51
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
52
|
Tseng HW, Kulina I, Salga M, Fleming W, Vaquette C, Genêt F, Levesque JP, Alexander KA. Neurogenic Heterotopic Ossifications Develop Independently of Granulocyte Colony-Stimulating Factor and Neutrophils. J Bone Miner Res 2020; 35:2242-2251. [PMID: 32568412 DOI: 10.1002/jbmr.4118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating heterotopic bones in periarticular muscles that frequently develop following traumatic brain or spinal cord injuries (SCI). Using our unique model of SCI-induced NHO, we have previously established that mononucleated phagocytes infiltrating injured muscles are required to trigger NHO via the persistent release of the pro-inflammatory cytokine oncostatin M (OSM). Because neutrophils are also a major source of OSM, we investigated whether neutrophils also play a role in NHO development after SCI. We now show that surgery transiently increased granulocyte colony-stimulating factor (G-CSF) levels in blood of operated mice, and that G-CSF receptor mRNA is expressed in the hamstrings of mice developing NHO. However, mice defective for the G-CSF receptor gene Csf3r, which are neutropenic, have unaltered NHO development after SCI compared to C57BL/6 control mice. Because the administration of recombinant human G-CSF (rhG-CSF) has been trialed after SCI to increase neuroprotection and neuronal regeneration and has been shown to suppress osteoblast function at the endosteum of skeletal bones in human and mice, we investigated the impact of a 7-day rhG-CSF treatment on NHO development. rhG-CSF treatment significantly increased neutrophils in the blood, bone marrow, and injured muscles. However, there was no change in NHO development compared to saline-treated controls. Overall, our results establish that unlike monocytes/macrophages, neutrophils are dispensable for NHO development following SCI, and rhG-CSF treatment post-SCI does not impact NHO development. Therefore, G-CSF treatment to promote neuroregeneration is unlikely to adversely promote or affect NHO development in SCI patients. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Irina Kulina
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France
| | - Whitney Fleming
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia.,Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Garches, France.,Evolution of Neuromuscular Diseases: Innovative Concepts and Practice (END:ICAP) U1179 Institut Natational de la Santé et de la Recherche Médicale, Unité de Formation et de Recherche Simone Veil-Santé, University of Versailles Saint Quentin en Yvelines, Montigny-le-Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kylie A Alexander
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
53
|
Meyer C, Haustrate MA, Nisolle JF, Deltombe T. Heterotopic ossification in COVID-19: A series of 4 cases. Ann Phys Rehabil Med 2020; 63:565-567. [PMID: 33115691 PMCID: PMC7587134 DOI: 10.1016/j.rehab.2020.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- C Meyer
- Physical medicine and rehabilitation department, CHU UCL Namur site Godinne, 1, avenue Dr Therasse, 5530 Yvoir, Belgium
| | - M-A Haustrate
- Physical medicine and rehabilitation department, CHU UCL Namur site Godinne, 1, avenue Dr Therasse, 5530 Yvoir, Belgium
| | - J F Nisolle
- Radiology department, CHU UCL Namur site Godinne, 5530 Yvoir, Belgium
| | - T Deltombe
- Physical medicine and rehabilitation department, CHU UCL Namur site Godinne, 1, avenue Dr Therasse, 5530 Yvoir, Belgium.
| |
Collapse
|
54
|
Tőkési N, Kozák E, Fülöp K, Dedinszki D, Hegedűs N, Király B, Szigeti K, Ajtay K, Jakus Z, Zaworski J, Letavernier E, Pomozi V, Váradi A. Pyrophosphate therapy prevents trauma-induced calcification in the mouse model of neurogenic heterotopic ossification. J Cell Mol Med 2020; 24:11791-11799. [PMID: 32885586 PMCID: PMC7579705 DOI: 10.1111/jcmm.15793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Trauma‐induced calcification is the pathological consequence of complex injuries which often affect the central nervous system and other parts of the body simultaneously. We demonstrated by an animal model recapitulating the calcification of the above condition that adrenaline transmits the stress signal of brain injury to the calcifying tissues. We have also found that although the level of plasma pyrophosphate, the endogenous inhibitor of calcification, was normal in calcifying animals, it could not counteract the acute calcification. However, externally added pyrophosphate inhibited calcification even when it was administered after the complex injuries. Our finding suggests a potentially powerful clinical intervention of calcification triggered by polytrauma injuries which has no effective treatment.
Collapse
Affiliation(s)
- Natália Tőkési
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Eszter Kozák
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Krisztina Fülöp
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Dóra Dedinszki
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Nikolett Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bálint Király
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Kitti Ajtay
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Jeremy Zaworski
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM, UMR S 1155, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM, UMR S 1155, Paris, France
| | - Viola Pomozi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| |
Collapse
|
55
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
56
|
Li L, Xiang S, Wang B, Lin H, Kihara S, Sun H, Alexander PG, Tuan RS. TGF-β1 plays a protective role in glucocorticoid-induced dystrophic calcification. Bone 2020; 136:115355. [PMID: 32259685 DOI: 10.1016/j.bone.2020.115355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/28/2022]
Abstract
Dystrophic calcification (DC) is the deposition of calcium in degenerated tissue which occurs as a reaction to tissue damage. Sometimes if tissue repair fails, it can progress into heterotopic ossification (HO), a pathological condition of abnormal bone formation. HO happens frequently in severe trauma patients such as in blast injury, central nervous system injury and burn injury, in which excessive endogenous glucocorticoid production has always been found. Glucocorticoids have a big impact on bone and muscle. However, few studies have investigated the impact of glucocorticoids on DC/HO formation in muscle. This study aimed to determine the role of glucocorticoids in DC/HO pathogenesis following muscular injury and the possible underlying mechanism. In this study, we administered a high dose of a synthetic glucocorticoid, dexamethasone (DEX), to animals with muscle injury induced by cardiotoxin (CTX) injection to mimic a glucocorticoid excess state following severe muscle trauma. The findings reported here showed that DEX treatment together with CTX-induced muscle injury led to a significant amount of DC in muscle. This effect was likely related to protein level alterations in the fibrinolytic system and resultant decreased circulating transforming growth factor-beta 1 (TGF-β1), given that supplementation of recombinant TGF-β1 markedly rescued this phenomenon. In summary, our results suggest that glucocorticoid excess impairs muscle regeneration and promotes DC/HO, and that TGF-β1 could be a key factor in modulating this process.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bing Wang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Therapeutics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shinsuke Kihara
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hui Sun
- Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
57
|
Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats. J Transl Med 2020; 100:762-776. [PMID: 31896816 DOI: 10.1038/s41374-019-0367-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/07/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition that results from traumatic injuries or genetic diseases, for which the underlying mechanisms remain unclear. Recently, we have demonstrated the expression of neurotrophin-3 (NT-3) and its role in promoting HO formation via mediating endothelial-mesenchymal transition (EndMT) of vascular endothelial cells. The current study investigated the role of NT-3 on the surrounding mesenchymal cells and its potential origin throughout HO formation at injured Achilles tendons in rats. We used an Achilles tenotomy to induce HO formation in vivo and cultured primary tendon-derived stem cells (TDSCs) to investigate the underlying mechanisms mediating the osteogenesis in vitro. Furthermore, RAW264.7 cells were employed to identify the origin of NT-3. The mRNA levels of NGF, BDNF, NT-3, and NT-4 and their tyrosine protein kinase (Trk) receptors as well as p75 receptor were elevated at injury sites. NT-3 and TrkC showed the highest induction. Neutralization of the NT-3-induced effects by the pan-Trk inhibitor GNF5837 reduced the expression of bone/cartilage-related genes while injection of NT-3 promoted HO formation with elevated mRNA of bone/cartilage-related markers at injured sites. In vitro, NT-3 accelerated osteogenic differentiation and mineralization of TDSCs through activation of the ERK1/2 and PI3K/Akt signaling pathways. Moreover, the colocalization of NT-3 and macrophages, including M1 and M2 macrophages, was observed in injured sites throughout HO formation, and in vitro studies demonstrated that activated macrophages mediated the secretion of NT-3. In addition, an increasing concentration of serum or supernatant NT-3 was observed both in vivo and in vitro. Depletion of macrophages with clodronate-loaded liposomes reduced HO formation as well as secretion and mRNA expression of NT-3. Our study suggests that macrophage-derived NT-3 may promote HO formation and osteogenesis of TDSCs via the ERK1/2 and PI3K/Akt signaling pathways, which may provide new insights for the therapeutic directions of HO in the future.
