51
|
Abstract
Decades of research indicate mitochondria from Alzheimer's disease (AD) patients differ from those of non-AD individuals. Initial studies revealed structural differences, and subsequent studies showed functional deficits. Observations of structure and function changes prompted investigators to consider the consequences, significance, and causes of AD-related mitochondrial dysfunction. Currently, extensive research argues mitochondria may mediate, drive, or contribute to a variety of AD pathologies. The perceived significance of these mitochondrial changes continues to grow, and many currently believe AD mitochondrial dysfunction represents a reasonable therapeutic target. Debate continues over the origin of AD mitochondrial changes. Some argue amyloid-β (Aβ) induces AD mitochondrial dysfunction, a view that does not challenge the amyloid cascade hypothesis and that may in fact help explain that hypothesis. Alternatively, data indicate mitochondrial dysfunction exists independent of Aβ, potentially lies upstream of Aβ deposition, and suggest a primary mitochondrial cascade hypothesis that assumes mitochondrial pathology hierarchically supersedes Aβ pathology. Mitochondria, therefore, appear at least to mediate or possibly even initiate pathologic molecular cascades in AD. This review considers studies and data that inform this area of AD research.
Collapse
Affiliation(s)
- Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center and Departments of Neurology, Molecular and Integrative Physiology, and Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
52
|
Weidling I, Swerdlow RH. Mitochondrial Dysfunction and Stress Responses in Alzheimer's Disease. BIOLOGY 2019; 8:biology8020039. [PMID: 31083585 PMCID: PMC6627276 DOI: 10.3390/biology8020039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/04/2019] [Accepted: 01/16/2019] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) patients display widespread mitochondrial defects. Brain hypometabolism occurs alongside mitochondrial defects, and correlates well with cognitive decline. Numerous theories attempt to explain AD mitochondrial dysfunction. Groups propose AD mitochondrial defects stem from: (1) mitochondrial-nuclear DNA interactions/variations; (2) amyloid and neurofibrillary tangle interactions with mitochondria, and (3) mitochondrial quality control defects and oxidative damage. Cells respond to mitochondrial dysfunction through numerous retrograde responses including the Integrated Stress Response (ISR) involving eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). AD brains activate the ISR and we hypothesize mitochondrial defects may contribute to ISR activation. Here we review current recognized contributions of the mitochondria to AD, with an emphasis on their potential contribution to brain stress responses.
Collapse
Affiliation(s)
- Ian Weidling
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Fairway, KS 66205, USA.
- Department of Integrated and Molecular Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
53
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
54
|
Bajracharya R, Youngson NA, Ballard JWO. Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20081850. [PMID: 30991634 PMCID: PMC6514887 DOI: 10.3390/ijms20081850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/26/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction has been demonstrated to play an important role in the pathogenesis of Parkinson’s disease (PD). The products of several PD-associated genes, including alpha-synuclein, parkin, pink1, protein deglycase DJ-1, and leucine rich repeat kinase 2, have important roles in mitochondrial biology. Thus, modifying mitochondrial function could be a potential therapeutic strategy for PD. Dietary management can alter mitochondrial function as shifts in dietary macronutrients and their ratios in food can alter mitochondrial energy metabolism, morphology and dynamics. Our studies have established that a low protein to carbohydrate (P:C) ratio can increase lifespan, motor ability and mitochondrial function in a parkin mutant Drosophila model of PD. In this review, we describe mitochondrial dysfunction in PD patients and models, and dietary macronutrient management strategies to reverse it. We focus on the effects of protein, carbohydrate, fatty acids, and their dietary ratios. In addition, we propose potential mechanisms that can improve mitochondrial function and thus reverse or delay the onset of PD.
Collapse
Affiliation(s)
- Rijan Bajracharya
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Neil A Youngson
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J William O Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
55
|
Walter J, Bolognin S, Antony PMA, Nickels SL, Poovathingal SK, Salamanca L, Magni S, Perfeito R, Hoel F, Qing X, Jarazo J, Arias-Fuenzalida J, Ignac T, Monzel AS, Gonzalez-Cano L, Pereira de Almeida L, Skupin A, Tronstad KJ, Schwamborn JC. Neural Stem Cells of Parkinson's Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality. Stem Cell Reports 2019; 12:878-889. [PMID: 30982740 PMCID: PMC6522948 DOI: 10.1016/j.stemcr.2019.03.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence suggests that Parkinson's disease (PD), besides being an age-associated disorder, might also have a neurodevelopment component. Disruption of mitochondrial homeostasis has been highlighted as a crucial cofactor in its etiology. Here, we show that PD patient-specific human neuroepithelial stem cells (NESCs), carrying the LRRK2-G2019S mutation, recapitulate key mitochondrial defects previously described only in differentiated dopaminergic neurons. By combining high-content imaging approaches, 3D image analysis, and functional mitochondrial readouts we show that LRRK2-G2019S mutation causes aberrations in mitochondrial morphology and functionality compared with isogenic controls. LRRK2-G2019S NESCs display an increased number of mitochondria compared with isogenic control lines. However, these mitochondria are more fragmented and exhibit decreased membrane potential. Functional alterations in LRRK2-G2019S cultures are also accompanied by a reduced mitophagic clearance via lysosomes. These findings support the hypothesis that preceding mitochondrial developmental defects contribute to the manifestation of the PD pathology later in life. Mitochondrial gene expression is altered in NESCs carrying the LRRK2-G2019 mutation LRRK2-G2019S mutation induces alterations in mitochondrial morphology in NESCs Mitophagy is affected in PD-specific NESCs carrying the LRRK2-G2019S mutation Mitochondrial phenotypes in NESC are rescued by genetic correction of LRRK2-G2019S
Collapse
Affiliation(s)
- Jonas Walter
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Sarah L Nickels
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Life Science Research Unit (LSRU), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Salamanca
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Stefano Magni
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Fredrik Hoel
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Xiaobing Qing
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Javier Jarazo
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Jonathan Arias-Fuenzalida
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Tomasz Ignac
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg
| | - Luis Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg; Center for Research of Biological Systems, University of California San Diego, La Jolla, CA 92093, USA
| | - Karl J Tronstad
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Belvaux, Luxembourg.
