51
|
Lee KM, Kaneko T, Katoh F, Aida K. Prolactin gene expression and gill chloride cell activity in fugu Takifugu rubripes exposed to a hypoosmotic environment. Gen Comp Endocrinol 2006; 149:285-93. [PMID: 16884723 DOI: 10.1016/j.ygcen.2006.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/15/2006] [Accepted: 06/18/2006] [Indexed: 11/15/2022]
|
52
|
Takahashi H, Takahashi A, Sakamoto T. In vivo effects of thyroid hormone, corticosteroids and prolactin on cell proliferation and apoptosis in the anterior intestine of the euryhaline mudskipper (Periophthalmus modestus). Life Sci 2006; 79:1873-80. [PMID: 16857212 DOI: 10.1016/j.lfs.2006.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/26/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022]
Abstract
We have previously shown that anterior intestinal epithelium of the euryhaline mudskipper (Periophthalmus modestus) undergoes apoptosis during seawater (SW) acclimation, whereas elevated cell proliferation was observed in freshwater (FW)-acclimated fish. To understand the possible endocrine regulation of the gastrointestinal cell turnover during salinity acclimation, we examined the ratios of apoptotic and proliferating cells in the anterior intestine of one-third SW-acclimated mudskipper treated with triiodothyronine (T3), cortisol, 11-deoxycorticosterone (DOC, the putative teleostean mineralocorticoid), or prolactin (PRL). In situ nick end labeling of genomic DNA (TUNEL) and immunohistochemistry of proliferating cells nuclear antigen (PCNA) were used as indicators of apoptosis and cell proliferations, respectively. Cortisol significantly elevated apoptosis (P<0.05) in the epithelia and connective tissues and also stimulated the epithelial cell proliferation (P<0.05). PRL induced epithelial cell proliferation (P<0.05), but did not affect apoptotic status of the intestinal epithelium. Neither T3 nor DOC had any impact on cell proliferation or apoptosis. Together, our results suggest a role for cortisol and PRL in the regulation of anterior intestinal epithelial turnover during salinity acclimation in this species.
Collapse
Affiliation(s)
- Hideya Takahashi
- Ushimado Marine Laboratory, Graduate School of Natural Science and Technology, Okayama University, Ushimado, 130-17, Kashino, Ushimado, Setouchi, Japan.
| | | | | |
Collapse
|
53
|
Fox BK, Riley LG, Hirano T, Grau EG. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2006; 148:340-7. [PMID: 16750210 DOI: 10.1016/j.ygcen.2006.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 11/30/2022]
Abstract
Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.
Collapse
Affiliation(s)
- B K Fox
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | |
Collapse
|
54
|
Sakamoto T, McCormick SD. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 2006; 147:24-30. [PMID: 16406056 DOI: 10.1016/j.ygcen.2005.10.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/22/2005] [Indexed: 11/29/2022]
Abstract
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Faculty of Science, Okayama University, Ushimado, Okayama, Japan.
| | | |
Collapse
|
55
|
Shoemaker JM, Riley LG, Hirano T, Grau EG, Rubin DA. Differential expression of tuberoinfundibular peptide 38 and glucose-6-phosphatase in tilapia. Gen Comp Endocrinol 2006; 146:186-94. [PMID: 16375902 DOI: 10.1016/j.ygcen.2005.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/02/2005] [Accepted: 10/22/2005] [Indexed: 11/28/2022]
Abstract
A new parathyroid hormone (PTH)-like endocrine system has been identified in mammals and fishes consisting of the PTH type-2 receptor (PTH2R) and tuberoinfundibular peptide 39 (TIP39). Although the mammalian PTH2R-TIP39 system is involved in nociception and pituitary regulation, the function(s) of this system in fishes is undetermined. Using degenerate primers based on conserved zebrafish and fugu TIP39 nucleotide sequences, 3'-RACE reactions isolated the coding region of a putative TIP38 cDNA in the Nile tilapia (Oreochromis niloticus). Tilapia-specific primers were subsequently used in 5'-RACE reactions to isolate the remaining portion of the transcript. The cDNA encoding O. niloticus TIP (OnTIP38) was determined to yield a 38 amino acid secreted hormone. A second tilapia TIP38 cDNA was isolated from the euryhaline Mozambique tilapia (OmTIP38). Except for the 39th residue, both tilapia cDNA sequences showed significant identity to human, bovine, murine, fugu, and zebrafish TIP39. To determine the tissue-specific expression of OnTIP38 and OmTIP38, real-time quantitative RT-PCR (rQRT-PCR) was performed on skin, gill, kidney, testis, heart, and brain. In freshwater (FW)-acclimated Nile tilapia, OnTIP38 showed highest levels of expression in kidney and lowest levels in skin and gill. In Mozambique tilapia tissues, expression of OmTIP38 and G6Pase (glucose-6 phosphatase) were higher in salt water (SW)-acclimated fish than in FW-acclimated fish. G6Pase expression, and not OmTIP38, showed significant differences among various tissues in FW- and SW-acclimated fish. Results of the present study clearly indicate that the TIP38/39-PTH2R system shows considerable conservation in sequence identity and tissue-specific expression in mammals and fishes.
Collapse
Affiliation(s)
- Justin M Shoemaker
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | | | | | | | |
Collapse
|
56
|
Seale AP, Fiess JC, Hirano T, Cooke IM, Grau EG. Disparate release of prolactin and growth hormone from the tilapia pituitary in response to osmotic stimulation. Gen Comp Endocrinol 2006; 145:222-31. [PMID: 16242686 DOI: 10.1016/j.ygcen.2005.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 07/21/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022]
Abstract
In most teleost fishes, prolactin (PRL) plays a key role in freshwater (FW) adaptation, whereas growth hormone (GH) is involved in seawater (SW) adaptation in salmonids and certain euryhaline species including the tilapia, Oreochromis mossambicus. Consistent with its osmoregulatory activity, PRL release increases in response to physiologically relevant reductions in extracellular osmolality. When dispersed PRL and GH cells from FW-acclimatized fish were incubated in media of varying osmolalities, PRL release increased significantly in response to a 12% reduction in medium osmolality during 1 and 4h of exposure. By contrast, cells from SW-acclimatized fish responded only to a 24% reduction in osmolality. Growth hormone release on the other hand increased whether medium osmolality was reduced or raised. Cell volume increased together with PRL release during the perifusion of dispersed PRL cells in direct proportion to the reduction in medium osmolality. Growth hormone release increased whether GH cell volume increased or decreased. In in vivo studies, circulating PRL levels increased as early as 1h after the transfer of fish from SW to FW, whereas GH levels remained unchanged during 24h of acclimatization. These results indicate that while PRL and GH cells are osmosensitive, the PRL cells respond to reductions in extracellular osmolality in a manner that is consistent with PRL's physiological role in the tilapia. While the rise in GH release following the reduction in osmolality is of uncertain physiological significance, the rise in GH release with the elevation of medium osmolality may be connected to its role in SW adaptation.
Collapse
Affiliation(s)
- A P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
57
|
Elango A, Shepherd B, Chen TT. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary. Gen Comp Endocrinol 2006; 145:116-27. [PMID: 16188257 DOI: 10.1016/j.ygcen.2005.08.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/12/2005] [Accepted: 08/06/2005] [Indexed: 11/29/2022]
Abstract
It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the effects of EDs on the reproductive system and sex hormones and only limited information exists on how EDs may affect pituitary gland function. A rainbow trout (Oncorhynchus mykiss) pituitary gland culture system was used for studying the effects of EDs on growth hormone (GH) and prolactin (PRL) mRNA expression. We determined that the pituitary glands actively synthesized and secreted GH and PRL over the experimental time-course. In addition, we found that treatment with 17beta-estradiol (positive control) increased levels of GH and PRL mRNA, in a concentration-dependent manner. Treatment of pituitary glands with 500 and 1000 nM of a xenoestrogen, o,p'-DDT (o,p'-dichlorodiphenyltrichloroethane), resulted in a significant induction of GH and PRL mRNA, with a 20-fold increase for PRL and 3-fold increase for GH following treatment with 1000 nM o,p'-DDT. Co-incubation of pituitary glands with ICI 182 780 (a selective estrogen receptor antagonist) and o,p'-DDT resulted in inhibition of PRL mRNA levels; however, the stimulatory effect of DDT on GH mRNA was not seen in this experiment, nor was the inhibitory effect of ICI 182 780 observed with GH mRNA. To the contrary, ICI 182 780 (2.5 nM) had a stimulatory effect on GH mRNA levels. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), which is known to exert antiestrogenic effects, had an estrogenic-like effect that resulted in a concentration-dependent increase in the levels of GH and PRL mRNA. Co-incubation of pituitaries with TCDD and alpha-napthoflavone (ANF), which is an inhibitor of the aryl hydrocarbon receptor (AhR), caused an inhibition of TCDD-induced PRL mRNA at the higher and lower concentrations, but these effects were less consistent on GH mRNA levels. However, the responses of PRL and GH mRNA to co-incubation with TCDD and ANF, at the various concentrations, were bi-phasic wherein stimulation was seen at the low concentrations and inhibition at the high concentrations. Combined, these results suggest that o,p'-DDT and TCDD are xenoestrogens and that their effects on the expression of GH and PRL genes in the rainbow trout pituitary are modulated, in part, through the ER and AhR, respectively.
