51
|
Saito Y, Kunitomi A, Seki T, Tohyama S, Kusumoto D, Takei M, Kashimura S, Hashimoto H, Yozu G, Motoda C, Shimojima M, Egashira T, Oda M, Fukuda K, Yuasa S. Epigenetic barrier against the propagation of fluctuating gene expression in embryonic stem cells. FEBS Lett 2017; 591:2879-2889. [PMID: 28805244 DOI: 10.1002/1873-3468.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/03/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022]
Abstract
The expression of pluripotency genes fluctuates in a population of embryonic stem (ES) cells and the fluctuations in the expression of some pluripotency genes correlate. However, no correlation in the fluctuation of Pou5f1, Zfp42, and Nanog expression was observed in ES cells. Correlation between Pou5f1 and Zfp42 fluctuations was demonstrated in ES cells containing a knockout in the NuRD component Mbd3. ES cells containing a triple knockout in the DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b showed correlation between the fluctuation of Pou5f1, Zfp42, and Nanog gene expression. We suggest that an epigenetic barrier is key to preventing the propagation of fluctuating pluripotency gene expression in ES cells.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Kunitomi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Seki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kashimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hisayuki Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Gakuto Yozu
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Chikaaki Motoda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Shimojima
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
52
|
Faiola F, Yin N, Fidalgo M, Huang X, Saunders A, Ding J, Guallar D, Dang B, Wang J. NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem Cell Reports 2017; 9:913-926. [PMID: 28781078 PMCID: PMC5599184 DOI: 10.1016/j.stemcr.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is a long and inefficient process. A thorough understanding of the molecular mechanisms underlying reprogramming is paramount for efficient generation and safe application of iPSCs in medicine. While intensive efforts have been devoted to identifying reprogramming facilitators and barriers, a full repertoire of such factors, as well as their mechanistic actions, is poorly defined. Here, we report that NAC1, a pluripotency-associated factor and NANOG partner, is required for establishment of pluripotency during reprogramming. Mechanistically, NAC1 is essential for proper expression of E-cadherin by a dual regulatory mechanism: it facilitates NANOG binding to the E-cadherin promoter and fine-tunes its expression; most importantly, it downregulates the E-cadherin repressor ZEB1 directly via transcriptional repression and indirectly via post-transcriptional activation of the miR-200 miRNAs. Our study thus uncovers a previously unappreciated role for the pluripotency regulator NAC1 in promoting efficient somatic cell reprogramming. NAC1 is critical for efficient iPSC generation NAC1 facilitates NANOG binding to E-cadherin promoter NAC1 binds to Zeb1 promoter and represses its expression NAC1 binds to the miR-200 loci and indirectly activates E-cadherin expression
Collapse
Affiliation(s)
- Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miguel Fidalgo
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xin Huang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arven Saunders
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Guallar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Baoyen Dang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
53
|
Smith RCG, Stumpf PS, Ridden SJ, Sim A, Filippi S, Harrington HA, MacArthur BD. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophys J 2017; 112:2641-2652. [PMID: 28636920 PMCID: PMC5479053 DOI: 10.1016/j.bpj.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
A number of important pluripotency regulators, including the transcription factor Nanog, are observed to fluctuate stochastically in individual embryonic stem cells. By transiently priming cells for commitment to different lineages, these fluctuations are thought to be important to the maintenance of, and exit from, pluripotency. However, because temporal changes in intracellular protein abundances cannot be measured directly in live cells, fluctuations are typically assessed using genetically engineered reporter cell lines that produce a fluorescent signal as a proxy for protein expression. Here, using a combination of mathematical modeling and experiment, we show that there are unforeseen ways in which widely used reporter strategies can systematically disturb the dynamics they are intended to monitor, sometimes giving profoundly misleading results. In the case of Nanog, we show how genetic reporters can compromise the behavior of important pluripotency-sustaining positive feedback loops, and induce a bifurcation in the underlying dynamics that gives rise to heterogeneous Nanog expression patterns in reporter cell lines that are not representative of the wild-type. These findings help explain the range of published observations of Nanog variability and highlight the problem of measurement in live cells.
Collapse
Affiliation(s)
- Rosanna C G Smith
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick S Stumpf
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sonya J Ridden
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aaron Sim
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sarah Filippi
- Department of Mathematics, Imperial College London, London, United Kingdom; Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | - Ben D MacArthur
- Centre for Human Development, Stem Cells, and Regeneration, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Mathematical Sciences, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
54
|
Secreted Frizzled-related protein 4 (sFRP4) chemo-sensitizes cancer stem cells derived from human breast, prostate, and ovary tumor cell lines. Sci Rep 2017; 7:2256. [PMID: 28536422 PMCID: PMC5442130 DOI: 10.1038/s41598-017-02256-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022] Open
Abstract
This study investigated molecular signals essential to sustain cancer stem cells (CSCs) and assessed their activity in the presence of secreted frizzled-related protein 4 (sFRP4) alone or in combination with chemotherapeutic drugs. SFRP4 is a known Wnt antagonist, and is also pro-apoptotic and anti-angiogenic. Additionally, sFRP4 has been demonstrated to confer chemo-sensitization and improve chemotherapeutic efficacy. CSCs were isolated from breast, prostate, and ovary tumor cell lines, and characterized using tumor-specific markers such as CD44+/CD24−/CD133+. The post-transcription data from CSCs that have undergone combinatorial treatment with sFRP4 and chemotherapeutic drugs suggest downregulation of stemness genes and upregulation of pro-apoptotic markers. The post-translational modification of CSCs demonstrated a chemo-sensitization effect of sFRP4 when used in combination with tumor-specific drugs. SFRP4 in combination with doxorubicin/cisplatin reduced the proliferative capacity of the CSC population in vitro. Wnt/β-catenin signaling is important for proliferation and self-renewal of CSCs in association with human tumorigenesis. The silencing of this signaling pathway by the application of sFRP4 suggests potential for improved in vivo chemo-responses.
