51
|
Abstract
The ribosome plays a universally conserved role in catalyzing protein synthesis. Kondrashov et al. (2011) now provide evidence that the loss of function of ribosomal protein L38 in mice leads to a selective reduction in the translation of Hox mRNAs, thus suggesting that ribosomal proteins play a critical role during embryonic development.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
52
|
Abstract
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
Collapse
|
53
|
Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). Proc Natl Acad Sci U S A 2011; 108:5673-8. [PMID: 21282631 DOI: 10.1073/pnas.1008617108] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.
Collapse
|
54
|
Chen SM, Ma KY, Zeng J. Pseudogene: lessons from PCR bias, identification and resurrection. Mol Biol Rep 2010; 38:3709-15. [PMID: 21116863 DOI: 10.1007/s11033-010-0485-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/09/2010] [Indexed: 11/26/2022]
Abstract
Pseudogenes are fragments of non-functional genomic DNA with high sequences similarity to normal functional genes. They are a kind of non-coding DNA produced by gene duplications or retrotranspositions. Pseudogenes exist in human genome at a large quantity which is nearly as much as that of normal functional genes. They could cause PCR bias in molecular biology experiments and confuse related analysis. On the other hand, pesudogenes are important elements in genomics study for getting an integral picture of genome annotation. They give diverse information of evolutionary history and are regarded as genome fossils. Worldwide research project "encyclopedia of DNA elements"(ENCODE) founded in recent years have enhanced our understanding of pseudogenes. Approaches established to identify pseudogenes include PseudoPipe, HAVANA method, PseudoFinder, RetroFinder, GIS-PET method and consensus method. This paper discuss pseudogenes with respect to the formation mechanisms, distribution, and problems for PCR, importance and identification of pseudogenes. Furthermore, potential resurrection of pseudogenes and their potential function are discussed.
Collapse
Affiliation(s)
- Shan-Min Chen
- School of Life Science and Food Engineering, Yibin University, Yibin, Sichuan, China
| | | | | |
Collapse
|
55
|
Artero-Castro A, Castellvi J, García A, Hernández J, Ramón y Cajal S, Lleonart ME. Expression of the ribosomal proteins Rplp0, Rplp1, and Rplp2 in gynecologic tumors. Hum Pathol 2010; 42:194-203. [PMID: 21040949 DOI: 10.1016/j.humpath.2010.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/27/2010] [Accepted: 04/08/2010] [Indexed: 10/18/2022]
Abstract
Previous work from our laboratory has demonstrated that the expression of the ribosomal protein Rplp1 immortalizes primary cells and is involved in transformation. To investigate the role of the P proteins in tumorigenesis, we examined the messenger RNA expression levels of Rplp0, Rplp1, and Rplp2 in a series of 32 patients with gynecologic tumors. The messenger RNA expression level of all 3 P proteins was increased significantly in the tumor tissue, compared with normal tissue. In addition, a total of 140 biopsies of gynecologic cancers (46 endometrioid and 94 ovarian) were investigated. An up-regulation of P protein expression was observed by immunohistochemistry in an average of 27% of the tumors, as compared with normal tissues. Moreover, the level of P protein up-regulation correlated significantly with p53 expression in serous ovarian cancers. This is an important fact because the level of overexpression of the P proteins correlated with the presence of lymph node metastases in serous ovarian cancers. We also observed that endometrial carcinomas that had invaded the myometrium overexpressed P proteins in the invasive front. In addition, we found that the P proteins are up-regulated in a considerable number of patients with the most common types of cancer. Overall, our study shows that P proteins are involved in human cancer and indicates that the expression level of these proteins could be useful as a prognostic marker in specific subtypes of gynecologic tumors.
Collapse
Affiliation(s)
- Ana Artero-Castro
- Oncology and Molecular Pathology Group, Pathology Department, Institut de Recerca Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
56
|
Meyer A, Witek A, Lieb B. Selecting ribosomal protein genes for invertebrate phylogenetic inferences: how many genes to resolve the Mollusca? Methods Ecol Evol 2010. [DOI: 10.1111/j.2041-210x.2010.00052.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Chen S, Blank JL, Peters T, Liu XJ, Rappoli DM, Pickard MD, Menon S, Yu J, Driscoll DL, Lingaraj T, Burkhardt AL, Chen W, Garcia K, Sappal DS, Gray J, Hales P, Leroy PJ, Ringeling J, Rabino C, Spelman JJ, Morgenstern JP, Lightcap ES. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 2010; 70:4318-26. [PMID: 20460535 DOI: 10.1158/0008-5472.can-09-4428] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple pathways have been proposed to explain how proteasome inhibition induces cell death, but mechanisms remain unclear. To approach this issue, we performed a genome-wide siRNA screen to evaluate the genetic determinants that confer sensitivity to bortezomib (Velcade (R); PS-341). This screen identified 100 genes whose knockdown affected lethality to bortezomib and to a structurally diverse set of other proteasome inhibitors. A comparison of three cell lines revealed that 39 of 100 genes were commonly linked to cell death. We causally linked bortezomib-induced cell death to the accumulation of ASF1B, Myc, ODC1, Noxa, BNIP3, Gadd45alpha, p-SMC1A, SREBF1, and p53. Our results suggest that proteasome inhibition promotes cell death primarily by dysregulating Myc and polyamines, interfering with protein translation, and disrupting essential DNA damage repair pathways, leading to programmed cell death.