Collapse
Affiliation(s)
- Anitha Elango
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
58
|
Yiu-Kwong Leung M, Kwok-Keung Ho W. Production, characterization and applications of mouse anti-grass carp (Ctenopharyngodon idellus) growth hormone monoclonal antibodies. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:107-15. [PMID: 16352451 DOI: 10.1016/j.cbpb.2005.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/22/2022]
Abstract
Mouse anti-grass carp growth hormone (gcGH) monoclonal antibody (MAb) secretors were produced by PEG-mediated fusion of NS-1 myeloma cells and splenic B-lymphocytes of gcGH hyper-immunized mice. Positive secretors were screened by direct ELISA and cloned by limiting dilution. Three positive secretors, 21D3, 22G5 and 23B3, were obtained in a single fusion trial. Anti-gcGH MAbs were produced by growing hybridomas in the peritoneal cavity of pristane-primed mouse. The three MAbs were isotyped to be IgG2a, IgG2b and IgM, respectively. IgG MAbs were purified from ascitic fluid by Hitrap protein G column and IgM MAb was purified by gel filtration chromatography. The purified MAbs were highly specific and had moderate binding affinity. The MAbs were successfully used for the purification of native gcGH from mature grass carp pituitary extract by one-step immunoaffinity chromatography, for the quantification of gcGH by competitive sandwich ELISA, and for the probing of somatotropes in grass carp pituitary by immunohistochemistry.
Collapse
Affiliation(s)
- Michael Yiu-Kwong Leung
- Department of Biochemistry, BMSB, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P.R. China
| | | |
Collapse
|
59
|
Deane EE, Woo NYS. Cloning and characterization of sea bream Na+-K+-ATPase alpha and beta subunit genes: in vitro effects of hormones on transcriptional and translational expression. Biochem Biophys Res Commun 2005; 331:1229-38. [PMID: 15883007 DOI: 10.1016/j.bbrc.2005.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Indexed: 11/25/2022]
Abstract
The full length genes encoding the catalytic alpha and glycosylated beta subunits of the sodium pump (Na+-K+-ATPase) were cloned and characterized from silver sea bream gill. Using in vitro preparations of gill tissue it was found that growth hormone (10 and 100 ng/ml) caused an increase in subunit transcription, translation, and Na+-K+-ATPase enzyme activity. Similarly, insulin-like growth factor 1 (10 and 100 ng/ml) also caused an increase in Na+-K+-ATPase subunit amounts and enzyme activity. Cortisol (10 and 100 ng/ml) increased alpha subunit transcript and protein but did not modulate beta subunit expression or enzyme activity. Ovine prolactin did not cause any changes in Na+-K+-ATPase subunit transcription, translation or enzyme activity. This study is the first to describe how both Na+-K+-ATPase alpha and beta subunits are modulated at transcriptional and translational levels in fish osmoregulatory tissue upon exposure to hormones.
Collapse
Affiliation(s)
- Eddie E Deane
- Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | |
Collapse
|
60
|
Abstract
The insulin-like growth factor (IGF) system plays a central role in the neuroendocrine regulation of growth in all vertebrates. Evidence from studies in a variety of vertebrate species suggest that this growth factor complex, composed of ligands, receptors, and high-affinity binding proteins, evolved early during vertebrate evolution. Among nonmammalian vertebrates, IGF signaling has been studied most extensively in fish, particularly teleosts of commercial importance. The unique life history characteristics associated with their primarily aquatic existence has fortuitously led to the identification of novel functions of the IGF system that are not evident from studies in mammals and other tetrapod vertebrates. Furthermore, the emergence of the zebrafish as a preferred model for development genetics has spawned progress in determining the requirements for IGF signaling during vertebrate embryonic development. This review is intended as a summary of our understanding of IGF signaling, as revealed through research into the expression, function, and evolution of IGF ligands, receptors, and binding proteins in fish.
Collapse
Affiliation(s)
- Antony W Wood
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
61
|
Varsamos S, Nebel C, Charmantier G. Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:401-29. [PMID: 16140237 DOI: 10.1016/j.cbpb.2005.01.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 01/13/2005] [Accepted: 01/17/2005] [Indexed: 11/26/2022]
Abstract
Salinity and its variations are among the key factors that affect survival, metabolism and distribution during the fish development. The successful establishment of a fish species in a given habitat depends on the ability of each developmental stage to cope with salinity through osmoregulation. It is well established that adult teleosts maintain their blood osmolality close to 300 mosM kg(-1) due to ion and water regulation effected at several sites: tegument, gut, branchial chambers, urinary organs. But fewer data are available in developing fish. We propose a review on the ontogeny of osmoregulation based on studies conducted in different species. Most teleost prelarvae are able to osmoregulate at hatch, and their ability increases in later stages. Before the occurrence of gills, the prelarval tegument where a high density of ionocytes (displaying high contents of Na+/K+-ATPase) is located appears temporarily as the main osmoregulatory site. Gills develop gradually during the prelarval stage along with the numerous ionocytes they support. The tegument and gill Na+/K+-ATPase activity varies ontogenetically. During the larval phase, the osmoregulatory function shifts from the skin to the gills, which become the main osmoregulatory site. The drinking rate normalized to body weight tends to decrease throughout development. The kidney and urinary bladder develop progressively during ontogeny and the capacity to produce hypotonic urine at low salinity increases accordingly. The development of the osmoregulatory functions is hormonally controlled. These events are inter-related and are correlated with changes in salinity tolerance, which often increases markedly at the metamorphic transition from larva to juvenile. In summary, the ability of ontogenetical stages of fish to tolerate salinity through osmoregulation relies on integumental ionocytes, then digestive tract development and drinking rate, developing branchial chambers and urinary organs. The physiological changes leading to variations in salinity tolerance are one of the main basis of the ontogenetical migrations or movements between habitats of different salinity regimes.
Collapse
Affiliation(s)
- Stamatis Varsamos
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5171 UM2-IFREMER-CNRS Génome Populations Interactions Adaptation, Université Montpellier II, cc 092, Place E. Bataillon, 34095 Montpellier cedex 05, France
| | | | | |
Collapse
|
62
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1653] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
63
|
Gensure RC, Ponugoti B, Gunes Y, Papasani MR, Lanske B, Bastepe M, Rubin DA, Jüppner H. Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrinology 2004; 145:1634-9. [PMID: 14684608 DOI: 10.1210/en.2003-0964] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zebrafish (Danio rerio) have receptors homologous to the human PTH (hPTH)/PTHrP receptor (PTH1R) and PTH-2 receptor (PTH2R) and an additional receptor (PTH3R) with high homology to the PTH1R. To find natural ligands for zPTH1R and zPTH3R, we searched the zebrafish genomic database and discovered two distinct regions that, when translated (zPTH1 and zPTH2), showed high homology to hPTH. Isolation of cDNAs and determination of the intron/exon boundaries revealed genomic structures which were similar to known PTHs. Peptides consisting of the first 34 amino acids after the pre- and prosequences of the zebrafish PTHs (zPTHs) were synthesized and were shown to be fully active at the hPTH1R. zPTH2(1-34) was, however, approximately 30-fold less potent at the zPTH1R than hPTH(1-34), hPTHrP(1-36), and zPTH1(1-34). When tested with zPTH3R, zPTH1(1-34) and hPTHrP(1-36) showed similar potencies, whereas the potency of zPTH2(1-34) was moderately (3-fold) reduced. To determine whether other fishes have multiple PTHs, we searched the genomic database of the Japanese pufferfish (Takifugu rubripes) and identified zPTH1 and zPTH2 homologs. Phylogenetic analysis showed that PTHs from zebrafish and pufferfish are more closely related to each other than to known mammalian PTH homologs or to PTHrP and tuberoinfundibular peptide of 39 residues. This is consistent with evolution of two teleost PTH-like peptides occurring after the evolutionary divergence between fishes and mammals. Overall, the PTH system appears more complex in fishes than in mammals, providing evidence of continued evolution in nontetrapod species. The availability of multiple forms of fish PTH and their receptors provide additional tools for PTH ligand/receptor structure-function studies.
