51
|
Lab MJ, Bhargava A, Wright PT, Gorelik J. The scanning ion conductance microscope for cellular physiology. Am J Physiol Heart Circ Physiol 2013; 304:H1-11. [DOI: 10.1152/ajpheart.00499.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The quest for nonoptical imaging methods that can surmount light diffraction limits resulted in the development of scanning probe microscopes. However, most of the existing methods are not quite suitable for studying biological samples. The scanning ion conductance microscope (SICM) bridges the gap between the resolution capabilities of atomic force microscope and scanning electron microscope and functional capabilities of conventional light microscope. A nanopipette mounted on a three-axis piezo-actuator, scans a sample of interest and ion current is measured between the pipette tip and the sample. The feedback control system always keeps a certain distance between the sample and the pipette so the pipette never touches the sample. At the same time pipette movement is recorded and this generates a three-dimensional topographical image of the sample surface. SICM represents an alternative to conventional high-resolution microscopy, especially in imaging topography of live biological samples. In addition, the nanopipette probe provides a host of added modalities, for example using the same pipette and feedback control for efficient approach and seal with the cell membrane for ion channel recording. SICM can be combined in one instrument with optical and fluorescent methods and allows drawing structure-function correlations. It can also be used for precise mechanical force measurements as well as vehicle to apply pressure with precision. This can be done on living cells and tissues for prolonged periods of time without them loosing viability. The SICM is a multifunctional instrument, and it is maturing rapidly and will open even more possibilities in the near future.
Collapse
Affiliation(s)
- Max J. Lab
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Anamika Bhargava
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Peter T. Wright
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| | - Julia Gorelik
- Imperial College London, National Heart and Lung Institute, Imperial Centre for Experimental and Translational Medicine, London, United Kingdom
| |
Collapse
|
52
|
Differential Effect of Curcumin on the Nanomechanics of Normal and Cancerous Mammalian Epithelial Cells. Cell Biochem Biophys 2012; 65:399-411. [DOI: 10.1007/s12013-012-9443-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
53
|
Bitler A, Dover R, Shai Y. Fractal properties of macrophage membrane studied by AFM. Micron 2012; 43:1239-45. [PMID: 22633851 DOI: 10.1016/j.micron.2012.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/08/2023]
Abstract
Complexity of cell membrane poses difficulties to quantify corresponding morphology changes during cell proliferation and damage. We suggest using fractal dimension of the cell membrane to quantify its complexity and track changes produced by various treatments. Glutaraldehyde fixed mouse RAW 264.7 macrophage membranes were chosen as model system and imaged in PeakForce QNM (quantitative nanomechanics) mode of AFM (atomic force microscope). The morphology of the membranes was characterized by fractal dimension. The parameter was calculated for set of AFM images by three different methods. The same calculations were done for the AFM images of macrophages treated with colchicine, an inhibitor of the microtubule polymerization, and microtubule stabilizing agent taxol. We conclude that fractal dimension can be additional and useful parameter to characterize the cell membrane complexity and track the morphology changes produced by different treatments.
Collapse
Affiliation(s)
- A Bitler
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, P.O.B. 26, Rehovot 76100, Israel.
| | | | | |
Collapse
|
54
|
Dague E, Jauvert E, Laplatine L, Viallet B, Thibault C, Ressier L. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments. NANOTECHNOLOGY 2011; 22:395102. [PMID: 21891839 DOI: 10.1088/0957-4484/22/39/395102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.
Collapse
Affiliation(s)
- E Dague
- CNRS, LAAS, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
55
|
Koehne J, Stevens R, Zink T, Deng Z, Chen H, Weng I, Liu F, Liu G. Using carbon nanotube probes for high-resolution three-dimensional imaging of cells. Ultramicroscopy 2011; 111:1155-62. [DOI: 10.1016/j.ultramic.2011.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
|
56
|
Cross SE, Jin YS, Lu QY, Rao J, Gimzewski JK. Green tea extract selectively targets nanomechanics of live metastatic cancer cells. NANOTECHNOLOGY 2011; 22:215101. [PMID: 21451222 PMCID: PMC3151463 DOI: 10.1088/0957-4484/22/21/215101] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83; Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.
Collapse
Affiliation(s)
- Sarah E. Cross
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Sheng Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Qing-Yi Lu
- Department of Medicine, Center for Human Nutrition, University of California, Los Angeles, CA 90095, USA
| | - JianYu Rao
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
57
|
Zahn JT, Louban I, Jungbauer S, Bissinger M, Kaufmann D, Kemkemer R, Spatz JP. Age-dependent changes in microscale stiffness and mechanoresponses of cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1480-1487. [PMID: 21538869 DOI: 10.1002/smll.201100146] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Indexed: 05/30/2023]
Abstract
Cellular ageing can lead to altered cell mechanical properties and is known to affect many fundamental physiological cell functions. To reveal age-dependent changes in cell mechanical properties and in active mechanoresponses, the stiffness of human fibroblasts from differently aged donors was determined, as well as the cell's reaction to periodic mechanical deformation of the culture substrate, and the two parameters were correlated. A comparison of the average Young's moduli revealed that cells from young donors (<25 years) are considerably stiffer than cells from older donors (>30 years). The reduced stiffness of cells from the older donor group corresponds to the measured decrease of actin in these cells. Remarkably, cells from the older donor group show a significantly faster reorganization response to periodic uniaxial tensile strain than cells from the young donor group. The impact of a reduced amount of actin on cell stiffness and cell reorganization kinetics is further confirmed by experiments where the amount of cellular actin in cells from the young donor group was decreased by transient siRNA knockdown of the actin gene. These cells show a reduced stiffness and enhanced reorganization speed, and in this way mimic the properties and behavior of cells from the older donor group. These results demonstrate that mechanical properties of human fibroblasts depend on the donor's age, which in turn may affect the cells' active responses to mechanical stimulations.
