51
|
Abstract
GLUT8 is a class III sugar transporter predominantly expressed in testis and brain. In contrast to the class I and class II transporters, hydrophobicity plots predict a short extracellular loop between transmembrane domain (TM)1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. In vitro translated GLUT8 migrates as a 35-kDa protein that is glycosylated in the presence of microsomal membranes. In heterologous expression systems, glucose transport activity (Km of 2 mM) was inhibited by fructose and galactose. The transporter carries an NH2-terminal endosomal/lysosomal targeting motif ([DE]XXXL[LI]). Accordingly, constitutive GLUT8 has been found to be associated with endosomes and lysosomes but also with membranes of the endoplasmic reticulum. A similar distribution was detected after overexpression of wild-type or tagged GLUT8 in different cell systems. In these cells, none of the conventional signals tested induced a translocation of GLUT8 to the plasma membrane. Therefore, GLUT8 appears to catalyze transport of sugars or sugar derivatives through intracellular membranes. Slc2a8 knockout mice were viable, developed normally, and showed mild alterations in brain (increased proliferation of neuronal cells in dentate gyrus of the hippocampus, hyperactivity), heart (impaired transmission of electrical wave through the atrium), and sperm cells (reduced number of motile sperm cells associated with reduced mitochondrial membrane potential and ATP levels in sperm). The links between molecular function, cellular localization and phenotype of the knockout mouse is unclear and remains to be determined.
Collapse
Affiliation(s)
- Stefan Schmidt
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | | | | |
Collapse
|
52
|
Sperm from hyh mice carrying a point mutation in alphaSNAP have a defect in acrosome reaction. PLoS One 2009; 4:e4963. [PMID: 19305511 PMCID: PMC2655651 DOI: 10.1371/journal.pone.0004963] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/02/2009] [Indexed: 01/09/2023] Open
Abstract
Hydrocephalus with hop gait (hyh) is a recessive inheritable disease that arose spontaneously in a mouse strain. A missense mutation in the Napa gene that results in the substitution of a methionine for isoleucine at position 105 (M105I) of αSNAP has been detected in these animals. αSNAP is a ubiquitous protein that plays a key role in membrane fusion and exocytosis. In this study, we found that male hyh mice with a mild phenotype produced morphologically normal and motile sperm, but had a strongly reduced fertility. When stimulated with progesterone or A23187 (a calcium ionophore), sperm from these animals had a defective acrosome reaction. It has been reported that the M105I mutation affects the expression but not the function of the protein. Consistent with an hypomorphic phenotype, the testes and epididymides of hyh mice had low amounts of the mutated protein. In contrast, sperm had αSNAP levels indistinguishable from those found in wild type cells, suggesting that the mutated protein is not fully functional for acrosomal exocytosis. Corroborating this possibility, addition of recombinant wild type αSNAP rescued exocytosis in streptolysin O-permeabilized sperm, while the mutant protein was ineffective. Moreover, addition of recombinant αSNAP. M105I inhibited acrosomal exocytosis in permeabilized human and wild type mouse sperm. We conclude that the M105I mutation affects the expression and also the function of αSNAP, and that a fully functional αSNAP is necessary for acrosomal exocytosis, a key event in fertilization.
Collapse
|
53
|
Valbuena G, Hernández F, Madrid JF, Sáez FJ. Acrosome biosynthesis in spermatocytes and spermatids revealed by HPA lectin cytochemistry. Anat Rec (Hoboken) 2008; 291:1097-105. [PMID: 18521902 DOI: 10.1002/ar.20721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The origin of the acrosome is controversial, because of both its lysosomal nature and at the moment of its appearance, which seems to be species-specific. Considering the amazing organization shown by the acrosome of some urodele amphibians, HPA-colloidal gold cytochemistry was used to analyze the biogenesis of the acrosome in the urodele Pleurodeles waltl at electron microscopy level. The results showed that HPA-labeling is useful to label the acrosome and its precursor vesicles and, consequently, HPA-histochemistry could be used as a marker of acrosomal content. Labeling of the Golgi apparatus and precursor vesicles was seen in primary spermatocytes and round (stage I) spermatids, thus contributing solid evidence for the beginning of acrosome biogenesis before meiosis. In both primary spermatocytes and round spermatids, an enigmatic vesicle, probably related to the biosynthesis of the neck piece or the tail, was also labeled. Labeling in elongating spermatids (stage II-IV), showed a homogeneous distribution of colloidal gold particles in the acrosomal cap, but the perforatorium was not positive to the lectin. However, in mature (stage V-VI) spermatids, a regional distribution of labeling in the acrosome was seen, with the apical knob showing a stronger labeling than the lateral barb, and the lateral barb showing a stronger labeling than the principal piece of the acrosomal cap. This regional distribution of the labeling suggests that the acrosome develops several domains with different glycoconjugate compositions.