Collapse
Affiliation(s)
- Siquan Chen
- Discovery Technologies, Discovery Oncology Biology, and Medical Biostatistics, Millennium Pharmaceuticals, Inc., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
59
|
Sugihara Y, Honda H, Iida T, Morinaga T, Hino S, Okajima T, Matsuda T, Nadano D. Proteomic Analysis of Rodent Ribosomes Revealed Heterogeneity Including Ribosomal Proteins L10-like, L22-like 1, and L39-like. J Proteome Res 2010; 9:1351-66. [DOI: 10.1021/pr9008964] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yoshihiko Sugihara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroki Honda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tomoharu Iida
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takuma Morinaga
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Shingo Hino
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuya Okajima
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Daita Nadano
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
60
|
Weinhold N, Moreaux J, Raab MS, Hose D, Hielscher T, Benner A, Meißner T, Ehrbrecht E, Brough M, Jauch A, Goldschmidt H, Klein B, Moos M. NPM1 is overexpressed in hyperdiploid multiple myeloma due to a gain of chromosome 5 but is not delocalized to the cytoplasm. Genes Chromosomes Cancer 2010; 49:333-41. [DOI: 10.1002/gcc.20745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
61
|
Sridhar K, Ross DT, Tibshirani R, Butte AJ, Greenberg PL. Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood 2009; 114:4847-58. [PMID: 19801443 PMCID: PMC2786292 DOI: 10.1182/blood-2009-08-236422] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/13/2009] [Indexed: 01/12/2023] Open
Abstract
Microarray analysis with 40 000 cDNA gene chip arrays determined differential gene expression profiles (GEPs) in CD34(+) marrow cells from myelodysplastic syndrome (MDS) patients compared with healthy persons. Using focused bioinformatics analyses, we found 1175 genes significantly differentially expressed by MDS versus normal, requiring a minimum of 39 genes to separately classify these patients. Major GEP differences were demonstrated between healthy and MDS patients and between several MDS subgroups: (1) those whose disease remained stable and those who subsequently transformed (tMDS) to acute myeloid leukemia; (2) between del(5q) and other MDS patients. A 6-gene "poor risk" signature was defined, which was associated with acute myeloid leukemia transformation and provided additive prognostic information for International Prognostic Scoring System Intermediate-1 patients. Overexpression of genes generating ribosomal proteins and for other signaling pathways was demonstrated in the tMDS patients. Comparison of del(5q) with the remaining MDS patients showed 1924 differentially expressed genes, with underexpression of 1014 genes, 11 of which were within the 5q31-32 commonly deleted region. These data demonstrated (1) GEPs distinguishing MDS patients from healthy and between those with differing clinical outcomes (tMDS vs those whose disease remained stable) and cytogenetics [eg, del(5q)]; and (2) molecular criteria refining prognostic categorization and associated biologic processes in MDS.
Collapse
Affiliation(s)
- Kunju Sridhar
- Hematology Division,Stanford University Medical Center, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
62
|
Nayak RR, Kearns M, Spielman RS, Cheung VG. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Res 2009; 19:1953-62. [PMID: 19797678 PMCID: PMC2775589 DOI: 10.1101/gr.097600.109] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/13/2009] [Indexed: 02/03/2023]
Abstract
Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes.
Collapse
Affiliation(s)
- Renuka R. Nayak
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Kearns
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Richard S. Spielman
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vivian G. Cheung
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
63
|
Artero-Castro A, Kondoh H, Fernández-Marcos P, Serrano M, y Cajal SR, LLeonart M. Rplp1 bypasses replicative senescence and contributes to transformation. Exp Cell Res 2009; 315:1372-83. [DOI: 10.1016/j.yexcr.2009.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 12/03/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
|
64
|
Rohozinski J, Anderson ML, Broaddus RE, Edwards CL, Bishop CE. Spermatogenesis associated retrogenes are expressed in the human ovary and ovarian cancers. PLoS One 2009; 4:e5064. [PMID: 19333399 PMCID: PMC2660244 DOI: 10.1371/journal.pone.0005064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is the second most prevalent gynecologic cancer in women. However, it is by far the most lethal. This is generally attributed to the absence of easily detectable markers specific to ovarian cancers that can be used for early diagnosis and specific therapeutic targets. Methodology/Principal Findings Using end point PCR we have found that a family of retrogenes, previously thought to be expressed only in the male testis during spermatogenesis in man, are also expressed in normal ovarian tissue and a large percentage of ovarian cancers. In man there are at least eleven such autosomal retrogenes, which are intronless copies of genes on the X chromosome, essential for normal spermatogenesis and expressed specifically in the human testis. We tested for the expression of five of the known retrogenes, UTP14C, PGK2, RPL10L, RPL39L and UBL4B in normal human ovary and ovarian cancers. Conclusions/Significance We propose that the activation of the testis specific retrogenes in the ovary and ovarian cancers is of biological significance in humans. Because these retrogenes are specifically expressed in the ovary and ovarian cancers in the female they may prove useful in developing new diagnostic and/or therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Jan Rohozinski
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
65
|
Simoff I, Moradi H, Nygård O. Functional characterization of ribosomal protein L15 from Saccharomyces cerevisiae. Curr Genet 2009; 55:111-25. [PMID: 19184027 DOI: 10.1007/s00294-009-0228-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 12/20/2022]
Abstract
In this study we provide general information on the little studied eukaryotic ribosomal protein rpL15. Saccharomyces cerevisiae has two genes, YRPL15A and YRPL15B that could potentially code for yeast rpL15 (YrpL15). YRPL15A is essential while YRPL15B is dispensable. However, a plasmid-borne copy of the YRPL15B gene, controlled by the GAL1 promoter or by the promoter controlling expression of the YRPL15A gene, can functionally complement YrpL15A in yeast cells, while the same gene controlled by the authentic promoter is inactive. Analysis of the levels of YrpL15B-mRNA in yeast cells shows that the YRPL15B gene is inactive in transcription. The function of YrpL15A is highly resilient to single and multiple amino acid substitutions. In addition, minor deletions from both the N- and C-terminal ends of YrpL15A has no effect on protein function, while addition of a C-terminal tag that could be used for detection of plasmid-encoded YrpL15A is detrimental to protein function. YrpL15A could also be replaced by the homologous protein from Arabidopsis thaliana despite almost 30% differences in the amino acid sequence, while the more closely related protein from Schizosaccharomyces pombe was inactive. The lack of function was not caused by a failure of the protein to enter the yeast nucleus.