Collapse
Affiliation(s)
- Jasmin T Zahn
- Department of New Materials and Biosystems and ZWE Biomaterials, Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
58
|
Brenner MD, Zhou R, Ha T. Forcing a connection: impacts of single-molecule force spectroscopy on in vivo tension sensing. Biopolymers 2011; 95:332-44. [PMID: 21267988 PMCID: PMC3097292 DOI: 10.1002/bip.21587] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 01/01/2023]
Abstract
Mechanical tension plays a large role in cell development ranging from morphology to gene expression. On the molecular level, the effects of tension can be seen in the dynamic arrangement of membrane proteins as well as the recruitment and activation of intracellular proteins. Forces applied to biopolymers during in vitro force measurements offer greater understanding of the effects of tension on molecules in live cells, and experimental techniques involving test tubes and live cells can often overlap. Indeed, when forces exerted on cellular components can be calibrated ex vivo with force spectroscopy, a powerful tool is available for researchers in probing cellular mechanotransduction on the molecular scale. This review will discuss the techniques used in measuring both cellular traction forces and single-molecule force spectroscopy. Emphasis will be placed on the use of fluorescence reporter systems for the development of in vivo tension sensors that can be used for calibration with single molecule force methods.
Collapse
Affiliation(s)
- Michael D Brenner
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
59
|
Darling EM. Force scanning: a rapid, high-resolution approach for spatial mechanical property mapping. NANOTECHNOLOGY 2011; 22:175707. [PMID: 21411911 PMCID: PMC3150532 DOI: 10.1088/0957-4484/22/17/175707] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Atomic force microscopy (AFM) can be used to co-localize mechanical properties and topographical features through property mapping techniques. The most common approach for testing biological materials at the microscale and nanoscale is force mapping, which involves taking individual force curves at discrete sites across a region of interest. The limitations of force mapping include long testing times and low resolution. While newer AFM methodologies, like modulated scanning and torsional oscillation, circumvent this problem, their adoption for biological materials has been limited. This could be due to their need for specialized software algorithms and/or hardware. The objective of this study is to develop a novel force scanning technique using AFM to rapidly capture high-resolution topographical images of soft biological materials while simultaneously quantifying their mechanical properties. Force scanning is a straightforward methodology applicable to a wide range of materials and testing environments, requiring no special modification to standard AFMs. Essentially, if a contact-mode image can be acquired, then force scanning can be used to produce a spatial modulus map. The current study first validates this technique using agarose gels, comparing results to ones achieved by the standard force mapping approach. Biologically relevant demonstrations are then presented for high-resolution modulus mapping of individual cells, cell-cell interfaces, and articular cartilage tissue.
Collapse
Affiliation(s)
- E M Darling
- Department of Molecular Pharmacology, Physiology and Biotechnology, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
60
|
Lower SK, Yongsunthon R, Casillas-Ituarte NN, Taylor ES, DiBartola AC, Lower BH, Beveridge TJ, Buck AW, Fowler VG. A tactile response in Staphylococcus aureus. Biophys J 2011; 99:2803-11. [PMID: 21044577 DOI: 10.1016/j.bpj.2010.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/16/2010] [Accepted: 08/30/2010] [Indexed: 01/22/2023] Open
Abstract
It is well established that bacteria are able to respond to temporal gradients (e.g., by chemotaxis). However, it is widely held that prokaryotes are too small to sense spatial gradients. This contradicts the common observation that the vast majority of bacteria live on the surface of a solid substrate (e.g., as a biofilm). Herein we report direct experimental evidence that the nonmotile bacterium Staphylococcus aureus possesses a tactile response, or primitive sense of touch, that allows it to respond to spatial gradients. Attached cells recognize their substrate interface and localize adhesins toward that region. Braille-like avidity maps reflect a cell's biochemical sensory response and reveal ultrastructural regions defined by the actual binding activity of specific proteins.
Collapse
|
61
|
Roddy KA, Kelly GM, van Es MH, Murphy P, Prendergast PJ. Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. J Biomech 2011; 44:143-9. [DOI: 10.1016/j.jbiomech.2010.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 11/25/2022]
|
62
|
Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 2010; 98:2848-56. [PMID: 20550897 DOI: 10.1016/j.bpj.2010.03.037] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 11/15/2022] Open
Abstract
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of approximately 0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.
Collapse
Affiliation(s)
- Eric M Darling
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
63
|
Torres FG, Troncoso OP, Piaggio F, Hijar A. Structure-property relationships of a biopolymer network: the eggshell membrane. Acta Biomater 2010; 6:3687-93. [PMID: 20227532 DOI: 10.1016/j.actbio.2010.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/25/2022]
Abstract
The eggshell membrane (ESM) is a biopolymer network that may have potential applications in biomedicine, but it also may reveal important details regarding the behaviour of biopolymer networks. In this paper, we have studied the mechanical and morphological properties of the ESM in order to reveal important structure-property relationships. Light optical microscopy and atomic force microscopy were used to assess the morphology of the ESM. The mechanical properties of membranes and individual fibres were studied by means of tensile tests and nanoindentation tests, respectively. The mechanical behaviour of ESM networks in different environmental conditions showed a non-linear and a linear regime. As for elastomers and other biopolymer systems, the non-linear regime was modelled by the Mooney-Rivlin relation. The Young's modulus in the linear regime of the network was related to the Young's modulus of the individual fibres using Gibson and Ashby analysis for cellular solids. The results of morphological characterization were used to relate the properties of individual fibres to the properties of the whole networks. This enabled us to predict the macroscopical properties of the network based on the properties of the individual fibres. It was found that the ESM networks behaved as both Mooney-Rivlin and Hookean materials in different environmental conditions. This study helps elucidate the properties of the biopolymer networks found in nature and describes important mechanical properties for the use of the ESM as a biomaterial.