Collapse
|
55
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
56
|
Yang F, Wang N, Wang Y, Yu T, Wang H. Activin-SMAD signaling is required for maintenance of porcine iPS cell self-renewal through upregulation of NANOG and OCT4 expression. J Cell Physiol 2017; 232:2253-2262. [PMID: 27996082 DOI: 10.1002/jcp.25747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Porcine induced pluripotent stem cells (piPSCs) retain the enormous potential for farm animal reproduction and translational medicine, and have been reported by many laboratories worldwide. Some piPSC lines were bFGF-dependence and showed mouse EpiSC-like morphology; other lines were LIF-dependence and showed mouse ESC-like morphology. Metastable state of piPSC line that required both LIF and bFGF was also reported. Because bona fide pig embryonic stem cells were not available, uncovering piPSC state-specific regulatory circuitries was the most important task. In this study, we explored the function of Activin-SMAD signaling pathway and its downstream activated target genes in piPSCs. Transcriptome analysis showed that genes involved in Activin-SMAD signaling pathway were evidently activated during porcine somatic cell reprogramming, regardless piPSCs were LIF- or bFGF-dependent. Addition of Activin A and overexpression of SMAD2/3 significantly promoted expressions of porcine NANOG and OCT4, whereas inhibition of Activin-SMAD signaling by SB431542 and SMAD7 reduced NANOG and OCT4 expressions, and induced piPSCs differentiation exiting from pluripotent state. Our data demonstrate that activation of Activin-SMAD signaling pathway by addition of Activin A in culture medium is necessary for maintenance of self-renewal in porcine pluripotent stem cells.
Collapse
Affiliation(s)
- Fan Yang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaxian Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Yu
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
57
|
Pan Q, Meng L, Ye J, Wei X, Shang Y, Tian Y, He Y, Peng Z, Chen L, Chen W, Bian X, Wang R. Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial-mesenchymal transition (EMT). Cancer Lett 2017; 392:26-38. [PMID: 28163188 DOI: 10.1016/j.canlet.2017.01.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Nanog is an important embryonic stem cell (ESC) gene that does not function as a classical oncogene, but needs to cooperate with other molecules to potentiate tumorigenic activity. The question addressed by the present study was whether a miRNA link exists between Nanog and epithelial-mesenchymal transition (EMT)-mesenchymal-epithelial transition (MET) plasticity. Here, we found that Nanog mRNA expression level was inversely correlated with miR-200c and miR-200b expression levels in colon cancer cell lines and human colorectal cancer tissues. Forced Nanog expression in low-Nanog colon cancer cells inhibited miR-200c and miR-200b expression, and interfered Nanog expression in high-Nanog colon cancer cells promoted miR-200c and miR-200b expression. Furthermore, we confirmed that Nanog directly repressed transcription of the miR-200c and miR-200b genes, and miR-200c and miR-200b mediated Nanog-induced EMT occurrence. Luciferase and ChIP assays determined that Nanog bound directly to the potential Nanog binding sites in the miR-200c and miR-200b promoters and repressed their transcription. In conclusion, our findings suggest that Nanog modulates EMT-MET plasticity by regulating miR-200 clusters via a direct transcriptional mechanism, and the Nanog-miR-200 axis may be a good therapeutic target for CRC control.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Linkun Meng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Jun Ye
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiaolong Wei
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yangyang Shang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yin Tian
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yonghong He
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xiuwu Bian
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| | - Rongquan Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
58
|
Luo J, Wang P, Wang R, Wang J, Liu M, Xiong S, Li Y, Cheng B. The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget 2017; 7:9525-37. [PMID: 26848615 PMCID: PMC4891057 DOI: 10.18632/oncotarget.6672] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
CD90 has been identified as a marker for liver cancer stem cells (CSCs) that are responsible for tumorigenic activity, but it is not known how CD90+ cells contribute to tumor initiation and progression. Our data demonstrated that high expression of CD90 in Hepatocellular Carcinoma (HCC) tissues correlated with venous filtration in HCC patients. CD90+ cells isolated from HCC cell lines exhibited increased tumorigenicity, chemoresistance, tumor invasion and metastasis. Notch pathway was activated in CD90+ cells and we found that inhibition of Notch pathway in CD90+ CSCs decreased tumorigenicity, cell invasion, migration and expression of stem cell related genes. Activation of Notch pathway in CD90− cells induced self-renewal, invasion and migration. Furthermore, we observed that cancer stem cell features were facilitated by stimulating G1-S transition in the cell cycle phase and inhibiting apoptosis mediated by Notch pathway. Our findings suggested CD90 could be used as a potential biomarker for HCC CSCs, and that cancer stem cell activity was elevated through up activated Notch pathway in CD90+ CSCs.