Collapse
|
66
|
Balasubramanian S, Zheng D, Liu YJ, Fang G, Frankish A, Carriero N, Robilotto R, Cayting P, Gerstein M. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol 2009; 10:R2. [PMID: 19123937 PMCID: PMC2687790 DOI: 10.1186/gb-2009-10-1-r2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/05/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The availability of genome sequences of numerous organisms allows comparative study of pseudogenes in syntenic regions. Conservation of pseudogenes suggests that they might have a functional role in some instances. RESULTS We report the first large-scale comparative analysis of ribosomal protein pseudogenes in four mammalian genomes (human, chimpanzee, mouse and rat). To this end, we have assigned these pseudogenes in the four organisms using an automated pipeline and make the results available online. Each organism has a large number of ribosomal protein pseudogenes (approximately 1,400 to 2,800). The majority of them are processed (generated by retrotransposition). However, we do not see a correlation between the number of pseudogenes associated with a ribosomal protein gene and its mRNA abundance. Analysis of pseudogenes in syntenic regions between species shows that most are conserved between human and chimpanzee, but very few are conserved between primates and rodents. Interestingly, syntenic pseudogenes have a lower rate of nucleotide substitution than their surrounding intergenic DNA. Moreover, evidence from expressed sequence tags indicates that two pseudogenes conserved between human and mouse are transcribed. Detailed analysis shows that one of them, the pseudogene of RPS27, is likely to be a protein-coding gene. This is significant as previous reports indicated there are exactly 80 ribosomal protein genes encoded by the human genome. CONCLUSIONS Our analysis indicates that processed ribosomal protein pseudogenes abound in mammalian genomes, but few of these are conserved between primates and rodents. This highlights the large amount of recent retrotranspositional activity in mammals and a relatively larger amount of it in the rodent lineage.
Collapse
Affiliation(s)
- Suganthi Balasubramanian
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Deyou Zheng
- The Saul R Korey Department of Neurology, Albert Einstein College of Medicine, NY 10461, USA
| | - Yuen-Jong Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Gang Fang
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Adam Frankish
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1HH, UK
| | - Nicholas Carriero
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Rebecca Robilotto
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Philip Cayting
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
67
|
|
68
|
Barthélémy RM, Chenuil A, Blanquart S, Casanova JP, Faure E. Translational machinery of the chaetognath Spadella cephaloptera: a transcriptomic approach to the analysis of cytosolic ribosomal protein genes and their expression. BMC Evol Biol 2007; 7:146. [PMID: 17725830 PMCID: PMC2020476 DOI: 10.1186/1471-2148-7-146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 08/28/2007] [Indexed: 12/01/2022] Open
Abstract
Background Chaetognaths, or arrow worms, are small marine, bilaterally symmetrical metazoans. The objective of this study was to analyse ribosomal protein (RP) coding sequences from a published collection of expressed sequence tags (ESTs) from a chaetognath (Spadella cephaloptera) and to use them in phylogenetic studies. Results This analysis has allowed us to determine the complete primary structures of 23 out of 32 RPs from the small ribosomal subunit (SSU) and 32 out of 47 RPs from the large ribosomal subunit (LSU). Ten proteins are partially determined and 14 proteins are missing. Phylogenetic analyses of concatenated RPs from six animals (chaetognath, echinoderm, mammalian, insect, mollusc and sponge) and one fungal taxa do not resolve the chaetognath phylogenetic position, although each mega-sequence comprises approximately 5,000 amino acid residues. This is probably due to the extremely biased base composition and to the high evolutionary rates in chaetognaths. However, the analysis of chaetognath RP genes revealed three unique features in the animal Kingdom. First, whereas generally in animals one RP appeared to have a single type of mRNA, two or more genes are generally transcribed for one RP type in chaetognath. Second, cDNAs with complete 5'-ends encoding a given protein sequence can be divided in two sub-groups according to a short region in their 5'-ends: two novel and highly conserved elements have been identified (5'-TAATTGAGTAGTTT-3' and 5'-TATTAAGTACTAC-3') which could correspond to different transcription factor binding sites on paralog RP genes. And, third, the overall number of deduced paralogous RPs is very high compared to those published for other animals. Conclusion These results suggest that in chaetognaths the deleterious effects of the presence of paralogous RPs, such as apoptosis or cancer are avoided, and also that in each protein family, some of the members could have tissue-specific and extra-ribosomal functions. These results are congruent with the hypotheses of an allopolyploid origin of this phylum and of a ribosome heterogeneity.
Collapse
Affiliation(s)
- Roxane M Barthélémy
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| | - Anne Chenuil
- UMR 6540 CNRS DIMAR, Centre d'Océanologie de Marseille, Station Marine d'Endoume, Ch. de la Batterie des Lions, 13007 Marseille, France
| | - Samuel Blanquart
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS-Université de Montpellier 2, 161, rue Ada, 34392 Montpellier Cedex 5, France
| | - Jean-Paul Casanova
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| | - Eric Faure
- E.R. Biodiversity and environnement, case 5, Pl. V. Hugo, Université de Provence, 13331, Marseille cedex 3, France
| |
Collapse
|
69
|
McIntosh KB, Bonham-Smith PC. The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. Genome 2007; 48:443-54. [PMID: 16121241 DOI: 10.1139/g05-007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arabidopsis thaliana ribosomal protein (r-protein) L23A (RPL23A) is a member of the conserved L23/L25 family of primary ribosomal RNA (rRNA) binding proteins. The 2 AtRPL23A isoforms, RPL23A-1 and RPL23A-2, are 94% identical at the amino acid level, yet RPL23A-1 and RPL23A-2 share only approximately 40-50% primary sequence identity within the 5' regulatory regions. While the RPL23A-1 and -2 5' regulatory regions share many similar predicted motifs, the arrangement and number of these motifs differs between the 2 genes. Differences in regulation between RPL23A-1 and -2 have been investigated via reverse transcription-PCR (RT-PCR) expression profiles. Overall, transcript abundance for RPL23A-1 and -2 varied slightly in specific tissues and under some abiotic stresses. The highest transcript abundance for both RPL23A genes was detected in mitotically active tissues such as bud, flower and elongating carpel, as well as in root and stem while the lowest transcript levels were found in mature leaf and bract. Hormone-treated seedlings showed increased RPL23A-1 and -2 transcript levels following IAA and BAP treatment while ABA treatment resulted in a transient lowering of transcript levels. Expression patterns differed between RPL23A-1 and -2 in cold-, wound-, and copper-stressed seedlings. In all tissues examined, RPL23A-2 transcript levels were consistently lower than those of RPL23A-1. This report shows differential transcriptional regulation of the 2 RPL23A genes, which should no longer be identified as "housekeeping" genes.