Collapse
|
64
|
Influence of medium consumption on cell elasticity. Cytotechnology 2010; 62:257-63. [PMID: 20676759 DOI: 10.1007/s10616-010-9292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 07/22/2010] [Indexed: 10/25/2022] Open
Abstract
The mechanical behavior of a living cell is highly dynamic and constantly adapts to its local environment. Changes in temperature and chemical stimuli, such as pH, may alter the structure of the cell and its mechanical response. Thus, the mechanical properties may serve as an indicator for the cellular state. We applied dielectrophoretic forces to suspension cells by means of two microelectrodes. The resultant stretching was analyzed on consecutive cultivation days with respect to the influence of medium consumption. Systematic experiments clearly showed that the medium consumption affected the viscoelastic properties of the investigated human leukemia cells HL-60. The shift in pH value and the culture medium depletion were identified as potentially responsible for the differing temporal development of the cell deformation. Both factors were investigated separately and a detailed analysis indicated that the changes observed in the cellular stiffness were primarily attributable to nutrient depletion.
Collapse
|
65
|
Isac L, Thoelking G, Schwab A, Oberleithner H, Riethmuller C. Endothelial f-actin depolymerization enables leukocyte transmigration. Anal Bioanal Chem 2010; 399:2351-8. [PMID: 20632161 DOI: 10.1007/s00216-010-3978-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/11/2010] [Accepted: 06/28/2010] [Indexed: 01/13/2023]
Abstract
A demanding task of medicine is to understand and control the immune system. Central players in the cellular immune response are the leukocytes that leave the blood stream for host defense. Endothelial cells limit the emigration rate of leukocytes. Being located between blood and tissues, they permit or deny the passage. The exact mechanism of this process called diapedesis is not solved yet. Leukocytes can principally traverse either between cells (paracellularly) or directly through an individual endothelial cell (transcellularly). The transcellular way has recently gained experimental support, but it is not clear how the endothelial cytoskeleton manages to open and close a transmigratory channel. Atomic force microscopy was used to investigate the endothelial cytoskeleton. In order to directly access the leukocyte-endothelial interaction site, we applied a special protocol ("nanosurgery"). As a result, the endothelial cell turned out to become softer in a confined region strictly underneath the leukocyte. Fluorescence microscopy confirmed a depolymerization of the f-actin strands at the invasion site. Leukocytes dramatically rearrange the endothelial cytoskeleton to form transmigratory channels.
Collapse
Affiliation(s)
- Laura Isac
- Institute of Physiology II, University of Münster, Germany
| | | | | | | | | |
Collapse
|
66
|
Abstract
Biophysical cues encoded in the extracellular matrix (ECM) are increasingly being explored to control cell behavior in tissue engineering applications. Recently, we showed that cell adhesion to microtopographical structures (“micropegs”) can suppress proliferation in a manner that may be blunted by inhibiting cellular contractility, suggesting that this effect is related to altered cell-scaffold mechanotransduction. We now directly investigate this possibility at the microscale through a combination of live-cell imaging, single-cell mechanics methods, and analysis of gene expression. Using time-lapse imaging, we show that when cells break adhesive contacts with micropegs, they form F-actin-filled tethers that extend and then rupture at a maximum, critical length that is greater than trailing-edge tethers observed on topographically flat substrates. This critical tether length depends on myosin activation, with inhibition of Rho-associated kinase abolishing topography-dependent differences in tether length. Using cellular de-adhesion and atomic force microscopy indentation measurements, we show that the micropegs enhance cell-scaffold adhesive interactions without changing whole-cell elasticity. Moreover, micropeg adhesion increases expression of specific mechanotransductive genes, including RhoA GTPase and myosin heavy chain II, and, in myoblasts, the functional marker connexin 43. Together, our data support a model in which microtopographical cues alter the local mechanical microenvironment of cells by modulating adhesion and adhesion-dependent mechanotransductive signaling.
Collapse
|
67
|
FRANCIS L, GONZALEZ D, RYDER T, BAER K, REES M, WHITE J, CONLAN R, WRIGHT C. Optimized sample preparation for high-resolution AFM characterization of fixed human cells. J Microsc 2010; 240:111-21. [DOI: 10.1111/j.1365-2818.2010.03392.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
68
|
Deng Z, Lulevich V, Liu FT, Liu GY. Applications of atomic force microscopy in biophysical chemistry of cells. J Phys Chem B 2010; 114:5971-82. [PMID: 20405961 PMCID: PMC3980964 DOI: 10.1021/jp9114546] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article addresses the question of what information and new insights atomic force microscopy (AFM) provides that are of importance and relevance to cellular biophysical chemistry research. Three enabling aspects of AFM are discussed: (a) visualization of membrane structural features with nanometer resolution, such as microvilli, ridges, porosomes, lamellapodia, and filopodia; (b) revealing structural evolution associated with cellular signaling pathways by time-dependent and high-resolution imaging of the cellular membrane in correlation with intracellular components from simultaneous optical microscopy; and (c) qualitative and quantitative measurements of single cell mechanics by acquisition of force-deformation profiles and extraction of Young's moduli for the membrane as well as cytoskeleton. A future prospective of AFM is also presented.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Valentin Lulevich
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Fu-tong Liu
- Department of Dermatology, University of California at Davis, Sacramento, California 95817
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, Davis, California 95616
| |
Collapse
|
69
|
Wu X, Sun Z, Foskett A, Trzeciakowski JP, Meininger GA, Muthuchamy M. Cardiomyocyte contractile status is associated with differences in fibronectin and integrin interactions. Am J Physiol Heart Circ Physiol 2010; 298:H2071-81. [PMID: 20382852 DOI: 10.1152/ajpheart.01156.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Integrins link the extracellular matrix (ECM) with the intracellular cytoskeleton and other cell adhesion-associated signaling proteins to function as mechanotransducers. However, direct quantitative measurements of the cardiomyocyte mechanical state and its relationship to the interactions between specific ECM proteins and integrins are lacking. The purpose of this study was to characterize the interactions between the ECM protein fibronectin (FN) and integrins in cardiomyocytes and to test the hypothesis that these interactions would vary during contraction and relaxation states in cardiomyocytes. Using atomic force microscopy, we quantified the unbinding force (adhesion force) and adhesion probability between integrins and FN and correlated these measurements with the contractile state as indexed by cell stiffness on freshly isolated mouse cardiomyocytes. Experiments were performed in normal physiological (control), high-K(+) (tonically contracted), or low-Ca(2+) (fully relaxed) solutions. Under control conditions, the initial peak of adhesion force between FN and myocyte alpha(3)beta(1)- and/or alpha(5)beta(1)-integrins was 39.6 +/- 1.3 pN. The binding specificity between FN and alpha(3)beta(1)- and alpha(5)beta(1)-integrins was verified by using monoclonal antibodies against alpha(3)-, alpha(5)-, alpha(3) + alpha(5)-, or beta(1)-integrin subunits, which inhibited binding by 48%, 65%, 70%, or 75%, respectively. Cytochalasin D or 2,3-butanedione monoxime (BDM), to disrupt the actin cytoskeleton or block myofilament function, respectively, significantly decreased the cell stiffness; however, the adhesion force and binding probability were not altered. Tonic contraction with high-K(+) solution increased total cell adhesion (1.2-fold) and cell stiffness (27.5-fold) compared with fully relaxed cells with low-Ca(2+) solution. However, it could be partially prevented by high-K(+) bath solution containing BDM, which suppresses contraction by inhibiting the actin-myosin interactions. Thus, our results demonstrate that integrin binding to FN is modulated by the contractile state of cardiac myocytes.