Collapse
Affiliation(s)
- Galder Valbuena
- University of the Basque Country, Department of Cell Biology and Histology, School of Medicine and Dentistry, Leioa (Vizcaya), Spain
| | | | | | | |
Collapse
|
54
|
Mountjoy JR, Xu W, McLeod D, Hyndman D, Oko R. RAB2A: A Major Subacrosomal Protein of Bovine Spermatozoa Implicated in Acrosomal Biogenesis1. Biol Reprod 2008; 79:223-32. [DOI: 10.1095/biolreprod.107.065060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
55
|
Inoue T, Kon T, Ohkura R, Yamakawa H, Ohara O, Yokota J, Sutoh K. BREK/LMTK2 is a myosin VI-binding protein involved in endosomal membrane trafficking. Genes Cells 2008; 13:483-95. [PMID: 18429820 DOI: 10.1111/j.1365-2443.2008.01184.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myosin VI is involved in a wide range of endocytic and exocytic membrane trafficking pathways; clathrin-mediated endocytosis, intracellular transport of clathrin-coated and -uncoated vesicles, AP-1B-dependent basolateral sorting in polarized epithelial cells and secretion from the Golgi complex to the cell surface. In this study, using a yeast two-hybrid screen, we identified brain-enriched kinase/lemur tyrosine kinase 2 (BREK/LMTK2), a transmembrane serine/threonine kinase with previously unknown cellular functions, as a myosin VI-interacting protein. Several binding experiments confirmed the interaction of myosin VI with BREK in vivo and in vitro. Immunocytochemical analyses revealed that BREK localizes to cytoplasmic membrane vesicles and to perinuclear recycling endosomes. Notably, cells in which BREK was depleted by siRNA were still able to internalize transferrin molecules and to transport them to early endosomes, but were unable to transport them to perinuclear recycling endosomes. Our results show that BREK is critical for the transition of endocytosed membrane vesicles from early endosomes to recycling endosomes and also suggest an involvement of myosin VI in this pathway.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Ivanova AV, Vortmeyer A, Ivanov SV, Nickerson ML, Maher ER, Lerman MI. Loss of PL6 protein expression in renal clear cell carcinomas and other VHL-deficient tumours. J Pathol 2008; 214:46-57. [PMID: 17973242 DOI: 10.1002/path.2252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the von Hippel-Lindau tumour suppressor gene (VHL) cause the VHL hereditary cancer syndrome and occur in most sporadic clear cell renal cell cancers (CC-RCCs). The mechanisms by which VHL loss of function promotes tumour development in the kidney are not fully elucidated. Here, we analyse expression of PL6, one of the potential tumour suppressor genes from the critical 3p21.3 region involved in multiple common cancers. We classify PL6 as a Golgi-resident protein based on its perinuclear co-localization with GPP130 in all cells and tissues analysed. We show that PL6 RNA and protein expression is completely or partially lost in all analysed CC-RCCs and other VHL-deficient tumours studied, including the early precancerous lesions in VHL disease. The restoration of VHL function in vitro in the VHL-deficient CC-RCC cell lines was found to reinstate PL6 expression, thus establishing a direct link between VHL and PL6. Insensitivity of PL6 to hypoxia suggested that PL6 is regulated by VHL via a HIF-1-independent pathway. We ruled out mutations and promoter methylation as possible causes of PL6 down-regulation in CC-RCC. We hypothesize that loss of a putative PL6 secretory function due to VHL deficiency is an early and important event that may promote tumour initiation and growth.
Collapse
Affiliation(s)
- A V Ivanova
- Laboratory of Immunobiology, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Wolkowicz MJ, Digilio L, Klotz K, Shetty J, Flickinger CJ, Herr JC. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion. ACTA ACUST UNITED AC 2007; 29:272-82. [PMID: 17978344 DOI: 10.2164/jandrol.106.000604] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.
Collapse
Affiliation(s)
- M J Wolkowicz
- Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
58
|
Hyenne V, Harf JC, Latz M, Maro B, Wolfrum U, Simmler MC. Vezatin, a ubiquitous protein of adherens cell-cell junctions, is exclusively expressed in germ cells in mouse testis. Reproduction 2007; 133:563-74. [PMID: 17379651 DOI: 10.1530/rep-06-0271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the male reproductive organs of mammals, the formation of spermatozoa takes place during two successive phases: differentiation (in the testis) and maturation (in the epididymis). The first phase, spermiogenesis, relies on a unique adherens junction, the apical ectoplasmic specialization linking the epithelial Sertoli cells to immature differentiating spermatids. Vezatin is a transmembrane protein associated with adherens junctions and the actin cytoskeleton in most epithelial cells. We report here the expression profile of vezatin during spermatogenesis. Vezatin is exclusively expressed in haploid germ cells. Immunocytochemical and ultrastructural analyses showed that vezatin intimately coincides, temporally and spatially, with acrosome formation. While vezatin is a transmembrane protein associated with adherens junctions in many epithelial cells, it is not seen at the ectoplasmic specializations, neither at the basal nor at the apical sites, in the seminiferous epithelium. In particular, vezatin does not colocalize with espin and myosin VIIa, two molecular markers of the ectoplasmic specialization. In differentiating spermatids, ultrastructural data indicate that vezatin localizes in the acrosome. In epididymal sperm, vezatin localizes also to the outer acrosomal membrane. Considering its developmental and molecular characteristics, vezatin may be involved in the assembly/stability of this spermatic membrane.
Collapse
Affiliation(s)
- Vincent Hyenne
- Biologie Cellulaire du Développement, UMR 7622, CNRS, Université Pierre et Marie Curie, 9 Quai St Bernard, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
59
|
Morokuma Y, Nakamura N, Kato A, Notoya M, Yamamoto Y, Sakai Y, Fukuda H, Yamashina S, Hirata Y, Hirose S. MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids. J Biol Chem 2007; 282:24806-15. [PMID: 17604280 DOI: 10.1074/jbc.m700414200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A mechanism by which ubiquitinated cargo proteins are sorted into multivesicular bodies (MVBs) from plasma and trans-Golgi network (TGN) membranes is well established in yeast and mammalian somatic cells. However, the ubiquitin-dependent sorting pathway has not been clearly defined in germ cells. In this study we identified a novel member of the transmembrane RING-finger family of proteins, termed membrane-associated RING-CH (MARCH)-XI, that is expressed predominantly in developing spermatids and weakly in brain and pituitary. MARCH-XI possesses an E3 ubiquitin ligase activity that targets CD4 for ubiquitination. Immunoelectron microscopy of rat round spermatids showed that MARCH-XI is localized to TGN-derived vesicles and MVBs. Fluorescence staining of rat round spermatids and immunoprecipitation of rat testis demonstrated that MARCH-XI forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. Furthermore, the C-terminal region of MARCH-XI mediates its interaction with mu1-adaptin and Veli through a tyrosine-based motif and a PDZ binding motif, respectively. Our data suggest that MARCH-XI acts as a ubiquitin ligase with a role in ubiquitin-mediated protein sorting in the TGN-MVB transport pathway, which may be involved in mammalian spermiogenesis.
