8:149-159. [PMID: 31016066 DOI: 10.1089/wound.2018.0915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/03/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: To evaluate if patterned electroceutical dressing (PED) is safe for human chronic wounds treatment as reported by wound care providers. Approach: This work reports a pilot feasibility study with the primary objective to determine physically observable effects of PED application on host tissue response from a safety evaluation point of view. For this pilot study, patients receiving a lower extremity amputation with at least one open wound on the part to be amputated were enrolled. Patients were identified through the Ohio State University Wexner Medical Center (OSUWMC) based on inclusion and exclusion criteria through prescreening through the Comprehensive Wound Center's (CWC) Limb Preservation Program and wound physicians and/or providers at OSUWMC. Wounds were treated with the PED before amputation surgery. Results: The intent of the study was to identify if PED was safe for clinical application based on visual observations of adverse or lack of adverse events on skin and wound tissue. The pilot testing performed on a small cohort (N = 8) of patients showed that with engineered voltage regulation of current flow to the open wound, the PED can be used with little to no visually observable adverse effects on chronic human skin wounds. Innovation: The PED was developed as a second-generation tunable electroceutical wound care dressing, which could potentially be used to treat wounds with deeper infections compared with current state of the art that treats wounds with treatment zone limited to the surface near topical application. Conclusion: Technology advances in design and fabrication of electroceutical dressings were leveraged to develop a tunable laboratory prototype that could be used as a disposable low-cost electroceutical wound care dressing on chronic wounds. Design revisions of PED-1 (1 kΩ ballast resistor) circumvented previously observed adverse effects on the skin in the vicinity of an open wound. PED-10 (including a 10 kΩ ballast resistor) was well tolerated in the small cohort of patients (N = 8) on whom it was tested, and the observations reported here warrant a larger study to determine the clinical impact on human wound healing and infection control.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Shomita S. Mathew-Steiner
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Piya Das Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Varun Lochab
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Travis H. Jones
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | | | - Gayle M. Gordillo
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| | - Vish V. Subramaniam
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering (ICRME), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
87
|
Atkin L, Bućko Z, Montero EC, Cutting K, Moffatt C, Probst A, Romanelli M, Schultz GS, Tettelbach W. Implementing TIMERS: the race against hard-to-heal wounds. J Wound Care 2019; 23:S1-S50. [DOI: 10.12968/jowc.2019.28.sup3a.s1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leanne Atkin
- Vascular Nurse Consultant. Mid Yorkshire NHS Trust/University of Huddersfield, England
| | - Zofia Bućko
- Head of Non-Healing Wounds Department, Centrum Medycznym HCP, Poznań, Poland
| | - Elena Conde Montero
- Specialist in Dermatology. Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Keith Cutting
- Clinical Research Consultant, Hertfordshire, Honorary, Tissue Viability Specialist, First Community Health and Care, Surrey, England
| | - Christine Moffatt
- Professor of Clinical Nursing Research, University of Nottingham, and Nurse Consultant, Derby Hospitals NHS Foundation Trust Lymphoedema Service, England
| | - Astrid Probst
- Advanced Nurse Practitioner Wound Care, Klinikum am Steinenberg/Ermstalklinik, Reutlingen, Germany
| | - Marco Romanelli
- President WUWHS, Associate Professor of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gregory S Schultz
- Researcher, Professor of Obstetrics and Gynaecology, University of Florida, Gainesville, Florida, US
| | - William Tettelbach
- Associate Chief Medical Officer, MiMedx, Georgia. Adjunct Assistant Professor, Duke University School of Medicine, Durham, North Carolina. Medical Director of Wound Care and Infection Prevention, Landmark Hospital, Salt Lake City, Utah, US
| |
Collapse
|
88
|