Collapse
Affiliation(s)
- Xin Wu
- Dept. of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
70
|
Kirmizis D, Logothetidis S. Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomedicine 2010; 5:137-45. [PMID: 20463929 PMCID: PMC2865008 DOI: 10.2147/ijn.s5787] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 11/23/2022] Open
Abstract
Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties, providing thus an indirect indicator of the structure and function of the underlying cytoskeleton and cell organelles. AFM measurements have boosted our understanding of cell mechanics in normal and diseased states and provide future potential in the study of disease pathophysiology and in the establishment of novel diagnostic and treatment options.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, Greece.
| | | |
Collapse
|
71
|
Sen S, Kumar S. Combining mechanical and optical approaches to dissect cellular mechanobiology. J Biomech 2010; 43:45-54. [PMID: 19819457 PMCID: PMC2813341 DOI: 10.1016/j.jbiomech.2009.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 01/27/2023]
Abstract
Mechanical force modulates a wide array of cell physiological processes. Cells sense and respond to mechanical stimuli using a hierarchy of structural complexes spanning multiple length scales, including force-sensitive molecules and cytoskeletal networks. Understanding mechanotransduction, i.e., the process by which cells convert mechanical inputs into biochemical signals, has required the development of novel biophysical tools that allow for probing of cellular and subcellular components at requisite time, length, and force scales and technologies that track the spatio-temporal dynamics of relevant biomolecules. In this review, we begin by discussing the underlying principles and recent applications of atomic force microscopy, magnetic twisting cytometry, and traction force microscopy, three tools that have been widely used for measuring the mechanical properties of cells and for probing the molecular basis of cellular mechanotransduction. We then discuss how such tools can be combined with advanced fluorescence methods for imaging biochemical processes in living cells in the context of three specific problem spaces. We first focus on fluorescence resonance energy transfer, which has enabled imaging of intra- and inter-molecular interactions and enzymatic activity in real time based on conformational changes in sensor molecules. Next, we examine the use of fluorescence methods to probe force-dependent dynamics of focal adhesion proteins. Finally, we discuss the use of calcium ratiometric signaling to track fast mechanotransductive signaling dynamics. Together, these studies demonstrate how single-cell biomechanical tools can be effectively combined with molecular imaging technologies for elucidating mechanotransduction processes and identifying mechanosensitive proteins.
Collapse
Affiliation(s)
- Shamik Sen
- Department of Bioengineering, 274A Stanley Hall #1762, University of California, Berkeley, CA 94720-1762, USA
| | | |
Collapse
|
72
|
Kang I, Wang Q, Eppell SJ, Marchant RE, Doerschuk CM. Effect of neutrophil adhesion on the mechanical properties of lung microvascular endothelial cells. Am J Respir Cell Mol Biol 2009; 43:591-8. [PMID: 20023207 DOI: 10.1165/rcmb.2006-0381oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil adhesion to pulmonary microvascular endothelial cells (ECs) initiates intracellular signaling, resulting in remodeling of F-actin cytoskeletal structure of ECs. The present study determined the mechanical properties of ECs and the changes induced by neutrophil adhesion by atomic force microscopy. The elastic moduli of ECs were compared before neutrophils were present, as soon as neutrophil adhesion was detected, and 1 minute later. ECs that were adjacent to those with adherent neutrophils were also evaluated. Neutrophil adhesion induced a decrease in the elastic moduli in the 6.25-μm rim of ECs surrounding adherent neutrophils as soon as firmly adherent neutrophils were detected, which was transient and lasted less than 1 minute. Adjacent ECs developed an increase in stiffness that was significant in the central regions of these cells. Intercellular adhesion molecule-1 crosslinking did not induce significant changes in the elastic modulus of ECs in either region, suggesting that crosslinking intercellular adhesion molecule-1 is not sufficient to induce the observed changes. Our results demonstrate that neutrophil adhesion induces regional changes in the stiffness of ECs.
Collapse
Affiliation(s)
- Inkyung Kang
- Department of Biomedical Engineering, and Division of Integrative Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
73
|
Ziebarth NM, Rico F, Moy VT. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-03535-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
74
|
Kaul-Ghanekar R, Singh S, Mamgain H, Jalota-Badhwar A, Paknikar KM, Chattopadhyay S. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study. BMC Cancer 2009; 9:350. [PMID: 19799771 PMCID: PMC2765988 DOI: 10.1186/1471-2407-9-350] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 10/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation marker between cancerous and non-cancerous cells.