Collapse
Affiliation(s)
- Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.,Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Peng Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jinlin Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
59
|
Wang N, Wang Y, Xie Y, Wang H. OTX2 impedes self-renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death Discov 2016; 2:16090. [PMID: 27924227 PMCID: PMC5136617 DOI: 10.1038/cddiscovery.2016.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023] Open
Abstract
The transcription factor Otx2 acts as a negative switch in the regulation of transition from naive to primed pluripotency in mouse pluripotent stem cells. However, the molecular features and function of porcine OTX2 have not been well elucidated in porcine-induced pluripotent stem cells (piPSCs). By studying high-throughput transcriptome sequencing and interfering endogenous OTX2 expression, we demonstrate that OTX2 is able to downgrade the self-renewal of piPSCs. OTX2 is highly expressed in porcine brain, reproductive tissues, and preimplantation embryos, but is undetectable in fibroblasts and most somatic tissues. However, the known piPSC lines reported previously produced different levels of OTX2 depending on the induction procedures and culture conditions. Overexpression of porcine OTX2 can reduce the percentage of alkaline phosphatase-positive colonies and downregulate NANOG and OCT4 expression. In contrast, knockdown of OTX2 can significantly increase endogenous expressions of NANOG, OCT4, and ESRRB, and stabilize the pluripotent state of piPSCs. On the other hand, NANOG can directly bind to the OTX2 promoter as shown in ChIP-seq data and repress OTX2 promoter activity in a dose-dependent manner. These observations indicate that OTX2 and NANOG can form a negative feedback circuitry to regulate the pluripotency of porcine iPS cells.
Collapse
Affiliation(s)
- Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Yaxian Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Youlong Xie
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China
| |
Collapse
|
60
|
Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink T, Pennisi CP, Zachar V. Discrete adipose-derived stem cell subpopulations may display differential functionality after in vitro expansion despite convergence to a common phenotype distribution. Stem Cell Res Ther 2016; 7:177. [PMID: 27906060 PMCID: PMC5134234 DOI: 10.1186/s13287-016-0435-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/14/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
Background Complex immunophenotypic repertoires defining discrete adipose-derived stem cell (ASC) subpopulations may hold a key toward identifying predictors of clinical utility. To this end, we sorted out of the freshly established ASCs four subpopulations (SPs) according to a specific pattern of co-expression of six surface markers, the CD34, CD73, CD90, CD105, CD146, and CD271, using polychromatic flow cytometry. Method Using flow cytometry-associated cell sorting and analysis, gating parameters were set to select for a CD73+CD90+CD105+ phenotype plus one of the four following combinations, CD34−CD146−CD271− (SP1), CD34−CD146+CD271− (SP2), CD34+CD146+CD271− (SP3), and CD34−CD146+CD271+ (SP4). The SPs were expanded 700- to 1000-fold, and their surface repertoire, trilineage differentiation, and clonogenic potential, and the capacity to support wound healing were assayed. Results Upon culturing, the co-expression of major epitopes, the CD73, CD90, and CD105 was maintained, while regarding the minor markers, all SPs reverted to resemble the pre-sorted population with CD34−CD146−CD271− and CD34−CD146+CD271− representing the most prevalent combinations, followed by less frequent CD34+CD146−CD271− and CD34+CD146+CD271− variants. There was no difference in the efficiency of adipo-, osteo-, or chondrogenesis by cytochemistry and real-time RT-PCR or the CFU capacity between the individual SPs, however, the SP2CD73+90+105+34-146+271- outperformed others in terms of wound healing. Conclusions Our study shows that ASCs upon culturing inherently maintain a stable distribution of immunophenotype variants, which may potentially disguise specific functional properties of particular downstream lines. Furthermore, the outlined approach suggests a paradigm whereby discrete subpopulations could be identified to provide for a therapeutically most relevant cell product. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0435-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik Mølgaard Nielsen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simone Elkjær Riis
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens Isak Andersen
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Raphaëlle Lesage
- Department of Bioengineering, Polytech Nice-Sophia Engineering School, Nice, France
| | - Trine Fink
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department for Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
61
|
Chandrakesan P, May R, Weygant N, Qu D, Berry WL, Sureban SM, Ali N, Rao C, Huycke M, Bronze MS, Houchen CW. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Sci Rep 2016; 6:37667. [PMID: 27876863 PMCID: PMC5120335 DOI: 10.1038/srep37667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022] Open
Abstract
Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of VillinCre;Dclk1f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.