| |
Collapse
|
56
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
57
|
Liu Y, Li Y, Li J, Xie Z, Wang Y, Chen Z. Ethyl violet-bovine serum albumin fluorescent protein nanovessels target to lysosomes and mitochondria. Nanomedicine (Lond) 2018; 14:19-31. [PMID: 30547703 DOI: 10.2217/nnm-2018-0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Organelles are essential in maintaining homeostasis of mammalian cells. Monitoring the morphology and dynamics of organelles is of significance in cell state determination and disease diagnosis. MATERIALS & METHODS We describe here a new material called ethyl violet-bovine serum albumin fluorescent protein nanovessel (EV-BSA FPN). Upon heating, BSA was denatured to form higher polyhedral structures, which was prone to EV binding. These dye-protein hybrid materials were red fluorescence emissive upon excitation. RESULTS EV-BSA FPNs can be readily internalized by mammalian cells and dual localized in lysosomes and mitochondria. Besides, EV-BSA FPN can serve as carriers and efficiently deliver drug into cells. CONCLUSION EV-BSA FPNs can be dual function fluorescent vessels for both dual-organelle imaging and drug delivery.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Supramolecular Structure & Materials & Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Li
- State Key Laboratory of Polymer Physics & Chemistry, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, PR China
| | - Jia Li
- Beijing Key Laboratory of Gene Resource & Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics & Chemistry, The First Hospital of Jilin University, Xinmin Street, Changchun, Jilin 130021, PR China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource & Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure & Materials & Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
58
|
Zhu T, Chen JL, Wang Q, Shao W, Qi B. Modulation of Mitochondrial Dynamics in Neurodegenerative Diseases: An Insight Into Prion Diseases. Front Aging Neurosci 2018; 10:336. [PMID: 30455640 PMCID: PMC6230661 DOI: 10.3389/fnagi.2018.00336] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is a common and prominent feature of prion diseases and other neurodegenerative disorders. Mitochondria are dynamic organelles that constantly fuse with one another and subsequently break apart. Defective or superfluous mitochondria are usually eliminated by a form of autophagy, referred to as mitophagy, to maintain mitochondrial homeostasis. Mitochondrial dynamics are tightly regulated by processes including fusion and fission. Dysfunction of mitochondrial dynamics can lead to the accumulation of abnormal mitochondria and contribute to cellular damage. Neurons are among the cell types that consume the most energy, have a highly complex morphology, and are particularly dependent on mitochondrial functions and dynamics. In this review article, we summarize the molecular mechanisms underlying the mitochondrial dynamics and the regulation of mitophagy and discuss the dysfunction of these processes in the progression of prion diseases and other neurodegenerative disorders. We have also provided an overview of mitochondrial dynamics as a therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ting Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsen Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhan Shao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baomin Qi
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
59
|
Joshi AU, Mochly-Rosen D. Mortal engines: Mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol Res 2018; 138:2-15. [PMID: 30144530 DOI: 10.1016/j.phrs.2018.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
Abstract
Mitochondria are best known for their role in ATP generation. However, studies over the past two decades have shown that mitochondria do much more than that. Mitochondria regulate both necrotic and apoptotic cell death pathways, they store and therefore coordinate cellular Ca2+ signaling, they generate and metabolize important building blocks, by-products and signaling molecules, and they also generate and are targets of free radical species that modulate many aspects of cell physiology and pathology. Most estimates suggest that although the brain makes up only 2 percent of body weight, utilizes about 20 percent of the body's total ATP. Thus, mitochondrial dysfunction greatly impacts brain functions and is indeed associated with numerous neurodegenerative diseases. Furthermore, a number of abnormal disease-associated proteins have been shown to interact directly with mitochondria, leading to mitochondrial dysfunction and subsequent neuronal cell death. Here, we discuss the role of mitochondrial dynamics impairment in the pathological processes associated with neurodegeneration and suggest that a therapy targeting mitochondrialdysfunction holds a great promise.
Collapse
Affiliation(s)
- Amit U Joshi
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, CA, 94305-5174, USA.
| |
Collapse
|
60
|
Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46:891-909. [PMID: 30026371 DOI: 10.1042/bst20170501] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.
Collapse
|
61
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
62
|
Yu Q, Du F, Douglas JT, Yu H, Yan SS, Yan SF. Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 59:223-239. [PMID: 28598851 DOI: 10.3233/jad-170283] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China.,Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures group, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Shirley ShiDu Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shi Fang Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
63
|
|
64
|
Harwig MC, Viana MP, Egner JM, Harwig JJ, Widlansky ME, Rafelski SM, Hill RB. Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph. Anal Biochem 2018; 552:81-99. [PMID: 29505779 DOI: 10.1016/j.ab.2018.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria are found in a variety of shapes, from small round punctate structures to a highly interconnected web. This morphological diversity is important for function, but complicates quantification. Consequently, early quantification efforts relied on various qualitative descriptors that understandably reduce the complexity of the network leading to challenges in consistency across the field. Recent application of state-of-the-art computational tools have resulted in more quantitative approaches. This prospective highlights the implementation of MitoGraph, an open-source image analysis platform for measuring mitochondrial morphology initially optimized for use with Saccharomyces cerevisiae. Here Mitograph was assessed on five different mammalian cells types, all of which were accurately segmented by MitoGraph analysis. MitoGraph also successfully differentiated between distinct mitochondrial morphologies that ranged from entirely fragmented to hyper-elongated. General recommendations are also provided for confocal imaging of labeled mitochondria (using mito-YFP, MitoTracker dyes and immunostaining parameters). Widespread adoption of MitoGraph will help achieve a long-sought goal of consistent and reproducible quantification of mitochondrial morphology.
Collapse
Affiliation(s)
- Megan C Harwig
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Matheus P Viana
- Visual Analytics and Comprehension Group, IBM Research, Brazil; Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA, 92697, United States
| | - John M Egner
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | | | - Michael E Widlansky
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, United States
| | - Susanne M Rafelski
- Department of Developmental and Cell Biology and Center for Complex Biological Systems, University of California Irvine, Irvine, CA, 92697, United States; Assay Development, Allen Institute for Cell Science, Seattle, WA, 98109, United States
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, United States.
| |
Collapse
|
65
|
Ridge PG, Kauwe JSK. Mitochondria and Alzheimer's Disease: the Role of Mitochondrial Genetic Variation. CURRENT GENETIC MEDICINE REPORTS 2018; 6:1-10. [PMID: 29564191 PMCID: PMC5842281 DOI: 10.1007/s40142-018-0132-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose of Review Alzheimer’s disease (AD) is the most common form of dementia, affects an increasing number of people worldwide, has a rapidly increasing incidence, and is fatal. In the past several years, significant progress has been made towards solving the genetic architecture of AD, but our understanding remains incomplete and has not led to treatments that either cure or slow disease. There is substantial evidence that mitochondria are involved in AD: mitochondrial functional declines in AD, mitochondrial encoded gene expression changes, mitochondria are morphologically different, and mitochondrial fusion/fission are modified. While a majority of mitochondrial proteins are nuclear encoded and could lead to malfunction in mitochondria, the mitochondrial genome encodes numerous proteins important for the electron transport chain, which if damaged could possibly lead to mitochondrial changes observed in AD. Here, we review publications that describe a relationship between the mitochondrial genome and AD and make suggestions for analysis approaches and data acquisition, from existing datasets, to study the mitochondrial genetics of AD. Recent Findings Numerous mitochondrial haplogroups and SNPs have been reported to influence risk for AD, but the majority of these have not been replicated, nor experimentally validated. Summary The role of the mitochondrial genome in AD remains elusive, and several impediments exist to fully understand the relationship between the mitochondrial genome and AD. Yet, by leveraging existing datasets and implementing appropriate analysis approaches, determining the role of mitochondrial genetics in risk for AD is possible.