Collapse
|
75
|
Roduit C, Sekatski S, Dietler G, Catsicas S, Lafont F, Kasas S. Stiffness tomography by atomic force microscopy. Biophys J 2009; 97:674-7. [PMID: 19619482 DOI: 10.1016/j.bpj.2009.05.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 04/21/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022] Open
Abstract
The atomic force microscope is a convenient tool to probe living samples at the nanometric scale. Among its numerous capabilities, the instrument can be operated as a nano-indenter to gather information about the mechanical properties of the sample. In this operating mode, the deformation of the cantilever is displayed as a function of the indentation depth of the tip into the sample. Fitting this curve with different theoretical models permits us to estimate the Young's modulus of the sample at the indentation spot. We describe what to our knowledge is a new technique to process these curves to distinguish structures of different stiffness buried into the bulk of the sample. The working principle of this new imaging technique has been verified by finite element models and successfully applied to living cells.
Collapse
Affiliation(s)
- Charles Roduit
- Institut de Physique des Systèmes Biologiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
76
|
Xiong Y, Lee AC, Suter DM, Lee GU. Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys J 2009; 96:5060-72. [PMID: 19527666 DOI: 10.1016/j.bpj.2009.03.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 03/01/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022] Open
Abstract
Neuronal growth cones are motile structures located at the end of axons that translate extracellular guidance information into directional movements. Despite the important role of growth cones in neuronal development and regeneration, relatively little is known about the topography and mechanical properties of distinct subcellular growth cone regions under live conditions. In this study, we used the AFM to study the P domain, T zone, and C domain of live Aplysia growth cones. The average height of these regions was calculated from contact mode AFM images to be 183 +/- 33, 690 +/- 274, and 1322 +/- 164 nm, respectively. These findings are consistent with data derived from dynamic mode images of live and contact mode images of fixed growth cones. Nano-indentation measurements indicate that the elastic moduli of the C domain and T zone ruffling region ranged between 3-7 and 7-23 kPa, respectively. The range of the measured elastic modulus of the P domain was 10-40 kPa. High resolution images of the P domain suggest its relatively high elastic modulus results from a dense meshwork of actin filaments in lamellipodia and from actin bundles in the filopodia. The increased mechanical stiffness of the P and T domains is likely important to support and transduce tension that develops during growth cone steering.
Collapse
Affiliation(s)
- Ying Xiong
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
77
|
Miller WJ, Leventhal I, Scarsella D, Haydon PG, Janmey P, Meaney DF. Mechanically induced reactive gliosis causes ATP-mediated alterations in astrocyte stiffness. J Neurotrauma 2009; 26:789-97. [PMID: 19331521 DOI: 10.1089/neu.2008-0727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reactive gliosis is a process triggered in astrocytes after traumatic injury, yet the exact consequences of gliosis on cellular survival and neural regenerative processes in the injured brain remain only partly understood. One recently discovered feature influencing neuronal growth and differentiation is the physical stiffness of the environment surrounding pioneering neurites. In this study, the mechanical properties of cultured cortical astrocytes are measured following a mechanical stretch injury that induces reactive gliosis. In mechanically injured cultures, there was a significant increase in glial fibrillary acidic protein (GFAP) immunoreactivity 24 h following a rapid, transient 15% strain. In these same cultures, astrocytes in the surrounding region--the "mechanical penumbra"--also exhibited increased GFAP immunoreactivity compared to naive cultures. Correlated with these changes in GFAP was a general softening of the non-nuclear regions of the astrocytes, both in the injured and penumbra cells, as measured by atomic force microscopy (AFM). The elastic modulus in naive cultures was observed to be 57.7+/-5.8 kPa in non-nuclear regions of naive cultures, while 24 h after injury the modulus was observed to be 26.4+/-4.9 kPa in the same region of injured cells. In the penumbra of injured cultures, the modulus was 23.7+/-3.6 kPa. Alterations in astrocyte stiffness in the area of injury and mechanical penumbra were ameliorated by pretreating cultures with a nonselective P2 receptor antagonist (PPADS). Since neuronal cells generally prefer softer substrates for growth and neurite extension, these findings may indicate that the mechanical characteristics of reactive astrocytes are favorable for neuronal recovery after traumatic brain injury.
Collapse
Affiliation(s)
- William J Miller
- Departments of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
78
|
Hu M, Wang J, Zhao H, Dong S, Cai J. Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis. J Biomech 2009; 42:1513-1519. [PMID: 19477449 DOI: 10.1016/j.jbiomech.2009.03.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 03/04/2009] [Accepted: 03/24/2009] [Indexed: 11/17/2022]
Abstract
The ultrastructural and mechanical properties of single resting, activated and apoptosis lymphocyte have been investigated by atomic force microscopy (AFM). Using topographic imaging, we showed that the surface of the resting lymphocyte is smooth, while lymphocyte activation and apoptosis are often accompanied by changes in cell morphology. The apoptosis lymphocyte is rougher than those of the two other morphotypes, and coated with many big particles. Using spatially resolved force-distance curves, we found that the valve of the activated lymphocyte is about two to three times stiffer (Young's modulus of approximately 20 kPa) than those of the two other morphotypes (5-11 kPa). These results can improve our understanding of the mechanical properties of cells during growth and differentiation.
Collapse
Affiliation(s)
- Mingqian Hu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiongkun Wang
- Institution for Tissue Transplantation and Immunology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongxia Zhao
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shisong Dong
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
79
|
Cerf A, Cau JC, Vieu C, Dague E. Nanomechanical properties of dead or alive single-patterned bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5731-6. [PMID: 19334742 DOI: 10.1021/la9004642] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The main goal of this paper is to probe mechanical properties of living and dead bacteria via atomic force microscopy (AFM) indentation experimentations. Nevertheless, the prerequisite for bioAFM study is the adhesion of the biological sample on a surface. Although AFM has now been used in microbiology for 20 years, the immobilization of micro-organisms is still challenging. Immobilizing a single cell, without the need for chemical fixation has therefore constituted our second purpose. Highly ordered arrays of single living bacteria were generated over the millimeter scale by selective adsorption of bacteria onto micrometric chemical patterns. The chemically engineered template surfaces were prepared with a microcontact printing process, and different functionalizations of the patterns by incubation were investigated. Thanks to this original immobilization strategy, the Young moduli of the same cell were measured using force spectroscopy before and after heating (45 degrees C, 20 min). The cells with a damaged membrane (after heating) present a Young modulus twice as high as that of healthy bacteria.