Collapse
Affiliation(s)
- Parthasarathy Chandrakesan
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L. Berry
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sripathi M. Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally Rao
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark Huycke
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael S. Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- COARE Biotechnology, Inc., Oklahoma City, OK 73104, USA
| |
Collapse
|
62
|
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y, Wang P, Wei W, Zhang J, Zhang L. USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 2016; 1:16024. [PMID: 29263902 PMCID: PMC5661642 DOI: 10.1038/sigtrans.2016.24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The homeobox transcription factor Nanog has a vital role in maintaining pluripotency and self-renewal of embryonic stem cells (ESCs). Stabilization of Nanog proteins is essential for ESCs. The ubiquitin-proteasome pathway mediated by E3 ubiquitin ligases and deubiquitylases is one of the key ways to regulate protein levels and functions. Although ubiquitylation of Nanog catalyzed by the ligase FBXW8 has been demonstrated, the deubiquitylase that maintains the protein levels of Nanog in ESCs yet to be defined. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a deubiquitylase for Nanog, but not for Oct4 or Sox2. USP21 interacts with Nanog protein in ESCs in vivo and in vitro. The C-terminal USP domain of USP21 and the C-domain of Nanog are responsible for this interaction. USP21 deubiquitylates the K48-type linkage of the ubiquitin chain of Nanog, stabilizing Nanog. USP21-mediated Nanog stabilization is enhanced in mouse ESCs and this stabilization is required to maintain the pluripotential state of the ESCs. Depletion of USP21 in mouse ESCs leads to Nanog degradation and ESC differentiation. Overall, our results demonstrate that USP21 maintains the stemness of mouse ESCs through deubiquitylating and stabilizing Nanog.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuying Yao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huiguo Ding
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Chanjuan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Xin Zhang
- College of Life Sciences, Xiamen University, Xiamen, China
| | - Yiling Zhang
- Department of Orthopedics, the General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yun Zhai
- Department of Hepatology and Gastroenterology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ping Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
63
|
Tang X, Li X, Li Z, Liu Y, Yao L, Song S, Yang H, Li C. Downregulation of CXCR7 inhibits proliferative capacity and stem cell-like properties in breast cancer stem cells. Tumour Biol 2016; 37:13425-13433. [PMID: 27460092 DOI: 10.1007/s13277-016-5180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
Breast cancer stem cells (bCSCs) are considered an obstacle in breast cancer therapy because they exhibit long-term proliferative potential, phenotypic plasticity and high resistance to the current therapeutics. CXC chemokine receptor type 7 (CXCR7), which provides a growth advantage to breast cancer cells, has recently been demonstrated to play an important role in the maintenance of stem cell-like properties in the CSCs of glioblastoma and lung cancer, yet its role in bCSCs remains elusive. In this study, CD44+/CD24low bCSC-enriched cells (bCSCs for short) were isolated from MCF-7 cells, and CXCR7 was stably knocked down in bCSCs via lentivirus-mediated transduction with CXCR7 short hairpin RNA (shRNA). Knockdown of CXCR7 in bCSCs decreased the proportion of CD44+/CD24low cells, and markedly reduced the clonogenicity of the cells. Moreover, silencing of CXCR7 downregulated the expression of stem cell markers, such as aldehyde dehydrogenase 1 (ALDH1), Oct4, and Nanog. In addition, CXCR7 silencing in bCSCs suppressed cell proliferation and G1/S transition in vitro, and delayed tumor growth in vivo in a xenograft mouse model. In situ immunohistochemical analysis revealed a reduction in Ki-67 expression and enhanced apoptosis in the xenograft tumors as a result of CXCR7 silencing. Furthermore, combined treatment with CXCR7 silencing and epirubicin displayed an outstanding anti-tumor effect compared with either single treatment. Our study demonstrates that CXCR7 plays a critical role in the maintenance of stem cell-like properties and promotion of growth in bCSCs, and suggests that CXCR7 may be a candidate target for bCSCs in breast cancer therapy.
Collapse
Affiliation(s)
- Xin Tang
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Xiang Li
- Department of Medical Ultrasonics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zitao Li
- Department of Orthopaedic Surgery, Mudanjiang Forestry Central Hospital, Mudanjiang, Heilongjiang, 157000, China
| | - Yunshuang Liu
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Lihong Yao
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Shuang Song
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Hongyan Yang
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Caijuan Li
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China.
| |
Collapse
|
64
|
Wang D, Guo Q, Ba H, Li C. Cloning and Characterization of a Nanog Pseudogene in Sika Deer (Cervus nippon). DNA Cell Biol 2016; 35:576-584. [PMID: 27351458 DOI: 10.1089/dna.2016.3303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanog plays a crucial role in the maintenance of stem cell pluripotency. Annual full regeneration of deer antlers has been shown to be a stem cell-based process, and antler stem cells (ASCs) reportedly express Nanog. In the present study, we found that Nanog RNA expressed by ASCs was a pseudogene (Nanog-ps). The coding sequence of Nanog-ps was 93.1% homologous to that of bovine Nanog, but with two missing nucleotides after position 391. Deletion of the two nucleotides in Nanog-ps resulted in a frame-shift mutation, suggesting that Nanog-ps would not encode a normal Nanog protein. Overexpression of Nanog-ps failed to affect downstream genes of Nanog or to enhance cell proliferation in the ASCs. However, this pseudogene was transcribed in the ASCs and encoded a nuclear protein; the expression levels of Nanog-ps were also related to the degree of stemness in antler cells. Here, we reported this pseudogene, because it could serve as a useful marker for identifying ASCs and evaluating the degree of their stemness.