Collapse
Affiliation(s)
- Kerri B McIntosh
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
70
|
Longhorn SJ, Foster PG, Vogler AP. The nematode?arthropod clade revisited: phylogenomic analyses from ribosomal protein genes misled by shared evolutionary biases. Cladistics 2007; 23:130-144. [DOI: 10.1111/j.1096-0031.2006.00132.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
71
|
DIXIT RAJNIKANT, DIXIT SARITA, ROY UPAL, SHOUCHE YOGESHS, GAKHAR SURENDRA. Partial genomic organization of ribosomal protein S7 gene from malaria vector Anopheles stephensi. INSECT SCIENCE 2007; 14:101-106. [DOI: 10.1111/j.1744-7917.2007.00131.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractIn this study, we describe the partial genomic organization of ribosomal protein S7 gene isolated from the mosquito Anopheles stephensi. Initially a 558 bp partial cDNA sequence was amplified as precursor mRNA sequence containing 223 bp long intron. 5′ and 3′ end sequences were recovered using end specific rapid amplification of cDNA ends (RACE) polymerase chain reaction. The full‐length cDNA sequence was 914 nucleotide long with an open reading frame capable of encoding 192 amino acid long protein with calculated molecular mass of 22 174 Da and a pI point of 9.94. Protein homology search revealed > 75% identity to other insect's S7 ribosomal proteins. Analysis of sequence alignment revealed several highly conserved domains, one of which is related to nuclear localization signal (NLS) region of human rpS7. Interestingly, intron nucleotide sequence comparison with A. gambiae showed a lesser degree of conservation as compared to coding and untranslated regions. Like this, early studies on the genomic organization and cDNA/ Expressed sequence tag analysis (EST) could help in genome annotation of A. stephensi, and would be likely to be sequenced in the future.
Collapse
|
72
|
Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One 2007; 2:e242. [PMID: 17311107 PMCID: PMC1797416 DOI: 10.1371/journal.pone.0000242] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/23/2007] [Indexed: 12/24/2022] Open
Abstract
Background Translation deregulation is an important mechanism that causes aberrant cell growth, proliferation and survival. eIF4E, the mRNA 5′ cap-binding protein, plays a major role in translational control. To understand how eIF4E affects cell proliferation and survival, we studied mRNA targets that are translationally responsive to eIF4E. Methodology/Principal Findings Microarray analysis of polysomal mRNA from an eIF4E-inducible NIH 3T3 cell line was performed. Inducible expression of eIF4E resulted in increased translation of defined sets of mRNAs. Many of the mRNAs are novel targets, including those that encode large- and small-subunit ribosomal proteins and cell growth-related factors. In addition, there was augmented translation of mRNAs encoding anti-apoptotic proteins, which conferred resistance to endoplasmic reticulum-mediated apoptosis. Conclusions/Significance Our results shed new light on the mechanisms by which eIF4E prevents apoptosis and transforms cells. Downregulation of eIF4E and its downstream targets is a potential therapeutic option for the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yaël Mamane
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Petroulakis
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yvan Martineau
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Taka-Aki Sato
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Ola Larsson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vinagolu K. Rajasekhar
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nahum Sonenberg
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
73
|
Malone J, Ullrich R. Novel Radiation Response Genes Identified in Gene-Trapped MCF10A Mammary Epithelial Cells. Radiat Res 2007; 167:176-84. [PMID: 17390725 DOI: 10.1667/rr0656.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have used a gene-trapping strategy to screen human mammary epithelial cells for radiation response genes. Relative mRNA expression levels of five candidate genes in MCF10A cells were analyzed, both with and without exposure to radiation. In all five cases, the trapped genes were significantly down-regulated after radiation treatment. Sequence analysis of the fusion transcripts identified the trapped genes: (1) the human androgen receptor, (2) the uncharacterized DREV1 gene, which has known homology to DNA methyltransferases, (3) the human creatine kinase gene, (4) the human eukaryotic translation elongation factor 1 beta 2, and (5) the human ribosomal protein L27. All five genes were down-regulated significantly after treatment with varying doses of ionizing radiation (0.10 to 4.0 Gy) and at varying times (2-30 h after treatment). The genes were also analyzed in human fibroblast and lymphoblastoid cell lines to determine whether the radiation response being observed was cell-type specific. The results verified that the observed radiation response was not a cell-type-specific phenomenon, suggesting that the genes play essential roles in the radiation damage control pathways. This study demonstrates the potential of the gene-trap approach for the identification and functional analysis of novel radiation response genes.
Collapse
Affiliation(s)
- Jennifer Malone
- Department of Pathology, University of Colorado Health Sciences Center, Aurora, Colorado 80045-0508, USA.
| | | |
Collapse
|
74
|
Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, Harrison PM, Yu Z, Kenmochi N, Kaufman TC, Leevers SJ, Cook KR. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 2007; 8:R216. [PMID: 17927810 PMCID: PMC2246290 DOI: 10.1186/gb-2007-8-10-r216] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. RESULTS We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. CONCLUSION This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.
Collapse
Affiliation(s)
- Steven J Marygold
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - John Roote
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Gunter Reuter
- Institute of Genetics, Biologicum, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle D-06108, Germany
| | - Andrew Lambertsson
- Institute of Molecular Biosciences, University of Oslo, Blindern, Olso N-0316, Norway
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Gillian H Millburn
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Paul M Harrison
- Department of Biology, McGill University, Dr Penfield Ave, Montreal, Quebec H3A 1B1, Canada
| | - Zhan Yu
- Department of Biology, McGill University, Dr Penfield Ave, Montreal, Quebec H3A 1B1, Canada
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Thomas C Kaufman
- Department of Biology, Indiana University, E. Third Street, Bloomington, IN 47405-7005, USA
| | - Sally J Leevers
- Growth Regulation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Kevin R Cook
- Department of Biology, Indiana University, E. Third Street, Bloomington, IN 47405-7005, USA
| |
Collapse
|
75
|
Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K, Kenmochi N. Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS One 2006; 1:e37. [PMID: 17183665 PMCID: PMC1762390 DOI: 10.1371/journal.pone.0000037] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/05/2006] [Indexed: 01/16/2023] Open
Abstract
The ribosomal proteins (RPs) form the majority of cellular proteins and are mandatory for cellular growth. RP genes have been linked, either directly or indirectly, to various diseases in humans. Mutations in RP genes are also associated with tissue-specific phenotypes, suggesting a possible role in organ development during early embryogenesis. However, it is not yet known how mutations in a particular RP gene result in specific cellular changes, or how RP genes might contribute to human diseases. The development of animal models with defects in RP genes will be essential for studying these questions. In this study, we knocked down 21 RP genes in zebrafish by using morpholino antisense oligos to inhibit their translation. Of these 21, knockdown of 19 RPs resulted in the development of morphants with obvious deformities. Although mutations in RP genes, like other housekeeping genes, would be expected to result in nonspecific developmental defects with widespread phenotypes, we found that knockdown of some RP genes resulted in phenotypes specific to each gene, with varying degrees of abnormality in the brain, body trunk, eyes, and ears at about 25 hours post fertilization. We focused further on the organogenesis of the brain. Each knocked-down gene that affected the morphogenesis of the brain produced a different pattern of abnormality. Among the 7 RP genes whose knockdown produced severe brain phenotypes, 3 human orthologs are located within chromosomal regions that have been linked to brain-associated diseases, suggesting a possible involvement of RP genes in brain or neurological diseases. The RP gene knockdown system developed in this study could be a powerful tool for studying the roles of ribosomes in human diseases.