Karnik T, Dempsey SG, Jerram MJ, Nagarajan A, Rajam R, May BCH, Miller CH. Ionic silver functionalized ovine forestomach matrix - a non-cytotoxic antimicrobial biomaterial for tissue regeneration applications. Biomater Res 2019; 23:6. [PMID: 30834142 PMCID: PMC6387525 DOI: 10.1186/s40824-019-0155-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Antimicrobial technologies, including silver-containing medical devices, are increasingly utilized in clinical regimens to mitigate risks of microbial colonization. Silver-functionalized resorbable biomaterials for use in wound management and tissue regeneration applications have a narrow therapeutic index where antimicrobial effectiveness may be outweighed by adverse cytotoxicity. We examined the effects of ionic silver functionalization of an extracellular matrix (ECM) biomaterial derived from ovine forestomach (OFM-Ag) in terms of material properties, antimicrobial effectiveness and cytotoxicity profile. METHODS Material properties of OFM-Ag were assessed by via biochemical analysis, microscopy, atomic absorption spectroscopy (AAS) and differential scanning calorimetry. The silver release profile of OFM-Ag was profiled by AAS and antimicrobial effectiveness testing utilized to determine the minimum effective concentration of silver in OFM-Ag in addition to the antimicrobial spectrum and wear time. Biofilm prevention properties of OFM-Ag in comparison to silver containing collagen dressing materials was quantified via in vitro crystal violet assay using a polymicrobial model. Toxicity of ionic silver, OFM-Ag and silver containing collagen dressing materials was assessed toward mammalian fibroblasts using elution cytoxicity testing. RESULTS OFM-Ag retained the native ECM compositional and structural characteristic of non-silver functionalized ECM material while imparting broad spectrum antimicrobial effectiveness toward 11 clinically relevant microbial species including fungi and drug resistant strains, maintaining effectiveness over a wear time duration of 7-days. OFM-Ag demonstrated significant prevention of polymicrobial biofilm formation compared to non-antimicrobial and silver-containing collagen dressing materials. Where silver-containing collagen dressing materials exhibited cytotoxic effects toward mammalian fibroblasts, OFM-Ag was determined to be non-cytotoxic, silver elution studies indicated sustained retention of silver in OFM-Ag as a possible mechanism for the attenuated cytotoxicity. CONCLUSIONS This work demonstrates ECM biomaterials may be functionalized with silver to favourably shift the balance between detrimental cytotoxic potential and beneficial antimicrobial effects, while preserving the ECM structure and function of utility in tissue regeneration applications.
Collapse
Affiliation(s)
- Tanvi Karnik
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Sandi G. Dempsey
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Micheal J. Jerram
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Arun Nagarajan
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Ravindra Rajam
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Barnaby C. H. May
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| | - Christopher H. Miller
- Aroa Biosurgery, 2 Kingsford Smith Place, PO Box 107111, Auckland Airport, Auckland, 2150 New Zealand
| |
Collapse
|
89
|
El Masry MS, Chaffee S, Das Ghatak P, Mathew-Steiner SS, Das A, Higuita-Castro N, Roy S, Anani RA, Sen CK. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization. FASEB J 2019; 33:2144-2155. [PMID: 30260708 PMCID: PMC6338656 DOI: 10.1096/fj.201800352r] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
Decellularized matrices of biologic tissue have performed well as wound care dressings. Extracellular matrix-based dressings are subject to rapid degradation by excessive protease activity at the wound environment. Stabilized, acellular, equine pericardial collagen matrix (sPCM) wound care dressing is flexible cross-linked proteolytic enzyme degradation resistant. sPCM was structurally characterized utilizing scanning electron and atomic force microscopy. In murine excisional wounds, sPCM was effective in mounting an acute inflammatory response. Postwound inflammation resolved rapidly, as indicated by elevated levels of IL-10, arginase-1, and VEGF, and lowering of IL-1β and TNF-α. sPCM induced antimicrobial proteins S100A9 and β-defensin-1 in keratinocytes. Adherence of Pseudomonas aeruginosa and Staphylococcus aureus on sPCM pre-exposed to host immune cells in vivo was inhibited. Excisional wounds dressed with sPCM showed complete closure at d 14, while control wounds remained open. sPCM accelerated wound re-epithelialization. sPCM not only accelerated wound closure but also improved the quality of healing by increased collagen deposition and maturation. Thus, sPCM is capable of presenting scaffold functionality during the course of wound healing. In addition to inducing endogenous antimicrobial defense systems, the dressing itself has properties that minimize biofilm formation. It mounts robust inflammation, a process that rapidly resolves, making way for wound healing to advance.-El Masry, M. S., Chaffee, S., Das Ghatak, P., Mathew-Steiner, S. S., Das, A., Higuita-Castro, N., Roy, S., Anani, R. A., Sen, C. K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization.