Collapse
Affiliation(s)
- Perry G. Ridge
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602 USA
| | - John S. K. Kauwe
- Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602 USA
| |
Collapse
|
66
|
Adiele RC, Adiele CA. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1257-70. [PMID: 27392851 DOI: 10.3233/jad-150967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative brain disorder with progressive cognitive decline that leads to terminal dementia and death. For decades, amyloid-beta (Aβ) and neurofibrillary tangle (NFT) aggregation hypotheses have dominated studies on the pathogenesis and identification of potential therapeutic targets in AD. Little attention has been paid to the mitochondrial molecular/biochemical pathways leading to AD. Mitochondria play a critical role in cell viability and death including neurons and neuroglia, not only because they regulate energy and oxygen metabolism but also because they regulate cell death pathways. Mitochondrial impairment and oxidative stress are implicated in the pathogenesis of AD. Interestingly, current therapeutics provide symptomatic benefits to AD patients resulting in the use of preventive trials on presymptomatic subjects. This review article elucidates the pathophysiology of AD and emphasizes the need to explore the mitochondrial pathways to provide solutions to unanswered questions in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Reginald C Adiele
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chiedukam A Adiele
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
67
|
Yu Q, Fang D, Swerdlow RH, Yu H, Chen JX, Yan SS. Antioxidants Rescue Mitochondrial Transport in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 54:679-90. [PMID: 27567872 DOI: 10.3233/jad-160532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction and axonal degeneration are early pathological features of Alzheimer's disease (AD)-affected brains. The underlying mechanisms and strategies to rescue it have not been well elucidated. Here, we evaluated axonal mitochondrial transport and function in AD subject-derived mitochondria. We analyzed mitochondrial transport and kinetics in human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were derived from platelets of patients with sporadic AD and compared these AD cybrid cell lines with cybrid cell lines whose mitochondria were derived from age-matched, cognitively normal subjects. Human AD cybrid cell lines, when induced to differentiate, developed stunted projections. Mitochondrial transport and function within neuronal processes/axons was altered in AD-derived mitochondria. Antioxidants reversed deficits in axonal mitochondrial transport and function. These findings suggest that antioxidants may be able to mitigate the consequences of AD-associated mitochondrial dysfunction. The present study provides evidence of the cause/effect of AD specific mitochondrial defects, which significantly enhances our understanding of the AD pathogenesis and exploring the effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | | | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
68
|
Rocha S, Freitas A, Guimaraes SC, Vitorino R, Aroso M, Gomez-Lazaro M. Biological Implications of Differential Expression of Mitochondrial-Shaping Proteins in Parkinson's Disease. Antioxidants (Basel) 2017; 7:E1. [PMID: 29267236 PMCID: PMC5789311 DOI: 10.3390/antiox7010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022] Open
Abstract
It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.
Collapse
Affiliation(s)
- Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
- FMUP-Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal.
| | - Sofia C Guimaraes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Universidade do Porto, 4200-319 Porto, Portugal.
| | - Miguel Aroso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Maria Gomez-Lazaro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
69
|
Bochimoto H, Matsuno N, Ishihara Y, Shonaka T, Koga D, Hira Y, Nishikawa Y, Furukawa H, Watanabe T. The ultrastructural characteristics of porcine hepatocytes donated after cardiac death and preserved with warm machine perfusion preservation. PLoS One 2017; 12:e0186352. [PMID: 29023512 PMCID: PMC5638504 DOI: 10.1371/journal.pone.0186352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
The effects of warm machine perfusion preservation of liver grafts donated after cardiac death on the intracellular three-dimensional ultrastructure of the organelles in hepatocytes remain unclear. Here we analyzed comparatively the ultrastructure of the endomembrane systems in porcine hepatocytes under warm ischemia and successive hypothermic and midthermic machine perfusion preservation, a type of the warm machine perfusion. Porcine liver grafts which had a warm ischemia time of 60 minutes were perfused for 4 hours with modified University of Wisconsin gluconate solution. Group A grafts were preserved with hypothermic machine perfusion preservation at 8°C constantly for 4 hours. Group B grafts were preserved with rewarming up to 22°C by warm machine perfusion preservation for 4 hours. An analysis of hepatocytes after 60 minutes of warm ischemia by scanning electron microscope revealed the appearance of abnormal vacuoles and invagination of mitochondria. In the hepatocytes preserved by subsequent hypothermic machine perfusion preservation, strongly swollen mitochondria were observed. In contrast, the warm machine perfusion preservation could preserve the functional appearance of mitochondria in hepatocytes. Furthermore, abundant vacuoles and membranous structures sequestrating cellular organelles like autophagic vacuoles were frequently observed in hepatocytes after warm machine perfusion preservation. In conclusion, the ultrastructure of the endomembrane systems in the hepatocytes of liver grafts changed in accordance with the temperature conditions of machine perfusion preservation. In addition, temperature condition of the machine perfusion preservation may also affect the condition of the hepatic graft attributed to autophagy systems, and consequently alleviate the damage of the hepatocytes.