Collapse
Affiliation(s)
- Tamayo Uechi
- Frontier Science Research Center, University of MiyazakiMiyazaki, Japan
| | - Yukari Nakajima
- Frontier Science Research Center, University of MiyazakiMiyazaki, Japan
| | - Akihiro Nakao
- Frontier Science Research Center, University of MiyazakiMiyazaki, Japan
| | | | | | - Kunio Inoue
- Department of Biology, Graduate School of Science and Technology, Kobe UniversityKobe, Japan
| | - Naoya Kenmochi
- Frontier Science Research Center, University of MiyazakiMiyazaki, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
76
|
Iwamoto K, Bundo M, Ueda J, Kato T. Expression of ribosomal subunit genes increased coordinately with postmortem interval in human brain. Mol Psychiatry 2006; 11:1067-9. [PMID: 17130884 DOI: 10.1038/sj.mp.4001901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
77
|
Millino C, Bellin M, Fanin M, Romualdi C, Pegoraro E, Angelini C, Lanfranchi G. Expression profiling characterization of laminin alpha-2 positive MDC. Biochem Biophys Res Commun 2006; 350:345-51. [PMID: 17010933 DOI: 10.1016/j.bbrc.2006.09.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
In the Caucasian population, patients affected by the most frequent forms of congenital muscular dystrophies (MDC) are commonly divided into two groups. The first is characterized by mutations of the gene for the laminin alpha-2 (LAMA2). The second is positive for this protein, highly heterogeneous, and has no specific genetic defect associated yet. We studied the skeletal muscle transcriptome of four LAMA2 deficient and six LAMA2 positive MDC patients by cDNA microarrays. The expression profiling defined two patients groups: one mild and one severe phenotype. This result was in agreement with histopathological features but only partially with the clinical classification. The mild phenotype is characterized by a delayed maturation from slow to fast muscle fibers. Other muscle transcripts, such as telethonin, myosin light-chains 3 and 1V, are underexpressed in this group. We suggest that expression profiling will provide important information to improve our understanding of the molecular basis of laminin alpha-2 positive MDC.
Collapse
Affiliation(s)
- Caterina Millino
- CRIBI Biotechnology Center and Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
78
|
Meng XL, Ding XW, Xu XH. Analyses on differentially expressed genes associated with human breast cancer. Chin J Cancer Res 2006. [DOI: 10.1007/s11670-006-0193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
79
|
McIntosh KB, Bonham-Smith PC. Ribosomal protein gene regulation: what about plants? ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-014] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosome is an intricate ribonucleoprotein complex with a multitude of protein constituents present in equimolar amounts. Coordination of the synthesis of these ribosomal proteins (r-proteins) presents a major challenge to the cell. Although most r-proteins are highly conserved, the mechanisms by which r-protein gene expression is regulated often differ widely among species. While the primary regulatory mechanisms coordinating r-protein synthesis in bacteria, yeast, and animals have been identified, the mechanisms governing the coordination of plant r-protein expression remain largely unexplored. In addition, plants are unique among eukaryotes in carrying multiple (often more than two) functional genes encoding each r-protein, which substantially complicates coordinate expression. A survey of the current knowledge regarding coordinated systems of r-protein gene expression in different model organisms suggests that vertebrate r-protein gene regulation provides a valuable comparison for plants.
Collapse
Affiliation(s)
- Kerri B. McIntosh
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Peta C. Bonham-Smith
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
80
|
Vinckenbosch N, Dupanloup I, Kaessmann H. Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 2006; 103:3220-5. [PMID: 16492757 PMCID: PMC1413932 DOI: 10.1073/pnas.0511307103] [Citation(s) in RCA: 290] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Given that retroposed copies of genes are presumed to lack the regulatory elements required for their expression, retroposition has long been considered a mechanism without functional relevance. However, through an in silico assay for transcriptional activity, we identify here >1,000 transcribed retrocopies in the human genome, of which at least approximately 120 have evolved into bona fide genes. Among these, approximately 50 retrogenes have evolved functions in testes, more than half of which were recruited as functional autosomal counterparts of X-linked genes during spermatogenesis. Generally, retrogenes emerge "out of the testis," because they are often initially transcribed in testis and later evolve stronger and sometimes more diverse spatial expression patterns. We find a significant excess of transcribed retrocopies close to other genes or within introns, suggesting that retrocopies can exploit the regulatory elements and/or open chromatin of neighboring genes to become transcribed. In direct support of this hypothesis, we identify 36 retrocopy-host gene fusions, including primate-specific chimeric genes. Strikingly, 27 intergenic retrogenes have acquired untranslated exons de novo during evolution to achieve high expression levels. Notably, our screen for highly transcribed retrocopies also uncovered a retrogene linked to a human recessive disorder, gelatinous drop-like corneal dystrophy, a form of blindness. These functional implications for retroposition notwithstanding, we find that the insertion of retrocopies into genes is generally deleterious, because it may interfere with the transcription of host genes. Our results demonstrate that natural selection has been fundamental in shaping the retrocopy repertoire of the human genome.