Collapse
Affiliation(s)
- Aline Cerf
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse, France.
| | | | | | | |
Collapse
|
80
|
Miller WJ, Leventhal I, Scarsella D, Haydon PG, Janmey P, Meaney DF. Mechanically Induced Reactive Gliosis Causes ATP-Mediated Alterations in Astrocyte Stiffness. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0727] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- William J. Miller
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ilya Leventhal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Scarsella
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University, Boston, Massachusetts
| | - Paul Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
81
|
Callies C, Schön P, Liashkovich I, Stock C, Kusche-Vihrog K, Fels J, Sträter AS, Oberleithner H. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy. NANOTECHNOLOGY 2009; 20:175104. [PMID: 19420584 DOI: 10.1088/0957-4484/20/17/175104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The degree of mechanical stiffness of vascular endothelial cells determines the endogenous production of the vasodilating gas nitric oxide (NO). However, the underlying mechanisms are not yet understood. Experiments on vascular endothelial cells suggest that the electrical plasma membrane potential is involved in this regulatory process. To test this hypothesis we developed a technique that simultaneously measures the electrical membrane potential and stiffness of vascular endothelial cells (GM7373 cell line derived from bovine aortic endothelium) under continuous perfusion with physiological electrolyte solution. The cellular stiffness was determined by nano-indentation using an atomic force microscope (AFM) while the electrical membrane potential was measured with bis-oxonol, a voltage-reporting fluorescent dye. These two methods were combined using an AFM attached to an epifluorescence microscope. The electrical membrane potential and mechanical stiffness of the same cell were continuously recorded for a time span of 5 min. Fast fluctuations (in the range of seconds) of both the electrical membrane potential and mechanical stiffness could be observed that were not related to each other. In contrast, slow cell depolarizations (in the range of minutes) were paralleled by significant increases in mechanical stiffness. In conclusion, using the combined AFM-fluorescence technique we monitored for the first time simultaneously the electrical plasma membrane potential and mechanical stiffness in a living cell. Vascular endothelial cells exhibit oscillatory non-synchronized waves of electrical potential and mechanical stiffness. The sustained membrane depolarization, however, is paralleled by a concomitant increase of cell stiffness. The described method is applicable for any fluorophore, which opens new perspectives in biomedical research.
Collapse
Affiliation(s)
- Chiara Callies
- Institute of Physiology II, University of Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Campillo CC, Schroder AP, Marques CM, Pépin-Donat B. Composite gel-filled giant vesicles: Membrane homogeneity and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Yokokawa M, Takeyasu K, Yoshimura SH. Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope. J Microsc 2008; 232:82-90. [PMID: 19017204 DOI: 10.1111/j.1365-2818.2008.02071.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Atomic force microscopy has been used to visualize nano-scale structures of various cellular components and to characterize mechanical properties of biomolecules. In spite of its ability to measure non-fixed samples in liquid, the application of AFM for living cell manipulation has been hampered by the lack of knowledge of the mechanical properties of living cells. In this study, we successfully combine AFM imaging and force measurement to characterize the mechanical properties of the plasma membrane and the nuclear envelope of living HeLa cells in a culture medium. We examine cantilevers with different physical properties (spring constant, tip angle and length) to find out the one suitable for living cell imaging and manipulation. Our results of elasticity measurement revealed that both the plasma membrane and the nuclear envelope are soft enough to absorb a large deformation by the AFM probe. The penetrations of the plasma membrane and the nuclear envelope were possible when the probe indents the cell membranes far down close to a hard glass surface. These results provide useful information to the development of single-cell manipulation techniques.
Collapse
Affiliation(s)
- M Yokokawa
- Laboratory of Plasma Membrane and Nuclear Signaling, Kyoto University Graduate School of Biostudies, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
84
|
Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0037-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
85
|
Dietz C, Zerson M, Riesch C, Franke M, Magerle R. Surface Properties of Elastomeric Polypropylenes Studied with Atomic Force Microscopy. Macromolecules 2008. [DOI: 10.1021/ma801236p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Dietz
- Chemische Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09107 Chemnitz
| | - M. Zerson
- Chemische Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09107 Chemnitz
| | - C. Riesch
- Chemische Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09107 Chemnitz
| | - M. Franke
- Chemische Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09107 Chemnitz
| | - R. Magerle
- Chemische Physik, Technische Universität Chemnitz, Reichenhainer Str. 70, 09107 Chemnitz
| |
Collapse
|
86
|
Li Q, Lee G, Ong C, Lim C. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 2008; 374:609-13. [DOI: 10.1016/j.bbrc.2008.07.078] [Citation(s) in RCA: 663] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/28/2022]
|
87
|
Cross SE, Jin YS, Tondre J, Wong R, Rao J, Gimzewski JK. AFM-based analysis of human metastatic cancer cells. NANOTECHNOLOGY 2008; 19:384003. [PMID: 21832563 DOI: 10.1088/0957-4484/19/38/384003] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently biomechanics of cancer cells, in particular stiffness or elasticity, has been identified as an important factor relating to cancer cell function, adherence, motility, transformation and invasion. We report on the nanomechanical responses of metastatic cancer cells and benign mesothelial cells taken from human body cavity fluids using atomic force microscopy. Following our initial study (Cross et al 2007 Nat. Nanotechnol. 2 780-3), we report on the biophysical properties of patient-derived effusion cells and address the influence of cell morphology on measured cell stiffness. Using a cytocentrifugation method, which yields morphologically indistinguishable cells that can be prepared in 1 min and avoids any possible artifacts due to 12 h ex vivo culture, we find that metastatic tumor cells are more than 80% softer than benign cells with a distribution over six times narrower than that of normal cells. Consistent with our previous study, which yielded distinguishable cell populations based on ex vivo growth and morphological characteristics, our results show it is unlikely that morphology alone is sufficient to explain the difference in elastic moduli for these two cell types. Moreover, analysis of non-specific cell adhesion inherent to tumor and normal cells collected from patients show surface adhesion of tumor cells is ∼33% less adhesive compared to that of normal cells. Our findings indicate that biomechanical-based functional analysis may provide an additional platform for cytological evaluation and diagnosis of cancer in the future.