Collapse
Affiliation(s)
- Yuri Morokuma
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nian H, Fan C, Liao S, Shi Y, Zhang K, Liu Y, Han C. RNF151, a testis-specific RING finger protein, interacts with dysbindin. Arch Biochem Biophys 2007; 465:157-63. [PMID: 17577571 DOI: 10.1016/j.abb.2007.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/12/2007] [Accepted: 05/17/2007] [Indexed: 12/17/2022]
Abstract
RING finger proteins play important roles in spermatogenesis. Here, we report that a novel RING finger protein RNF151, with a C3HC4-type RING finger domain, a putative nuclear localization signal (NLS), and a TRAF-type zinc finger domain, was exclusively expressed in the mouse testis and developmentally regulated during spermatogenesis. While RNF151 mRNA was present in round spermatids, its protein was expressed in elongating spermatids of the stage VIII-IX seminiferous tubules. The NLS together with the RING domain were necessary and sufficient for the nuclear localization of RNF151-EGFP in transfected cells. Yeast two-hybrid screening identified the physical interaction of mouse RNF151 and dysbindin, which was confirmed by the co-immunoprecipitation of the proteins and by their co-localization in intact cells. As dysbindin has lately been shown to be involved in membrane biogenesis and fusion, a key process for acrosome formation, we propose that RNF151 may play a role in acrosome formation.
Collapse
Affiliation(s)
- Hong Nian
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 10080, China
| | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Kinesins are a superfamily of microtubule-based motors that power intracellular traffic and play important roles in many fundamental cellular and developmental processes. Kinesins move on microtubules from their minus to plus end (conventional kinesin) or from plus to minus end (C-terminal kinesins), carrying cargoes to different destinations. A variety of cargoes such as vesicles, proteins, lipid drops, pigments, and the nucleus are moved by kinesins along cytoplasmic microtubules. Multiple mitotic kinesins and microtubule-associated proteins (MAPs) also have direct functions in spindle formation, chromosome segregation, and cytokinesis. Spermatogenesis provides an excellent model system to study the role of kinesin motor proteins during the dramatic cytoskeletal rearrangements that take place during male germ cell development. This chapter describes how to identify the multiple functions of kinesin motors during spermatogenesis by using ultrastructural analysis. Testis perfusion is described in detail, including how to anesthetize animals and how to select seminiferous tubules under transilluminated microscopy. Practical immunocytochemical staining is also described in detail in this chapter, especially methods to enhance staining and avoid contamination.
Collapse
Affiliation(s)
- Wan-Xi Yang
- Department of Biology, College of Life Sciences, Zhejiang University, Zhejiang, China
| |
Collapse
|
62
|
Moreno RD, Alvarado CP. The mammalian acrosome as a secretory lysosome: new and old evidence. Mol Reprod Dev 2006; 73:1430-4. [PMID: 16894549 DOI: 10.1002/mrd.20581] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The morphological and biochemical characteristics of the acrosome depart well from any other vesicles in somatic cells, making it one of a kind amongst secretory vesicles. The components of the acrosome include a mixture of unique enzymes like acrosin and other enzymes that when present in somatic cells are commonly found in lysosomes, peroxisomes, and even in the cytoplasm. Several observations have pointed out that acrosomal biogenesis has unique features not previously described in secretory vesicle biogenesis of somatic cells. In this review we discuss the evidence supporting a molecular link between the machinery involved in lysosome and acrosome biogenesis, link which may help account for the acrosome unique composition.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Millennium Nucleus for Developmental Biology, Santiago, Chile.
| | | |
Collapse
|
63
|
Li YC, Hu XQ, Zhang KY, Guo J, Hu ZY, Tao SX, Xiao LJ, Wang QZ, Han CS, Liu YX. Afaf, a novel vesicle membrane protein, is related to acrosome formation in murine testis. FEBS Lett 2006; 580:4266-73. [PMID: 16831425 DOI: 10.1016/j.febslet.2006.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/12/2006] [Accepted: 06/07/2006] [Indexed: 01/02/2023]
Abstract
As a cell-specific organelle, acrosome (Acr) and its formation are an important event for spermiogenesis. However, the Acr formation is far more complicated than has been proposed. In this study, we have cloned a novel membrane protein Afaf (Acr formation associated factor) that was expressed abundantly in the round spermatids, localized in the inner and outer membrane of forming Acrs, and declined in the maturing Acrs. In the transfected Hela cells, Afaf protein was localized in the plasma membrane, EEA1-positive early endosomes (EEs) and occasionally in the nuclei. Therefore, we propose that EEs and plasma membrane may be also directly involved in the Acr biogenesis.