Collapse
Affiliation(s)
- Nicolas Vinckenbosch
- *Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland; and
| | - Isabelle Dupanloup
- *Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland; and
- Computational and Molecular Population Genetics Laboratory, Zoological Institute, University of Bern, 3012 Bern, Switzerland
| | - Henrik Kaessmann
- *Center for Integrative Genomics, University of Lausanne, Génopode, 1015 Lausanne, Switzerland; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Abstract
While the nucleolus was first observed over two hundred years ago, its role in human cancers is only now being appreciated. Long thought to be a static, ribosome-producing, subnuclear organelle, recent investigations have shown a more dynamic and adaptable side of the nucleolus. Containing not only proteins for the production of ribosomes but also newfound nucleolar oncogenes and tumor suppressors, mechanistic links between the nucleolus and cancer are now more evident. In this regard, much of the work from the past decade has focused on the ability of these proteins to promote and suppress tumorigenesis from the nucleolus. In this review, we will discuss how historical measurements of the nucleolus are being translated into contemporary studies of nucleolar dysfunction in human cancer.
Collapse
Affiliation(s)
| | - Jason D. Weber
- Address correspondence to Jason D. Weber, Ph.D., Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Fax: (314) 747-2797; E-mail:
| |
Collapse
|
82
|
Ellis SR, Massey AT. Diamond Blackfan anemia: A paradigm for a ribosome-based disease. Med Hypotheses 2006; 66:643-8. [PMID: 16239073 DOI: 10.1016/j.mehy.2005.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/05/2005] [Indexed: 01/12/2023]
Abstract
Diamond Blackfan anemia is characterized by a severe hypoplastic anemia and a heterogeneous collection of other clinical features. Approximately 25% of Diamond Blackfan anemia cases are associated with mutations in the gene encoding ribosomal protein S19. The hypothesis presented here ties together molecular and clinical features of the disease, and establishes a conceptual framework for understanding many of the unusual characteristics of a growing number of diseases linked to factors involved in ribosome synthesis. The hypothesis states that ribosomal proteins are expressed in amounts that differ relative to one another in a tissue-specific manner, and that haploinsufficiency for a particular protein may make that protein limiting for ribosome assembly in some tissues, while other tissues remain unaffected. Further, polymorphisms in factors controlling the expression of a particular ribosomal protein gene may alter its expression and expand or contract the number of tissues affected from individual to individual. Support for the hypothesis comes from the observation that promoters in ribosomal protein genes exhibit little conservation and transcription profiling indicates that the absolute amounts of mRNAs for individual ribosomal proteins can vary dramatically relative to one another. Balanced expression of ribosomal proteins is achieved post-translationally, where excess proteins not assembled into ribosomal subunits are often rapidly degraded. The number of ribosomes per cell is therefore determined by the factors that limit assembly. In principle, any essential ribosomal protein could become limiting for assembly if its level of expression falls below a critical threshold. Whether an inactivating mutation in ribosomal protein gene would affect protein synthetic capacity of a tissue would depend on the ratio of the ribosomal protein relative to other ribosomal proteins in that tissue. If the ratio were high, the tissue may not be affected as the level of functional protein may not fall to a point where it becomes limiting for subunit assembly. In contrast, if the ratio were low, an inactivating mutation could make the protein limiting for subunit assembly resulting in a clinical phenotype. Polymorphisms in the myriad of cis- and trans-acting factors, which govern the expression of ribosomal proteins in response to developmental and physiological signals, could act to increase or decrease ribosomal protein expression and thereby impact the profile and severity of clinical phenotypes. Therefore, these factors represent targets for the development of new therapies to treat Diamond Blackfan anemia and other ribosome based diseases.
Collapse
Affiliation(s)
- Steven R Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, 319 Abraham Flexner Way, Louisville, KY 40292, USA.
| | | |
Collapse
|
83
|
Maeda N, Toku S, Kenmochi N, Tanaka T. A novel nucleolar protein interacts with ribosomal protein S19. Biochem Biophys Res Commun 2005; 339:41-6. [PMID: 16289379 DOI: 10.1016/j.bbrc.2005.10.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 10/21/2005] [Indexed: 11/30/2022]
Abstract
The gene encoding ribosomal protein S19 (RPS19) is mutated in approximately 25% of patients with Diamond-Blackfan anemia (DBA), which is a rare congenital erythroblastopenia. DBA patients have a variety of clinical characteristics, and the role of the RPS19 gene in the pathogenesis of the disease is presently unknown. To investigate a possible role for RPS19 in erythropoiesis, we looked for proteins associated with mouse RPS19 using a yeast two-hybrid system and identified a novel protein, which we named S19 binding protein (S19BP). The deduced amino acid sequence of S19BP derived from cDNA defines a calculated mass of 15,849 and an isoelectric point of 11.3. No known functional motifs were found in S19BP except a short polylysine tract embedded in a putative nucleolar localization signal. Immunolocalization experiments revealed that S19BP was highly concentrated in nucleoli after 6 h of transfection in Cos-7 cells. S19BP was expressed ubiquitously at a basal level but a significantly high level of expression was observed in some tissues.
Collapse
Affiliation(s)
- Noriko Maeda
- Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | |
Collapse
|
84
|
Li X, Zhang SC, Liu ZH, Li HY. Ribosomal protein genes S23 and L35 from amphioxus Branchiostoma belcheri tsingtauense: identification and copy number. Acta Biochim Biophys Sin (Shanghai) 2005; 37:573-9. [PMID: 16077906 DOI: 10.1111/j.1745-7270.2005.00072.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complete cDNA and deduced amino acid sequences of the ribosomal proteins S23 (AmphiS23) and L35 (AmphiL35) from amphioxus Branchiostoma belcheri tsingtauense were identified in this study. AmphiS23 cDNA is 546 bp long and encodes a protein of 143 amino acids. It has a predicted molecular mass of 15,851 Da and a pI of 10.7. AmphiL35 cDNA comprises 473 bp, and codes for a protein of 123 amino acids with a predicted molecular mass of 14,543 Da and a pI of 10.8. AmphiS23 shares more than 83% identity with its homologues in the vertebrates and more than 84% identity with those in the invertebrates. AmphiL35 is more than 63% identical to its counterparts in the vertebrates and more than 52% identical to those in the invertebrates. Southern blot analysis demonstrated the existence of 1-2 copies of the S23 gene and 2-3 copies of the L35 gene in the genome of amphioxus B. belcheri tsingtauense. This is in sharp contrast to the presence of 6-13 copies of the S23 gene and 15-17 copies of the L35 gene in the rat genome. It is clear that the housekeeping genes like S23 and L35 underwent a large-scale duplication in the vertebrate lineage, reinforcing the gene/genome duplication hypothesis.