Collapse
Affiliation(s)
- Robert C Gensure
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Uchida K, Yoshikawa-Ebesu JSM, Kajimura S, Yada T, Hirano T, Gordon Grau E. In vitro effects of cortisol on the release and gene expression of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2004; 135:116-25. [PMID: 14644651 DOI: 10.1016/j.ygcen.2003.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure to cortisol inhibits prolactin (PRL) release from the tilapia pituitary within 10-20min through a plasma membrane-associated, non-genomic pathway. In the present study, in vitro effects of cortisol on the release and mRNA levels of two PRLs (PRL(188) and PRL(177)) and growth hormone (GH) were examined in the organ-cultured pituitary of the Mozambique tilapia, Oreochromis mossambicus. The PRL release was significantly greater in hyposmotic (300mOsmolal) than in hyperosmotic (350mOsmolal) medium during the 2-8h of incubation. The mRNA levels of two PRLs, as estimated by RNase protection assay, were increased after 8h in hyposmotic medium. Cortisol (200nM) inhibited the release of two PRLs under hyposmotic conditions within 1h, and the inhibitory effects lasted for 24h. Cortisol also reduced the gene transcription of both PRLs during 2-8h of incubation but not after 24h. No effect of cortisol was observed on PRL release or on its mRNA levels under hyperosmotic condition. There was no significant effect of medium osmolality on the release or mRNA levels of GH during 8h of incubation. However, GH release was significantly stimulated by cortisol after 4h, and the effect lasted for 24h under both hyposmotic and hyperosmotic conditions. Cortisol also caused a significant increase in GH mRNA levels at 8 and 24h. These results suggest that cortisol inhibits PRL release from the tilapia pituitary through non-genomic and also through transcriptional pathways, while stimulating GH release through classical genomically mediated glucocorticoid actions.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|
65
|
Sakamoto T, Fujimoto M, Andot M. Fishy tales of prolactin-releasing peptide. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:91-130. [PMID: 12696591 DOI: 10.1016/s0074-7696(05)25003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prolactin (PRL) is an important regulator of multiple biological functions, but a specific PRL-releasing factor, PRL-releasing peptide (PrRP), was isolated only recently from mammals and teleosts. Although this peptide seems to be a strong candidate for being a physiologically relevant stimulator of PRL expression and secretion in teleost pituitary and peripheral organs, it may not be a typical or classic hypothalamic releasing factor in rats. We now know that its biological actions are not limited solely to PRL stimulation, because it is also a neuromodulator of several hypothalamus-pituitary axes and is involved in some brain circuits with the regulation of food intake and cardiovascular functions. Moreover, it plays a direct role in hypertension and retinal information processing. It is the purpose of this review to provide a comprehensive survey of our current knowledge of PrRP and to provide a comparative point of view.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Laboratory, Okayama University, Okayama 701-4303, Japan
| | | | | |
Collapse
|
66
|
Riley LG, Hirano T, Grau EG. Effects of transfer from seawater to fresh water on the growth hormone/insulin-like growth factor-I axis and prolactin in the Tilapia, Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:647-55. [PMID: 14662291 DOI: 10.1016/s1096-4959(03)00246-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of freshwater (FW) transfer on growth and on the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis was examined in the tilapia, Oreochromis mossambicus. Tilapia were raised in seawater (SW) for 5 months and then transferred to FW for an additional 40 days. The growth rate of the fish transferred to FW was significantly reduced compared with the growth rate of fish that remained in SW. Plasma levels of GH were significantly elevated in FW-transferred fish, as were plasma IGF-I levels. Pituitary GH and liver IGF-I mRNA levels, on the other hand, were significantly reduced in the fish transferred to FW. There was a significant correlation between body mass and mRNA levels of GH and IGF-I, but not with plasma levels of GH and IGF-I. Fish transferred to FW had significantly higher prolactin (PRL)(177) levels than the SW control fish, although there was no difference in plasma PRL(188) levels. Consistent with the hyperosmoregulatory effects of PRL, mRNA levels of both PRL(177) and PRL(188) were significantly higher in FW-transferred fish than in the fish in SW. These results suggest that transferring tilapia from SW to FW activates the GH/IGF-I axis, but growth is still inhibited, possibly due to the greater metabolic cost of osmoregulation in FW than in SW.
Collapse
Affiliation(s)
- L G Riley
- Department of Zoology and Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Kaneohe, HI 96744, USA
| | | | | |
Collapse
|
67
|
Sparks RT, Shepherd BS, Ron B, Harold Richman N, Riley LG, Iwama GK, Hirano T, Gordon Grau E. Effects of environmental salinity and 17α-methyltestosterone on growth and oxygen consumption in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:657-65. [PMID: 14662292 DOI: 10.1016/s1096-4959(03)00245-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of environmental salinity and 17alpha-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3-5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear.
Collapse
Affiliation(s)
- Russell T Sparks
- Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Herrero-Turrión MJ, Rodríguez RE, Velasco A, González-Sarmiento R, Aijón J, Lara JM. Growth hormone expression in ontogenic development in gilthead sea bream. Cell Tissue Res 2003; 313:81-91. [PMID: 12827495 DOI: 10.1007/s00441-003-0735-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Accepted: 04/11/2003] [Indexed: 10/26/2022]
Abstract
The pattern of expression of the growth hormone (GH) gene was studied during the early development of gilthead sea bream ( Sparus aurata). The GH transcript was detected from the 2nd day of the larval stage onwards. In the next stages the expression level fluctuated, possibly due to different regulatory factors. The distribution of GH mRNA studied by in situ hybridization (ISH) was found to be pituitary specific. Hybridization signals for GH mRNA were detected for the first time in 4-day-old larvae. Throughout development the cells that express GH mRNA were mainly located in the proximal pars distalis. Mammosomatotroph cells coexpressing GH and PRL were not detected in juveniles or adults. Moreover, the possible involvement of GH in asynchronic growth in cultivation of gilthead sea bream was also examined by ISH. No differences in the distribution of GH cells were observed in the three sizes of juveniles of gilthead sea bream studied. These results suggest that the transcription of GH is involved in the early developmental stages of sea bream and the asynchronous growth-related changes are not due to distinct distribution of GH cells.
Collapse
Affiliation(s)
- M J Herrero-Turrión
- Unidad de Biología Celular, Instituto de Neurociencias de Castilla y León, Facultad de Medicina, Universidad de Salamanca, 37007, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
69
|
Dean DB, Whitlow ZW, Borski RJ. Glucocorticoid receptor upregulation during seawater adaptation in a euryhaline teleost, the tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2003; 132:112-8. [PMID: 12765650 DOI: 10.1016/s0016-6480(03)00053-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cortisol is an important seawater (SW) osmoregulatory hormone in the Mozambique tilapia (Oreochromis mossambicus), a highly euryhaline cichlid able to live in environments ranging from fresh water (FW) to salinities well in excess of full-strength seawater. Previous studies indicate that cortisol may promote SW adaptation by increasing gill chloride cell differentiation, Na(+)/K(+)-ATPase activity and subsequent excretion of excess salt following seawater acclimation. Despite cortisol's widely accepted role as a SW-adapting hormone, cortisol receptor regulation during SW acclimation is not well understood. The purpose of these studies was to determine whether the intracellular glucocorticoid receptor (GR) might be regulated in a manner consistent with cortisol's actions in SW adaptation. Saturation radioligand binding assays were conducted on gill cytoplasm preparations from fish sampled 4 and 24h and 4 and 14 days after transfer from FW to 2/3 SW or FW (control). Affinity (K(d)) of the gill GR remained constant over the timecourse, while numbers of receptors (B(max)) in SW fish were significantly elevated compared with controls at 24h and 4 days after transfer. Plasma osmolality was higher in fish transferred to SW for 24h, 4 days, and 14 days compared with those animals moved to FW. Plasma cortisol levels and hepatic cortisol binding remained constant between SW and FW fish throughout the timecourse of the salinity challenge. These studies indicate that seawater acclimation is accompanied by a specific upregulation of intracellular GR numbers in gill tissue. The lack of increase in circulating cortisol following SW adaptation may reflect enhancement of clearance of the steroid. It appears that an increase in cortisol receptors, which is closely associated with the rise in blood osmotic pressure that accompanies SW exposure, is an important component of cortisol's ability to promote SW adaptation in the tilapia.