Collapse
Affiliation(s)
- Sarah E Cross
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
88
|
Coldren FM, Foteinopoulou K, Carroll DL, Laso M. Modeling the effect of cell-associated polymeric fluid layers on force spectroscopy measurements. Part I: model development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9575-9587. [PMID: 18666790 DOI: 10.1021/la800943y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mechanical response, the force-indentation relationship, in normal force spectroscopy measurements carried out on individual polysaccharide encapsulated bacteria is modeled using three increasingly refined approaches that consider the elastic response of the bacterium and cantilever in combination with a fluid (hydrodynamic) model for the polysaccharide layer. For the hydrodynamic description of the polysaccharide layer, several increasingly realistic models are described in detail, together with numerical solution techniques. These models range from one-dimensional, Newtonian, to two-dimensional, axisymmetric, fully viscoelastic (Phan-Thien/Tanner). In all cases, the models rigorously consider the time-dependent rheological-mechanical coupling between the elastic and fluid viscoelastic physical components of the experimental setup. Effects of inherent variability in geometrical and material properties of the bacterium and polysaccharide layer on the measurable response are quantified. A parametric investigation of the force-indentation relationship highlights the importance of accurate knowledge of the rheology of the extracellular polysaccharides. We also draw conclusions about the design and evaluation of force spectroscopy experiments on single encapsulated bacteria. Supported by model calculations, we also point the way to methods of in vivo rheological characterization of the extracellular polysaccharide as a preferable alternative to characterization after its removal from the native environment.
Collapse
Affiliation(s)
- Faith M Coldren
- Center for Nanotechnology and Molecular Materials and Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | | | | | |
Collapse
|
89
|
Kunda P, Pelling AE, Liu T, Baum B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol 2008; 18:91-101. [PMID: 18207738 DOI: 10.1016/j.cub.2007.12.051] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/20/2007] [Accepted: 12/09/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND During mitosis, animal cells undergo a complex sequence of morphological changes, from retraction of the cell margin and cell rounding at the onset of mitosis to axial elongation and cytokinesis at mitotic exit. The molecular mechanisms driving the early changes in mitotic cell form and their functional significance, however, remain unknown. Here we identify Moesin as a key player. Moesin is the sole Drosophila member of the ERM proteins, which, once activated via phosphorylation, crosslink actin filaments to the cytoplasmic tails of plasma membrane proteins. RESULTS We find that the Moesin is activated upon entry into mitosis, is necessary for the accompanying increase in cortical rigidity and cell rounding and, when artificially activated, is sufficient to induce both processes in interphase cells, independently of Myosin II. This phospho-Moesin-induced increase in cortical rigidity plays an important role during mitotic progression, because spindle morphogenesis and chromosome alignment are compromised in Moesin RNAi cells. Significantly, however, the spindle defects observed in soft metaphase cells can be rescued by the re-establishment of cortical tension from outside the cell. CONCLUSIONS These data show that changes in the activity and localization of Moesin that accompany mitotic progression contribute to the establishment of a stiff, rounded cortex at metaphase and to polar relaxation at anaphase and reveal the importance of this Moesin-induced increase in cortical rigidity for spindle morphogenesis and orderly chromosome segregation. In doing so, they help to explain why dynamic changes in cortical architecture are a universal feature of mitosis in animal cells.
Collapse
Affiliation(s)
- Patricia Kunda
- MRC Laboratory of Molecular Cell Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
90
|
Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 2008; 457:551-9. [DOI: 10.1007/s00424-008-0524-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/22/2008] [Indexed: 01/19/2023]
|
91
|
Sirghi L, Ponti J, Broggi F, Rossi F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:935-45. [DOI: 10.1007/s00249-008-0311-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/10/2008] [Indexed: 01/30/2023]
|
92
|
Lin DC, Horkay F. Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. SOFT MATTER 2008; 4:669-682. [PMID: 32907170 DOI: 10.1039/b714637j] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We survey recent progress in the application of nanoindentation to characterize the local mechanical properties of polymer gels and biological tissues. We review the theories, analytical models based thereon, and data processing techniques commonly used to determine elastic properties of these classes of materials by instrumented nanoindentation. Examples from the testing of synthetic and biological gels are used to illustrate the limitations of existing theories and approaches. Emphasis is placed on the need for contact mechanics models that more accurately represent the large-strain behaviour of soft matter.
Collapse
Affiliation(s)
- David C Lin
- Laboratory of Integrative and Medical Biophysics, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Ferenc Horkay
- Laboratory of Integrative and Medical Biophysics, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
93
|
Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456:13-27. [DOI: 10.1007/s00424-008-0448-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/27/2022]
|
94
|
Shahin V, Barrera NP. Providing Unique Insight into Cell Biology via Atomic Force Microscopy. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:227-52. [DOI: 10.1016/s0074-7696(07)65006-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Riethmuller C, Nasdala I, Vestweber D. Nano-surgery at the leukocyte-endothelial docking site. Pflugers Arch 2007; 456:71-81. [PMID: 18094992 PMCID: PMC2756369 DOI: 10.1007/s00424-007-0412-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/20/2007] [Indexed: 01/13/2023]
Abstract
The endothelium has an important role in controlling the extravasation of leukocytes from blood to tissues. Endothelial permeability for leukocytes is influenced by transmembrane proteins that control inter-endothelial adhesion, as well as steps of the leukocyte transmigration process. In a cascade consisting of leukocyte rolling, adhesion, firm adhesion, and diapedesis, a new step was recently introduced, the formation of a docking structure or “transmigratory cup.” Both terms describe a structure formed by endothelial pseudopods embracing the leukocyte. It has been found associated with both para- and transcellular diapedesis. The aim of this study was to characterize the leukocyte–endothelial contact area in terms of morphology and cell mechanics to investigate how the endothelial cytoskeleton reorganizes to engulf the leukocyte. We used atomic force microscopy (AFM) to selectively remove the leukocyte and then analyze the underlying cell at this specific spot. Firmly attached leukocytes could be removed by AFM nanomanipulation. In few cases, this exposed 8–12 μm wide and 1 μm deep footprints, representing the cup-like docking structure. Some of them were located near endothelial cell junctions. The interaction area did not exhibit significant alterations neither morphologically nor mechanically as compared to the surrounding cell surface. In conclusion, the endothelial invagination is formed without a net depolymerization of f-actin, as endothelial softening at the site of adhesion does not seem to be involved. Moreover, there were no cases of phagocytotic engulfment, but instead the formation of a transmigratory channel could be observed.