Collapse
|
58
|
Brady RD, Zhao MZ, Wong KR, Casilla-Espinosa PM, Yamakawa GR, Wortman RC, Sun M, Grills BL, Mychasiuk R, O'Brien TJ, Agoston DV, Lee PVS, McDonald SJ, Robinson DL, Shultz SR. A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone 2020; 133:115263. [PMID: 32032779 DOI: 10.1016/j.bone.2020.115263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Abstract
Neurological heterotopic ossification (NHO) is characterized by abnormal bone growth in soft tissue and joints in response to injury to the central nervous system. The ectopic bone frequently causes pain, restricts mobility, and decreases the quality of life for those affected. NHO commonly develops in severe traumatic brain injury (TBI) patients, particularly in the presence of concomitant musculoskeletal injuries (i.e. polytrauma). There are currently no animal models that accurately mimic these combinations of injuries, which has limited our understanding of NHO pathobiology, as well as the development of biomarkers and treatments, in TBI patients. In order to address this shortcoming, here we present a novel rat model that combines TBI, femoral fracture, and muscle crush injury. Young adult male Sprague Dawley rats were randomly assigned into three different injury groups: triple sham-injury, peripheral injury only (i.e., sham-TBI + fracture + muscle injury) or triple injury (i.e., TBI + fracture + muscle injury). Evidence of ectopic bone in the injured hind-limb, as confirmed by micro-computed tomography (μCT), was found at 6-weeks post-injury in 70% of triple injury rats, 20% of peripheral injury rats, and 0% of the sham-injured controls. Furthermore, the triple injury rats had higher ectopic bone severity scores than the sham-injured group. This novel model will provide a platform for future studies to identify underlying mechanisms, biomarkers, and develop evidence based pharmacological treatments to combat this debilitating long-term complication of TBI and polytrauma.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Michael Z Zhao
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ker R Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casilla-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ryan C Wortman
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Peter V S Lee
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
59
|
The effect of celecoxib in traumatic heterotopic ossification around temporomandibular joint in mice. Osteoarthritis Cartilage 2020; 28:502-515. [PMID: 32061965 DOI: 10.1016/j.joca.2020.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, the role of inflammation in traumatic heterotopic ossification around temporomandibular joint (THO-TMJ), as well as the preventive and treatment effect of celecoxib in THO-TMJ both in vivo and in vitro were explored. DESIGN A surgically-induced THO-TMJ mouse model and a co-culture model of ATDC-5 or MC3T3-E1 and RAW-264.7 cells were used in this study for in vivo and in vitro research. RESULTS A series of inflammatory factors, such as CD3, CD68, CD20, IL-10, IL-6 and TNF-α, were activated 48 h after trauma in a THO-TMJ model. Local trauma initiated systemic inflammatory responses as well as T cell- and macrophage-mediated local inflammatory responses around TMJ. In addition, expression of COX-2 was significantly elevated. The findings also showed that local injection of celecoxib could effectively alleviate the inflammatory response around TMJ at the early stage of trauma and inhibit the formation of THO-TMJ in vivo. Meanwhile, celecoxib could inhibit chondrogenic differentiation of ATDC-5 and osteogenic differentiation of MC3T3-E1 under inflammatory condition in vitro. Furthermore, celecoxib could inhibit the expression of Bmpr1b in the injured condylar cartilage at the initiation stage of THO-TMJ, which implied that Bmpr1b expressed by the residual condylar cartilage might be related to the pathogenesis of THO-TMJ. CONCLUSIONS Inflammation played a crucial role in the pathogenesis of THO-TMJ, and anti-inflammation might be a possible choice to inhibit THO-TMJ, which provided scientific clues for the mechanisms, pharmacotherapy and molecular intervention of THO-TMJ.
Collapse
|
60
|
Matsuo K, Chavez RD, Barruet E, Hsiao EC. Inflammation in Fibrodysplasia Ossificans Progressiva and Other Forms of Heterotopic Ossification. Curr Osteoporos Rep 2019; 17:387-394. [PMID: 31721068 PMCID: PMC7271746 DOI: 10.1007/s11914-019-00541-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Heterotopic ossification (HO) is associated with inflammation. The goal of this review is to examine recent findings on the roles of inflammation and the immune system in HO. We examine how inflammation changes in fibrodysplasia ossificans progressiva, in traumatic HO, and in other clinical conditions of HO. We also discuss how inflammation may be a target for treating HO. RECENT FINDINGS Both genetic and acquired forms of HO show similarities in their inflammatory cell types and signaling pathways. These include macrophages, mast cells, and adaptive immune cells, along with hypoxia signaling pathways, mesenchymal stem cell differentiation signaling pathways, vascular signaling pathways, and inflammatory cytokines. Because there are common inflammatory mediators across various types of HO, these mediators may serve as common targets for blocking HO. Future research may focus on identifying new inflammatory targets and testing combinatorial therapies based on these results.
Collapse
Affiliation(s)
- Koji Matsuo
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Robert Dalton Chavez
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Emilie Barruet
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA
| | - Edward C Hsiao
- Division of Endocrinology and Metabolism, University of California, 513 Parnassus Ave., HSE901, San Francisco, CA, 94143-0794, USA.
- Department of Medicine, The Institute for Human Genetics, University of California, CA, San Francisco, USA.
- The Program in Craniofacial Biology, University of California, CA, San Francisco, USA.
| |
Collapse
|
61
|
Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nat Commun 2019; 10:3436. [PMID: 31366886 PMCID: PMC6668467 DOI: 10.1038/s41467-019-11373-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Mineralized bone forms when collagen-containing osteoid accrues mineral crystals. This is initiated rapidly (primary mineralization), and continues slowly (secondary mineralization) until bone is remodeled. The interconnected osteocyte network within the bone matrix differentiates from bone-forming osteoblasts; although osteoblast differentiation requires EphrinB2, osteocytes retain its expression. Here we report brittle bones in mice with osteocyte-targeted EphrinB2 deletion. This is not caused by low bone mass, but by defective bone material. While osteoid mineralization is initiated at normal rate, mineral accrual is accelerated, indicating that EphrinB2 in osteocytes limits mineral accumulation. No known regulators of mineralization are modified in the brittle cortical bone but a cluster of autophagy-associated genes are dysregulated. EphrinB2-deficient osteocytes displayed more autophagosomes in vivo and in vitro, and EphrinB2-Fc treatment suppresses autophagy in a RhoA-ROCK dependent manner. We conclude that secondary mineralization involves EphrinB2-RhoA-limited autophagy in osteocytes, and disruption leads to a bone fragility independent of bone mass. Osteoblasts mediate bone formation, and their differentiation requires expression of EphrinB2. Here, the authors show that EphrinB2 is also expressed by osteocytes, and that its genetic ablation in mice is associated with altered autophagy, elevated mineralization and brittle bone.
Collapse
|
62
|
Tirone M, Giovenzana A, Vallone A, Zordan P, Sormani M, Nicolosi PA, Meneveri R, Gigliotti CR, Spinelli AE, Bocciardi R, Ravazzolo R, Cifola I, Brunelli S. Severe Heterotopic Ossification in the Skeletal Muscle and Endothelial Cells Recruitment to Chondrogenesis Are Enhanced by Monocyte/Macrophage Depletion. Front Immunol 2019; 10:1640. [PMID: 31396210 PMCID: PMC6662553 DOI: 10.3389/fimmu.2019.01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
Altered macrophage infiltration upon tissue damage results in inadequate healing due to inappropriate remodeling and stem cell recruitment and differentiation. We investigated in vivo whether cells of endothelial origin phenotypically change upon heterotopic ossification induction and whether infiltration of innate immunity cells influences their commitment and alters the ectopic bone formation. Liposome-encapsulated clodronate was used to assess macrophage impact on endothelial cells in the skeletal muscle upon acute damage in the ECs specific lineage-tracing Cdh5CreERT2:R26REYFP/dtTomato transgenic mice. Macrophage depletion in the injured skeletal muscle partially shifts the fate of ECs toward endochondral differentiation. Upon ectopic stimulation of BMP signaling, monocyte depletion leads to an enhanced contribution of ECs chondrogenesis and to ectopic bone formation, with increased bone volume and density, that is reversed by ACVR1/SMAD pathway inhibitor dipyridamole. This suggests that macrophages contribute to preserve endothelial fate and to limit the bone lesion in a BMP/injury-induced mouse model of heterotopic ossification. Therefore, alterations of the macrophage-endothelial axis may represent a novel target for molecular intervention in heterotopic ossification.