Collapse
Affiliation(s)
- Mohamed S. El Masry
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
- Department of Plastic and Reconstructive Surgery, Zagazig University, Zagazig, Egypt
| | - Scott Chaffee
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Piya Das Ghatak
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Shomita S. Mathew-Steiner
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Amitava Das
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Natalia Higuita-Castro
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Sashwati Roy
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Raafat A. Anani
- Department of Plastic and Reconstructive Surgery, Zagazig University, Zagazig, Egypt
| | - Chandan K. Sen
- Department of Surgery, Indiana University Health (IUH) Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
90
|
Gorvetzian JW, Kunkel RP, Demas CP. A Single Center Retrospective Evaluation of a Surgical Strategy to Combat Persistent Soft Tissue Wounds Utilizing Absorbable Antibiotic Beads. Adv Wound Care (New Rochelle) 2019; 8:49-57. [PMID: 30809422 PMCID: PMC6389768 DOI: 10.1089/wound.2018.0795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Objective: To determine whether use of absorbable antibiotic-imbued beads in chronic soft tissue wounds presents a viable therapeutic modality. Approach: Retrospective analysis of all cases utilizing calcium sulfate antibiotic beads was conducted. Cases comprised complex wound and breast reconstruction performed by the senior author (C.P.D.) over 4 years at the University of New Mexico Hospital. All-cause need for reoperation and reoperation for infection in the 90 days following bead-assisted surgery were compared to traditional surgical intervention in the 90-day period preceding bead-assisted surgery. Paired-samples t-test and corrected Cohen's d were calculated for outcome significance and effect size. Results: A total of 60 patients underwent 84 bead-assisted surgeries. There was a significant decrease in rate of reoperation following bead surgery (M = 0.32) compared with prebead surgery (M = 2.2), p < 0.001. Rate of reoperation for infection significantly decreased from 1.7 before bead surgery to 0.05 following bead surgery, p < 0.001. Results remained significant when stratified by complex wound or breast reconstruction, p < 0.01. Cohen's d ranged from 1.25 to 2.13, with probability of superiority between 80% and 93%. Innovation: Use of antibiotic-laden materials is well established in the orthopedic literature, but poorly characterized in soft tissue applications. Biofilms are increasingly implicated as a unifying pathologic foe underlying chronic wound infection and nonhealing. Antibiotic beads have demonstrated activity against biofilm in vitro. This study demonstrates diminished reoperative burden for these wounds following antibiotic bead surgery, possibly as a result of in vivo biofilm antagonism. Conclusion: Antibiotic bead-assisted surgery was associated with significantly decreased infectious and all-cause reoperations for chronic and infected wounds.
Collapse
Affiliation(s)
- Joseph W. Gorvetzian
- Health Sciences Center, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Ryan P. Kunkel
- Division of Plastic Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Christopher P. Demas
- Division of Plastic Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| |
Collapse
|
91
|
Sen CK. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv Wound Care (New Rochelle) 2019; 8:39-48. [PMID: 30809421 PMCID: PMC6389759 DOI: 10.1089/wound.2019.0946] [Citation(s) in RCA: 593] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Significance: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections. Medicare cost estimates for acute and chronic wound treatments ranged from $28.1 billion to $96.8 billion. Highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient. Increasing costs of health care, an aging population, recognition of difficult-to-treat infection threats such as biofilms, and the continued threat of diabetes and obesity worldwide make chronic wounds a substantial clinical, social, and economic challenge. Recent Advances: Chronic wounds are not a problem in an otherwise healthy population. Underlying conditions ranging from malnutrition, to stress, to metabolic syndrome, predispose patients to chronic, nonhealing wounds. From an economic point of view, the annual wound care products market is expected to reach $15-22 billion by 2024. The National Institutes of Health's (NIH) Research Portfolio Online Reporting Tool (RePORT) now lists wounds as a category. Future Directions: A continued rise in the economic, clinical, and social impact of wounds warrants a more structured approach and proportionate investment in wound care, education, and related research.
Collapse
Affiliation(s)
- Chandan K. Sen
- Department of Surgery, Indiana University Health Comprehensive Wound Center, Indianapolis, Indiana
- Editor-in-Chief, Advances in Wound Care
| |
Collapse
|
92
|
Korambayil P, Ambookan P, Karangath R. Portable indocyanine green perfusion assessment: An adjunct to visual assessment in burn wound healing in second-degree burns. INDIAN JOURNAL OF BURNS 2019. [DOI: 10.4103/ijb.ijb_5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
93
|
Abstract
Multidrug-resistant A. baumannii are important Gram-negative pathogens causing persistent wound infections in both wounded and burned victims, which often result in secondary complications such as delayed wound healing, skin graft failure, and sometimes more serious outcomes such as sepsis and amputation. The choice of antibiotics to remediate these A. baumannii infections is becoming limited; and therefore, there has been a renewed interest in the research and development of new antibacterials targeting this pathogen. However, the evaluation of safety and efficacy is made more difficult by the lack of well-established in vivo models. This chapter describes established rodent and large animal models that have been used to investigate and develop treatments for A. baumannii skin and soft tissue infections.