Collapse
Affiliation(s)
- D Brian Dean
- Department of Zoology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617, USA
| | | | | |
Collapse
|
70
|
Morita M, Takemura A, Okuno M. Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus. J Exp Biol 2003; 206:913-21. [PMID: 12547946 DOI: 10.1242/jeb.00153] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Euryhaline tilapia Oreochromis mossambicus acclimates to the external spawning environment by modulating its mechanism for regulating sperm motility. Adaptation of sperm was performed by acclimating fish in various environments. In this paper, regulatory mechanisms of freshwater-acclimated tilapia were studied in detail. Tilapia sperm motility was vigorous in hypotonic conditions and decreased with increasing osmolality. Sperm motility was reduced in hypotonic conditions when extracellular Ca(2+) was chelated; however, extracellular Ca(2+) was not a major factor for motility activation since sperm were motile even when extracellular Ca(2+) levels were nominally depleted by EGTA. The Ca(2+) indicator, fluo 3, showed that intracellular [Ca(2+)] increased on motility activation independently of extracellular [Ca(2+)], accompanied by swelling of the sperm neck region called the sleeve structure. Intracellular [Ca(2+)] was not increased under hypertonic conditions, in which sperm were immotile, even on addition of extracellular Ca(2+). It is possible that Ca(2+) is stored in the neck region. Demembranated sperm were reactivated in the presence of Ca(2+), but cAMP failed to reactivate the motility. Furthermore, we detected phosphorylation and dephosphorylation of three proteins at serine and threonine residues on motility activation. It is likely that hypotonic shock causes an increase in intracellular [Ca(2+)] that activates motility activation via phosphorylation of some flagellar proteins.
Collapse
Affiliation(s)
- M Morita
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
71
|
Eckert SM, Hirano T, Leedom TA, Takei Y, Gordon Grau E. Effects of angiotensin II and natriuretic peptides of the eel on prolactin and growth hormone release in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2003; 130:333-9. [PMID: 12606276 DOI: 10.1016/s0016-6480(02)00630-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of angiotensin II (ANG II) and natriuretic peptides (NPs) of the eel (ANP, atrial natriuretic peptide; CNP, C-type natriuretic peptide; and VNP, ventricular natriuretic peptide) on prolactin (PRL(188) and PRL(177)) and growth hormone (GH) release from the organ-cultured tilapia pituitary were examined. Eel ANG II at concentrations greater than 1 nM stimulated the release of PRL(188) and PRL(177) in a dose-related manner during the first hour of incubation. Significant stimulation by 100 nM ANG II on PRL(177) release was observed until 4h of incubation, and on PRL(188) release until 12 h. No effect of ANG II was seen on GH release. None of the NPs altered the release of PRLs at any time point. On the other hand, eel VNP at concentrations greater than 1 nM stimulated GH release in a dose-related manner after 4 h, and significant stimulation was observed until 48 h. Eel CNP was less effective than eel VNP; significant stimulation of GH release was observed at 1 and 10 nM during 24-48 h of incubation. No significant effect of eel ANP on GH release was seen at any concentration. ANG II had no effect on GH release at any time point. There was no change in mRNA levels of PRLs or GH in the pituitaries incubated with ANG II for 8 h or those incubated with the NPs for 48 h. These results indicate rapid and short-lasting stimulation by ANG II on PRL release and slow and long-lasting stimulation by VNP and CNP on GH release from the tilapia pituitary.
Collapse
Affiliation(s)
- Steve M Eckert
- Department of Zoology and Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
72
|
Tse DLY, Tse MCL, Chan CB, Deng L, Zhang WM, Lin HR, Cheng CHK. Seabream growth hormone receptor: molecular cloning and functional studies of the full-length cDNA, and tissue expression of two alternatively spliced forms. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:64-76. [PMID: 12527427 DOI: 10.1016/s0167-4781(02)00591-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A full-length clone of the growth hormone receptor (GHR) was isolated from a cDNA library constructed from the liver of black seabream (Acanthopagrus schlegeli). The seabream GHR (sbGHR) cDNA sequence encodes a transmembrane protein of 640 amino acids (aa) possessing the characteristic motifs and architectural design of GHRs of other species. When compared to the other fish GHRs, it is most homologous to another marine fish species, the turbot, where the aa identity is 79.3%. But the sbGHR sequence is more remotely related to the goldfish GHR (51.6% aa identity) and the salmonid GHRs (approximately 46-48% aa identities). Phylogenetic comparison with other known GHRs indicates that the fish GHRs constitute a distinct group among the different vertebrate classes. The aa identities between sbGHR and other GHRs are low, being around 40% with mammalian GHRs, around 45% with avian and reptilian GHRs, and less than 35% with Xenopus GHR. CHO cells transfected with the sbGHR cDNA can be stimulated to proliferate by recombinant seabream growth hormone (sbGH). In addition, the transfected cells can transactivate a co-expressed mammalian serine protease inhibitor (Spi) 2.1 promoter upon stimulation by sbGH. These functional assays indicated that the fish receptor can interact with its homologous ligand to evoke the downstream post-receptor events. Reverse transcription-polymerase chain reaction (RT-PCR) and genomic PCR using a pair of gene-specific primers revealed the expression of two alternatively spliced forms of sbGHR in various tissues of the fish. A 93-bp intron, unique to the sbGHR gene and not found in any other known GHR genes, is alternatively spliced to give rise to two forms of receptor mRNA transcripts. The two forms of the receptor are differentially expressed among the different tissues of the fish.
Collapse
Affiliation(s)
- Dicky L Y Tse
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, China
| | | | | | | | | | | | | |
Collapse
|
73
|
Miguel Mancera J, Laiz Carrión R, del Pilar Martín del Río M. Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L). Gen Comp Endocrinol 2002; 129:95-103. [PMID: 12441119 DOI: 10.1016/s0016-6480(02)00522-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The osmoregulatory actions of ovine prolactin (oPRL), ovine growth hormone (oGH), and cortisol were tested in the euryhaline gilthead seabream Sparus aurata. Acclimated to sea water (SW, 40 ppt salinity, 1000 mOsm/kg H(2)O) or brackish water (BW, 5 ppt, salinity, 130 mOsm/kg H(2)O), injected every other day for one week (number of injections, 4) with saline (0.9% NaCl), oPRL (4 microg/g body weight), oGH (4 microg/g body weight) or cortisol (5 microg/g body weight), and transferred from SW to BW or from BW to SW 24h after the last injection. Fish were sampled before and 24h after transfer. Gill Na(+), K(+)-ATPase activity, plasma osmolality, plasma ions (sodium and chloride), plasma glucose, and muscle water moisture were examined. SW-adapted fish showed higher gill Na(+), K(+)-ATPase activity, plasma osmolality, and plasma ions levels than BW-adapted fish. Transfer from SW to BW decreased plasma osmolality and ions levels after 24h, while transfer from BW to SW increased these parameters, whereas gill Na(+),K(+)-ATPase activity was unaffected. oPRL treatment significantly decreased gill Na(+),K(+)-ATPase activity and increased plasma osmolality and ions in SW- and BW-adapted fish. This treatment minimizes loss of osmolality and ions in plasma after transfer to BW and increased these values after transfer to SW. No significant changes were observed in gill Na(+),K(+)-ATPase activity, plasma osmolality, and plasma ions in oGH-treated group with respect to saline group before or after transfer from SW to BW or from BW to SW. Treatment with cortisol induced, in SW-adapted fish, a significant increase of gill Na(+),K(+)-ATPase activity and decrease of plasma osmolality and plasma ions. In BW-adapted fish this treatment induced a significant increases in gill Na(+),K(+)-ATPase activity, plasma osmolality, and plasma ions. After transfer to SW cortisol-treated fish had higher plasma osmolality than the saline group. Our results support the osmoregulatory role of PRL in the adaptation to hypoosmotic environment in the gilthead seabream S. aurata. Further studies will be necessary to elucidate the osmoregulatory role of GH in this species. Cortisol results suggest a "dual osmoregulatory role" of this hormone in S. aurata.