Collapse
Affiliation(s)
- Hiroki Bochimoto
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Naoto Matsuno
- Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- * E-mail:
| | - Yo Ishihara
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tatsuya Shonaka
- Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yoshiki Hira
- Area of Functional Anatomy, Department of Nursing, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hiroyuki Furukawa
- Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
70
|
Patel M, McElroy PB. Mitochondrial Dysfunction in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders where oxidative stress and mitochondrial dysfunction have been implicated as etiological factors. Mitochondria are the major producers of reactive oxygen species (ROS) that can have damaging effects to cellular macromolecules leading to neurodegeneration. The most compelling evidence for the role of mitochondria in the pathogenesis of PD has been derived from toxicant-induced models of parkinsonism. Over the years, epidemiological studies have suggested a link between exposure to environmental toxins such as pesticides and the risk of developing PD. Data from human and experimental studies involving the use of chemical agents like paraquat, diquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone and maneb have provided valuable insight into the underlying mitochondrial mechanisms contributing to PD and associated neurodegeneration. In this review, we have discussed the role of mitochondrial ROS and dysfunction in the pathogenesis of PD with a special focus on environmental agent-induced parkinsonism. We have described the various mitochondrial mechanisms by which such chemicals exert neurotoxicity, highlighting some landmark epidemiological and experimental studies that support the role of mitochondrial ROS and oxidative stress in contributing to these effects. Finally, we have discussed the significance of these studies in understanding the mechanistic underpinnings of PD-related dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| | - Pallavi Bhuyan McElroy
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| |
Collapse
|
71
|
Feng W, Rosca M, Fan Y, Hu Y, Feng P, Lee HG, Monnier VM, Fan X. Gclc deficiency in mouse CNS causes mitochondrial damage and neurodegeneration. Hum Mol Genet 2017; 26:1376-1390. [PMID: 28158580 DOI: 10.1093/hmg/ddx040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/26/2017] [Indexed: 01/14/2023] Open
Abstract
Gamma glutamyl cysteine ligase (GCL) is the rate-limiting enzyme for intracellular glutathione (GSH) synthesis. The GSH concentration and GCL activity are declining with age in the central nervous system (CNS), and is accompanied by elevated reactive oxygen species (ROS). To study the biological effects of low GSH levels, we disrupted its synthesis both at birth by breeding a Gclc loxP mouse with a thy1-cre mouse (NEGSKO mouse) and at a later age by breeding with a CaMKII-ERT2-Cre (FIGSKO mouse). NEGSKO mice with deficiency of the Gclc in their entire CNS neuronal cells develop at 4 weeks: progressive motor neuron loss, gait problems, muscle denervation and atrophy, paralysis, and have diminished life expectancy. The observed neurodegeneration in Gclc deficiency is of more chronic rather than acute nature as demonstrated by Gclc targeted single-neuron labeling from the inducible Cre-mediated knockout (SLICK) mice. FIGSKO mice with inducible Gclc deficiency in the forebrain at 23 weeks after tamoxifen induction demonstrate profound brain atrophy, elevated astrogliosis and neurodegeneration, particularly in the hippocampus region. FIGSKO mice also develop cognitive abnormalities, i.e. learning impairment and nesting behaviors based on passive avoidance, T-Maze, and nesting behavior tests. Mechanistic studies show that impaired mitochondrial glutathione homeostasis and subsequent mitochondrial dysfunction are responsible for neuronal cell loss. This was confirmed by mitochondrial electron transporter chain activity analysis and transmission electron microscopy that demonstrate remarkable impairment of state 3 respiratory activity, impaired complex IV function, and mitochondrial swollen morphology in the hippocampus and cerebral cortex. These mouse genetic tools of oxidative stress open new insights into potential pharmacological control of apoptotic signaling pathways triggered by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Weiyi Feng
- First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Mariana Rosca
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | - Yufen Hu
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Pingfu Feng
- Division of Pulmonary and Critical Care, Department of Medicine
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas at San Antonio
| | - Vincent M Monnier
- Department of Pathology.,Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
72
|
Kim M, Lee S, Cho J, Kim G, Won C. Dopamine D3 receptor-modulated neuroprotective effects of lisuride. Neuropharmacology 2017; 117:14-20. [DOI: 10.1016/j.neuropharm.2017.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
|
73
|
Mitochondria, Cybrids, Aging, and Alzheimer's Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:259-302. [PMID: 28253988 DOI: 10.1016/bs.pmbts.2016.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial and bioenergetic function change with advancing age and may drive aging phenotypes. Mitochondrial and bioenergetic changes are also documented in various age-related neurodegenerative diseases, including Alzheimer's disease (AD). In some instances AD mitochondrial and bioenergetic changes are reminiscent of those observed with advancing age but are greater in magnitude. Mitochondrial and bioenergetic dysfunction could, therefore, link neurodegeneration to brain aging. Interestingly, mitochondrial defects in AD patients are not brain-limited, and mitochondrial function can be linked to classic AD histologic changes including amyloid precursor protein processing to beta amyloid. Also, transferring mitochondria from AD subjects to cell lines depleted of endogenous mitochondrial DNA (mtDNA) creates cytoplasmic hybrid (cybrid) cell lines that recapitulate specific biochemical, molecular, and histologic AD features. Such findings have led to the formulation of a "mitochondrial cascade hypothesis" that places mitochondrial dysfunction at the apex of the AD pathology pyramid. Data pertinent to this premise are reviewed.
Collapse
|
74
|
Wang Y, Brinton RD. Triad of Risk for Late Onset Alzheimer's: Mitochondrial Haplotype, APOE Genotype and Chromosomal Sex. Front Aging Neurosci 2016; 8:232. [PMID: 27757081 PMCID: PMC5047907 DOI: 10.3389/fnagi.2016.00232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
Brain is the most energetically demanding organ of the body, and is thus vulnerable to even modest decline in ATP generation. Multiple neurodegenerative diseases are associated with decline in mitochondrial function, e.g., Alzheimer’s, Parkinson’s, multiple sclerosis and multiple neuropathies. Genetic variances in the mitochondrial genome can modify bioenergetic and respiratory phenotypes, at both the cellular and system biology levels. Mitochondrial haplotype can be a key driver of mitochondrial efficiency. Herein, we focus on the association between mitochondrial haplotype and risk of late onset Alzheimer’s disease (LOAD). Evidence for the association of mitochondrial genetic variances/haplotypes and the risk of developing LOAD are explored and discussed. Further, we provide a conceptual framework that suggests an interaction between mitochondrial haplotypes and two demonstrated risk factors for Alzheimer’s disease (AD), apolipoprotein E (APOE) genotype and chromosomal sex. We posit herein that mitochondrial haplotype, and hence respiratory capacity, plays a key role in determining risk of LOAD and other age-associated neurodegenerative diseases. Further, therapeutic design and targeting that involve mitochondrial haplotype would advance precision medicine for AD and other age related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Roberta D Brinton
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
75
|
Mukherjee K, Clark HR, Chavan V, Benson EK, Kidd GJ, Srivastava S. Analysis of Brain Mitochondria Using Serial Block-Face Scanning Electron Microscopy. J Vis Exp 2016. [PMID: 27501303 DOI: 10.3791/54214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Human brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms. Mitochondrial defects are also present in neurodevelopmental disorders (e.g. autism spectrum disorder) and neurodegenerative disorders (e.g. amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases). Thus, there is an increased interest in the field for performing 3D analysis of mitochondrial morphology, structure and distribution under both healthy and disease states. The brain mitochondrial morphology is extremely diverse, with some mitochondria especially those in the synaptic region being in the range of <200 nm diameter, which is below the resolution limit of traditional light microscopy. Expressing a mitochondrially-targeted green fluorescent protein (GFP) in the brain significantly enhances the organellar detection by confocal microscopy. However, it does not overcome the constraints on the sensitivity of detection of relatively small sized mitochondria without oversaturating the images of large sized mitochondria. While serial transmission electron microscopy has been successfully used to characterize mitochondria at the neuronal synapse, this technique is extremely time-consuming especially when comparing multiple samples. The serial block-face scanning electron microscopy (SBFSEM) technique involves an automated process of sectioning, imaging blocks of tissue and data acquisition. Here, we provide a protocol to perform SBFSEM of a defined region from rodent brain to rapidly reconstruct and visualize mitochondrial morphology. This technique could also be used to provide accurate information on mitochondrial number, volume, size and distribution in a defined brain region. Since the obtained image resolution is high (typically under 10 nm) any gross mitochondrial morphological defects may also be detected.