Collapse
Affiliation(s)
- Datao Wang
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China .,2 State Key Laboratory for Molecular Biology of Special Economical Animals , Chinese Academy of Agricultural Sciences, Jilin, China
| | - Qianqian Guo
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China
| | - Hengxing Ba
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China
| | - Chunyi Li
- 1 Chinese Academy of Agricultural Sciences, Institute of Special Wild Economic Animal and Plant Science , Jilin, China .,2 State Key Laboratory for Molecular Biology of Special Economical Animals , Chinese Academy of Agricultural Sciences, Jilin, China
| |
Collapse
|
65
|
Vidlickova I, Dequiedt F, Jelenska L, Sedlakova O, Pastorek M, Stuchlik S, Pastorek J, Zatovicova M, Pastorekova S. Apoptosis-induced ectodomain shedding of hypoxia-regulated carbonic anhydrase IX from tumor cells: a double-edged response to chemotherapy. BMC Cancer 2016; 16:239. [PMID: 26993100 PMCID: PMC4799595 DOI: 10.1186/s12885-016-2267-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Background Carbonic anhydrase IX (CA IX) is a tumor-associated, highly active, transmembrane carbonic anhydrase isoform regulated by hypoxia and implicated in pH control and adhesion-migration-invasion. CA IX ectodomain (ECD) is shed from the tumor cell surface to serum/plasma of patients, where it can signify cancer prognosis. We previously showed that the CA IX ECD release is mediated by disintegrin and metalloproteinase ADAM17. Here we investigated the CA IX ECD shedding in tumor cells undergoing apoptosis in response to cytotoxic drugs, including cycloheximide and doxorubicin. Methods Presence of cell surface CA IX was correlated to the extent of apoptosis by flow cytometry in cell lines with natural or ectopic CA IX expression. CA IX ECD level was assessed by ELISA using CA IX-specific monoclonal antibodies. Effect of recombinant CA IX ECD on the activation of molecular pathways was evaluated using the cell-based dual-luciferase reporter assay. Results We found a significantly lower occurrence of apoptosis in the CA IX-positive cell subpopulation than in the CA IX-negative one. We also demonstrated that the cell-surface CA IX level dropped during the death progress due to an increased ECD shedding, which required a functional ADAM17. Inhibitors of metalloproteinases reduced CA IX ECD shedding, but not apoptosis. The CA IX ECD release induced by cytotoxic drugs was connected to elevated expression of CA IX in the surviving fraction of cells. Moreover, an externally added recombinant CA IX ECD activated a pathway driven by the Nanog transcription factor implicated in epithelial-mesenchymal transition and stemness. Conclusions These findings imply that the increased level of the circulating CA IX ECD might be useful as an indicator of an effective antitumor chemotherapy. Conversely, elevated CA IX ECD might generate unwanted effects through autocrine/paracrine signaling potentially contributing to resistance and tumor progression.
Collapse
Affiliation(s)
- Ivana Vidlickova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Franck Dequiedt
- Cellular and Molecular Biology Unit, Gembloux Agro-Bio Tech, University of Liege, Liege, Belgium
| | - Lenka Jelenska
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Olga Sedlakova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Michal Pastorek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Stanislav Stuchlik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Miriam Zatovicova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic. .,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
66
|
Münst B, Thier MC, Winnemöller D, Helfen M, Thummer RP, Edenhofer F. Nanog induces suppression of senescence through downregulation of p27KIP1 expression. J Cell Sci 2016; 129:912-20. [PMID: 26795560 PMCID: PMC4813312 DOI: 10.1242/jcs.167932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated β-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27KIP1 (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27KIP1 gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene. Summary: Nanog blocks cellular senescence of fibroblasts through transcriptional regulation of cell cycle inhibitor p27KIP1.
Collapse
Affiliation(s)
- Bernhard Münst
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Marc Christian Thier
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Dirk Winnemöller
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Martina Helfen
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Rajkumar P Thummer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstrasse 6, Würzburg 97070, Germany Department of Genomics, Stem Cell Biology & Regenerative Medicine, Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
67
|
Balvan J, Gumulec J, Raudenska M, Krizova A, Stepka P, Babula P, Kizek R, Adam V, Masarik M. Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating. PLoS One 2015; 10:e0145016. [PMID: 26671576 PMCID: PMC4679176 DOI: 10.1371/journal.pone.0145016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Resistant cancer phenotype is a key obstacle in the successful therapy of prostate cancer. The primary aim of our study was to explore resistance mechanisms in the advanced type of prostate cancer cells (PC-3) and to clarify the role of autophagy in these processes. We performed time-lapse experiment (48 hours) with ROS generating plumbagin by using multimodal holographic microscope. Furthermore, we also performed the flow-cytometric analysis and the qRT-PCR gene expression analysis at 12 selected time points. TEM and confocal microscopy were used to verify the results. We found out that autophagy (namely mitophagy) is an important resistance mechanism. The major ROS producing mitochondria were coated by an autophagic membrane derived from endoplasmic reticulum and degraded. According to our results, increasing ROS resistance may be also accompanied by increased average cell size and polyploidization, which seems to be key resistance mechanism when connected with an escape from senescence. Many different types of cell-cell interactions were recorded including entosis, vesicular transfer, eating of dead or dying cells, and engulfment and cannibalism of living cells. Entosis was disclosed as a possible mechanism of polyploidization and enabled the long-term survival of cancer cells. Significantly reduced cell motility was found after the plumbagin treatment. We also found an extensive induction of pluripotency genes expression (NANOG, SOX2, and POU5F1) at the time-point of 20 hours. We suppose, that overexpression of pluripotency genes in the portion of prostate tumour cell population exposed to ROS leads to higher developmental plasticity and capability to faster respond to changes in the extracellular environment that could ultimately lead to an alteration of cell fate.