Collapse
Affiliation(s)
- Yin-Chuan Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Serres C, Peoc'h K, Courtot AM, Lesaffre C, Jouannet P, Laplanche JL. Spatio-Developmental Distribution of the Prion-Like Protein Doppel in Mammalian Testis: A Comparative Analysis Focusing on Its Presence in the Acrosome of Spermatids1. Biol Reprod 2006; 74:816-23. [PMID: 16421231 DOI: 10.1095/biolreprod.105.047829] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The first prion-like protein doppel, officially designed as prion protein dublet, does not seem to be needed for prion disease progression, whereas its physiological function seems to be related to male fertility. Its expression is primarily detected in the male genital tract, and Prnd-inactivated male mice are sterile. We investigated the location of Doppel in the testis of various species of mammal to determine its physiological function. Doppel is expressed early during ontogenesis, and is found in both germ cells and Sertoli cells in mice, rats, boars, and humans. Doppel is permanently expressed in the Sertoli cells but at different levels according to species. Its expression in testicular germ cells was primarily detected in spermatids, with a transient presence in the acrosome. These data suggest that Doppel may play a physiological role in acrosome biogenesis and may be of use in studies of patients suffering from idiopathic infertility.
Collapse
Affiliation(s)
- C Serres
- Université Paris Descartes, Faculté de Médecine, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
65
|
Moreno RD, Palomino J, Schatten G. Assembly of spermatid acrosome depends on microtubule organization during mammalian spermiogenesis. Dev Biol 2006; 293:218-27. [PMID: 16540102 DOI: 10.1016/j.ydbio.2006.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 11/22/2022]
Abstract
The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Unit of Reproduction and Developmental Biology, Physiology Department, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Portugal 49-Santiago 340-213, Chile.
| | | | | |
Collapse
|
66
|
Huang WP, Ho HC. Role of microtubule-dependent membrane trafficking in acrosomal biogenesis. Cell Tissue Res 2005; 323:495-503. [PMID: 16341711 DOI: 10.1007/s00441-005-0097-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
The role of microtubule-based trafficking in acrosomal biogenesis was examined by studying the effects of colchicine on spermiogenesis. In electron micrographs of untreated cap-phase mouse spermatids, coated vesicles were always seen on the apex and caudal margins of the developing acrosomal cap. The increase in volume and the accumulation of materials in the acrosome during the Golgi and cap phases were observed to occur via fusion of vesicles at various sites on the growing acrosome. By studying the acid phosphatase localization pattern and colchicine-treated spermatids, the role of clathrin-coated vesicles became clear. Coated vesicle formation at the caudal margin of the acrosome appeared to be responsible for the spreading and shaping of the acrosome over the surface of the nucleus and also established distinct regional differences in the acrosome. In colchicine-treated spermatids, the Golgi apparatus lost its typical membranous stack conformation and disintegrated into many small vesicles. Acrosome formation was retarded, and there was discordance of the spread of the acrosomal cap with that of the modified nuclear envelope. Many symplasts were also found because of the breakdown of intercellular bridges. Colchicine treatment thus indicated that microtubule-dependent trafficking of transport vesicles between the Golgi apparatus and the acrosome plays a vital role in acrosomal biogenesis. In addition, both anterograde and retrograde vesicle trafficking are extensively involved and seem to be equally important in acrosome formation.
Collapse
Affiliation(s)
- Wei-Pang Huang
- Department of Life Science, Institute of Zoology, National Taiwan University, Taipei, 10617, Taiwan
| | | |
Collapse
|
67
|
Augustin R, Riley J, Moley KH. GLUT8 Contains a [DE]XXXL[LI] Sorting Motif and Localizes to a Late Endosomal/Lysosomal Compartment. Traffic 2005; 6:1196-212. [PMID: 16262729 DOI: 10.1111/j.1600-0854.2005.00354.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Glucose transporter 8 (GLUT8) contains a cytoplasmic N-terminal dileucine motif and localizes to a thus far unidentified intracellular compartment. Translocation of GLUT8 to the plasma membrane (PM) was found in insulin-treated mouse blastocysts. Using overexpression of GLUT8 in adipocytes and neuronal cells however, insulin treatment or depolarization of the cells did not lead to GLUT8 PM translocation in other studies. In addition, other experiments showing dynamin-dependent endocytosis of GLUT8 suggested that GLUT8 recycles between an endosomal compartment and the PM. To reveal the functional/physiological role of GLUT8, we studied its subcellular localization in 3T3L1, HEK293 and CHO cells. We show that GLUT8 does not co-localize with GLUT4 and does not redistribute to the PM after treatment with insulin, ionophores or okadaic acid in these cell lines. Once endocytosed, GLUT8 does not recycle to the PM. GLUT8 localizes to late endosomes and lysosomes. An interspecies GLUT8 - sequence alignment revealed the presence of a highly conserved late endosomal/lysosomal-targeting motif ([DE]XXXL[LI]). Changing the glutamate to arginine as found in GLUT4 (RRXXXLL) alters GLUT8 endocytosis and retains the transporter at the PM. Furthermore, sorting GLUT8 to late endosomes/lysosomes does not require prior presence of GLUT8 at the PM followed by its endocytosis. In summary, GLUT8 does not reside in a recycling vesicle pool and is distinct from GLUT4. From our data, we postulate a role for GLUT8 in transport of hexoses across intracellular membranes, for example in specific compartments of GLUT8 expression such as the acrosome of mature spermatozoa or secretory granules in neurons. Furthermore, a role for GLUT8 in hexose transport across the lysosomal membrane, a transport mechanism that has long been suggested but unexplained, is discussed.