Collapse
|
76
|
Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer’s-Disease Related Pathology. Mol Neurobiol 2016; 54:4021-4040. [DOI: 10.1007/s12035-016-9951-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/06/2016] [Indexed: 01/21/2023]
|
77
|
Pleiotropic effect of anionic phospholipids absence on mitochondrial morphology and cell wall integrity in strictly aerobic Kluyveromyces lactis yeasts. Folia Microbiol (Praha) 2016; 61:485-493. [PMID: 27169884 DOI: 10.1007/s12223-016-0463-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Cardiolipin and phosphatidylglycerol are anionic phospholipids localized to the inner mitochondrial membrane. In this study, it is demonstrated by fluorescence and transmission electron microscopy that atp2.1pgs1Δ mutant mitochondria lacking anionic phospholipids contain fragmented and swollen mitochondria with a completely disorganized inner membrane. In the second part of this study, it was shown that the temperature sensitivity of the atp2.1pgs1Δ mutant was not suppressed by the osmotic stabilizer glucitol but by glucosamine, a precursor of chitin synthesis. The atp2.1pgs1Δ mutant was hypersensitive to Calcofluor White and caffeine, resistant to Zymolyase, but its sensitivity to caspofungin was the same as the strains with the standard PGS1 gene. The distribution of chitin in the mutant cell wall was impaired. The glucan level in the cell wall of the atp2.1pgs1Δ mutant was reduced by 4-8 %, but the level of chitin was almost double that in the wild-type strain. The cell wall of the atp2.1pgs1Δ mutant was about 20 % thinner than the wild type, but its morphology was not significantly altered.
Collapse
|
78
|
Zhang L, Chen X, Zhang Z, Chen W, Zhao H, Zhao X, Li K, Yuan L. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:044301. [PMID: 27131687 DOI: 10.1063/1.4946781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xingyu Chen
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hong Zhao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Zhao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kaixing Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Li Yuan
- Department of Laboratory Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
79
|
de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex. Sleep 2016; 39:861-74. [PMID: 26715225 DOI: 10.5665/sleep.5644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/21/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVE The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. METHODS Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). RESULTS Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. CONCLUSIONS Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss.
Collapse
Affiliation(s)
- Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Aaron B Nelson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Juliana Noguti
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
80
|
Ding C, Wu Z, Huang L, Wang Y, Xue J, Chen S, Deng Z, Wang L, Song Z, Chen S. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep 2015; 5:16064. [PMID: 26530328 PMCID: PMC4632003 DOI: 10.1038/srep16064] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022] Open
Abstract
The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a complex containing Mitofilin, Sam50, and CHCHD 3 and 6. Using transcription activator-like effector nucleases (TALENs), we generated knockdown/knockout clones of Mitofilin and CHCHD6. Transmission electron microscopy (TEM) revealed that vesicle-like cristae morphology appeared in cell lines lacking Mitofilin, and mitochondria exhibited lower cristae density in CHCHD6-knockout cells. Immunoblot analysis showed that knockdown of Mitofilin, but not knockout of CHCHD6, affected their binding partners that control cristae morphology. We also demonstrated that Mitofilin and CHCHD6 directly interacted with Sam50. Additionally, we observed that Mitofilin-knockdown cells showed decreased mitochondrial membrane potential (ΔΨm) and intracellular ATP content, which were minimally affected in CHCHD6-knockout cells. Taken together, we conclude that the integrity of MICOS and its efficient interaction with Sam50 are indispensable for cristae organization, which is relevant to mitochondrial function.
Collapse
Affiliation(s)
- Chengli Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhifei Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Yajie Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Si Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhiyin Song
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
81
|
Bobela W, Aebischer P, Schneider BL. Αlpha-Synuclein as a Mediator in the Interplay between Aging and Parkinson's Disease. Biomolecules 2015; 5:2675-700. [PMID: 26501339 PMCID: PMC4693253 DOI: 10.3390/biom5042675] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/22/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulation and misfolding of the alpha-synuclein protein are core mechanisms in the pathogenesis of Parkinson's disease. While the normal function of alpha-synuclein is mainly related to the control of vesicular neurotransmission, its pathogenic effects are linked to various cellular functions, which include mitochondrial activity, as well as proteasome and autophagic degradation of proteins. Remarkably, these functions are also affected when the renewal of macromolecules and organelles becomes impaired during the normal aging process. As aging is considered a major risk factor for Parkinson's disease, it is critical to explore its molecular and cellular implications in the context of the alpha-synuclein pathology. Here, we discuss similarities and differences between normal brain aging and Parkinson's disease, with a particular emphasis on the nigral dopaminergic neurons, which appear to be selectively vulnerable to the combined effects of alpha-synuclein and aging.
Collapse
Affiliation(s)
- Wojciech Bobela
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | - Patrick Aebischer
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
| | | |
Collapse
|
82
|
O'Connell GC, Nichols C, Guo G, Croston TL, Thapa D, Hollander JM, Pistilli EE. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome. Mitochondrion 2015; 25:87-97. [PMID: 26458787 DOI: 10.1016/j.mito.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.