Collapse
Affiliation(s)
- Juan Miguel Mancera
- Departamento de Biología Animal, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| | | | | |
Collapse
|
74
|
Evans DH. Cell signaling and ion transport across the fish gill epithelium. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:336-47. [PMID: 12115905 DOI: 10.1002/jez.10128] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A large array of circulating and local signaling agents modulate transport of ions across the gill epithelium of fishes by either affecting transport directly or by altering the size and distribution of transporting cells in the epithelium. In some cases, these transport effects are in addition to cardiovascular effects of the same agents, which may affect the perfusion pathways in the gill vasculature and, in turn, affect epithelial transport indirectly. Prolactin is generally considered to function in freshwater, because it is the only agent that allows survival of some hypophysectomized fish species in freshwater. It appears to function by either reducing branchial permeability, Na,K-activated ATPase activity, or reducing the density of chloride cells. Cortisol was initially considered to produce virtually opposite effects (e.g., stimulation of Na,K-activated ATPase and of chloride cell size and density), but more recent studies have found that this steroid stimulates ionic uptake in freshwater fishes, as well as the activity of H-ATPase, an enzyme thought to be central to ionic uptake. Thus, cortisol may function in both high and low salinities. Growth hormone and insulin-like growth factor appear to act synergistically to affect ion regulation in seawater fishes, stimulating both Na,K-activated ATPase and Na-K-2Cl co-transporter activity, and chloride cell size, independent of their effects on growth. Some of the effects of the GH-IGF axis may be via stimulation of the number of cortisol receptors. Thyroid hormones appear to affect seawater ion regulation indirectly, by stimulating the GH-IGF axis. Natriuretic peptides were initially thought to stimulate gill ionic extrusion, but recent studies have not corroborated this finding, so it appears that the major mode of action of these peptides may be reduction of salt loading by inhibition of oral ingestion and intestinal ionic uptake. Receptors for both arginine vasotocin and angiotensin have been described in the gill epithelium, but their respective roles and importance in fish ion regulation remains unknown. The gill epithelium may be affected by both circulating and local adrenergic agents, and a variety of studies have demonstrated that stimulation of alpha-adrenergic versus beta-adrenergic receptors produces inhibition or stimulation of active salt extrusion, respectively. Local effectors, such as prostaglandins, nitric oxide, and endothelin, may affect active salt extrusion as well as gill perfusion. Recent studies have suggested that the endothelin inhibition of salt extrusion is actually mediated by the release of both NO and prostaglandins. It is hoped that modern molecular techniques, combined with physiological measurements, will allow the dissection of the relative roles in ion transport across the fish gill epithelium of this surprisingly large array of putative signaling agents.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
75
|
Kajimura S, Uchida K, Yada T, Hirano T, Aida K, Gordon Grau E. Effects of insulin-like growth factors (IGF-I and -II) on growth hormone and prolactin release and gene expression in euryhaline tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2002; 127:223-31. [PMID: 12225763 DOI: 10.1016/s0016-6480(02)00055-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated in vitro effects of insulin-like growth factors (IGF-I and -II) on growth hormone (GH) and prolactin (PRL) release and gene expression in euryhaline tilapia, Oreochromis mossambicus. Pituitaries were removed from freshwater-acclimated adult males and incubated for 2-24h in the presence of human IGF-I or -II at doses ranging from 1-1000 ng/ml (0.13-130 nM). IGF-I at concentrations higher than 10 ng/ml and IGF-II higher than 100 ng/ml significantly inhibited GH release after 8, 16, and 24h. No effect of IGFs was seen during the first 4h of incubation. IGFs at the same concentrations also significantly attenuated GH gene expression after 24h, although no effect was seen at 2h. By contrast, PRL(188) release was stimulated significantly and in a dose-related manner by IGF-I at concentrations higher than 10 ng/ml and by IGF-II at concentrations higher than 100 ng/ml within 2h. No stimulation was observed after 4h. Similarly, both IGFs at concentrations higher than 10 ng/ml increased PRL(177) release within 2h. However, no significant effect of IGF-I or -II was observed on mRNA levels of both PRLs after 2 and 24h at all concentrations examined. These results clearly indicate differential regulation of GH and PRL release and synthesis by IGFs in the tilapia pituitary, i.e., rapid-acting, stimulatory effects of IGFs on PRL release and slow-acting, inhibitory effects on GH release and synthesis.
Collapse
Affiliation(s)
- Shingo Kajimura
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Coconut Island, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|
76
|
Riley LG, Richman NH, Hirano T, Gordon Grau E. Activation of the growth hormone/insulin-like growth factor axis by treatment with 17 alpha-methyltestosterone and seawater rearing in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 2002; 127:285-92. [PMID: 12225771 DOI: 10.1016/s0016-6480(02)00051-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effects of 17 alpha-methyltestosterone (MT) treatment and environmental salinity on the growth hormone (GH)/insulin-like growth factor (IGF) axis were examined in the euryhaline tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to 1 of 4 groups: FW, MT treatment in FW, SW, and MT treatment in seawater (SW). After 147 days, FW controls had the lowest levels of GH mRNA followed by FW fish treated with MT and SW control fish. Seawater fish fed with a diet containing MT, which grew the fastest, had significantly higher levels of GH mRNA than all the other groups. A significant correlation was observed between GH mRNA and the size of the individual fish. By contrast, plasma GH levels did not vary significantly among the groups. Pituitary GH mRNA levels, plasma IGF-I levels, and fish size varied in a correlated pattern, i.e., SW+MT>FW+MT=SW control>FW control. The tilapia pituitary produces two prolactins (PRLs), PRL(177) and PRL(188). Prolactin(177), but not PRL(188), exhibits growth-promoting actions in FW tilapia. Pituitary mRNA levels of both PRLs were significantly higher in fish reared in FW than those reared in SW. Treatment with MT significantly increased mRNA levels of both PRLs in FW, but had no effect on SW fish. No correlation was seen between plasma PRL levels and growth or between PRL mRNA levels and growth. These results indicate that SW rearing and MT treatment stimulate the GH/IGF-I axis, and suggest that pituitary GH mRNA at this stage of development is a better indicator of growth than plasma levels of GH and IGF-I.
Collapse
Affiliation(s)
- Larry G Riley
- Department of Zoology, Hawaii Institute of Marine Biology, University of Hawaii, PO Box 1346, Kaneohe, HI 96744, USA
| | | | | | | |
Collapse
|
77
|
Galas J, Epler P. Does prolactin affect steroid secretion by isolated rainbow trout ovarian cells? Comp Biochem Physiol B Biochem Mol Biol 2002; 132:287-97. [PMID: 11997230 DOI: 10.1016/s1096-4959(01)00542-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in vitro secretion of progesterone (P(4)), androgen (A) and estradiol (E(2)) by follicular cells, isolated monthly from the rainbow trout ovaries during the whole annual cycle, was studied. Cells were cultured as monolayers in control and prolactin (PRL) supplemented media. E(2) secretion showed two distinct maxima in September and January: 4959+/-220 pg/ml and 3166+/-121 pg/ml, respectively, i.e. during vitellogenesis and before the spawning time. PRL had a significant (16%) suppressive effect on E(2) secretion when the level of secreted steroid was at its highest (4167+/-193 pg/ml) at the end of vitellogenesis and by 32% (2157+/-124 pg/ml), before ovulation. Increased P(4) levels observed in February (988+/-69 pg/ml) and March (2008+/-74 pg/ml) may be connected with the need for a substrate for the synthesis of 17alpha20betaOH-P (MIS). At this time, the secretion of P(4) was also suppressed by PRL and was reduced to 1395+/-78 pg/ml. Our results indicate that PRL may play a role in fish reproduction.
Collapse
Affiliation(s)
- J Galas
- Laboratory of Animal Endocrinology and Tissue Culture, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland.
| | | |
Collapse
|
78
|
Streelman JT, Kocher TD. Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiol Genomics 2002; 9:1-4. [PMID: 11948285 DOI: 10.1152/physiolgenomics.00105.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biologists have long argued that runs of alternating purines and pyrimidines could form alternative DNA structures, which might regulate transcription. Here, we report that simple sequence repeat polymorphisms in the tilapia prolactin 1 (prl 1) promoter are associated with differences in prl 1 gene expression and the growth response of salt-challenged fishes. Individuals homozygous for long microsatellite alleles express less prl 1 in fresh water but more prl 1 in half-seawater than fishes with other genotypes. Our work provides the first in vivo evidence that differences in microsatellite length among individuals may indeed affect gene expression and that variance in expression has concomitant physiological consequences. These results suggest that dinucleotide microsatellites represent an under-appreciated source of genetic variation for regulatory evolution.
Collapse
Affiliation(s)
- J T Streelman
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire 03824, USA.
| | | |
Collapse
|
79
|
Chiu CC, John JAC, Hseu TH, Chang CY. Expression of ayu (Plecoglossus altivelis) Pit-1 in Escherichia coli: its purification and immunohistochemical detection using monoclonal antibody. Protein Expr Purif 2002; 24:292-301. [PMID: 11858725 DOI: 10.1006/prep.2001.1558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pituitary-specific transcription factor Pit-1 belongs to the family of POU-domain proteins and is known to play an important role in the differentiation of pituitary cells. Here we report the complete nucleotide sequence of cDNA encoding Pit-1 from the brackish water fish, ayu (Plecoglossus altivelis). Nucleotide sequence analysis of 1910 bp of ayu Pit-1 cDNA revealed an open reading frame of 1074 bp that encodes a protein of 358 amino acids containing a POU-specific domain, POU homeodomain, and an STA (Ser/Thr-rich activation) transactivation domain. We inserted the coding region of Pit-1 cDNA, obtained by PCR, into a pET-20b(+) plasmid to produce recombinant Pit-1 in Escherichia coli BL21 (DE3) pLysS cells. Upon induction with isopropyl beta-D-thiogalactopyranoside, Pit-1 was expressed and accumulated as inclusion bodies in E. coli. The protein was then purified in one step by affinity chromatography on a nickel-nitrilotriacetic acid agarose column under denaturing conditions. This method yielded 0.7 mg of highly pure and stable protein per 200 ml of bacterial culture. A band of 40 kDa, resolved as recombinant ayu Pit-1 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, agrees well with the molecular mass calculated from the translated cDNA sequence. The purified recombinant Pit-1 was confirmed in vitro through Western blot analysis, using its monoclonal antibody. This monoclonal antibody detected Pit-1 in the nuclei of ayu developing pituitary by immunohistochemical reaction. It serves as a good reagent for the detection of ayu Pit-1 in situ.