Collapse
Affiliation(s)
- Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Vallone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paola Zordan
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sormani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Raffaela Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Antonello E Spinelli
- Centre for Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Roberto Ravazzolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.,U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
63
|
Li L, Jiang Y, Lin H, Shen H, Sohn J, Alexander PG, Tuan RS. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat 2019; 18:142-153. [PMID: 31508317 PMCID: PMC6718974 DOI: 10.1016/j.jot.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue, which causes pain and restricted range of motion in patients. There are two broad categories of HO, hereditary and acquired. Although different types of HO do not use identical mechanistic pathways of pathogenesis, muscle injury appears to be a unifying feature for all types of HO. However, little is known about the mechanisms by which muscle injury facilitates HO formation. Objective and method This study aimed to explore the cellular and molecular mechanisms linking muscle injury to HO by using cardiotoxin to induce muscle injury in a bone morphogenetic protein-2 (BMP-2)-induced HO mouse model. Results We found that muscle injury augmented HO formation and that this effect was correlated with BMP signalling activation and upregulation of BMP-7 expression at the early phase of HO progression. We further demonstrated that inhibition of BMP-7 activity in vitro suppressed the osteogenesis-promoting effect of conditioned medium derived from injured muscle tissue and in vivo reduced the volume of HO formation. We also showed that antiinflammatory drug treatment reduced the volume of HO with concomitant reduction in BMP-7 production. Conclusion In summary, our study has identified BMP-7 as a key osteoinductive factor in injured muscle that facilitates HO formation. The translational potential of this article Our results provide a candidate mechanistic rationale for the use of antiinflammatory drugs in the prevention of HO.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
64
|
Sang X, Wang Z, Shi P, Li Y, Cheng L. CGRP accelerates the pathogenesis of neurological heterotopic ossification following spinal cord injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2569-2574. [PMID: 31219353 DOI: 10.1080/21691401.2019.1626865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiguang Sang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Ping Shi
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Yonggang Li
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Lin Cheng
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| |
Collapse
|
65
|
Drouin G, Couture V, Lauzon MA, Balg F, Faucheux N, Grenier G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet Muscle 2019; 9:18. [PMID: 31217019 PMCID: PMC6582603 DOI: 10.1186/s13395-019-0202-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Trauma-induced heterotopic ossification (HO) is a complication that develops under three conditions: the presence of an osteogenic progenitor cell, an inducing factor, and a permissive environment. We previously showed that a mouse multipotent Sca1+ CD31− Lin− muscle resident stromal cell (mrSC) population is involved in the development of HO in the presence of inducing factors, members of the bone morphogenetic protein family. Interestingly, BMP9 unlike BMP2 causes HO only if the muscle is damaged by injection of cardiotoxin. Because acute trauma often results in blood vessel breakdown, we hypothesized that a hypoxic state in damaged muscles may foster mrSCs activation and proliferation and trigger differentiation toward an osteogenic lineage, thus promoting the development of HO. Methods Three- to - six-month-old male C57Bl/6 mice were used to induce muscle damage by injection of cardiotoxin intramuscularly into the tibialis anterior and gastrocnemius muscles. mrSCs were isolated from damaged (hypoxic state) and contralateral healthy muscles and counted, and their osteoblastic differentiation with or without BMP2 and BMP9 was determined by alkaline phosphatase activity measurement. The proliferation and differentiation of mrSCs isolated from healthy muscles was also studied in normoxic incubator and hypoxic conditions. The effect of hypoxia on BMP synthesis and Smad pathway activation was determined by qPCR and/or Western blot analyses. Differences between normally distributed groups were compared using a Student’s paired t test or an unpaired t test. Results The hypoxic state of a severely damaged muscle increased the proliferation and osteogenic differentiation of mrSCs. mrSCs isolated from damaged muscles also displayed greater sensitivity to osteogenic signals, especially BMP9, than did mrSCs from a healthy muscle. In hypoxic conditions, mrSCs isolated from a control muscle were more proliferative and were more prone to osteogenic differentiation. Interestingly, Smad1/5/8 activation was detected in hypoxic conditions and was still present after 5 days, while Smad1/5/8 phosphorylation could not be detected after 3 h of normoxic incubator condition. BMP9 mRNA transcripts and protein levels were higher in mrSCs cultured in hypoxic conditions. Our results suggest that low-oxygen levels in damaged muscle influence mrSC behavior by facilitating their differentiation into osteoblasts. This effect may be mediated partly through the activation of the Smad pathway and the expression of osteoinductive growth factors such as BMP9 by mrSCs. Conclusion Hypoxia should be considered a key factor in the microenvironment of damaged muscle that triggers HO. Electronic supplementary material The online version of this article (10.1186/s13395-019-0202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geneviève Drouin
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Vanessa Couture
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Laboratory of 3D Cell Culture Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Frédéric Balg
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - Nathalie Faucheux
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada. .,Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul Universite, Sherbrooke, QC, J1K 2R1, Canada.
| | - Guillaume Grenier
- Centre de Recherche du CHUS, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.,Department of Orthopedic Surgery, Faculty of Medicine, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
66
|
de l'Escalopier N, Salga M, Gatin L, Genêt F, Denormandie P. Resection of heterotopic ossification around the hip after trauma. EFORT Open Rev 2019; 4:263-268. [PMID: 31210967 PMCID: PMC6549106 DOI: 10.1302/2058-5241.4.180098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Traumatic neurological lesions may lead to development of heterotopic ossification. These cases are classified as ‘neurogenic heterotopic ossifications’ (NHOs). The associated neurological lesions can be caused by cranial trauma or spinal cord injury and may sometimes include a local trauma. NHOs that form around the hip joints are of particular interest because they often cause the patient to avoid the sitting position or the resumption of walking. Whilst NHO can involve the knee, shoulder and elbow joints, hip-involving NHOs are more numerous, and sometimes develop in close contact with vascular or neurological structures. Multi-disciplinary clinical examination is fundamental to evaluate patients for surgical intervention and to define the objectives of the surgery. The best investigation to define an NHO mass is a computerized tomography (CT) scan. Resection is performed to liberate a fused joint to provide functionality, and this need not be exhaustive if it is not necessary to increase the range of motion. While recurrence does occur post-surgery, a partial resection does not pose a greater risk of recurrence and there are no adjuvant treatments available to reduce this risk. The greatest risks associated with NHO surgical resection are infection and haematoma; these risks are very high and must be considered when evaluating patients for surgery.
Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180098
Collapse
Affiliation(s)
- Nicolas de l'Escalopier
- Service de Chirurgie Orthopédique, Hôpital Raymond Poincaré, France.,Service de Chirurgie Orthopédique, Traumatologie et Chirurgie Réparatrice des Membres, Hôpital d'Instruction des Armées Percy, France
| | - Marjorie Salga
- Service de médecine physique et réadaptation, Hôpital Raymond Poincaré, France
| | - Laure Gatin
- Service de Chirurgie Orthopédique, Hôpital Raymond Poincaré, France
| | - François Genêt
- Service de médecine physique et réadaptation, Hôpital Raymond Poincaré, France
| | | |
Collapse
|
67
|
Blocking neuromuscular junctions with botulinum toxin A injection enhances neurological heterotopic ossification development after spinal cord injury in mice. Ann Phys Rehabil Med 2019; 62:189-192. [DOI: 10.1016/j.rehab.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 11/17/2022]
|
68
|
Moore-Lotridge SN, Li Q, Gibson BHY, Martin JT, Hawley GD, Arnold TH, Saito M, Tannouri S, Schwartz HS, Gumina RJ, Cates JMM, Uitto J, Schoenecker JG. Trauma-Induced Nanohydroxyapatite Deposition in Skeletal Muscle is Sufficient to Drive Heterotopic Ossification. Calcif Tissue Int 2019; 104:411-425. [PMID: 30515544 PMCID: PMC6437294 DOI: 10.1007/s00223-018-0502-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Heterotopic ossification (HO), or the pathologic formation of bone within soft tissues, is a significant complication following severe injuries as it impairs joint motion and function leading to loss of the ability to perform activities of daily living and pain. While soft tissue injury is a prerequisite of developing HO, the exact molecular pathology leading to trauma-induced HO remains unknown. Through prior investigations aimed at identifying the causative factors of HO, it has been suggested that additional predisposing factors that favor ossification within the injured soft tissues environment are required. Considering that chondrocytes and osteoblasts initiate physiologic bone formation by depositing nanohydroxyapatite crystal into their extracellular environment, we investigated the hypothesis that deposition of nanohydroxyapatite within damaged skeletal muscle is likewise sufficient to predispose skeletal muscle to HO. Using a murine model genetically predisposed to nanohydroxyapatite deposition (ABCC6-deficient mice), we observed that following a focal muscle injury, nanohydroxyapatite was robustly deposited in a gene-dependent manner, yet resolved via macrophage-mediated regression over 28 days post injury. However, if macrophage-mediated regression was inhibited, we observed persistent nanohydroxyapatite that was sufficient to drive the formation of HO in 4/5 mice examined. Together, these results revealed a new paradigm by suggesting the persistent nanohydroxyapatite, referred to clinically as dystrophic calcification, and HO may be stages of a pathologic continuum, and not discrete events. As such, if confirmed clinically, these findings support the use of early therapeutic interventions aimed at preventing nanohydroxyapatite as a strategy to evade HO formation.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Joseph T Martin
- College of Arts and Science, Vanderbilt University, 301 Kirkland Hall, Nashville, TN, 37240, USA
| | - Gregory D Hawley
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Thomas H Arnold
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA
| | - Masanori Saito
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Sami Tannouri
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Herbert S Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Richard J Gumina
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Justin M M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA.