Collapse
Affiliation(s)
- Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Aneta Krizova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- TESCAN Brno, s.r.o., Brno, Czech Republic
| | - Petr Stepka
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno / Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
68
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
69
|
Hishida T, Nakachi Y, Mizuno Y, Katano M, Okazaki Y, Ema M, Takahashi S, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Hishida-Nozaki Y, Vazquez-Ferrer E, Sancho-Martinez I, Carlos Izpisua Belmonte J, Okuda A. Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells. Stem Cells 2015; 33:713-25. [DOI: 10.1002/stem.1893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Yutaka Nakachi
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Miyuki Katano
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masatsugu Ema
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Satoru Takahashi
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Radioisotope Experimental Laboratory; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | | | | | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
70
|
Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. Int J Biochem Cell Biol 2015; 59:142-52. [DOI: 10.1016/j.biocel.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/25/2022]
|
71
|
Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A 2015; 112:1839-44. [PMID: 25605917 DOI: 10.1073/pnas.1424171112] [Citation(s) in RCA: 372] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Partial or even complete cancer regression can be achieved in some patients with current cancer treatments. However, such initial responses are almost always followed by relapse, with the recurrent cancer being resistant to further treatments. The discovery of therapeutic approaches that counteract relapse is, therefore, essential for advancing cancer medicine. Cancer cells are extremely heterogeneous, even in each individual patient, in terms of their malignant potential, drug sensitivity, and their potential to metastasize and cause relapse. Indeed, hypermalignant cancer cells, termed cancer stem cells or stemness-high cancer cells, that are highly tumorigenic and metastatic have been isolated from cancer patients with a variety of tumor types. Moreover, such stemness-high cancer cells are resistant to conventional chemotherapy and radiation. Here we show that BBI608, a small molecule identified by its ability to inhibit gene transcription driven by Stat3 and cancer stemness properties, can inhibit stemness gene expression and block spherogenesis of or kill stemness-high cancer cells isolated from a variety of cancer types. Moreover, cancer relapse and metastasis were effectively blocked by BBI608 in mice. These data demonstrate targeting cancer stemness as a novel approach to develop the next generation of cancer therapeutics to suppress cancer relapse and metastasis.
Collapse
|
72
|
Dowell KG, Simons AK, Bai H, Kell B, Wang ZZ, Yun K, Hibbs MA. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks. Stem Cells 2014; 32:1161-72. [PMID: 24307629 DOI: 10.1002/stem.1612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/11/2013] [Indexed: 12/25/2022]
Abstract
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G Dowell
- The Jackson Laboratory, Bar Harbor, Maine, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
Current dogma is that mouse primordial germ cells (PGCs) segregate within the allantois, or source of the umbilical cord, and translocate to the gonads, differentiating there into sperm and eggs. In light of emerging data on the posterior embryonic-extraembryonic interface, and the poorly studied but vital fetal-umbilical connection, we have reviewed the past century of experiments on mammalian PGCs and their relation to the allantois. We demonstrate that, despite best efforts and valuable data on the pluripotent state, what is and is not a PGC in vivo is obscure. Furthermore, sufficient experimental evidence has yet to be provided either for an extragonadal origin of mammalian PGCs or for their segregation within the posterior region. Rather, most evidence points to an alternative hypothesis that PGCs in the mouse allantois are part of a stem/progenitor cell pool that exhibits all known PGC "markers" and that builds/reinforces the fetal-umbilical interface, common to amniotes. We conclude by suggesting experiments to distinguish the mammalian germ line from the soma.
Collapse
|
74
|
Lönnroth C, Andersson M, Asting AG, Nordgren S, Lundholm K. Preoperative low dose NSAID treatment influences the genes for stemness, growth, invasion and metastasis in colorectal cancer. Int J Oncol 2014; 45:2208-20. [PMID: 25340937 PMCID: PMC4215588 DOI: 10.3892/ijo.2014.2686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/21/2014] [Indexed: 02/06/2023] Open
Abstract
Preclinical data, and an increasing list of clinical investigations, show anti-inflammatory agents to favourably influence the biology of colorectal tumor. We have earlier reported on re-expression of activated immune cells after three days preoperative treatment of patients with colorectal carcinoma, randomized to receive oral NSAID (indomethacin or celebrex). Antisecretory prophylaxis (esomeprasol) was provided to all patients and served as sham treatment. Concomittant to MHC locus activation, Prominin1/CD133, a marker associated with stemness and poor prognosis in several solid tumors, was downregulated. The aim of the present study was to evaluate expression of additional regulators belonging to the stem cell niche, OCT4, SOX2 and BMP7, as well as some microRNAs, reported to act as tumor suppressors or oncomiRs. Peroperative tumor biopsies were analyzed by microarrays, quantitative real-time PCR and immunohistochemistry (IHC). The stem cell master regulator SOX2 was increased by NSAIDs (p<0.01), as well as the tumor suppressor miR-630 (p<0.01), while BMP7, a marker for poor prognosis in CRC, was downregulated by NSAID (indomethacin, p<0.02). The upregulation of SOX2, but not of its heterodimer binding partner OCT4, could imply a negative feed-back loop, with a switch‑off for stemness preservation of tumor cells. This is supported by the overall evaluation of gene expression profiles with subsequent events, indicating less aggressive tumors following NSAID treatment.