Collapse
Affiliation(s)
- Robert Augustin
- Institute for Human Nutrition, Department of Pharmacology, 14482 Potsdam-Rehbrücke, Germany
| | | | | |
Collapse
|
68
|
Hutt DM, Baltz JM, Ngsee JK. Synaptotagmin VI and VIII and Syntaxin 2 Are Essential for the Mouse Sperm Acrosome Reaction. J Biol Chem 2005; 280:20197-203. [PMID: 15774481 DOI: 10.1074/jbc.m412920200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sperm acrosome is a large secretory granule that undergoes calcium-stimulated exocytosis by a mechanism analogous to neuronal secretion. In neurons the core SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, composed of syntaxin (Stx), SNAP-25, and VAMP2, mediates vesicle fusion, whereas calcium regulation is thought to be accomplished by the synaptotagmin (Syt) family, some of which exhibit calcium-dependent binding to syntaxin and SNAP-25. Sperm express Syt VI and VIII and Stx2, which are co-localized to the acrosomal compartment where they might mediate exocytosis in response to calcium influx. Therefore, we examined the calcium dependence and isoform-specific interaction of Syt and Stx. We found that Stx2 binds to Syt I, VI, and VIII in a calcium-dependent manner with EC(50) values of 175, 233, and 96 mum calcium, respectively. We also determined that the EC(50) for calcium of the acrosome reaction in streptolysin O-permeabilized sperm is 87 mum, which closely coincides with the calcium sensitivity of Stx2 and Syt VIII interaction. Consistent with this is the greater potency of recombinant Syt VIII, VI, and Stx2 compared with other isoforms in inhibiting the acrosome reaction in streptolysin O-permeabilized sperm. Similarly, introduction of Syt VIII-specific antibodies was equally effective in inhibiting the acrosome fusion. Taken together, our data suggest a critical role for Syt VIII and Stx2 in membrane fusion and acrosome reaction in the sperm.
Collapse
Affiliation(s)
- Darren M Hutt
- Ottawa Health Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada
| | | | | |
Collapse
|
69
|
Wu SM, Baxendale V, Chen Y, Pang ALY, Stitely T, Munson PJ, Leung MYK, Ravindranath N, Dym M, Rennert OM, Chan WY. Analysis of mouse germ-cell transcriptome at different stages of spermatogenesis by SAGE: Biological significance. Genomics 2004; 84:971-81. [PMID: 15533714 DOI: 10.1016/j.ygeno.2004.08.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 07/07/2004] [Accepted: 08/21/2004] [Indexed: 11/21/2022]
Abstract
The transcriptomes of mouse type A spermatogonia (Spga), pachytene spermatocytes (Spcy), and round spermatids (Sptd) were determined by sequencing the respective SAGE (Serial Analysis of Gene Expression) libraries. A total of 444,015 tags derived from one Spga, two Spcy, and one Sptd library were analyzed, and 34,619 different species of transcripts were identified, 5279 of which were novel. Results indicated the germ-cell transcriptome comprises of more than 30,000 transcripts. Virtual subtraction showed that cell-specific transcripts constitute 12-19.5% of the transcriptome. Components of the protein biosynthetic machinery are highly expressed in Spga. In Spcy transcription factors are abundantly expressed while transcripts encoding proteins involved in chromosome remodeling and testis-specific transcripts are prominent in Sptd. The databases generated by this work provide very useful resources for cellular localization of genes in silico. They are also extremely useful as sources for identification of splice variants of genes in germ cells.
Collapse
Affiliation(s)
- Shao-Ming Wu
- Laboratory of Clinical Genomics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Tomes CN, De Blas GA, Michaut MA, Farré EV, Cherhitin O, Visconti PE, Mayorga LS. alpha-SNAP and NSF are required in a priming step during the human sperm acrosome reaction. Mol Hum Reprod 2004; 11:43-51. [PMID: 15542541 DOI: 10.1093/molehr/gah126] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The acrosome is a membrane-limited granule that overlies the nucleus of the mature spermatozoon. In response to physiological or pharmacological stimuli it undergoes a special type of Ca2+-dependent exocytosis termed the acrosome reaction (AR), which is an absolute prerequisite for fertilization. Aided by a streptolysin-O permeabilization protocol developed in our laboratory, we have previously demonstrated requirements for Rab3A, N-ethylmaleimide-sensitive factor (NSF), several soluble NSF-attachment protein receptor (SNARE) proteins, and synaptotagmin VI in the human sperm AR. Here, we show that alpha-soluble NSF-attachment protein (alpha-SNAP), a protein essential for most fusion events through its interaction with NSF and the SNARE complex, exhibits a direct role in the AR. First, the presence of alpha-SNAP is demonstrated by the Western blot of human sperm protein extracts. Immunostaining experiments reveal an acrosomal localization for this protein. Second, the Ca2+ and Rab3A-triggered ARs are inhibited by anti-alpha-SNAP antibodies. Third, bacterially expressed alpha-SNAP abolishes exocytosis in a fashion that depends on its interaction with NSF. Fourth, we show a requirement for alpha-SNAP/NSF in a prefusion step early in the exocytotic pathway, after the tethering of the acrosome to the plasma membrane and before the efflux of intra-acrosomal Ca2+. These results suggest a key role for alpha-SNAP/NSF in the AR, and strengthen our understanding of the molecular players involved in the vesicle-to-plasma membrane fusion taking place during exocytosis.