Collapse
Affiliation(s)
- Chi-Chien Chiu
- Institute of Zoology, Academia Sinica, NanKang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
80
|
Abstract
The protein hormone prolactin (PRL) was first discovered as an anterior pituitary factor capable of stimulating milk production in mammals. We now know that PRL has over 300 different functions in vertebrates. In fish, PRL plays an important role in freshwater osmoregulation by preventing both the loss of ions and the uptake of water. This paper will review what is currently known about the structure and evolution of fish PRL and its mechanisms of action in relation to the maintenance of hydromineral balance. Historically, functional studies of fish PRL were carried out using heterologous PRLs and the results varied greatly between experiments and species. In some cases this variability was due to the ability of these PRLs to bind to both growth hormone and PRL receptors. In fact, a recurring theme in the literature is that the actions of PRL cannot be generalized to all fish due to marked differences between species. Many of the effects of PRL on hydromineral balance are specific to euryhaline fish, which is appropriate given that they frequently experience sudden changes in environmental salinity. Much of the recent work has focused on the isolation and characterization of fish PRLs and their receptors. These studies have provided the necessary tools to obtain a better understanding of the evolution of PRL and its role in osmoregulation.
Collapse
Affiliation(s)
- Lori A Manzon
- Division of Life Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, MIC 1A4, Canada.
| |
Collapse
|
81
|
Abstract
Development and growth (continuous in fish) are controlled by 'internal factors' including CNS, endocrinological and neuroendocrinological systems. Among vertebrates, they also are highly dependent on environmental conditions. Among other factors, many studies have reported an influence of water salinity on fish development and growth. In most species, egg fertilization and incubation, yolk sac resorption, early embryogenesis, swimbladder inflation, larval growth are dependent on salinity. In larger fish, salinity is also a key factor in controlling growth. Do the changes in growth rate, that depend on salinity, result from an action on: (1) standard metabolic rate; (2) food intake; (3) food conversion; and/or (4) hormonal stimulation? Better growth at intermediate salinities (8-20 psu) is very often, but not systematically, correlated to a lower standard metabolic rate. Numerous studies have shown that 20 to >50% of the total fish energy budget are dedicated to osmoregulation. However, recent ones indicate that the osmotic cost is not as high (roughly 10%) as this. Data are also available in terms of food intake and stimulation of food conversion, which are both dependent on the environmental salinity. Temperature and salinity have complex interactions. Many hormones are known to be active in both osmoregulation and growth regulation, e.g. in the control of food intake. All of these factors are reviewed. As often, multiple causality is likely to be at work and the interactive effects of salinity on physiology and behaviour must also be taken into account.
Collapse
Affiliation(s)
- G Boeuf
- Laboratoire Arago, Université Pierre et Marie Curie/CNRS, BP 44, 66651 Banyuls-sur-mer, France.
| | | |
Collapse
|
82
|
Sandra O, Le Rouzic P, Rentier-Delrue F, Prunet P. Transfer of tilapia (Oreochromis niloticus) to a hyperosmotic environment is associated with sustained expression of prolactin receptor in intestine, gill, and kidney. Gen Comp Endocrinol 2001; 123:295-307. [PMID: 11589630 DOI: 10.1006/gcen.2001.7672] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the tilapia prolactin receptor (tiPRL-R) has been characterized in the intestine of Oreochromis niloticus and the levels of both tiPRL-R transcripts and tiPRL binding sites have been further analyzed in this organ, as well as in gill and kidney, during adaptation of tilapia to a hyperosmotic environment. A single high-affinity binding site for tilapia PRL-I (tiPRL-I) was determined in full-length intestine by Scatchard analysis. A heterogeneous distribution of tiPRL-R was detected in this organ, with the posterior part always displaying a higher expression of both tiPRL-R transcript and tiPRL binding sites than the anterior and medial parts. Transfer of tilapia to brackish water (BW) led to an apparent increase in the specific binding of tiPRLs in intestine and gill even for long-term-adapted fish, whereas the high level of kidney tiPRL binding sites measured in control fish reared in fresh water was still detected in BW-adapted tilapia. There was no overall significant modification of tiPRL-R transcript levels in any organ during short-term or long-term adaptation, although a limited decrease occurred in the gill of BW-adapted fish, as shown earlier. Therefore, in O. niloticus adapted to BW, high and sustained levels of tiPRL-R were observed in the three major osmoregulatory organs, gill, kidney, and intestine.
Collapse
Affiliation(s)
- O Sandra
- Group in Physiology of Adaptation and Stress, Campus de Beaulieu, INRA-SCRIBE, Rennes Cedex, 35042, France
| | | | | | | |
Collapse
|
83
|
|
84
|
Higashimoto Y, Nakao N, Ohkubo T, Tanaka M, Nakashima K. Structure and tissue distribution of prolactin receptor mRNA in Japanese flounder (Paralichtys olivaceus): conserved and preferential expression in osmoregulatory organs. Gen Comp Endocrinol 2001; 123:170-9. [PMID: 11482938 DOI: 10.1006/gcen.2001.7660] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In diadromous and euryhaline teleosts, it has been established that prolactin (PRL) is a major hormone regulating the maintenance of water and electrolyte homeostasis by acting on its receptor (PRLR) expressed in the osmoregulatory organs. To investigate the major physiological role of PRL in a marine teleost, cDNA for the Japanese flounder (Paralichtys olivaceus) prolactin receptor (fPRLR) has been cloned and characterized. The predicted fPRLR is composed of 636 amino acids conserving common structural features, such as the WSXWS motif and box 1, that are observed in the members of the cytokine receptor superfamily. By Northern blot analysis, 3.5-kb transcripts for fPRLR were clearly detected in the gill, kidney, and intestine. By RNase protection assay, similarly high levels of mRNA expression were detected in these osmoregulatory organs and lower expression levels were seen in the brain for both males and females. Interestingly, a distinct expression level of fPRLR mRNA was observed in the testis, but not in the ovary. The present results suggest that PRL may play an important role in the control of water and electrolyte balance through PRLR expressed in the osmoregulatory organs in the marine teleost the Japanese flounder as well as in other teleosts. Furthermore, PRL may differentially regulate gonadal functions in males and females of Japanese flounder.
Collapse
Affiliation(s)
- Y Higashimoto
- Department of Biochemistry, Mie University, Mie 514-8507, Japan
| | | | | | | | | |
Collapse
|
85
|
|
86
|
Eckert SM, Yada T, Shepherd BS, Stetson MH, Hirano T, Grau EG. Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp Endocrinol 2001; 122:270-86. [PMID: 11356039 DOI: 10.1006/gcen.2001.7633] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin (PRL) is an important hormone for freshwater adaptation in many teleost species. In some euryhaline fishes, growth hormone (GH) and cortisol are involved in seawater adaptation by stimulating ion extrusion. When channel catfish (Ictalurus punctatus) were transferred from fresh water to dilute seawater (300-400 mOsm), their plasma osmolality was always higher than the environmental salinity. In correlation with the increase in plasma osmolality, significant increases in plasma cortisol were observed. However, no effect of ovine GH or cortisol was seen in plasma osmolality or gill Na, K-ATPase activity when the hormones were given during the course of acclimation to dilute seawater. When catfish in fresh water were hypophysectomized, plasma osmolality was significantly decreased by 24 h, reaching a minimum level after 2 days. When they were transferred to dilute seawater, the plasma osmolality of the sham-operated fish was consistently higher than that of environmental water, whereas the osmolality of the hypophysectomized fish was equivalent to the environmental salinity. Ovine PRL restored the plasma osmolality of the hypophysectomized fish in fresh water to the level of sham-operated fish. Cortisol was also effective, but the effect was less pronounced than the effect of PRL. Injection of PRL in combination with cortisol resulted in a marked additive increase in plasma osmolality to a level even above that of the sham-operated fish. Ovine GH was without effect. These treatments in hypophysectomized fish transferred to dilute seawater produced essentially the same results as those in fish in fresh water. Plasma osmolality was also increased after PRL treatment of the intact fish in fresh water. There was a synergistic effect between PRL and cortisol in hypophysectomized fish in dilute seawater as well as in intact fish in fresh water. PRL did not stimulate cortisol secretion either in hypophysectomized fish or in intact fish. In the stenohaline catfish, both PRL and cortisol seem to be involved importantly in ion uptake from the environment not only in fresh water but also in brackish water.