Collapse
|
94
|
Zurawski DV, Black CC, Alamneh YA, Biggemann L, Banerjee J, Thompson MG, Wise MC, Honnold CL, Kim RK, Paranavitana C, Shearer JP, Tyner SD, Demons ST. A Porcine Wound Model of Acinetobacter baumannii Infection. Adv Wound Care (New Rochelle) 2019; 8:14-27. [PMID: 30705786 PMCID: PMC6350066 DOI: 10.1089/wound.2018.0786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/24/2018] [Indexed: 01/25/2023] Open
Abstract
Objective: To better understand Acinetobacter baumannii pathogenesis and to advance drug discovery against this pathogen, we developed a porcine, full-thickness, excisional, monospecies infection wound model. Approach: The research was facilitated with AB5075, a previously characterized, extensively drug-resistant A. baumannii isolate. The model requires cyclophosphamide-induced neutropenia to establish a skin and soft tissue infection (SSTI) that persists beyond 7 days. Multiple, 12-mm-diameter full-thickness wounds were created in the skin overlying the cervical and thoracic dorsum. Wound beds were inoculated with 5.0 × 104 colony-forming units (CFU) and covered with dressing. Results:A. baumannii was observed in the wound bed and on the dressing in what appeared to be biofilm. When bacterial burdens were measured, proliferation to at least 106 CFU/g (log106) wound tissue was observed. Infection was further characterized by scanning electron microscopy (SEM) and peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) staining. To validate as a treatment model, polymyxin B was applied topically to a subset of infected wounds every 2 days. Then, the treated and untreated wounds were compared using multiple quantitative and qualitative techniques to include gross pathology, CFU burden, histopathology, PNA-FISH, and SEM. Innovation: This is the first study to use A. baumannii in a porcine model as the sole infectious agent. Conclusion: The porcine model allows for an additional preclinical assessment of antibacterial candidates that show promise against A. baumannii in rodent models, further evaluating safety and efficacy, and serve as a large animal in preclinical assessment for the treatment of SSTI.
Collapse
Affiliation(s)
- Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Chad C. Black
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lionel Biggemann
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jaideep Banerjee
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Mitchell G. Thompson
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Matthew C. Wise
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Cary L. Honnold
- Veterinary Services Program, Department of Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Robert K. Kim
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Chrysanthi Paranavitana
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Jonathan P. Shearer
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Stuart D. Tyner
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Samandra T. Demons
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
95
|
Menchisheva Y, Mirzakulova U, Yui R. Use of platelet-rich plasma to facilitate wound healing. Int Wound J 2018; 16:343-353. [PMID: 30440099 DOI: 10.1111/iwj.13034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Platelet-rich plasma (PRP) is widely used nowadays in different fields of medicine, affecting physiological processes including tissue regeneration. The use of PRP in maxillofacial surgical interventions and its efficiency in the improvement of postoperative wound healing were analysed. Patients undergoing plastic and reconstructive surgeries in the maxillofacial region were recruited: 50 patients were enrolled into a control group (received no PPRP injection) and 50 patients were enrolled into a treatment group, where PRP was applied during the surgical procedure. Evaluation of treatment outcomes was carried out by determination of IL-1β, TNFα, and IL-6 cytokines levels in the wound-drain fluid. The stages of wound healing were assessed by cytological analyses and ultrasound within a month period. The use of the PRP has substantially positive effects, contributing to the improvement of the healing process. In the treatment group, fibroblasts, macrophages, and collagen fibres appeared and their quantities increased earlier than when compared with control group patients. The concentration of IL-1β and TNFα in wound fluid on day 1 and day 5 after operation was higher for the treatment group as opposed to the control group, which was linked to the influence of PRP on inflammatory and granulation phases of the healing process. An ultrasound examination showed less oedema and infiltration in the tissues around the wound of the treatment group.