Collapse
Affiliation(s)
- C N Tomes
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, CC 56, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina.
| | | | | | | | | | | | | |
Collapse
|
71
|
Rawe VY, Ramalho-Santos J, Payne C, Chemes HE, Schatten G. WAVE1, an A-kinase anchoring protein, during mammalian spermatogenesis. Hum Reprod 2004; 19:2594-604. [PMID: 15471936 DOI: 10.1093/humrep/deh513] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Proper compartmentalization of signalling cascades is paramount to many intracellular activities during spermatogenesis and sperm function. In the present study we focus on the A-kinase-anchoring protein (AKAP) WAVE1, a member of the Wiskott-Aldrich syndrome (WASP) family of adaptor proteins, to study its localization throughout mammalian spermatogenesis. METHODS Using transmission electron microscopy, immunocytochemistry and western blotting, we examined the distribution of WAVE1 and putative partners during mammalian spermatogenesis. The localization and association of PKA RII, the regulatory subunit II of protein kinase A, tyrosine kinase Abl, and small GTPase RAC1 were also explored. RESULTS WAVE1 localization in spermatocytes and round spermatids coincided with Golgi apparatus distribution, whereas in elongated spermatids and testicular sperm WAVE1 localized to the mitochondrial sheath. Following epididymal passage, WAVE1 was found exclusively on the mitochondrial sheath, suggesting that the protein may function in this region. WAVE1 and PKA RII co-localized along the mitochondrial sheath, PKA RII concentrates in the mid-piece, and RAC1 associated with the post-acrosomal region and the connecting piece. The distribution of WAVE1, PKA RII and RAC1 is conserved in mature mouse, bull, baboon and human sperm. CONCLUSIONS The data support the possibility of a functional signalling unit established by WAVE1 and its associated proteins in the mid-piece of maturing sperm.
Collapse
Affiliation(s)
- Vanesa Y Rawe
- Pittsburgh Development Center, Magee--Women's Research Institute, Department of Obstetrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
72
|
Jiménez A, Zu W, Rawe VY, Pelto-Huikko M, Flickinger CJ, Sutovsky P, Gustafsson JA, Oko R, Miranda-Vizuete A. Spermatocyte/Spermatid-specific Thioredoxin-3, a Novel Golgi Apparatus-associated Thioredoxin, Is a Specific Marker of Aberrant Spermatogenesis. J Biol Chem 2004; 279:34971-82. [PMID: 15181017 DOI: 10.1074/jbc.m404192200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mammalian germ cells are endowed with a complete set of thioredoxins (Trx), a class of redox proteins located in specific structures of the spermatid and sperm tail. We report here the characterization, under normal and pathological conditions, of a novel thioredoxin with a germ line-restricted expression pattern, named spermatocyte/spermatid-specific thioredoxin-3 (SPTRX-3). The human SPTRX-3 gene maps at 9q32, only 50 kb downstream from the TRX-1 gene from which it probably originated as genomic duplication. Therefore, human SPTRX-3 protein comprises a unique thioredoxin domain displaying high homology with the ubiquitously expressed TRX-1. Among the tissues investigated, Sptrx-3 mRNA is found exclusively in the male germ cells at pachytene spermatocyte and round spermatid stages. Light and electron microscopy show SPTRX-3 protein to be predominately located in the Golgi apparatus of pachytene spermatocytes and round and elongated spermatids, with a transient localization in the developing acrosome of round spermatids. In addition, increased levels of SPTRX-3, possibly caused by overexpression, are observed in morphologically abnormal human spermatozoa from infertile men. In addition, SPTRX-3 is identified as a novel postobstruction autoantigen. In this report, we propose that SPTRX-3 can be used as a specific marker for diverse sperm and testis pathologies. SPTRX-3 is the first thioredoxin specific to the Golgi apparatus, and its function within this organelle might be related to the post-translational modification of proteins required for germ cell-specific functions, such as acrosomal biogenesis.
Collapse
Affiliation(s)
- Alberto Jiménez
- Center for Biotechnology, Department of Biosciences at NOVUM, Karolinska Institutet, S-14157 Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Brahmaraju M, Shoeb M, Laloraya M, Kumar PG. Spatio-temporal organization of Vam6P and SNAP on mouse spermatozoa and their involvement in sperm-zona pellucida interactions. Biochem Biophys Res Commun 2004; 318:148-55. [PMID: 15110766 DOI: 10.1016/j.bbrc.2004.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Indexed: 12/01/2022]
Abstract
Acrosomal assembly during spermatogenesis and acrosome reaction during sperm-oocyte interaction are unique events of vesicle synthesis, transport, and fusion leading to fertilization. SNARE complex formation is essential for membrane fusion, and vesicle-associated (v-) SNARE intertwines with target membrane (t-) SNARE to form a coiled coil that bridges two membranes and facilitates fusion. We detected messages of Vam6P and SNAP in mammalian testis and epididymis. Vam6P and SNAP were detected in a temporally organized fashion on the spermatozoa from testis and epididymis, which showed accumulation on the principal acrosomal domains during capacitation. Vam6P and SNAP were shed off from the principal acrosomal domain after acrosome reaction, but the equatorial and the post-acrosomal domains retained these proteins. Antibodies to VAMP and SNAP inhibited sperm-zona pellucida interaction, suggesting their possible involvement in sperm membrane vesiculation.
Collapse
Affiliation(s)
- M Brahmaraju
- Molecular Reproduction Unit, School of Life Sciences, Devi Ahilya University, Vigyan Bhawan, Khandwa Road, Indore 452 001, MP, India
| | | | | | | |
Collapse
|
74
|
Cobellis G, Meccariello R, Pierantoni R, Fasano S. Intratesticular signals for progression of germ cell stages in vertebrates. Gen Comp Endocrinol 2003; 134:220-8. [PMID: 14636628 DOI: 10.1016/s0016-6480(03)00281-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms underlying the complexity of spermatogenesis and spermiogenesis have deeply been studied in recent years. Transgenic animals, gene-targeting techniques, and lower vertebrate animal models have led to the discovery of some of the intratesticular signals involved in germ cell progression. This review wish to give the state of the art about it with particular emphasis on the comparative approach.