Collapse
Affiliation(s)
- Xian Li
- Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
85
|
Perry RP. The architecture of mammalian ribosomal protein promoters. BMC Evol Biol 2005; 5:15. [PMID: 15707503 PMCID: PMC554972 DOI: 10.1186/1471-2148-5-15] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 02/13/2005] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mammalian ribosomes contain 79 different proteins encoded by widely scattered single copy genes. Coordinate expression of these genes at transcriptional and post-transcriptional levels is required to ensure a roughly equimolar accumulation of ribosomal proteins. To date, detailed studies of only a very few ribosomal protein (rp) promoters have been made. To elucidate the general features of rp promoter architecture, I made a detailed sequence comparison of the promoter regions of the entire set of orthologous human and mouse rp genes. RESULTS A striking evolutionarily conserved feature of most rp genes is the separation by an intron of the sequences involved in transcriptional and translational regulation from the sequences with protein encoding function. Another conserved feature is the polypyrimidine initiator, which conforms to the consensus (Y)2C+1TY(T)2(Y)3. At least 60 % of the rp promoters contain a largely conserved TATA box or A/T-rich motif, which should theoretically have TBP-binding capability. A remarkably high proportion of the promoters contain conserved binding sites for transcription factors that were previously implicated in rp gene expression, namely upstream GABP and Sp1 sites and downstream YY1 sites. Over 80 % of human and mouse rp genes contain a transposable element residue within 900 bp of 5' flanking sequence; very little sequence identity between human and mouse orthologues was evident more than 200 bp upstream of the transcriptional start point. CONCLUSIONS This analysis has provided some valuable insights into the general architecture of mammalian rp promoters and has identified parameters that might coordinately regulate the transcriptional activity of certain subsets of rp genes.
Collapse
|
86
|
Jesuino RSA, Pereira M, Felipe MSS, Azevedo MO, Soares CMA. Molecular cloning and characterization of a cDNA encoding the Paracoccidioides brasiliensis 135 ribosomal protein. Med Mycol 2004; 42:217-21. [PMID: 15283235 DOI: 10.1080/13693780310001597692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A 630 bp cDNA encoding an L35 ribosomal protein of Paracoccidioides brasiliensis, designated as Pbl35, was cloned from a yeast expression library. Pbl35 encodes a polypeptide of 125 amino acids, with a predicted molecular mass of 14.5 kDa and a pI of 11.0. The deduced PbL35 shows significant conservation in respect to other described ribosomal L35 proteins from eukaryotes and prokaryotes. Motifs of ribosomal proteins are present in PbL35, including a bipartite nuclear localization signal (NLS) that could be related to the protein addressing to the nucleolus for the ribosomal assembly. The mRNA for PbL35, about 700 nucleotides in length, is expressed at a high level in P. brasiliensis. The PbL35 and the deduced amino acid sequence constitute the first description of a ribosomal protein in P. brasiliensis. The cDNA was deposited in GenBank under accession number AF416509.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Genes, Fungal/genetics
- Genes, Fungal/physiology
- Isoelectric Point
- Molecular Sequence Data
- Molecular Weight
- Nuclear Localization Signals/genetics
- Open Reading Frames/genetics
- Paracoccidioides/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA, Fungal/analysis
- RNA, Fungal/isolation & purification
- RNA, Messenger/analysis
- RNA, Messenger/isolation & purification
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Rosália S A Jesuino
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
87
|
Sylvester JE, Fischel-Ghodsian N, Mougey EB, O'Brien TW. Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease. Genet Med 2004; 6:73-80. [PMID: 15017329 DOI: 10.1097/01.gim.0000117333.21213.17] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Most of the energy requirement for cell growth, differentiation, and development is met by the mitochondria in the form of ATP produced by the process of oxidative phosphorylation. Human mitochondrial DNA encodes a total of 13 proteins, all of which are essential for oxidative phosphorylation. The mRNAs for these proteins are translated on mitochondrial ribosomes. Recently, the genes for human mitochondrial ribosomal proteins (MRPs) have been identified. In this review, we summarize their refined chromosomal location. It is well known that mutations in the mitochondrial translation system, i.e., ribosomal RNA and transfer RNA cause various pathologies. In this review, we suggest possible associations between clinical conditions and MRPs based on coincidence of genetic map data and chromosomal location. These MRPs may be candidate genes for the clinical condition or may act as modifiers of existing known gene mutations (mt-tRNA, mt-rRNA, etc.).
Collapse
|
88
|
Oliver ER, Saunders TL, Tarlé SA, Glaser T. Ribosomal protein L24 defect in belly spot and tail (Bst), a mouse Minute. Development 2004; 131:3907-20. [PMID: 15289434 PMCID: PMC2262800 DOI: 10.1242/dev.01268] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal protein mutations, termed Minutes, have been instrumental in studying the coordination of cell and tissue growth in Drosophila. Although abundant in flies, equivalent defects in mammals are relatively unknown. Belly spot and tail (Bst) is a semidominant mouse mutation that disrupts pigmentation, somitogenesis and retinal cell fate determination. Here, we identify Bst as a deletion within the Rpl24 riboprotein gene. Bst significantly impairs Rpl24 splicing and ribosome biogenesis. Bst/+ cells have decreased rates of protein synthesis and proliferation, and are outcompeted by wild-type cells in C57BLKS<-->ROSA26 chimeras. Bacterial artificial chromosome (BAC) and cDNA transgenes correct the mutant phenotypes. Our findings establish Bst as a mouse Minute and provide the first detailed characterization of a mammalian ribosomal protein mutation.