Collapse
Affiliation(s)
| | | | - Ge Guo
- Division of Exercise Physiology, United States
| | | | | | - John M Hollander
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States
| | - Emidio E Pistilli
- Division of Exercise Physiology, United States; Center for Cardiovascular and Respiratory Sciences, United States; Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
83
|
Shindo Y, Yamanaka R, Suzuki K, Hotta K, Oka K. Intracellular magnesium level determines cell viability in the MPP(+) model of Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3182-91. [PMID: 26319097 DOI: 10.1016/j.bbamcr.2015.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/24/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder resulting from mitochondrial dysfunction in dopaminergic neurons. Mitochondria are believed to be responsible for cellular Mg²⁺ homeostasis. Mg²⁺ is indispensable for maintaining ordinal cellular functions, hence perturbation of the cellular Mg²⁺ homeostasis may be responsible for the disorders of physiological functions and diseases including PD. However, the changes in intracellular Mg²⁺ concentration ([Mg²⁺]i) and the role of Mg²⁺ in PD have still been obscure. In this study, we investigated [Mg²⁺]i and its effect on neurodegeneration in the 1-methyl-4-phenylpyridinium (MPP⁺) model of PD in differentiated PC12 cells. Application of MPP⁺ induced an increase in [Mg²⁺]i immediately via two different pathways: Mg²⁺ release from mitochondria and Mg²⁺ influx across cell membrane, and the increased [Mg²⁺]i sustained for more than 16 h after MPP⁺ application. Suppression of Mg²⁺ influx decreased the viability of the cells exposed to MPP⁺. The cell viability correlated highly with [Mg²⁺]i. In the PC12 cells with suppressed Mg²⁺ influx, ATP concentration decreased and the amount of reactive oxygen species (ROS) increased after an 8h exposure to MPP⁺. Our results indicate that the increase in [Mg²⁺]i inhibited cellular ROS generation and maintained ATP production, which resulted in the protection from MPP⁺ toxicity.
Collapse
Affiliation(s)
- Yutaka Shindo
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ryu Yamanaka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
84
|
Shrivastava M, Subbiah V. Elevated caspase 3 activity and cytosolic cytochrome c in NT2 cybrids containing amyotrophic lateral sclerosis subject mtDNA. Int J Neurosci 2015; 126:839-49. [PMID: 26268635 DOI: 10.3109/00207454.2015.1074902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptosis of motor neurons is an important feature in amyotrophic lateral sclerosis (ALS). A vital role of mitochondria in apoptosis and cell survival is well documented. Eventually mitochondria have shown to be an early target in the pathogenesis of ALS. On account of these facts, we investigated the involvement of mitochondrial-dependent apoptosis in ALS and control (CTR) cybrids, generated fusing human platelets with mitochondrial DNA-depleted NT2-neuroteratocarcinoma cells. After a 6 week selection process during which transferred subject mtDNA repopulated the NT2 cells and restored mitochondrial oxygen consumption, we assessed cell viability and two programmed cell death parameters, caspase 3 activity and cytosolic cytochrome c levels. Compared to the control cybrid lines (n = 5), the ALS cybrid lines (n = 10) showed 45% less XTT reduction and higher caspase 3 activity ( p < 0.05, two-way Student's t test) exhibiting lesser cell viability and execution of apoptosis. Elevated cytosolic cytochrome c levels in ALS cybrid lines (n = 8) than in CTR (n = 4) ( p < 0.05, two-way Student's t-test) indicating its mitochondrial release and initiation of apoptosis. This indicates apoptosis as one of the possible mechanisms of cell death in ALS. Our findings support the view that in ALS, subject's mitochondria are altered in non-degenerating tissues in such a way that intrinsic apoptotic pathway activity is relatively increased.
Collapse
Affiliation(s)
- Mohita Shrivastava
- a Department of Neurobiochemistry , All India Institute of Medical Sciences , New Delhi , India
| | - Vivekanandhan Subbiah
- a Department of Neurobiochemistry , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
85
|
Xie L, Yang Y, Sun X, Qiao X, Liu Q, Song K, Kong B, Su X. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution. Cytometry A 2015; 87:1029-37. [PMID: 26115102 DOI: 10.1002/cyto.a.22713] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 04/08/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022]
Abstract
Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.
Collapse
Affiliation(s)
- Linyan Xie
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yan Yang
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xuming Sun
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Xu Qiao
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Qiao Liu
- Department of Medical Genetics, School of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xuantao Su
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
86
|
Jang DH, Lampe JW, Becker LB. The Potential Application of Mitochondrial Medicine in Toxicologic Poisoning. J Med Toxicol 2015; 11:201-7. [PMID: 25907836 PMCID: PMC4469712 DOI: 10.1007/s13181-015-0478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The advancement of biomolecular techniques has continued to advance in the area of mitochondrial medicine. This has allowed clinicians and researchers to more effectively study the bioenergetics of the mitochondria in various disease states. One potential technique in mitochondrial medicine is the generation of cytoplasmic hybrids. A cytoplasmic hybrid or cybrid are created by introducing mitochondrial DNA (mtDNA) of interest into cells depleted of mtDNA. A cybrid is therefore a hybrid cell that mixes the nuclear genome from one cell with the mitochondrial genes from another cell. Cybrids are currently utilized in mitochondrial research to demonstrate mitochondrial involvement in a wide range of diseases that include diabetes, Parkinson's disease and inherited diseases. At this time the use of cybrids to study toxicologic poisoning is limited and offers a potential avenue of research in this area.
Collapse
Affiliation(s)
- David H Jang
- Center for Resuscitation Science and Center for Mitochondrial and Epigenomic Medicine, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,
| | | | | |
Collapse
|
87
|
Guizzunti G, Zurzolo C. Cytosolically expressed PrP GPI-signal peptide interacts with mitochondria. Commun Integr Biol 2015; 8:e1036206. [PMID: 26480298 PMCID: PMC4594234 DOI: 10.1080/19420889.2015.1036206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/24/2014] [Indexed: 01/19/2023] Open
Abstract
We previously reported that PrP GPI-anchor signal peptide (GPI-SP) is specifically degraded by the proteasome. Additionally, we showed that the point mutation P238S, responsible for a genetic form of prion diseases, while not affecting the GPI-anchoring process, results in the accumulation of PrP GPI-SP, suggesting the possibility that PrP GPI-anchor signal peptide could play a role in neurodegenerative prion diseases. We now show that PrP GPI-SP, when expressed as a cytosolic peptide, is able to localize to the mitochondria and to induce mitochondrial fragmentation and vacuolarization, followed by loss in mitochondrial membrane potential, ultimately resulting in apoptosis. Our results identify the GPI-SP of PrP as a novel candidate responsible for the impairment in mitochondrial function involved in the synaptic pathology observed in prion diseases, establishing a link between PrP GPI-SP accumulation and neuronal death.