Collapse
Affiliation(s)
- Yuliya Menchisheva
- Department of Surgical Dentistry, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ulmeken Mirzakulova
- Department of Surgical Dentistry, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Rudolf Yui
- Department of Hystology, S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| |
Collapse
|
96
|
Reichhardt C, Wong C, Passos da Silva D, Wozniak DJ, Parsek MR. CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing. mBio 2018; 9:e01376-18. [PMID: 30254118 PMCID: PMC6156197 DOI: 10.1128/mbio.01376-18] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
Biofilms are robust multicellular aggregates of bacteria that are encased in an extracellular matrix. Different bacterial species have been shown to use a range of biopolymers to build their matrices. Pseudomonas aeruginosa is a model organism for the laboratory study of biofilms, and past work has suggested that exopolysaccharides are a required matrix component. However, we found that expression of the matrix protein CdrA, in the absence of biofilm exopolysaccharides, allowed biofilm formation through the production of a CdrA-rich proteinaceous matrix. This represents a novel function for CdrA. Similar observations have been made for other species such as Escherichia coli and Staphylococcus aureus, which can utilize protein-dominant biofilm matrices. However, we found that these CdrA-containing matrices were susceptible to both exogenous and self-produced proteases. We previously reported that CdrA directly binds the biofilm matrix exopolysaccharide Psl. Now we have found that when CdrA bound to Psl, it was protected from proteolysis. Together, these results support the idea of the importance of multibiomolecular components in matrix stability and led us to propose a model in which CdrA-CdrA interactions can enhance cell-cell packing in an aggregate that is resistant to physical shear, while Psl-CdrA interactions enhance aggregate integrity in the presence of self-produced and exogenous proteases.IMPORTANCEPseudomonas aeruginosa forms multicellular aggregates or biofilms using both exopolysaccharides and the CdrA matrix adhesin. We showed for the first time that P. aeruginosa can use CdrA to build biofilms that do not require known matrix exopolysaccharides. It is appreciated that biofilm growth is protective against environmental assaults. However, little is known about how the interactions between individual matrix components aid in this protection. We found that interactions between CdrA and the exopolysaccharide Psl fortify the matrix by preventing CdrA proteolysis. When both components-CdrA and Psl-are part of the matrix, robust aggregates form that are tightly packed and protease resistant. These findings provide insight into how biofilms persist in protease-rich host environments.
Collapse
Affiliation(s)
- Courtney Reichhardt
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Cynthis Wong
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
97
|
Gupta A, Landis RF, Li CH, Schnurr M, Das R, Lee YW, Yazdani M, Liu Y, Kozlova A, Rotello VM. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. J Am Chem Soc 2018; 140:12137-12143. [PMID: 30169023 DOI: 10.1021/jacs.8b06961] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial "superbugs" with concomitant treatment failure and high mortality rates presents a severe threat to global health. The superbug risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that render them refractory to available treatments. We hypothesized that efficient antimicrobial agents could be generated through careful engineering of hydrophobic and cationic domains in a synthetic semirigid polymer scaffold, mirroring and amplifying attributes of antimicrobial peptides. We report the creation of polymeric nanoparticles with highly efficient antimicrobial properties. These nanoparticles eradicate biofilms with low toxicity to mammalian cells and feature unprecedented therapeutic indices against red blood cells. Most notably, bacterial resistance toward these nanoparticles was not observed after 20 serial passages, in stark contrast to clinically relevant antibiotics where significant resistance occurred after only a few passages.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Ryan F Landis
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Cheng-Hsuan Li
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Martin Schnurr
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States.,Faculty of Chemistry and Geoscience , Ruprecht-Karls-University , Im Neuenheimer Feld 234 , 69120 Heidelberg , Germany
| | - Riddha Das
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yi-Wei Lee
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Mahdieh Yazdani
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Yuanchang Liu
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Anastasia Kozlova
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
98
|
Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J Glob Antimicrob Resist 2018; 16:59-71. [PMID: 30144636 DOI: 10.1016/j.jgar.2018.08.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter spp. are aerobic, rod-shaped, Gram-negative bacteria belonging to the Moraxellaceae family of the class Gammaproteobacteria and are considered ubiquitous organisms. Among them, Acinetobacter baumannii is the most clinically significant species with an extraordinary ability to accumulate antimicrobial resistance and to survive in the hospital environment. Recent reports indicate that A. baumannii has also evolved into a veterinary nosocomial pathogen. Although Acinetobacter spp. can be identified to species level using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) coupled with an updated database, molecular techniques are still necessary for genotyping and determination of clonal lineages. It appears that the majority of infections due to A. baumannii in veterinary medicine are nosocomial. Such isolates have been associated with several types of infection such as canine pyoderma, feline necrotizing fasciitis, urinary tract infection, equine thrombophlebitis and lower respiratory tract infection, foal sepsis, pneumonia in mink, and cutaneous lesions in hybrid falcons. Given the potential multidrug resistance of A. baumannii, treatment of diseased animals is often supportive and should preferably be based on in vitro antimicrobial susceptibility testing results. It should be noted that animal isolates show high genetic diversity and are in general distinct in their sequence types and resistance patterns from those found in humans. However, it cannot be excluded that animals may occasionally play a role as a reservoir of A. baumannii. Thus, it is of importance to implement infection control measures in veterinary hospitals to avoid nosocomial outbreaks with multidrug-resistant A. baumannii.