Collapse
Affiliation(s)
- S M Eckert
- Hawaii Institute of Marine Biology, University of Hawaii, Coconut Island, Kaneohe, Hawaii 96744, USA
| | | | | | | | | | | |
Collapse
|
87
|
Lee LT, Nong G, Chan YH, Tse DL, Cheng CH. Molecular cloning of a teleost growth hormone receptor and its functional interaction with human growth hormone. Gene 2001; 270:121-9. [PMID: 11404009 DOI: 10.1016/s0378-1119(01)00488-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper reports the first full-length cDNA sequence of a growth hormone receptor (GHR) from a teleost fish and its functional expression in cultured eukaryotic cells. The cDNA sequence, from Carassius auratus (goldfish), encodes a protein of 602 amino acids (aa) akin in architecture to the GHRs of other species. Despite the presence of motifs characteristic of GHR, the overall homology between the goldfish GHR and other GHRs is very low ( approximately 40% aa identity). CHO cells transfected with this receptor cDNA can be stimulated to proliferate by human growth hormone (hGH). In addition, the transfected cells can transactivate a co-expressed mammalian serine protease inhibitor (Spi) 2.1 promoter upon stimulation by hGH, indicating the successful interaction of the fish receptor with the mammalian ligand to evoke the down-stream post-receptor events. Tissue distribution studies indicated that the receptor is mostly expressed in the liver and hypothalamus of goldfish. A single mRNA transcript of a size of about 4 kb was found in the goldfish liver.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- CHO Cells
- Cell Division/drug effects
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dose-Response Relationship, Drug
- Gene Expression
- Goldfish/genetics
- Growth Hormone/metabolism
- Growth Hormone/pharmacology
- Humans
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- L T Lee
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | |
Collapse
|
88
|
Prunet P, Sandra O, Rouzic PL, Marchand O, Laudet V. Molecular characterization of the prolactin receptor in two fish species, tilapia Oreochromis niloticus and rainbow trout, Oncorhynchus mykiss: A comparative approach. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-093] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present recent information on the molecular characterization of the prolactin receptor (PRL-R) in two teleost species, tilapia (Oreochromis niloticus) and rainbow trout (Oncorhynchus mykiss), in the perspective of improved understanding of the physiological differences in the control of osmoregulatory function between these two fish species. Although our interest will mainly focus on osmoregulatory organs, we will also discuss evidence of the presence of PRL-R in other tissues such as gonads and hematopoietic organs. The first fish PRL-R was characterized in tilapia. This receptor is similar to that of the long form of mammalian PRL-R, but the most conserved region (extracellular domain) has only 53% identity with mammalian PRL-R. A rainbow trout PRL-R cDNA has been also isolated and appeared very similar in structure to tilapia PRL-R. Expression of the PRL-R gene was studied by Northern blotting for various tissues from tilapia and trout, and a unique transcript size of 3.2-3.4 kb was observed in all tissues studied (including male and female gonads, skin, brain, spleen, head, kidney, and circulating lymphocytes). Osmoregulatory organs (gills, kidney, intestine) were the richest tissues. Using in situ hybridization, PRL-R transcripts were localized in gill chloride cells, both in trout and tilapia. Analysis of PRL-R transcript levels in gills, kidney, and intestine indicated the maintenance of a high level of expression during adaptation to a hyperosmotic environment. These results support PRL being a pleiotropic hormone in fish and suggest the presence of a unique PRL-R form in tilapia and in trout. Finally, characterization of hormone receptor binding has been carried out in both species using a radioreceptor assay (in tilapia) or surface plasmon resonance (SPR) technology (in trout). These studies indicated the presence of a stable hormone-receptor complex in tilapia, while PRL binds to its receptor through an unstable homodimeric complex in trout. Thus, the characteristics of PRL binding on its receptor appear to be significantly different in tilapia and trout. Whether such differences may lead to different signal transduction mechanisms and osmoregulatory actions of PRL in these two euryhaline species merits further investigation.Key words: prolactin receptor, genetic expression, hormone-receptor interaction, surface plasmon resonance, fish osmoregulation.
Collapse
|
89
|
Tse DL, Chow BK, Chan CB, Lee LT, Cheng CH. Molecular cloning and expression studies of a prolactin receptor in goldfish (Carassius auratus). Life Sci 2000; 66:593-605. [PMID: 10794515 DOI: 10.1016/s0024-3205(99)00632-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A full-length cDNA clone, of a size of 4.6 kb, for the goldfish prolactin receptor has been isolated. This cDNA clone encodes a protein of 600 amino acids homologous to prolactin receptors of other species. A Kyte-Doolittle hydropathy analysis of the receptor indicates that the translated protein consists of a signal peptide of 22 amino acids, an extracellular domain of 228 amino acids, a single transmembrane domain of 24 amino acids, and an intracellular domain of 346 amino acids. Several characteristic landmarks of prolactin receptor could be identified in this clone. These include the four conserved cysteine residues and the WS motif within the extracellular domain, and the box 1 and box 2 regions of the intracellular domain. Among all the prolactin receptor sequences known to date, this clone bears the closest resemblance to the tilapia prolactin receptor, although homology between these two fish prolactin receptors is rather low. There are only 57.4% of nucleotide and 48.3% of amino acid sequence identities between these two fish receptors. This receptor cDNA was transfected into CHO-K1 cells for functional analysis. RT-PCR analysis with a pair of gene specific primers indicate that the receptor was transcribed in the transfected cells. Using a cell proliferation assay based on the reduction of the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, the receptor transfected CHO-K1 cells can be stimulated to proliferate upon the addition of ovine prolactin in the culture medium. The tissue distribution of the prolactin receptor in goldfish was studied by RT-PCR/Southern analysis and by Northern analysis. The results indicated that the receptor is expressed mostly in the kidney, the gill and the intestine of goldfish, corroborating with the osmoregulatory role of prolactin in fish. In addition, an appreciable level of the receptor is also found in the brain and gonads of goldfish. Northern analysis showed that there are two transcript sizes, a major 4.6 kb and a minor 3.5 kb mRNAs, in the kidney, gill and intestine.
Collapse
Affiliation(s)
- D L Tse
- Department of Zoology, University of Hong Kong, Pokfulam, China
| | | | | | | | | |
Collapse
|
90
|
Pearce D, Verrey F, Chen SY, Mastroberardino L, Meijer OC, Wang J, Bhargava A. Role of SGK in mineralocorticoid-regulated sodium transport. Kidney Int 2000; 57:1283-9. [PMID: 10760055 DOI: 10.1046/j.1523-1755.2000.00963.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mineralocorticoids stimulate electrogenic Na+ transport in tight epithelia by altering the transcription of specific genes. Although the earliest mineralocorticoid effect is to increase the activity of the epithelial sodium channel (ENaC), ENaC mRNA and protein levels do not change. Instead, physiologic observations suggest that a mineralocorticoid target gene(s) encodes an ENaC regulator(s). To begin to identify and characterize mineralocorticoid-regulated target genes, we used suppression-subtractive hybridization to generate a cDNA library from A6 cells, a stable cell line of Xenopus laevis of distal nephron origin. A serine-threonine kinase, SGK, was identified from this screen. Sequence comparison revealed that frog, rat, and human SGK are 92% identical and 96% similar at the amino acid level. SGK mRNA was confirmed by Northern blot to be strongly and rapidly corticosteroid stimulated in A6 cells. In situ hybridization revealed that SGK was strongly stimulated by aldosterone in rat collecting duct but not proximal tubule cells. Low levels of SGK were present in rat glomeruli, but SGK was unregulated in this structure. Finally, SGK stimulated ENaC activity approximately sevenfold when coexpressed in Xenopus laevis oocytes. These data suggest that SGK is an important mediator of aldosterone effects on Na+ transport in tight epithelia. In view of the existence of SGK homologues in invertebrates, it is interesting to speculate that SGK is an ancient kinase that was adapted to the control of epithelial Na+ transport by early vertebrates as they made the transition from a marine to a freshwater environment.