Collapse
Affiliation(s)
- Gianni Guizzunti
- University of Texas Southwestern Medical Center; Department of Cell Biology ; Dallas, TX USA
| | - Chiara Zurzolo
- Institut Pasteur; Unité de Trafic Membranaire et Pathogenèse ; Paris, France
| |
Collapse
|
88
|
Thomas SC, Alhasawi A, Appanna VP, Auger C, Appanna VD. Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy. J Nutr Health Aging 2015; 19:58-63. [PMID: 25560817 DOI: 10.1007/s12603-014-0511-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is one of the most energy-demanding organs in the body. It has evolved intricate metabolic networks to fulfill this need and utilizes a variety of substrates to generate ATP, the universal energy currency. Any disruption in the supply of energy results in various abnormalities including Alzheimer's disease (AD), a condition with markedly diminished cognitive ability. Astrocytes are an important participant in maintaining the cerebral ATP budget. However, under oxidative stress induced by numerous factors including aluminum toxicity, the ability of astroctyes to generate ATP is impaired due to dysfunctional mitochondria. This leads to globular, glycolytic, lipogenic and ATP-deficient astrocytes, cerebral characteristics common in AD patients. The reversal of these perturbations by such natural metabolites as pyruvate, α-ketoglutarate, acetoacetate and L-carnitine provides valuable therapeutic cues against AD.
Collapse
Affiliation(s)
- S C Thomas
- Vasu D. Appanna, Faculty of Science and Engineering, Laurentian University, Sudbury, Ontario, P3E 2C6, Canada. Phone: (705) 675-1151, ext. 2112, Fax: (705) 675-4844. E-mail:
| | | | | | | | | |
Collapse
|
89
|
Zapatero-Solana E, García-Giménez JL, Guerrero-Aspizua S, García M, Toll A, Baselga E, Durán-Moreno M, Markovic J, García-Verdugo JM, Conti CJ, Has C, Larcher F, Pallardó FV, Del Rio M. Oxidative stress and mitochondrial dysfunction in Kindler syndrome. Orphanet J Rare Dis 2014; 9:211. [PMID: 25528446 PMCID: PMC4302591 DOI: 10.1186/s13023-014-0211-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022] Open
Abstract
Background Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Methods Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Results Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. Conclusions This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS. Electronic supplementary material The online version of this article (doi:10.1186/s13023-014-0211-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Zapatero-Solana
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Regenerative Medicine Unit. Departament of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. .,Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Jose Luis García-Giménez
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain. .,Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain.
| | - Sara Guerrero-Aspizua
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Regenerative Medicine Unit. Departament of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. .,Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Marta García
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Regenerative Medicine Unit. Departament of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. .,Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Agustí Toll
- Servei de Dermatologia, Hospital del Mar, Parc de Salut Mar, Cancer Research Program, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain.
| | - Eulalia Baselga
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | - Maria Durán-Moreno
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain.
| | - Jelena Markovic
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain. .,Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain.
| | - Jose Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia, Spain.
| | - Claudio J Conti
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Cristina Has
- Department of Dermatology, Medical Centre-University of Freiburg, Freiburg, Germany.
| | - Fernando Larcher
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Regenerative Medicine Unit. Departament of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. .,Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| | - Federico V Pallardó
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain. .,Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain.
| | - Marcela Del Rio
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Valencia, Spain. .,Regenerative Medicine Unit. Departament of Basic Research, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain. .,Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain. .,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
90
|
Identification of tetrahydrocarbazoles as novel multifactorial drug candidates for treatment of Alzheimer's disease. Transl Psychiatry 2014; 4:e489. [PMID: 25514752 PMCID: PMC4270312 DOI: 10.1038/tp.2014.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/12/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most frequent cause of dementia. To date, there are only a few approved drugs for AD, which show little or no effect on disease progression. Impaired intracellular calcium homeostasis is believed to occur early in the cascade of events leading to AD. Here, we examined the possibility of normalizing the disrupted calcium homeostasis in the endoplasmic reticulum (ER) store as an innovative approach for AD drug discovery. High-throughput screening of a small-molecule compound library led to the identification of tetrahydrocarbazoles, a novel multifactorial class of compounds that can normalize the impaired ER calcium homeostasis. We found that the tetrahydrocarbazole lead structure, first, dampens the enhanced calcium release from ER in HEK293 cells expressing familial Alzheimer's disease (FAD)-linked presenilin 1 mutations. Second, the lead structure also improves mitochondrial function, measured by increased mitochondrial membrane potential. Third, the same lead structure also attenuates the production of amyloid-beta (Aβ) peptides by decreasing the cleavage of amyloid precursor protein (APP) by β-secretase, without notably affecting α- and γ-secretase cleavage activities. Considering the beneficial effects of tetrahydrocarbazoles addressing three key pathological aspects of AD, these compounds hold promise for the development of potentially effective AD drug candidates.
Collapse
|
91
|
Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 2014; 15:643-60. [PMID: 25305051 DOI: 10.1007/s10522-014-9532-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/13/2014] [Indexed: 12/30/2022]
Abstract
The term cellular senescence was introduced more than five decades ago to describe the state of growth arrest observed in aging cells. Since this initial discovery, the phenotypes associated with cellular senescence have expanded beyond growth arrest to include alterations in cellular metabolism, secreted cytokines, epigenetic regulation and protein expression. Recently, senescence has been shown to play an important role in vivo not only in relation to aging, but also during embryonic development. Thus, cellular senescence serves different purposes and comprises a wide range of distinct phenotypes across multiple cell types. Whether all cell types, including post-mitotic neurons, are capable of entering into a senescent state remains unclear. In this review we examine recent data that suggest that cellular senescence plays a role in brain aging and, notably, may not be limited to glia but also neurons. We suggest that there is a high level of similarity between some of the pathological changes that occur in the brain in Alzheimer's and Parkinson's diseases and those phenotypes observed in cellular senescence, leading us to propose that neurons and glia can exhibit hallmarks of senescence previously documented in peripheral tissues.