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA.
- , 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA.
| |
Collapse
|
69
|
Alexander KA, Tseng HW, Fleming W, Jose B, Salga M, Kulina I, Millard SM, Pettit AR, Genêt F, Levesque JP. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Front Immunol 2019; 10:377. [PMID: 30899259 PMCID: PMC6417366 DOI: 10.3389/fimmu.2019.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neurogenic heterotopic ossifications (NHO) are very incapacitating complications of traumatic brain and spinal cord injuries (SCI) which manifest as abnormal formation of bone tissue in periarticular muscles. NHO are debilitating as they cause pain, partial or total joint ankylosis and vascular and nerve compression. NHO pathogenesis is unknown and the only effective treatment remains surgical resection, however once resected, NHO can re-occur. To further understand NHO pathogenesis, we developed the first animal model of NHO following SCI in genetically unmodified mice, which mimics most clinical features of NHO in patients. We have previously shown that the combination of (1) a central nervous system lesion (SCI) and (2) muscular damage (via an intramuscular injection of cardiotoxin) is required for NHO development. Furthermore, macrophages within the injured muscle play a critical role in driving NHO pathogenesis. More recently we demonstrated that macrophage-derived oncostatin M (OSM) is a key mediator of both human and mouse NHO. We now report that inflammatory monocytes infiltrate the injured muscles of SCI mice developing NHO at significantly higher levels compared to mice without SCI. Muscle infiltrating monocytes and neutrophils expressed OSM whereas mouse muscle satellite and interstitial cell expressed the OSM receptor (OSMR). In vitro recombinant mouse OSM induced tyrosine phosphorylation of the transcription factor STAT3, a downstream target of OSMR:gp130 signaling in muscle progenitor cells. As STAT3 is tyrosine phosphorylated by JAK1/2 tyrosine kinases downstream of OSMR:gp130, we demonstrated that the JAK1/2 tyrosine kinase inhibitor ruxolitinib blocked OSM driven STAT3 tyrosine phosphorylation in mouse muscle progenitor cells. We further demonstrated in vivo that STAT3 tyrosine phosphorylation was not only significantly higher but persisted for a longer duration in injured muscles of SCI mice developing NHO compared to mice with muscle injury without SCI. Finally, administration of ruxolitinib for 7 days post-surgery significantly reduced STAT3 phosphorylation in injured muscles in vivo as well as NHO volume at all analyzed time-points up to 3 weeks post-surgery. Our results identify the JAK/STAT3 signaling pathway as a potential therapeutic target to reduce NHO development following SCI.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Beulah Jose
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.,CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France
| | - Irina Kulina
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - François Genêt
- CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France.,Université de Versailles Saint Quentin en Yvelines, END:ICAP Inserm U1179, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
70
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
71
|
Loder SJ, Agarwal S, Chung MT, Cholok D, Hwang C, Visser N, Vasquez K, Sorkin M, Habbouche J, Sung HH, Peterson J, Fireman D, Ranganathan K, Breuler C, Priest C, Li J, Bai X, Li S, Cederna PS, Levi B. Characterizing the Circulating Cell Populations in Traumatic Heterotopic Ossification. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2464-2473. [PMID: 30142335 PMCID: PMC6222270 DOI: 10.1016/j.ajpath.2018.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/08/2018] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.
Collapse
Affiliation(s)
- Shawn J Loder
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Shailesh Agarwal
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michael T Chung
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Charles Hwang
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Noelle Visser
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kaetlin Vasquez
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michael Sorkin
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joe Habbouche
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Hsiao H Sung
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Joshua Peterson
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - David Fireman
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christopher Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Caitlin Priest
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Xue Bai
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Paul S Cederna
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
72
|
Łęgosz P, Drela K, Pulik Ł, Sarzyńska S, Małdyk P. Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clin Exp Pharmacol Physiol 2018; 45:1229-1235. [DOI: 10.1111/1440-1681.13025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Katarzyna Drela
- NeuroRepair Department; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Paweł Małdyk
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
73
|
Genêt F, Denormandie P, Keenan MA. Orthopaedic surgery for patients with central nervous system lesions: Concepts and techniques. Ann Phys Rehabil Med 2018; 62:225-233. [PMID: 30290282 DOI: 10.1016/j.rehab.2018.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 12/26/2022]
Abstract
Since ancient times, the aim of orthopedic surgery has been to correct limb and joint deformities, including those resulting from central nervous system lesions. Recent developments in the treatment of spasticity have led to changes in concepts and management strategies. The increase in life expectancy has increased the functional needs of patients. Orthopedic surgery, along with treatments for spasticity, improves the functional capacity of patients with neuro-orthopaedic disorders, improving their autonomy. In this paper, we describe key moments in the history of orthopedic surgery regarding the treatment of patients with central nervous system lesions, from poliomyelitis to stroke-related hemiplegia, from the limbs to the spine, and from contractures to heterotopic ossification. A synthesis of the current surgical techniques is then provided, and the importance of multidisciplinary evaluation and management is highlighted, along with indications for medical, rehabilitation and surgical treatments and their combinations. We explain why it is essential to consider patients' expectations and to set achievable goals, particularly before surgery, which is by nature irreversible. More recently, specialized surgical teams have begun to favor the use of soft-tissue techniques over bony and joint procedures, except for spinal disorders. We highlight that orthopedic surgery is no longer the end-point of treatment. For example, lengthening a contractured muscle improves the balance around a joint, improving mobility and stability but may be only part of the problem. Further medical treatment and rehabilitation, or additional surgery, are often necessary to continue to improve the function of the limb. Despite the recognized effectiveness of orthopedic surgery for neuro-orthopedic disorders, few studies have formally evaluated them. Hence, there is a need for research to provide evidence to support orthopedic surgery for treating neuro-orthopedic disorders.
Collapse
Affiliation(s)
- F Genêt
- Service de médecine physique et de réadaptation, hôpital Raymond Poincaré, Assistance publique-Hôpitaux de Paris, CIC-IT 1429, 92380 Garches, France; End:icap" U1179 Inserm, service de université Versailles Saint Quentin en Yvelines, UFR des Sciences de la Santé-Simone Veil, 2, avenue de la source de bièvres, 78170 Montigny le Bretonneux, France.
| | - P Denormandie
- End:icap" U1179 Inserm, service de université Versailles Saint Quentin en Yvelines, UFR des Sciences de la Santé-Simone Veil, 2, avenue de la source de bièvres, 78170 Montigny le Bretonneux, France; Chirurgie orthopédique et traumatologique, hôpital Raymond Poincaré, Assistance publique-Hôpitaux de Paris, CIC-IT 1429, 92380 Garches, France
| | - M A Keenan
- Penn Neuro-Orthopaedics Service, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
74
|
Torossian F. Oncostatin m secreted from activated macrophages contributes to the development of neurogenic heterotopic ossifications with hematopoietic stem cell niches. Ann Phys Rehabil Med 2018. [DOI: 10.1016/j.rehab.2018.05.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Pacifici M. Acquired and congenital forms of heterotopic ossification: new pathogenic insights and therapeutic opportunities. Curr Opin Pharmacol 2018; 40:51-58. [PMID: 29614433 PMCID: PMC6015534 DOI: 10.1016/j.coph.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/20/2018] [Indexed: 12/27/2022]
Abstract
Heterotopic ossification (HO) involves the formation and accumulation of extraskeletal bone tissue at the expense of local tissues including muscles and connective tissues. There are common forms of HO that are triggered by extensive trauma, burns and other bodily insults, and there are also rare congenital severe forms of HO that occur in children with Fibrodysplasia Ossificans Progressiva or Progressive Osseous Heteroplasia. Given that HO is often preceded by inflammation, current treatments usually involve anti-inflammatory drugs alone or in combination with local irradiation, but are not very effective. Recent studies have provided novel insights into the pathogenesis of acquired and genetic forms of HO and have used the information to conceive and test new and more specific therapies in animal models. In this review, I provide salient examples of these exciting and promising advances that are undoubtedly paving the way toward resolution of this debilitating and at times fatal disease.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/physiopathology
- Bone Diseases, Metabolic/therapy
- Bone and Bones/drug effects
- Bone and Bones/pathology
- Bone and Bones/physiopathology
- Bone and Bones/radiation effects
- Drug Discovery/methods
- Genetic Predisposition to Disease
- Humans
- Molecular Targeted Therapy
- Myositis Ossificans/diagnosis
- Myositis Ossificans/genetics
- Myositis Ossificans/physiopathology
- Myositis Ossificans/therapy
- Ossification, Heterotopic/diagnosis
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/physiopathology
- Ossification, Heterotopic/therapy
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Osteogenesis/radiation effects
- Phenotype
- Skin Diseases, Genetic/diagnosis
- Skin Diseases, Genetic/genetics
- Skin Diseases, Genetic/physiopathology
- Skin Diseases, Genetic/therapy
Collapse
Affiliation(s)
- Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
76
|
Croes M, Kruyt MC, Groen WM, van Dorenmalen KMA, Dhert WJA, Öner FC, Alblas J. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci Rep 2018; 8:7269. [PMID: 29740080 PMCID: PMC5940874 DOI: 10.1038/s41598-018-25564-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is known to induce osteoclastogenesis, we studied the interactions between IL-17 and BMP-2 in ceramic scaffolds either or not carrying a coating with the bisphosphonate zoledronic acid (ZOL). Histological evaluation revealed that IL-17 alone did not induce any osteoclasts at day 10. On the other hand, BMP-2 clearly stimulated early tissue ingrowth and osteoclastogenesis. Both of these processes were blocked in presence of ZOL. IL-17 signaling restored early vascularized connective tissue formation and osteoclastogenesis induced by BMP-2 in ZOL-coated scaffolds. After 12 weeks, the bone volume induced by co-delivery of BMP-2 and IL-17 was doubled as compared to that induced by BMP-2 alone. We conclude that IL-17 has osteo-stimulatory effects through a synergy with bone-inductive BMP-2. Although local and single application of IL-17 does not mediate osteoclast formation, it could promote other processes involved in bone formation such as connective tissue ingrowth. The use of IL-17 may contribute to the development of improved bone graft substitutes.