Collapse
Affiliation(s)
- Christina Lönnroth
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Marianne Andersson
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Annika G Asting
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Svante Nordgren
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Surgical Metabolic Research Laboratory at Lundberg Laboratory for Cancer Research, Sahlgrenska University Hospital, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| |
Collapse
|
75
|
Li H, Li J, Sheng W, Sun J, Ma X, Chen X, Bi J, Zhao Y, Li X. Astrocyte-like cells differentiated from a novel population of CD45-positive cells in adult human peripheral blood. Cell Biol Int 2014; 39:84-93. [PMID: 25077697 PMCID: PMC4410680 DOI: 10.1002/cbin.10355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/11/2014] [Indexed: 01/06/2023]
Abstract
We have previously reported a novel CD45-positive cell population called peripheral blood insulin-producing cells (PB-IPCs) and its unique potential for releasing insulin in vitro. Despite the CD45-positive phenotype and self-renewal ability, PB-IPCs are distinguished from hemopoietic and endothelial progenitor cells (EPCs) by some characteristics, such as a CD34-negative phenotype and different culture conditions. We have further identified the gene profiles of the embryonic and neural stem cells, and these profiles include Sox2, Nanog, c-Myc, Klf4, Notch1 and Mash1. After treatment with all-trans retinoic acid (ATRA) in vitro, most PB-IPCs exhibited morphological changes that included the development of elongated and branched cell processes. In the process of induction, the mRNA expression of Hes1 was robustly upregulated, and a majority of cells acquired some astrocyte-associated specific phenotypes including anti-glial fibrillary acidic protein (GFAP), CD44, Glutamate-aspartate transporter (GLAST) and S100β. In spite of the deficiency of glutamate uptaking, the differentiated cells significantly relaxed the regulation of the expression of brain-derived neurotrophic factor (BDNF) mRNA. This finding demonstrates that PB-IPCs could be induced into a population of astrocyte-like cells and enhanced the neurotrophic potential when the state of proliferation was limited by ATRA, which implies that this unique CD45+ cell pool may have a protective role in some degenerative diseases of the central nervous system (CNS).
Collapse
Affiliation(s)
- Heng Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.
Collapse
|
77
|
Liu J, Wang L, Cao J, Huang Y, Lin Y, Wu X, Wang Z, Zhang F, Xu X, Liu G. Functional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles. NANOSCALE 2014; 6:9025-33. [PMID: 24969040 DOI: 10.1039/c4nr01004c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capacity of embryonic stem cells (ESCs) remains unclear. In this study, we wrapped SPIO nanoparticles with stearic acid grafted PEI600, termed as Stearic-LWPEI-SPIO, to generate efficient and non-toxic ESC labeling tools. Our results showed that efficient labeling of ESCs at an optimized low dosage of Stearic-LWPEI-SPIO nanoparticles did not alter the differentiation and self-renewal properties of ESCs. The localization of the transplanted ESCs observed by MRI correlated well with histological studies. These findings demonstrate that Stearic-LWPEI-SPIO nanoparticles have potential to be clinically translatable MRI probes and may enable non-invasive in vivo tracking of ESCs in experimental and clinical settings during cell-based therapies.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, 361102, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nat Commun 2014; 5:4226. [PMID: 24979572 DOI: 10.1038/ncomms5226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/23/2014] [Indexed: 12/22/2022] Open
Abstract
NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.
Collapse
|
79
|
Schreiber L, Raanan C, Amsterdam A. CD24 and Nanog identify stem cells signature of ovarian epithelium and cysts that may develop to ovarian cancer. Acta Histochem 2014; 116:399-406. [PMID: 24103524 DOI: 10.1016/j.acthis.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/25/2022]
Abstract
Ovarian cancer is the most lethal gynecological cancer. There is a general debate whether ovarian cancer is an intrinsic or an imported disease. We investigated whether in normal morphological appearance and in early stages of ovarian tumorgenesis typical cancer cell markers such as CD24 and Nanog are expressed. In 25% of normal appearing ovaries of post-menopausal women there was co-localization of CD24 and Nanog in the walls of the ovarian cysts, leaving the epithelial cells on the surface of these ovaries free of Nanog or CD24 expression. In benign ovarian tumors 37% of specimens were positive to CD24 and Nanog labeling while 26% of them were localized in the cyst walls. In contrast, in serous borderline tumors 79% specimens were labeled with CD24, 42% of them were localized in cysts and in 32% of them showed co-localization with CD24 and Nanog was evident: the rest were labeled in the ovarian epithelial cells. In serous ovarian carcinomas 81% specimens were labeled with CD24 antibodies. In 45% of them co-localization with Nanog was evident in the bulk of the cancerous tissue. In mucinous carcinomas no labeling with CD24 or Nanog was evident. In view of the synergistic effect of CD24 and Nanog expressed in malignant cancer development in other systems, it is suggested that such an analysis can be valuable for early detection of ovarian cancer. Moreover, the abundance of these markers in cysts in the development of ovarian cancer may suggest that they present an intrinsic source of the development of the highly malignant disease. Finally, since CD24 is exposed on the surface of the cancer cells, it may be highly beneficial to target these cells with antibodies to CD24 conjugated to cytotoxic drugs for more efficient treatment of this malignant disease.