Collapse
Affiliation(s)
- Gilda Cobellis
- Dipartimento di Medicina Sperimentale, II Università di Napoli, Via Costantinopoli, 16-80138 Naples, Italy
| | | | | | | |
Collapse
|
75
|
Kitamura K, Tanaka H, Nishimune Y. Haprin, a novel haploid germ cell-specific RING finger protein involved in the acrosome reaction. J Biol Chem 2003; 278:44417-23. [PMID: 12917430 DOI: 10.1074/jbc.m304306200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acrosome reaction (i.e. the exocytosis of the sperm vesicle) is a prerequisite for fertilization, but its molecular mechanism is largely unknown. We have identified a cDNA clone for a gene named haprin, which encodes a haploid germ cell-specific RING finger protein. This protein is a novel member of the RBCC (RING finger, B-box type zinc finger, and coiled-coil domain) motif family that has roles in several cellular processes, such as exocytosis. It is transcribed exclusively in testicular germ cells after meiotic division. Western blot and immunohistochemical analyses showed the molecular weight of Haprin protein to be Mr approximately 82,000. It was localized in the acrosomal region of elongated spermatids and mature sperm and was not present in acrosome-reacted sperm. The specific antibody against the RING finger domain of Haprin inhibited the acrosome reaction in permeabilized sperm. These results indicated that the novel RBCC protein Haprin plays a key role in the acrosome reaction and fertilization.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Disease, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
76
|
Yang WX, Sperry AO. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 2003; 69:1719-29. [PMID: 12826589 DOI: 10.1095/biolreprod.102.014878] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have identified a possible role for the KIFC1 motor protein in formation of the acrosome, an organelle unique to spermatogenesis. KIFC1, a C-terminal kinesin motor, first appears on membrane-bounded organelles (MBOs) in the medulla of early spermatids followed by localization to the acrosomal vesicle. KIFC1 continues to be present on the acrosome of elongating spermatids as it flattens on the spermatid nucleus; however, increasing amounts of KIFC1 are found at the caudal aspect of the spermatid head and in distal cytoplasm. The KIFC1 motor is also found in the nucleus of very immature round spermatids just prior to its appearance on the acrosome. In some cases, KIFC1 appears localized just below the nuclear membrane adjacent to the subacrosomal membrane. We demonstrate that KIFC1 is associated with importin beta and colocalizes with this nuclear transport factor on curvilinear structures associated with the spermatid nuclei. These data support a model in which KIFC1, perhaps in association with nuclear factors, assists in the formation and/or elongation of the spermatid acrosome. This article represents the first demonstration of a direct association of a molecular motor with the spermatid acrosome, the formation of which is essential for fertilization.
Collapse
Affiliation(s)
- Wan-Xi Yang
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
77
|
Moreno RD. Differential expression of lysosomal associated membrane protein (LAMP-1) during mammalian spermiogenesis. Mol Reprod Dev 2003; 66:202-9. [PMID: 12950108 DOI: 10.1002/mrd.10342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mammalian acrosome is a secretory vesicle of mature sperms that plays an important role in fertilization. Recent evidence had pointed out that some components found at endosomes in somatic cells are associated with the developing acrosome during the early steps of spermiogenesis. Moreover, the mammalian acrosome contains many enzymes found within lysosomes in somatic cells. In this work, we studied the dynamics of some components of the endosome/lysosome system, as a way to understand the complex membrane trafficking circuit established during spermatogenesis. We show that the cation independent-mannose-6-phosphate receptor (CI-MPR) is transiently expressed in the cytoplasm of mid-stage spermatids (steps 5-11). On the other hand, gamma-adaptin, an adaptor molecule of a complex involved in trafficking from the Golgi to lysosomes, was expressed in cytoplasmic vesicles only in pachytene and Cap-phase spermatids (steps 1-5). Our major finding is that the lysosomal protein LAMP-1 is differentially expressed during spermiogenesis. LAMP-1 appears late in spermatogenesis (Acrosome-phase) contrasting with LAMP-2, which is present throughout the complete process. Both proteins appear to be associated with cytoplasmic vesicles and not with the developing acrosome. None of the studied proteins is present in epididymal spermatozoa. Our results suggest that the CI-MPR could be involved in membrane trafficking and/or acrosomal shaping during spermiogenesis.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Unit of Reproduction and Development, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile.
| |
Collapse
|
78
|
Wolkowicz MJ, Shetty J, Westbrook A, Klotz K, Jayes F, Mandal A, Flickinger CJ, Herr JC. Equatorial segment protein defines a discrete acrosomal subcompartment persisting throughout acrosomal biogenesis. Biol Reprod 2003; 69:735-45. [PMID: 12773409 DOI: 10.1095/biolreprod.103.016675] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.
Collapse
Affiliation(s)
- Michael J Wolkowicz
- Center for Research in Contraceptive and Reproductive Health, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Redecker P, Kreutz MR, Bockmann J, Gundelfinger ED, Boeckers TM. Brain synaptic junctional proteins at the acrosome of rat testicular germ cells. J Histochem Cytochem 2003; 51:809-19. [PMID: 12754292 DOI: 10.1177/002215540305100612] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteins of the presynaptic exocytic machinery have been found associated with the acrosome of male germ cells, suggesting that the sperm acrosome reaction and neurotransmission at chemical synapses may share some common mechanisms. To substantiate this hypothesis, we studied the expression and ultrastructural localization of prominent pre- and postsynaptic protein components in rat testis. The presynaptic membrane trafficking proteins SV2 and complexin, the vesicular amino acid transporters VGLUT and VIAAT, the postsynaptic scaffolding protein ProSAP/Shank, and the postsynaptic calcium-sensor protein caldendrin, could be identified in germ line cells. Immunogold electron microscopy revealed an association of these proteins with the acrosome. In addition, evidence was obtained for the expression of the plasmalemmal glutamate transporters GLT1 and GLAST in rat sperm. The novel finding that not only presynaptic proteins, which are believed to be involved in membrane fusion processes, but also postsynaptic elements are present at the acrosome sheds new light on its structural organization. Moreover, our data point to a possible role for neuroactive amino acids in reproductive physiology.