Collapse
Affiliation(s)
- M Croes
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - M C Kruyt
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - W M Groen
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - K M A van Dorenmalen
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - W J A Dhert
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3508 TD, Utrecht, The Netherlands
| | - F C Öner
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J Alblas
- Department of Orthopaedics, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
77
|
Tuzmen C, Verdelis K, Weiss L, Campbell P. Crosstalk between substance P and calcitonin gene-related peptide during heterotopic ossification in murine Achilles tendon. J Orthop Res 2018; 36:1444-1455. [PMID: 29227562 PMCID: PMC6449576 DOI: 10.1002/jor.23833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification (HO) is abnormal bone formation within soft tissue, usually predisposed by neurogenic or musculoskeletal trauma. Inflammation resulting from trauma is considered to be the main trigger for HO by eliciting changes within the injury site, including elevation of bone morphogenetic proteins (BMPs). Recent research, however, has also associated changes in sensory neuropeptide expression with HO. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two of those neuropeptides that have been implicated with various aspects of HO, including regulation of inflammation and BMP signaling. Despite discoveries associating SP and CGRP with soft tissue HO, it remains unclear whether SP and CGRP have a direct role in the induction of HO. Here, we investigated the effect of SP and CGRP in vivo with the aid of inkjet-based biopatterning technology to controllably deliver these neuropeptides onto a murine Achilles tendon. While we did not observe any significant effect with CGRP, SP alone promoted HO in vivo with increased expression of BMP2. Remarkably, when SP and CGRP were delivered together, CGRP counteracted the effect of SP and essentially blocked SP-induced HO. This report contributes to the understanding of the complex problem of HO pathophysiology and warrants more study to better elucidate the interplay between SP and CGRP in the induction of HO. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1444-1455, 2018.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Kostas Verdelis
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee Weiss
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
78
|
Brady RD, Shultz SR, McDonald SJ, O'Brien TJ. Neurological heterotopic ossification: Current understanding and future directions. Bone 2018; 109:35-42. [PMID: 28526267 DOI: 10.1016/j.bone.2017.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022]
Abstract
Neurological heterotopic ossification (NHO) involves the formation of bone in soft tissue following a neurological condition, of which the most common are brain and spinal cord injuries. NHO often forms around the hip, knee and shoulder joints, causing severe pain and joint deformation which is associated with significant morbidity and reduced quality of life. The cellular and molecular events that initiate NHO have been the focus of an increasing number of human and animal studies over the past decade, with this work largely driven by the need to unearth potential therapeutic interventions to prevent the formation of NHO. This review provides an overview of the present understanding of NHO pathogenesis and pathobiology, current treatments, novel therapeutic targets, potential biomarkers and future directions.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia.
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
79
|
Xu R, Hu J, Zhou X, Yang Y. Heterotopic ossification: Mechanistic insights and clinical challenges. Bone 2018; 109:134-142. [PMID: 28855144 DOI: 10.1016/j.bone.2017.08.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 02/05/2023]
Abstract
Bone formation is exquisitely controlled both spatially and temporally. Heterotopic ossification (HO) is pathological bone formation in soft tissues that often leads to deleterious outcomes. Inherited genetic forms of HO can be life-threatening and can happen as early as in infancy. However, there is currently no effective treatment for HO as the underlying cellular and molecular mechanisms have not been completely elucidated. Trauma-induced non-genetic forms of HO often occur as a common complication after surgeries or accidents, and the location of HO occurrence largely determines the symptom and outcome. While it has been difficult to determine the complicated factors causing HO, recent advancement in identifying cellular and molecular mechanism causing the genetic forms of HO may provide important insights in all HO. Here in this review, we summarize recent studies on HO to provide a current status of both clinical options of HO treatments and mechanical understanding of HO.
Collapse
Affiliation(s)
- Ruoshi Xu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China
| | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Rd., Chengdu, 610041, China.
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA.
| |
Collapse
|
80
|
Cholok D, Chung MT, Ranganathan K, Ucer S, Day D, Davis TA, Mishina Y, Levi B. Heterotopic ossification and the elucidation of pathologic differentiation. Bone 2018; 109:12-21. [PMID: 28987285 PMCID: PMC6585944 DOI: 10.1016/j.bone.2017.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 01/23/2023]
Abstract
Tissue regeneration following acute or persistent inflammation can manifest a spectrum of phenotypes ranging from the adaptive to the pathologic. Heterotopic Ossification (HO), the endochondral formation of bone within soft-tissue structures following severe injury serves as a prominent example of pathologic differentiation; and remains a persistent clinical issue incurring significant patient morbidity and expense to adequately diagnose and treat. The pathogenesis of HO provides an intriguing opportunity to better characterize the cellular and cell-signaling contributors to aberrant differentiation. Indeed, recent work has continued to resolve the unique cellular lineages, and causative pathways responsible for ectopic bone development yielding promising avenues for the development of novel therapeutic strategies shown to be successful in analogous animal models of HO development. This review details advances in the understanding of HO in the context of inciting inflammation, and explains how these advances inform the current standards of diagnosis and treatment.