Collapse
Affiliation(s)
- Christoph Riethmuller
- Institute of Physiology II, University of Münster, Robert-Koch-Strasse 27 b, 48149 Münster, Germany.
| | | | | |
Collapse
|
96
|
An historical perspective on cell mechanics. Pflugers Arch 2007; 456:3-12. [DOI: 10.1007/s00424-007-0405-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
97
|
Ludwig T, Kirmse R, Poole K, Schwarz US. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 2007; 456:29-49. [PMID: 18058123 DOI: 10.1007/s00424-007-0398-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 12/20/2022]
Abstract
The function of cells is strongly determined by the properties of their extracellular microenvironment. Biophysical parameters like environmental stiffness and fiber orientation in the surrounding matrix are important determinants of cell adhesion and migration. Processes like tissue maintenance, wound repair, cancer cell invasion, and morphogenesis depend critically on the ability of cells to actively sense and remodel their surroundings. Pericellular proteolytic activity and adaptation of migration tactics to the environment are strategies to achieve this aim. Little is known about the distinct regulatory mechanisms that are involved in these processes. The system's critical biophysical and biochemical determinants are well accessible by atomic force microscopy (AFM), a unique tool for functional, nanoscale probing and morphometric, high-resolution imaging of processes in live cells. This review highlights common principles of tissue remodeling and focuses on application examples of different AFM techniques, for example elasticity mapping, the combination of AFM and fluorescence microscopy, the morphometric imaging of proteolytic activity, and force spectroscopy applications of single molecules or individual cells. To achieve a more complete understanding of the processes underlying the interaction of cells with their environments, the combination of AFM force spectroscopy experiments will be essential.
Collapse
Affiliation(s)
- Thomas Ludwig
- Group Microenvironment of Tumor Cell Invasion, German Cancer Research Center, BIOQUANT-Zentrum; BQ 0009 NWG Ludwig, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
98
|
Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. NATURE NANOTECHNOLOGY 2007; 2:780-3. [PMID: 18654431 DOI: 10.1038/nnano.2007.388] [Citation(s) in RCA: 1213] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 10/19/2007] [Indexed: 05/20/2023]
Abstract
Change in cell stiffness is a new characteristic of cancer cells that affects the way they spread. Despite several studies on architectural changes in cultured cell lines, no ex vivo mechanical analyses of cancer cells obtained from patients have been reported. Using atomic force microscopy, we report the stiffness of live metastatic cancer cells taken from the body (pleural) fluids of patients with suspected lung, breast and pancreas cancer. Within the same sample, we find that the cell stiffness of metastatic cancer cells is more than 70% softer, with a standard deviation over five times narrower, than the benign cells that line the body cavity. Different cancer types were found to display a common stiffness. Our work shows that mechanical analysis can distinguish cancerous cells from normal ones even when they show similar shapes. These results show that nanomechanical analysis correlates well with immunohistochemical testing currently used for detecting cancer.
Collapse
|
99
|
Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. Atomic force microscopy probing of cell elasticity. Micron 2007; 38:824-33. [PMID: 17709250 DOI: 10.1016/j.micron.2007.06.011] [Citation(s) in RCA: 456] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Atomic force microscopy (AFM) has recently provided the great progress in the study of micro- and nanostructures including living cells and cell organelles. Modern AFM techniques allow solving a number of problems of cell biomechanics due to simultaneous evaluation of the local mechanical properties and the topography of the living cells at a high spatial resolution and force sensitivity. Particularly, force spectroscopy is used for mapping mechanical properties of a single cell that provides information on cellular structures including cytoskeleton structure. This entry is aimed to review the recent AFM applications for the study of dynamics and mechanical properties of intact cells associated with different cell events such as locomotion, differentiation and aging, physiological activation and electromotility, as well as cell pathology. Local mechanical characteristics of different cell types including muscle cells, endothelial and epithelial cells, neurons and glial cells, fibroblasts and osteoblasts, blood cells and sensory cells are analyzed in this paper.
Collapse
|
100
|
Lenormand G, Bursac P, Butler JP, Fredberg JJ. Out-of-equilibrium dynamics in the cytoskeleton of the living cell. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:041901. [PMID: 17995020 DOI: 10.1103/physreve.76.041901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/09/2007] [Indexed: 05/05/2023]
Abstract
We report here measurements of rheological properties of the human airway smooth muscle cell using forced nanoscale motions of Arg-Gly-Asp RGD-coated microbeads tightly bound to the cytoskeleton. With changes of forcing amplitude, the storage modulus showed small but systematic nonlinearities, especially after treatment with a contractile agonist. In a dose-dependent manner, a large oscillatory shear applied from a few seconds up to 400 s caused the cytoskeleton matrix to soften, a behavior comparable to physical rejuvenation observed in certain inert soft materials; the stiffness remained constant for as long as the large oscillatory shear was maintained, but suddenly fell with shear cessation. Stiffness then followed a slow scale-free recovery, a phenomenon comparable to physical aging. However, acetylated low-density lipoprotein acLDL-coated microbeads, which connect mainly to scavenger receptors, did not show similar out-of-equilibrium behaviors. Taken together, these data demonstrate in the cytoskeleton of the living cell behaviors with all the same signatures as that of soft inert condensed systems. This unexpected intersection of condensed matter physics and cytoskeletal biology suggests that trapping, intermittency, and approach to kinetic arrest represent central mesoscale features linking underlying molecular events to integrative cellular functions.
Collapse
Affiliation(s)
- Guillaume Lenormand
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|