Collapse
Affiliation(s)
- Peter Redecker
- Department of Anatomy 1, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
80
|
Ramalho-Santos J, Schatten G, Moreno RD. Control of membrane fusion during spermiogenesis and the acrosome reaction. Biol Reprod 2003; 67:1043-51. [PMID: 12297516 DOI: 10.1095/biolreprod67.4.1043] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.
Collapse
Affiliation(s)
- João Ramalho-Santos
- Unit of Reproduction and Development, Physiology Department, Pontifical Catholic University of Chile, 340-213 Santiago, Chile
| | | | | |
Collapse
|
81
|
Nishimura T, Nakano T. Vesicles in the subacrosomal space and partial diaphragms in the subacrosomal nuclear envelope of round spermatids of a rat injected intravenously with gold labeled-testosterone-bovine serum albumin conjugate: vesicular trafficking from acrosome to nucleus. Okajimas Folia Anat Jpn 2002; 79:15-23. [PMID: 12199534 DOI: 10.2535/ofaj.79.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Colloidal gold labeled-testosterone-bovine serum albumin conjugate (testosterone-BSA-gold) injected into the vascular system of rats is taken up by endocytosis into round spermatids. Based on observation of silver deposits indicating testosterone-BSA-gold with silver enhancement, we have suggested that testosterone-BSA-gold enters the nuclei through not only the postacrosomal nuclear envelope but also the subacrosomal nuclear envelope (SNE) via the acrosome (Nishimura and Nakano, 1997). However, it was unclear how testosterone-BSA-gold in the acrosome entered the nucleoplasm. Spermatids showing silver deposits on the subacrosomal space were observed under electron microscope without silver enhancement, to clarify the courses of translocation. In the spermatids, vesicles with the gold particles were seen in the subacrosomal space. Some of the vesicles were in contact with the SNE. A part of the outer nuclear membrane projected into the space. Furthermore, local single-bilayer nuclear membranes, which seemed to partially lack nuclear lamina, were present in the SNE. These results indicate the possibility that the vesicles mediate the transport of testosterone-BSA-gold from acrosome to nucleus, and that the vesicle membrane fuses with not only the outer nuclear membrane but also a shared bilayer in the SNE.
Collapse
Affiliation(s)
- Toshikazu Nishimura
- Department of Anatomy, Aichi Medical University School of Medicine, Yazako, Japan.
| | | |
Collapse
|
82
|
Moreno RD, Schatten G, Ramalho-Santos J. Golgi apparatus dynamics during mouse oocyte in vitro maturation: effect of the membrane trafficking inhibitor brefeldin A. Biol Reprod 2002; 66:1259-66. [PMID: 11967185 DOI: 10.1095/biolreprod66.5.1259] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have studied Golgi apparatus dynamics during mouse oocyte in vitro maturation, employing both live imaging with the fluorescent lipid BODIPY-ceramide and immunocytochemistry using several specific markers (beta-COP, giantin, and TGN38). In germinal vesicle oocytes the Golgi consisted of a series of structures, possibly cisternal stacks, dispersed in the ooplasm, but slightly more concentrated in the interior than at the cortex. A similar pattern was detected in rhesus monkey germinal vesicle oocytes. These "mini-Golgis" were functionally active because they were reversibly disrupted by the membrane trafficking inhibitor brefeldin A. However, the drug had no visible effect if the oocytes had been previously microinjected with GTP-gamma-S. During in vitro maturation the large Golgi apparatus structures fragmented at germinal vesicle breakdown, and dispersed homogenously throughout the ooplasm, remaining in a fragmented state in metaphase-II oocytes. Similarly to what has been reported using protein synthesis inhibitors, the presence of brefeldin A blocked maturation at the germinal vesicle breakdown stage before the assembly of the metaphase-I spindle. These results suggest that progression of murine oocyte maturation may require functional membrane trafficking.
Collapse
Affiliation(s)
- Ricardo D Moreno
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
83
|
Abstract
OBJECTIVE To determine the possible use of the mammalian acrosomal marker vehicle-associated membrane protein (VAMP)/synaptobrevin to detect acrosome abnormalities in human sperm. DESIGN Analysis of human sperm after fixation and staining with an anti-VAMP antibody. SETTING An academic research institution. PATIENT(S) Semen samples from consenting patients who were participating in an infertility treatment program. INTERVENTION(S) Human sperm samples were fixed, permeabilized with detergent, and examined by immunocytochemistry. MAIN OUTCOME MEASURE Immunostaining. RESULT(S) Observation of sperm from patients with no obvious sperm morphological defects revealed normal looking acrosomes, as assessed by VAMP immunostaining. However, severe acrosome malformations were detected in other cases. The observations registered varied from the absence of a fully formed organelle in samples of patients with globozoospermia to abnormal VAMP staining in samples from patients with acrosomal defects. CONCLUSION VAMP/synaptobrevin may be a useful marker for the functional assessment of acrosomal status in human sperm.
Collapse
Affiliation(s)
- João Ramalho-Santos
- Oregon Health Sciences University, Beaverton , Oregon, USA. jramalho2ci.uc.pt
| | | | | |
Collapse
|