Collapse
Affiliation(s)
- David Cholok
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael T Chung
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kavitha Ranganathan
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Serra Ucer
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Devaveena Day
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, MD, USA; Department of Surgery, Uniformed Services University of the Health Sciences & the Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Yuji Mishina
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
81
|
Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: Lessons from animal models. Bone 2018; 109:178-186. [PMID: 29409971 PMCID: PMC5866227 DOI: 10.1016/j.bone.2018.01.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Put most simply, heterotopic ossification (HO) is the abnormal formation of bone at extraskeletal sites. HO can be classified into two main subtypes, genetic and acquired. Acquired HO is a common complication of major connective tissue injury, traumatic central nervous system injury, and surgical interventions, where it can cause significant pain and postoperative disability. A particularly devastating form of HO is manifested in the rare genetic disorder, fibrodysplasia ossificans progressiva (FOP), in which progressive heterotopic bone formation occurs throughout life, resulting in painful and disabling cumulative immobility. While the central role of stem/progenitor cell populations in HO is firmly established, the identity of the offending cell type(s) remains to be conclusively determined, and little is known of the mechanisms that direct these progenitor cells to initiate cartilage and bone formation. In this review, we summarize current knowledge of the cells responsible for acquired HO and FOP, highlighting the strengths and weaknesses of animal models used to interrogate the cellular origins of HO.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
82
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Reply to: Macrophages Driving Heterotopic Ossification: Convergence of Genetically-Driven and Trauma-Driven Mechanisms. J Bone Miner Res 2018; 33:367-368. [PMID: 29194751 DOI: 10.1002/jbmr.3349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
83
|
Levesque JP, Sims NA, Pettit AR, Alexander KA, Tseng HW, Torossian F, Genêt F, Lataillade JJ, Le Bousse-Kerdilès MC. Macrophages Driving Heterotopic Ossification: Convergence of Genetically-Driven and Trauma-Driven Mechanisms. J Bone Miner Res 2018; 33:365-366. [PMID: 29178621 DOI: 10.1002/jbmr.3346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jean-Pierre Levesque
- Mater Research - The University of Queensland, Translational Research Institute, Woolloongabba, Australia.,The University of Queensland, Faculty of Medicine, Herston, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Allison R Pettit
- Mater Research - The University of Queensland, Translational Research Institute, Woolloongabba, Australia.,The University of Queensland, Faculty of Medicine, Herston, Australia
| | - Kylie A Alexander
- Mater Research - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Hsu-Wen Tseng
- Mater Research - The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Frédéric Torossian
- INSERM-UMR-S-MD1197, Université Paris 11, Hôpital Paul Brousse, Villejuif, France
| | - François Genêt
- Service de Médecine Physique et de Réadaptation, Hôpital Raymond Poincaré, Garches, France.,Université de de Versailles Saint-Quentin-en-Yvelines, INSERM U1179, Montigny le Bretonneux, France
| | - Jean-Jacques Lataillade
- INSERM-UMR-S-MD1197, Université Paris 11, Hôpital Paul Brousse, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | | |
Collapse
|
84
|
Denormandie P, de l'Escalopier N, Gatin L, Grelier A, Genêt F. Resection of neurogenic heterotopic ossification (NHO) of the hip. Orthop Traumatol Surg Res 2018; 104:S121-S127. [PMID: 29174871 DOI: 10.1016/j.otsr.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/21/2017] [Accepted: 04/13/2017] [Indexed: 02/02/2023]
Abstract
Neurogenic heterotopic ossification of the hip is secondary to neurologic lesions such as cranial trauma, stroke, medullary injury or cerebral anoxia. We shall not deal here with the other etiologies of heterotopic ossification. There are numerous locations within the hip, depending on etiology and relations with adjacent neurovascular structures are sometimes close. Preoperative work-up should include contrast-enhanced CT; scintigraphy is non-contributive. Indications for surgery are decided in a multidisciplinary team meeting, with a contract laying out expected functional gain. It is this contract that determines the extent of resection, without seeking complete resection, which would incur an increased risk of complications. The surgical approach and resection strategy depend on lesion location and any resulting neurovascular compression. The most common complications are infection and postoperative hematoma. No adjuvant treatments have demonstrated efficacy against recurrence.
Collapse
Affiliation(s)
- P Denormandie
- Service de chirurgie orthopédique, hôpital Raymond-Poincaré, 92380 Garches, France
| | - N de l'Escalopier
- Service de chirurgie orthopédique, traumatologie et chirurgie réparatrice des membres, hôpital d'instruction des Armées-Percy, 101, avenue Henri-Barbusse, 92140 Clamart, France.
| | - L Gatin
- Service de chirurgie orthopédique, hôpital Raymond-Poincaré, 92380 Garches, France
| | - A Grelier
- Service de médecine physique et réadaptation, hôpital Raymond-Poincaré, 92380 Garches, France
| | - F Genêt
- Service de médecine physique et réadaptation, hôpital Raymond-Poincaré, 92380 Garches, France
| |
Collapse
|
85
|
Huang H, Cheng WX, Hu YP, Chen JH, Zheng ZT, Zhang P. Relationship between heterotopic ossification and traumatic brain injury: Why severe traumatic brain injury increases the risk of heterotopic ossification. J Orthop Translat 2017; 12:16-25. [PMID: 29662775 PMCID: PMC5866497 DOI: 10.1016/j.jot.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
Heterotopic ossification (HO) is a pathological phenomenon in which ectopic lamellar bone forms in soft tissues. HO involves many predisposing factors, including congenital and postnatal factors. Postnatal HO is usually induced by fracture, burn, neurological damage (brain injury and spinal cord injury) and joint replacement. Recent studies have found that patients who suffered from bone fracture combined with severe traumatic brain injury (S-TBI) are at a significantly increased risk for HO occurrence. Thus, considerable research focused on the influence of S-TBI on fracture healing and bone formation, as well as on the changes in various osteogenic factors with S-TBI occurrence. Brain damage promotes bone formation, but the exact mechanisms underlying bone formation and HO after S-TBI remain to be clarified. Hence, this article summarises the findings of previous studies on the relationship between S-TBI and HO and discusses the probable causes and mechanisms of HO caused by S-TBI. The translational potential of this article: A better understanding of the probable causes of traumatic brain injury-induced HO can provide new perspectives and ideas in preventing HO and may support to design more targeted therapies to reduce HO or enhance the bone formation.
Collapse
Affiliation(s)
- Huan Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Xiang Cheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ping Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hai Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng-Tan Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
86
|
Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, Tseng HW, Arouche N, Boutin L, Kulina I, Salga M, Jose B, Pettit AR, Clay D, Rochet N, Vlachos E, Genet G, Debaud C, Denormandie P, Genet F, Sims NA, Banzet S, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI Insight 2017; 2:96034. [PMID: 29093266 DOI: 10.1172/jci.insight.96034] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/26/2017] [Indexed: 02/04/2023] Open
Abstract
Neurogenic heterotopic ossification (NHO) is the formation of ectopic bone generally in muscles surrounding joints following spinal cord or brain injury. We investigated the mechanisms of NHO formation in 64 patients and a mouse model of spinal cord injury-induced NHO. We show that marrow from human NHOs contains hematopoietic stem cell (HSC) niches, in which mesenchymal stromal cells (MSCs) and endothelial cells provide an environment supporting HSC maintenance, proliferation, and differentiation. The transcriptomic signature of MSCs from NHOs shows a neuronal imprinting associated with a molecular network required for HSC support. We demonstrate that oncostatin M (OSM) produced by activated macrophages promotes osteoblastic differentiation and mineralization of human muscle-derived stromal cells surrounding NHOs. The key role of OSM was confirmed using an experimental model of NHO in mice defective for the OSM receptor (OSMR). Our results provide strong evidence that macrophages contribute to NHO formation through the osteogenic action of OSM on muscle cells within an inflammatory context and suggest that OSM/OSMR could be a suitable therapeutic target. Altogether, the evidence of HSCs in ectopic bones growing at the expense of soft tissue in spinal cord/brain-injured patients indicates that inflammation and muscle contribute to HSC regulation by the brain-bone-blood triad.
Collapse
Affiliation(s)
- Frédéric Torossian
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Bernadette Guerton
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Adrienne Anginot
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | - Sabrina Soave
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Nassim Arouche
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Laetitia Boutin
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Marjorie Salga
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.,Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France
| | - Beulah Jose
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Allison R Pettit
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Denis Clay
- UMS33, Paris 11 University, Paul Brousse Hospital, Villejuif, France
| | - Nathalie Rochet
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Erica Vlachos
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Guillaume Genet
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Charlotte Debaud
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Philippe Denormandie
- Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - François Genet
- Université de Versailles Saint-Quentin-en-Yvelines, Evolution of neuromuscular diseases: innovative concepts and practices, Inserm U1179, Montigny le Bretonneux, France.,Service de Médecine Physique et de Réadaptation, Paris 12 University, Garches, France
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research and Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Sébastien Banzet
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jean-Jacques Lataillade
- Inserm UMR-S-MD1197, Paris 11 University, Paul Brousse Hospital, Villejuif, France.,Centre de Transfusion Sanguine des Armées, L'Institut de Recherche Biomédicale des Armées, Clamart, France
| | | |
Collapse
|
87
|
Croes M, Boot W, Kruyt MC, Weinans H, Pouran B, van der Helm YJ, Gawlitta D, Vogely HC, Alblas J, Dhert WJ, Öner FC. Inflammation-Induced Osteogenesis in a Rabbit Tibia Model. Tissue Eng Part C Methods 2017. [DOI: 10.1089/ten.tec.2017.0151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Michiel Croes
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willemijn Boot
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Rheumatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Behdad Pouran
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | | | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H. Charles Vogely
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - F. Cumhur Öner
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
88
|
Debaud C, Salga M, Begot L, Holy X, Chedik M, de l’Escalopier N, Torossian F, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC, Genêt F. Peripheral denervation participates in heterotopic ossification in a spinal cord injury model. PLoS One 2017; 12:e0182454. [PMID: 28854256 PMCID: PMC5576715 DOI: 10.1371/journal.pone.0182454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
We previously reported the development of a new acquired neurogenic HO (NHO) mouse model, combining spinal cord transection (SCI) and chemical muscle injury. Pathological mechanisms responsible for ectopic osteogenesis after central neurological damage are still to be elucidated. In this study, we first hypothesized that peripheral nervous system (PNS) might convey pathological signals from injured spinal cord to muscles in NHO mouse model. Secondly, we sought to determine whether SCI could lead to intramuscular modifications of BMP2 signaling pathways. Twenty one C57Bl6 mice were included in this protocol. Bilateral cardiotoxin (CTX) injection in hamstring muscles was associated with a two-stage surgical procedure, combining thoracic SCI with unilateral peripheral denervation. Volumes of HO (Bone Volume, BV) were measured 28 days after surgery using micro-computed tomography imaging techniques and histological analyses were made to confirm intramuscular osteogenesis. Volume comparisons were conducted between right and left hind limb of each animal, using a Wilcoxon signed rank test. Quantitative polymerase chain reaction (qPCR) was performed to explore intra muscular expression of BMP2, Alk3 and Id1. Nineteen mice survive the complete SCI and peripheral denervation procedure. When CTX injections were done right after surgery (n = 7), bilateral HO were detected in all animals after 28 days. Micro-CT measurements showed significantly increased BV in denervated paws (1.47 mm3 +/- 0.5) compared to contralateral sides (0.56 mm3 +/-0.4), p = 0.03. When peripheral denervation and CTX injections were performed after sham SCI surgery (n = 6), bilateral HO were present in three mice at day 28. Quantitative PCR analyses showed no changes in intra muscular BMP2 expression after SCI as compared to control mice (shamSCI). Peripheral denervation can be reliably added to spinal cord transection in NHO mouse model. This new experimental design confirms that neuro inflammatory mechanisms induced by central or peripheral nervous system injury plays a key role in triggering ectopic osteogenesis.