Collapse
Affiliation(s)
- D Pearce
- Department of Medicine, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
91
|
Park R, Shepherd BS, Nishioka RS, Grau EG, Bern HA. Effects of homologous pituitary hormone treatment on serum insulin-like growth-factor-binding proteins (IGFBPs) in hypophysectomized tilapia, Oreochromis mossambicus, with special reference to a novel 20-kDa IGFBP. Gen Comp Endocrinol 2000; 117:404-12. [PMID: 10764551 DOI: 10.1006/gcen.1999.7421] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the circulation, insulin-like growth factors (IGFs) bind to high-affinity-binding proteins. Insulin-like growth-factor-binding proteins (IGFBPs) appear to be present in all vertebrates. To examine the hormonal regulation of serum IGFBPs in a fish, tilapia (Oreochromis mossambicus) were hypophysectomized (Hx) and then treated with homologous tilapia growth hormone (tGH) or either form of tilapia prolactin (tPRL177, tPRL188). Hormones were administered at three doses: 15, 150, and 500 ng/g of body weight. Serum IGFBP profiles were analyzed by SDS-PAGE and Western ligand blotting using 125I-rhIGF-I as a probe. A prominent IGFBP (ca 20 kDa), termed IGFBP-20K, appeared after hypophysectomy. Administration of tGH at all dose levels suppressed this BP and restored levels back to those seen in sham-operated control fish. tPRL177 and tPRL188 were also effective in lowering IGFBP-20K levels. Levels of the 29-kDa IGFBP (termed IGFBP-29K) increased after hypophysectomy; tGH at all doses and tPRL177 at the two lower doses further increased these levels. All doses of tGH, tPRL177, and tPRL188 significantly increased levels of the 32-kDa IGFBP (termed IGFBP-32K). Hypophysectomy significantly lowered levels of the 40-kDa IGFBP (termed IGFBP-40K) below levels seen in the sham-operated controls. tGH treatment significantly raised IGFBP-40K levels at all doses examined, but not to the levels seen in intact tilapia. The 42-kDa IGFBP (termed IGFBP-42K) was not affected by hypophysectomy or hormone replacement. Our data suggest that the novel 20-kDa IGFBP and the 40-kDa IGFBP species may be similar in function to mammalian IGFBP-1 and IGFBP-3, respectively.
Collapse
Affiliation(s)
- R Park
- Department of Integrative Biology and Cancer Research Laboratory, University of California, Berkeley, California 94720-3140, USA
| | | | | | | | | |
Collapse
|
92
|
Nicoll CS, Rodgers BD, Kelley KM. Hormonal Regulation of Growth and Development of Nonmammalian Vertebrates. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
93
|
Weber GM, Grau EG. Changes in serum concentrations and pituitary content of the two prolactins and growth hormone during the reproductive cycle in female tilapia, Oreochromis mossambicus, compared with changes during fasting. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1999; 124:323-35. [PMID: 10661726 DOI: 10.1016/s0742-8413(99)00081-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patterns of change in serum concentrations and pituitary content of GH and two tilapia prolactins (PRL177 and PRL188) were examined during the reproductive cycle of female tilapia, Oreochromis mossambicus, adapted to fresh water and to seawater. Changes in these hormones during fasting were examined to elucidate whether changes observed during brooding could be attributed to a reduction in feeding during brooding. Serum concentrations of GH increased prior to pituitary content during the brooding phase of the reproductive cycle. In contrast, pituitary content of GH increased prior to serum concentrations during fasting. There was no consistent pattern of change in serum or pituitary PRL levels during the reproductive cycle, among experiments. Serum concentrations of PRL177 were elevated in all fasted fish, whereas PRL188 was elevated during fasting in males but not females. The increases in the serum concentration of PRLs and GH, and in the pituitary content of GH in response to fasting support the notion that these hormones are involved in the regulation of the use of metabolic substrates in tilapia. We conclude that reduced food intake during brooding may contribute to changes in serum and pituitary levels of the PRLs and GH observed during the reproductive cycle. Nevertheless, differences between changes in serum and pituitary GH during brooding and fasting suggest GH has actions in reproduction, and changes in GH during brooding are not only in response to fasting.
Collapse
Affiliation(s)
- G M Weber
- Department of Zoology, North Carolina State University, Raleigh 27695-7617, USA.
| | | |
Collapse
|
94
|
Kelly SP, Chow IN, Woo NY. Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba. Gen Comp Endocrinol 1999; 113:9-22. [PMID: 9882539 DOI: 10.1006/gcen.1998.7159] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silver seabream (Sparus sarba) held in seawater (33 per thousand) or acclimated to a hypoosmotic environment of 6 per thousand were given intraperitoneal injections of saline (0.8% NaCl), recombinant bream growth hormone (rbGH, 1 microg/g), or ovine prolactin (oPRL, 6microg/g) for 7 consecutive days. Serum Na+ levels were unaffected by hypoosmotic acclimation and rbGH and oPRL treatment. Treatment of seawater fish with oPRL resulted in hyperchloremia. In 6 per thousand, saline-treated fish exhibited elevated branchial chloride cell (CC) numbers and exposure indices, all of which were markedly reduced by oPRL. CC numbers and morphometrics were unaffected by oPRL in seawater fish. In contrast, rbGH treatment of seawater fish resulted in elevated CC numbers, apical area, and fractional area and, in 6 per thousand fish, elevated CC fractional area and exposure numbers. Branchial Na+-K+-ATPase activity reduced in saline-treated fish adapted to 6% but was unaffected by rbGH regardless of salinity. oPRL reduced activity in both seawater and 6 per thousand-adapted fish. Neither hypoosmotic adaptation nor oPRL had any effect on renal Na+-K+-ATPase activity whereas rbGH reduced activity in both 33 and 6 per thousand. Saline-treated fish adapted to 6 per thousand exhibited reduced Na+-K+-ATPase activity in most regions of the intestine. Treatment with rbGH did not change intestinal Na+-K+-ATPase activity of seawater fish but elevated activity in the anterior regions (esophagus and stomach) of 6 per thousand-adapted fish. Treatment with oPRL elevated Na+-K+-ATPase activity throughout the gastrointestinal tract of seawater fish and in the anterior reaches of 6 per thousand-adapted fish. The data indicated that the as yet uncharacterized osmoregulatory roles of PRL and GH in seabream may warrant further attention as the present study connoted differing responses to that of other teleosts studied.
Collapse
Affiliation(s)
- S P Kelly
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
95
|
Sohm F, Pezet A, Sandra O, Prunet P, de Luze A, Edery M. Activation of gene transcription by tilapia prolactin variants tiPRL188 and tiPRL177. FEBS Lett 1998; 438:119-23. [PMID: 9821971 DOI: 10.1016/s0014-5793(98)01285-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the tilapia species Oreochromis niloticus, the pituitary releases two forms of prolactins (tiPRL188 and tiPRL177). The binding parameters and the activation of tiPRL-induced JAK2/Stat5 signalling pathway were analysed using a mammalian cell line transiently transfected with the tiPRL receptor (tiPRLR). Our data indicate that the tiPRLR is able to mediate transcriptional activation of the PRL responsive element. At nanomolar concentrations, tiPRL188 activates gene transcription whereas at micromolar concentrations it inhibits luciferase transcription from the lactogenic responsive element. This is consistent with a model of receptor dimerisation. In contrast, the activation by tiPRL177 was only reached at high (microM) concentrations. The transcriptional activities induced by tiPRL177 and tiPRL188 are discussed in the context of the physiology of these hormones.
Collapse
Affiliation(s)
- F Sohm
- Laboratoire de Physiologie Générale et Comparée, Muséum National d'Histoire Naturelle, Unité de Recherche Associée 90, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | | | |
Collapse
|
96
|
Mancera JM, McCormick SD. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts. Comp Biochem Physiol B Biochem Mol Biol 1998. [DOI: 10.1016/s0305-0491(98)10112-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Mancera JM, McCormick SD. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen Comp Endocrinol 1998; 111:103-12. [PMID: 9679082 DOI: 10.1006/gcen.1998.7086] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 microg/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 microg/g) also increased hypoosmoregulatory ability but only the higher doses (2 microg/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 microg/g) and rbIGF-I (0.1 microg/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 microg/g) and bovine insulin (0.01 and 0.05 microg/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of F. heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.
Collapse
Affiliation(s)
- J M Mancera
- Departamento de Biología Animal, Facultad de Ciencias del Mar, Universidad de Cádiz, Puerto Real, Cádiz, 11510, Spain
| | | |
Collapse
|
98
|
Shikano T, Fujio Y. Immunolocalization of Na+, K+-ATPase and morphological changes in two types of chloride cells in the gill epithelium during seawater and freshwater adaptation in a euryhaline teleost,Poecilia reticulata. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980601)281:2<80::aid-jez2>3.0.co;2-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|