Collapse
|
99
|
Lu Y, Yang R, Zhu J. [Research progress of chronic wound debridement]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1096-1101. [PMID: 30238742 PMCID: PMC8429985 DOI: 10.7507/1002-1892.201801126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/12/2018] [Indexed: 01/22/2023]
Abstract
Objective To review the research progress of chronic wound debridement. Methods The recent related literature concerning the mechanisms, advantages, limitations, and indications of the technologies of chronic wound debridement was extensively consulted, reviewed, and summarized. Results Debridement is essential for chronic wound healing, which includes autolytic debridement, enzymatic debridement, biodebridement, mechanical debridement, sharp/surgical debridement, ultrasound debridement, hydrosurgery debridement, and coblation debridement. Each technique has its own advantages and disadvantages. Conclusion There are many types of technologies of chronic wound debridement, which can be chosen according to clinical conditions. It is showed there are more significant advantages associated with the technique of coblation debridement relatively, which also has greater potential. Further study is needed to improve its efficacy.
Collapse
Affiliation(s)
- Yao Lu
- Chinese PLA Medical School, Beijing, 100853, P.R.China;Department of Orthopaedics, First Affiliated Hospital of PLA General Hospital, Beijing, 100048, P.R.China
| | - Rungong Yang
- Chinese PLA Medical School, Beijing, 100853, P.R.China;Department of Orthopaedics, First Affiliated Hospital of PLA General Hospital, Beijing, 100048,
| | - Jialiang Zhu
- Department of Orthopaedics, First Affiliated Hospital of PLA General Hospital, Beijing, 100048, P.R.China
| |
Collapse
|
100
|
Larouche J, Sheoran S, Maruyama K, Martino MM. Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Adv Wound Care (New Rochelle) 2018; 7:209-231. [PMID: 29984112 PMCID: PMC6032665 DOI: 10.1089/wound.2017.0761] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
Significance: The immune system plays a central role in orchestrating the tissue healing process. Hence, controlling the immune system to promote tissue repair and regeneration is an attractive approach when designing regenerative strategies. This review discusses the pathophysiology of both acute and chronic wounds and possible strategies to control the immune system to accelerate chronic wound closure and promote skin regeneration (scar-less healing) of acute wounds. Recent Advances: Recent studies have revealed the key roles of various immune cells and immune mediators in skin repair. Thus, immune components have been targeted to promote chronic wound repair or skin regeneration and several growth factors, cytokines, and biomaterials have shown promising results in animal models. However, these novel strategies are often struggling to meet efficacy standards in clinical trials, partly due to inadequate drug delivery systems and safety concerns. Critical Issues: Excess inflammation is a major culprit in the dysregulation of normal wound healing, and further limiting inflammation effectively reduces scarring. However, current knowledge is insufficient to efficiently control inflammation and specific immune cells. This is further complicated by inadequate drug delivery methods. Future Directions: Improving our understanding of the molecular pathways through which the immune system controls the wound healing process could facilitate the design of novel regenerative therapies. Additionally, better delivery systems may make current and future therapies more effective. To promote the entry of current regenerative strategies into clinical trials, more evidence on their safety, efficacy, and cost-effectiveness is also needed.
Collapse
Affiliation(s)
- Jacqueline Larouche
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Sumit Sheoran
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - Kenta Maruyama
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| |
Collapse
|