Collapse
Affiliation(s)
- Charlotte Debaud
- Spine Division Orthopaedic Surgery Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- * E-mail:
| | - Marjorie Salga
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- Rehabilitation Service, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France
| | - Laurent Begot
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Xavier Holy
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Malha Chedik
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
| | | | - Fréderic Torossian
- University of Paris-Sud, INSERM UMR-S/MD 1197, Hôpital Paul Brousse, APHP, Villejuif, France
| | - Jean-Pierre Levesque
- Blood and Bone Diseases Program, Mater Research Institute, University of Queensland, Woolloongabba and School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Jean-Jacques Lataillade
- University of Paris-Sud, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | | | - François Genêt
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- Rehabilitation Service, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France
| |
Collapse
|
89
|
The traumatic bone: trauma-induced heterotopic ossification. Transl Res 2017; 186:95-111. [PMID: 28668522 PMCID: PMC6715128 DOI: 10.1016/j.trsl.2017.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 01/08/2023]
Abstract
Heterotopic ossification (HO) is a common occurrence after multiple forms of extensive trauma. These include arthroplasties, traumatic brain and spinal cord injuries, extensive burns in the civilian setting, and combat-related extremity injuries in the battlefield. Irrespective of the form of trauma, heterotopic bone is typically endochondral in structure and is laid down via a cartilaginous matrix. Once formed, the heterotopic bone typically needs to be excised surgically, which may result in wound healing complications, in addition to a risk of recurrence. Refinements of existing diagnostic modalities, like micro- and nano-CT are being adapted toward early intervention. Trauma-induced HO is a consequence of aberrant wound healing, systemic and local immune system activation, infections, extensive vascularization, and innervation. This intricate molecular crosstalk culminates in activation of stem cells that initiate heterotopic endochondral ossification. Development of animal models recapitulating the unique traumatic injuries has greatly facilitated the mechanistic understanding of trauma-induced HO. These same models also serve as powerful tools to test the efficacy of small molecules which specifically target the molecular pathways underlying ectopic ossification. This review summarizes the recent advances in the molecular understanding, diagnostic and treatment modalities in the field of trauma-induced HO.
Collapse
|
90
|
Abstract
Heterotopic ossification (HO) presents a substantial barrier to rehabilitation for patients with severe burns or trauma. Although surgical excision is a mainstay of management for this condition, this is unable to address the chronic sequelae of HO, including chronic pain, joint contractures, nerve dysfunction, and open wounds. Current therapeutic modalities are aimed at excision and the prevention of recurrence using nonsteroidal antiinflammatory drugs (NSAIDs) or radiation therapy. Research is now focused on identifying alternative strategies to prevent the initial occurrence of HO through NSAIDs and novel inhibitors of the bone morphogenetic protein signaling pathway.
Collapse
|
91
|
Stabley JN, Towler DA. Arterial Calcification in Diabetes Mellitus: Preclinical Models and Translational Implications. Arterioscler Thromb Vasc Biol 2017; 37:205-217. [PMID: 28062508 PMCID: PMC5480317 DOI: 10.1161/atvbaha.116.306258] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus increasingly afflicts our aging and dysmetabolic population. Type 2 diabetes mellitus and the antecedent metabolic syndrome represent the vast majority of the disease burden-increasingly prevalent in children and older adults. However, type 1 diabetes mellitus is also advancing in preadolescent children. As such, a crushing wave of cardiometabolic disease burden now faces our society. Arteriosclerotic calcification is increased in metabolic syndrome, type 2 diabetes mellitus, and type 1 diabetes mellitus-impairing conduit vessel compliance and function, thereby increasing the risk for dementia, stroke, heart attack, limb ischemia, renal insufficiency, and lower extremity amputation. Preclinical models of these dysmetabolic settings have provided insights into the pathobiology of arterial calcification. Osteochondrogenic morphogens in the BMP-Wnt signaling relay and transcriptional regulatory programs driven by Msx and Runx gene families are entrained to innate immune responses-responses activated by the dysmetabolic state-to direct arterial matrix deposition and mineralization. Recent studies implicate the endothelial-mesenchymal transition in contributing to the phenotypic drift of mineralizing vascular progenitors. In this brief overview, we discuss preclinical disease models that provide mechanistic insights-and point to challenges and opportunities to translate these insights into new therapeutic strategies for our patients afflicted with diabetes mellitus and its arteriosclerotic complications.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arteries/metabolism
- Arteries/pathology
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diet, High-Fat
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Humans
- Hyperlipidemias/complications
- Hyperlipidemias/genetics
- Male
- Phenotype
- Plaque, Atherosclerotic
- Rats
- Signal Transduction
- Translational Research, Biomedical
- Vascular Calcification/etiology
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- John N Stabley
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Dwight A Towler
- From the Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
92
|
Jung WC, Levesque JP, Ruitenberg MJ. It takes nerve to fight back: The significance of neural innervation of the bone marrow and spleen for immune function. Semin Cell Dev Biol 2017; 61:60-70. [DOI: 10.1016/j.semcdb.2016.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 01/17/2023]
|
93
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|
94
|
Brady RD, Grills BL, Church JE, Walsh NC, McDonald AC, Agoston DV, Sun M, O'Brien TJ, Shultz SR, McDonald SJ. Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Sci Rep 2016; 6:34491. [PMID: 27682431 PMCID: PMC5041102 DOI: 10.1038/srep34491] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Concomitant traumatic brain injury (TBI) and long bone fracture are commonly observed in multitrauma and polytrauma. Despite clinical observations of enhanced bone healing in patients with TBI, the relationship between TBI and fracture healing remains poorly understood, with clinical data limited by the presence of several confounding variables. Here we developed a novel trauma model featuring closed-skull weight-drop TBI and concomitant tibial fracture in order to investigate the effect of TBI on fracture healing. Male mice were assigned into Fracture + Sham TBI (FX) or Fracture + TBI (MULTI) groups and sacrificed at 21 and 35 days post-injury for analysis of healing fractures by micro computed tomography (μCT) and histomorphometry. μCT analysis revealed calluses from MULTI mice had a greater bone and total tissue volume, and displayed higher mean polar moment of inertia when compared to calluses from FX mice at 21 days post-injury. Histomorphometric results demonstrated an increased amount of trabecular bone in MULTI calluses at 21 days post-injury. These findings indicate that closed head TBI results in calluses that are larger in size and have an increased bone volume, which is consistent with the notion that TBI induces the formation of a more robust callus.