Collapse
|
92
|
Three-dimensional analysis of abnormal ultrastructural alteration in mitochondria of hippocampus of APP/PSEN1 transgenic mouse. J Biosci 2014; 39:97-105. [PMID: 24499794 DOI: 10.1007/s12038-013-9406-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The deterioration of subcellular organelles, including the mitochondria, is another major ultrastructural characteristic of AD pathogenesis, in addition to amyloid plaque deposition. However, the three-dimensional (3-D) study of mitochondrial structural alteration in AD remains poorly understood. Therefore, ultrastructural analysis, 3-D electron tomography, and immunogold electron microscopy were performed in the present study to clarify the abnormal structural alterations in mitochondria caused by the progression of AD in APP/PSEN1 transgenic mice, expressing human amyloid precursor protein, as a model for AD. Amyloid beta (A beta) plaques accumulated and dystrophic neurites (DN) developed in the hippocampus of transgenic AD mouse brains. We also identified the loss of peroxiredoxin 3, an endogenous cytoprotective antioxidant enzyme and the accumulation of A beta in the hippocampal mitochondria of transgenic mice, which differs from those in age-matched wild-type mice. The mitochondria in A beta plaque-detected regions were severely disrupted, and the patterns of ultrastructural abnormalities were classified into three groups: disappearance of cristae, swelling of cristae, and bulging of the outer membrane. These results demonstrated that morpho-functional alterations of mitochondria and AD progression are closely associated and may be beneficial in investigating the function of mitochondria in AD pathogenesis.
Collapse
|
93
|
The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson's Disease. Mol Neurobiol 2014; 52:573-86. [PMID: 25218511 DOI: 10.1007/s12035-014-8893-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Accumulating data suggests that mitochondrial deficits may underline both sporadic and familial Parkinson's disease (PD) neurodegenerative process. Impairment of mitochondrial dynamics results in reactive oxygen species (ROS) production, decreases mitochondrial membrane potential, and could potentiate the accumulation of dysfunctional mitochondria. Excessive mitochondrial fragmentation is associated with the pathology of sporadic PD. Therefore, we modulated mitochondria fusion and fission in different sporadic PD cellular models. We found alterations in two proteins known to regulate mitochondrial fusion and fission events (OPA1 and Drp1, respectively). OPA1 long isoform cleavage seems to be, at least in part, responsible for mitochondrial fragmented pattern observed in sporadic PD cellular models. Moreover, mitochondrial fragmentation can also occur due to an increase in Drp1 that is translocated into the mitochondria by phosphorylation. To disclose the relevance of these alterations to the fragmentation of the mitochondrial network, we overexpressed OPA1 and knock down Drp1. OPA1 overexpression did not rescue MPP(+)-induced increase in ROS. Nevertheless, Drp1 knockdown due to an increase in mitochondrial elongation and interconnectivity rescued mitochondrial membrane potential and decreased ROS production in sporadic PD cells. Overall, our findings suggest that Drp1-dependent mitochondrial fragmentation plays a crucial role in mediating mitochondrial DNA induced mitochondria abnormalities and cellular dysfunction in sporadic PD.
Collapse
|
94
|
CNB-001 a novel curcumin derivative, guards dopamine neurons in MPTP model of Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236182. [PMID: 25025041 PMCID: PMC4083212 DOI: 10.1155/2014/236182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/14/2014] [Indexed: 12/29/2022]
Abstract
Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson's disease (PD) pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days) exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH), dopamine transporter, and vesicular monoamine transporter 2 (VMAT2) expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg) not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.
Collapse
|
95
|
Canugovi C, Shamanna RA, Croteau DL, Bohr VA. Base excision DNA repair levels in mitochondrial lysates of Alzheimer's disease. Neurobiol Aging 2014; 35:1293-300. [PMID: 24485507 PMCID: PMC5576885 DOI: 10.1016/j.neurobiolaging.2014.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/20/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is a senile dementia with increased incidence in older subjects (age >65 years). One of the earliest markers of AD is oxidative DNA damage. Recently, it has been reported that preclinical AD patient brains show elevated levels of oxidative damage in both nuclear and mitochondrial nucleic acids. Moreover, different oxidative lesions in mitochondrial DNA are between 5- and 10-fold higher than in nuclear DNA in both control and AD postmortem brains. We previously showed that there is a significant loss of base excision repair (BER) components in whole tissue extracts of AD and mild cognitive impairment subjects relative to matched control subjects. However, comprehensive analysis of specific steps in BER levels in mitochondrial extracts of AD patient brains is not available. In this study, we mainly investigated various components of BER in mitochondrial extracts of AD and matched control postmortem brain samples. We found that the 5-hydroxyuracil incision and ligase activities are significantly lower in AD brains, whereas the uracil incision, abasic site cleavage, and deoxyribonucleotide triphosphate incorporation activities are normal in these samples.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
96
|
Escin, a Novel Triterpene, Mitigates Chronic MPTP/p-Induced Dopaminergic Toxicity by Attenuating Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis. J Mol Neurosci 2014; 55:184-197. [DOI: 10.1007/s12031-014-0303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
|
97
|
Misonou Y, Kikuchi M, Sato H, Inai T, Kuroiwa T, Tanaka K, Miyakawa I. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae. Biol Open 2014; 3:387-96. [PMID: 24771619 PMCID: PMC4021361 DOI: 10.1242/bio.20147138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast.
Collapse
Affiliation(s)
- Yoshiko Misonou
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Maiko Kikuchi
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hiroshi Sato
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan Present address: Division of Cell Biology, Institute of Life Science, Kurume University, Hyakunen-kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Tomomi Inai
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kenji Tanaka
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya 466-8550, Japan Present address: Department of Microbiology, Aichi Gakuin University School of Dentistry, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Isamu Miyakawa
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
98
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
99
|
Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol 2014; 2:619-31. [PMID: 25460729 PMCID: PMC4297942 DOI: 10.1016/j.redox.2014.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic hybrid (cybrid) cell lines can incorporate human subject mitochondria and perpetuate its mitochondrial DNA (mtDNA)-encoded components. Since the nuclear background of different cybrid lines can be kept constant, this technique allows investigators to study the influence of mtDNA on cell function. Prior use of cybrids has elucidated the contribution of mtDNA to a variety of biochemical parameters, including electron transport chain activities, bioenergetic fluxes, and free radical production. While the interpretation of data generated from cybrid cell lines has technical limitations, cybrids have contributed valuable insight into the relationship between mtDNA and phenotype alterations. This review discusses the creation of the cybrid technique and subsequent data obtained from cybrid applications. The cytoplasmic hybrid (cybrid) model can be used to determine mitochondrial DNA (mtDNA) contributions to phenotypic alterations. Cybrids are used to study mitochondriopathies such as Parkinson’s disease and Alzheimer’s disease. mtDNA heteroplasmy threshold and nuclear DNA-mtDNA compatibility can be determined using cybrid models.
Collapse
|
100
|
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med 2013; 63:1-29. [PMID: 23567191 DOI: 10.1016/j.freeradbiomed.2013.03.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Rajnish K Chaturvedi
- CSIR-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India.
| | | |
Collapse
|