Collapse
|
80
|
Tommasi S, Zheng A, Yoon JI, Besaratinia A. Epigenetic targeting of the Nanog pathway and signaling networks during chemical carcinogenesis. Carcinogenesis 2014; 35:1726-36. [DOI: 10.1093/carcin/bgu026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
81
|
Scerbo P, Markov GV, Vivien C, Kodjabachian L, Demeneix B, Coen L, Girardot F. On the origin and evolutionary history of NANOG. PLoS One 2014; 9:e85104. [PMID: 24465486 PMCID: PMC3894937 DOI: 10.1371/journal.pone.0085104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022] Open
Abstract
Though pluripotency is well characterized in mammals, many questions remain to be resolved regarding its evolutionary history. A necessary prerequisite for addressing this issue is to determine the phylogenetic distributions and orthology relationships of the transcription factor families sustaining or modulating this property. In mammals, the NANOG homeodomain transcription factor is one of the core players in the pluripotency network. However, its evolutionary history has not been thoroughly studied, hindering the interpretation of comparative studies. To date, the NANOG family was thought to be monogenic, with numerous pseudogenes described in mammals, including a tandem duplicate in Hominidae. By examining a wide-array of craniate genomes, we provide evidence that the NANOG family arose at the latest in the most recent common ancestor of osteichthyans and that NANOG genes are frequently found as tandem duplicates in sarcopterygians and as a single gene in actinopterygians. Their phylogenetic distribution is thus reminiscent of that recently shown for Class V POU paralogues, another key family of pluripotency-controlling factors. However, while a single ancestral duplication has been reported for the Class V POU family, we suggest that multiple independent duplication events took place during evolution of the NANOG family. These multiple duplications could have contributed to create a layer of complexity in the control of cell competence and pluripotency, which could explain the discrepancies relative to the functional evolution of this important gene family. Further, our analysis does not support the hypothesis that loss of NANOG and emergence of the preformation mode of primordial germ cell specification are causally linked. Our study therefore argues for the need of further functional comparisons between NANOG paralogues, notably regarding the novel duplicates identified in sauropsids and non-eutherian mammals.
Collapse
Affiliation(s)
- Pierluigi Scerbo
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Gabriel V. Markov
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Lyon, France
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Tuebingen, Germany
| | - Céline Vivien
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- WatchFrog S.A., Evry, France
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Barbara Demeneix
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laurent Coen
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Fabrice Girardot
- Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- * E-mail:
| |
Collapse
|
82
|
Li X, Rossen N, Sinn PL, Hornick AL, Steines BR, Karp PH, Ernst SE, Adam RJ, Moninger TO, Levasseur DN, Zabner J. Integrin α6β4 identifies human distal lung epithelial progenitor cells with potential as a cell-based therapy for cystic fibrosis lung disease. PLoS One 2013; 8:e83624. [PMID: 24349537 PMCID: PMC3861522 DOI: 10.1371/journal.pone.0083624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 11/10/2013] [Indexed: 12/21/2022] Open
Abstract
To develop stem/progenitor cell-based therapy for cystic fibrosis (CF) lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6β4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6β4+ cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6β4+ epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6β4- epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6β4+ epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs) serotypes, AAV2 and AAV8, capable of transducing α6β4+ cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6β4+ epithelial cells significantly rescued defects in Cl- transport. Therefore, targeting the α6β4+ epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (XL); (JZ)
| | - Nathan Rossen
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick L. Sinn
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew L. Hornick
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin R. Steines
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Philip H. Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Sarah E. Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas O. Moninger
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Dana N. Levasseur
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (XL); (JZ)
| |
Collapse
|
83
|
Zhang XB. Cellular reprogramming of human peripheral blood cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:264-74. [PMID: 24060839 PMCID: PMC4357833 DOI: 10.1016/j.gpb.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022]
Abstract
Breakthroughs in cell fate conversion have made it possible to generate large quantities of patient-specific cells for regenerative medicine. Due to multiple advantages of peripheral blood cells over fibroblasts from skin biopsy, the use of blood mononuclear cells (MNCs) instead of skin fibroblasts will expedite reprogramming research and broaden the application of reprogramming technology. This review discusses current progress and challenges of generating induced pluripotent stem cells (iPSCs) from peripheral blood MNCs and of in vitro and in vivo conversion of blood cells into cells of therapeutic value, such as mesenchymal stem cells, neural cells and hepatocytes. An optimized design of lentiviral vectors is necessary to achieve high reprogramming efficiency of peripheral blood cells. More recently, non-integrating vectors such as Sendai virus and episomal vectors have been successfully employed in generating integration-free iPSCs and somatic stem cells.
Collapse
Affiliation(s)
- Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|