Collapse
Affiliation(s)
- Rhys D Brady
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Brian L Grills
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Jarrod E Church
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Nicole C Walsh
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Aaron C McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics. Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mujun Sun
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, 3010, Australia
| | - Stuart J McDonald
- Department of Physiology, Anatomy and Microbiology, La Trobe University, VIC, 3086, Australia
| |
Collapse
|
95
|
Sinha S, Uchibe K, Usami Y, Pacifici M, Iwamoto M. Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent. Bone 2016; 90:59-68. [PMID: 26891836 PMCID: PMC4970925 DOI: 10.1016/j.bone.2016.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 01/03/2023]
Abstract
Heterotopic ossification (HO) consists of ectopic cartilage and bone formation following severe trauma or invasive surgeries, and a genetic form of it characterizes patients with Fibrodysplasia Ossificans Progressiva (FOP). Recent mouse studies showed that HO was significantly inhibited by systemic treatment with a corticosteroid or the retinoic acid receptor γ agonist Palovarotene. Because these drugs act differently, the data raised intriguing questions including whether the drugs affected HO via similar means, whether a combination therapy would be more effective or whether the drugs may hamper each other's action. To tackle these questions, we used an effective HO mouse model involving subcutaneous implantation of Matrigel plus rhBMP2, and compared the effectiveness of prednisone, dexamathaosone, Palovarotene or combination of. Each corticosteroid and Palovarotene reduced bone formation at max doses, and a combination therapy elicited similar outcomes without obvious interference. While Palovarotene had effectively prevented the initial cartilaginous phase of HO, the steroids appeared to act more on the bony phase. In reporter assays, dexamethasone and Palovarotene induced transcriptional activity of their respective GRE or RARE constructs and did not interfere with each other's pathway. Interestingly, both drugs inhibited the activity of a reporter construct for the inflammatory mediator NF-κB, particularly in combination. In good agreement, immunohistochemical analyses showed that both drugs markedly reduced the number of mast cells and macrophages near and within the ectopic Matrigel mass and reduced also the number of progenitor cells. In sum, corticosteroids and Palovarotene appear to block HO via common and distinct mechanisms. Most importantly, they directly or indirectly inhibit the recruitment of immune and inflammatory cells present at the affected site, thus alleviating the effects of key HO instigators.
Collapse
Affiliation(s)
- Sayantani Sinha
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Kenta Uchibe
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yu Usami
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Masahiro Iwamoto
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
96
|
Sims NA. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int J Biochem Cell Biol 2016; 79:14-23. [PMID: 27497989 DOI: 10.1016/j.biocel.2016.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/27/2022]
Abstract
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
97
|
Kopp MA, Liebscher T, Watzlawick R, Martus P, Laufer S, Blex C, Schindler R, Jungehulsing GJ, Knüppel S, Kreutzträger M, Ekkernkamp A, Dirnagl U, Strittmatter SM, Niedeggen A, Schwab JM. SCISSOR-Spinal Cord Injury Study on Small molecule-derived Rho inhibition: a clinical study protocol. BMJ Open 2016; 6:e010651. [PMID: 27466236 PMCID: PMC4964175 DOI: 10.1136/bmjopen-2015-010651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, 'small molecule'-mediated Rho inhibition after acute SCI warrants clinical investigation. METHODS AND ANALYSIS Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. ETHICS AND DISSEMINATION The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02096913; Pre-results.
Collapse
Affiliation(s)
- Marcel A Kopp
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Liebscher
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Ralf Watzlawick
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Department of Clinical Epidemiology and Applied Biostatistics, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christian Blex
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Schindler
- Division of Nephrology and Intensive Care, Department of Internal Medicine, Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany
| | - Gerhard J Jungehulsing
- Department of Neurology, Jüdisches Krankenhaus Berlin, Berlin, Germany Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Knüppel
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Germany
| | - Martin Kreutzträger
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Axel Ekkernkamp
- Trauma Surgery and Orthopedics Clinic, Trauma Hospital Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, USA
| | - Andreas Niedeggen
- Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany
| | - Jan M Schwab
- Department of Neurology and Experimental Neurology, Spinal Cord Injury Research, Charité-Universitätsmedizin Berlin, Berlin, Germany Treatment Centre for Spinal Cord Injury, Trauma Hospital Berlin, Berlin, Germany Department of Neurology, Spinal Cord Injury Division, The Ohio State University, Wexner Medical Center, Columbus, USA Department of Neuroscience and Center for Brain and Spinal Cord Repair, Department of Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, USA
| |
Collapse
|
98
|
Ranganathan K, Agarwal S, Cholok D, Loder S, Li J, Sung Hsieh HH, Wang SC, Buchman SR, Levi B. The role of the adaptive immune system in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. J Surg Res 2016; 206:53-61. [PMID: 27916375 DOI: 10.1016/j.jss.2016.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/26/2016] [Accepted: 04/15/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Heterotopic ossification (HO) is the pathologic process of extraskeletal bone formation. Although the exact etiology remains unknown, inflammation appears to catalyze disease progression. The goal of this study is to determine the impact of the adaptive immune system on HO. METHODS HO was induced in 8-wk-old control C57BL/6 and immunocompromised Rag1tm1Mom (Rag1 KO) male mice deficient in B- and T-lymphocytes via combined Achilles tenotomy and burn injury. Microcomputed tomography quantified the extent of HO formation at the tenotomy site. Adipose-derived mesenchymal stem cells were harvested to evaluate osteogenic differentiation potential. RESULTS Areas of developing HO demonstrated substantial enrichment of CD45 + leukocytes at 3 wk after injury. HO from Rag1 KO mice was substantially less mature with foci of cartilage and disorganized trabecular bone present 12 wk after injury. Rag1 KO mice formed 60% less bone compared to immunocompetent controls (4.67 ± 1.5 mm versus 7.76 ± 0.65 mm; P = 0.001). Tartrate-resistant acid phosphatase staining and immunofluorescent analysis of osteoprotegerin and nuclear factor kappa-light-chain-enhancer of activated B cells demonstrated no appreciable difference in osteoclast number or activation. Alizarin red staining in vitro demonstrated a significant decrease in osteogenic potential in immunocompromised mice compared to controls (29.1 ± 0.54 mm versus 12.1 ± 0.14 mm; P < 0.001). CONCLUSIONS We demonstrate a prominent role for the adaptive immune system in the development of HO. In the absence of mature B- and T-lymphocytes, HO growth and development are attenuated. Furthermore, we demonstrate that mesenchymal populations from B- and T-cell deficient mice are inherently less osteogenic. This study identifies a potential therapeutic role for modulation of the adaptive immune system in the treatment of HO.
Collapse
Affiliation(s)
- Kavitha Ranganathan
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shailesh Agarwal
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - David Cholok
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Shawn Loder
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Jonathan Li
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | | | - Stewart C Wang
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Steven R Buchman
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan
| | - Benjamin Levi
- Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan.
| |
Collapse
|
99
|
Recurrence of heterotopic ossification after removal in patients with traumatic brain injury: A systematic review. Ann Phys Rehabil Med 2016; 59:263-9. [PMID: 27173174 DOI: 10.1016/j.rehab.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE A systematic review of the literature to determine whether in patients with neurological heterotopic ossification (NHO) after traumatic brain injury, the extent of the neurological sequelae, the timing of surgery and the extent of the initial NHO affect the risk of NHO recurrence. DATA SOURCES We searched MEDLINE via PubMed and Cochrane library for articles published up to June 2015. Results were compared with epidemiological studies using data from the BANKHO database of 357 patients with central nervous system (CNS) lesions who underwent 539 interventions for troublesome HO. RESULTS A large number of studies were published in the 1980s and 1990s, most showing poor quality despite being performed by experienced surgical teams. Accordingly, results were contradictory and practices heterogeneous. Results with the BANKHO data showed troublesome NHO recurrence not associated with aetiology, sex, age at time of CNS lesion, multisite HO, or "early" surgery (before 6months). Equally, recurrence was not associated with neurological sequelae or disease extent around the joint. CONCLUSIONS The recurrence of NHO is not affected by delayed surgery, neurological sequelae or disease extent around the joint. Surgical excision of NHO should be performed as soon as comorbid factors are under control and the NHO is sufficiently constituted for excision.
Collapse
|
100
|
Tian J, Li Z, Han Y, Jiang T, Song X, Jiang G. The progress of early growth response factor 1 and leukemia. Intractable Rare Dis Res 2016; 5:76-82. [PMID: 27195189 PMCID: PMC4869586 DOI: 10.5582/irdr.2015.01049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Early growth response gene-1 (EGR1) widely exists in the cell nucleus of such as, zebrafish, mice, chimpanzees and humans, an it also can be observed in the cytoplasm of some tumors. EGR1 was named just after its brief and rapid expression of different stimuli. Accumulating studies have extensively demonstrated that the widespread dysregulation of EGR1 is involved in hematological malignancies such as human acute myeloid leukemia (AML), chronic myelogenous leukemia, chronic lymphocytic leukemia, multiple myeloma, and B cell lymphoma. With the deep research on EGR1, its expression, function and regulatory mechanism has been gradually elucidated, and provides more possibilities for treatment strategies of patients with leukemia. Herein, we summarize the roles of EGR1 in its biological function and relationship with leukemia.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Ziwei Li
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Yang Han
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
| | - Tao Jiang
- Graduate School of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaoming Song
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guosheng Jiang
- Key Laboratory for Modern Medicine and Technology of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, Ji'nan University, Ji'nan, Shandong, China
- Address correspondence to: Dr. Guosheng Jiang, Key Laboratory for rare & uncommon diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, NO.18877 of Jingshi Road, Ji'nan, Shandong, China. E-mail:
| |
Collapse
|