Collapse
Affiliation(s)
- Edward R. Oliver
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas L. Saunders
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Susan A. Tarlé
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tom Glaser
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
89
|
Ohga S, Mugishima H, Ohara A, Kojima S, Fujisawa K, Yagi K, Higashigawa M, Tsukimoto I. Diamond-Blackfan anemia in Japan: clinical outcomes of prednisolone therapy and hematopoietic stem cell transplantation. Int J Hematol 2004; 79:22-30. [PMID: 14979474 DOI: 10.1007/bf02983529] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The epidemiology and treatment outcomes for Diamond-Blackfan anemia (DBA) were surveyed in a cohort of 54 children (M/F = 26:28) registered in Japan from 1988 to 1998. The annual incidence was 4.02 cases per million births, the median age at diagnosis was 60 days, and 59% of the cases presented by 3 months of age. Three patients had a familial occurrence. All patients received prednisolone (PSL), and cyclosporin A (CsA) was added to the therapy in 17 patients. Forty-seven patients received transfusions, and 13 underwent hematopoietic stem cell transplantation (HSCT). The cumulative probabilities of a medication-free or a transfusion-free state prior to HSCT were 36% and 69%, respectively, at more than 5 years after diagnosis. Thirteen patients were weaned from PSL therapy without HSCT, and CsA was not associated with weaning from therapy. Transfusion and medication were stopped at 249 days and 933 days after diagnosis in 34 and 13 patients, respectively, who achieved a state of independence. No initial findings predicted the treatment dependence. More than 20% of patients experienced sustained hemosiderosis and/or adverse effects of PSL. The ages and reticulocyte counts at diagnosis of the patients who underwent HSCT were lower than in the patients who did not. HSCT led to the highest success (85%) of all previous reports, even though 5 alternative donors were included in our study. Two cord blood transplants from unrelated donors failed. These findings suggest the need for developing an integral treatment strategy including selective HSCT for refractory DBA.
Collapse
Affiliation(s)
- Shouichi Ohga
- Department of Pediatrics, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.
Collapse
Affiliation(s)
- Akihiro Nakao
- Department of Biotechnology, Research Center for Frontier Bioscience, Miyazaki University, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | |
Collapse
|
91
|
Zhang Z, Harrison PM, Liu Y, Gerstein M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 2004; 13:2541-58. [PMID: 14656962 PMCID: PMC403796 DOI: 10.1101/gr.1429003] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Processed pseudogenes were created by reverse-transcription of mRNAs; they provide snapshots of ancient genes existing millions of years ago in the genome. To find them in the present-day human, we developed a pipeline using features such as intron-absence, frame-disruption, polyadenylation, and truncation. This has enabled us to identify in recent genome drafts approximately 8000 processed pseudogenes (distributed from http://pseudogene.org). Overall, processed pseudogenes are very similar to their closest corresponding human gene, being 94% complete in coding regions, with sequence similarity of 75% for amino acids and 86% for nucleotides. Their chromosomal distribution appears random and dispersed, with the numbers on chromosomes proportional to length, suggesting sustained "bombardment" over evolution. However, it does vary with GC-content: Processed pseudogenes occur mostly in intermediate GC-content regions. This is similar to Alus but contrasts with functional genes and L1-repeats. Pseudogenes, moreover, have age profiles similar to Alus. The number of pseudogenes associated with a given gene follows a power-law relationship, with a few genes giving rise to many pseudogenes and most giving rise to few. The prevalence of processed pseudogenes agrees well with germ-line gene expression. Highly expressed ribosomal proteins account for approximately 20% of the total. Other notables include cyclophilin-A, keratin, GAPDH, and cytochrome c.
Collapse
Affiliation(s)
- Zhaolei Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
92
|
Abstract
Ribosome biogenesis and translation control are essential cellular processes that are governed at numerous levels. Several tumour suppressors and proto-oncogenes have been found either to affect the formation of the mature ribosome or to regulate the activity of proteins known as translation factors. Disruption in one or more of the steps that control protein biosynthesis has been associated with alterations in the cell cycle and regulation of cell growth. Therefore, certain tumour suppressors and proto-oncogenes might regulate malignant progression by altering the protein synthesis machinery. Although many studies have correlated deregulation of protein biosynthesis with cancer, it remains to be established whether this translates directly into an increase in cancer susceptibility, and under what circumstances.
Collapse
Affiliation(s)
- Davide Ruggero
- Molecular Biology Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
93
|
Patterson A, Karsi A, Feng J, Liu Z. Translational machinery of channel catfish: II. Complementary DNA and expression of the complete set of 47 60S ribosomal proteins. Gene 2003; 305:151-60. [PMID: 12609735 DOI: 10.1016/s0378-1119(02)01183-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ribosomal protein genes have become widely used as markers for phylogenetic studies and comparative genomics, but they have not been available in fish. We have cloned and sequenced a complete set of all 47 60S ribosomal protein cDNAs from channel catfish (Ictalurus punctatus), of which 43 included the complete protein encoding regions. Most ribosomal protein mRNAs in channel catfish are highly similar to their mammalian counterparts. However, L4, L14, and L29 are significantly shorter in channel catfish than in mammals due to deletions in the 3' end of the gene. Two distantly related L5 cDNAs, L5a and L5b, were found in channel catfish. L5a is more similar to L5 in other vertebrates, while L5b showed significant levels of divergence, suggesting independent evolution of the two L5-encoding genes. The 47 ribosomal protein genes are generally highly expressed and together account for 11-14% of overall gene expression, depending on the tissues. Expression levels were highly variable both within a single tissue among different ribosomal protein genes, and among tissues with regard to a single ribosomal protein gene. Strong tissue preference expression was also observed for some ribosomal proteins. This set of ribosomal protein gene sequences represents one of the most complete sets from any single organism and will aid in fish phylogenetic and comparative genomic studies.
Collapse
Affiliation(s)
- Andrea Patterson
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Auburn University, 203, Swingle Hall, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
94
|
Pienkowska A, Schelling C, Opiola T, Rozek M, Barciszewski J. Canine 5S rRNA: nucleotide sequence and chromosomal assignment of its gene cluster in four canid species. Cytogenet Genome Res 2003; 97:187-90. [PMID: 12438712 DOI: 10.1159/000066607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to determine the nucleotide sequence of canine 5S rRNA and use this information to develop a molecular probe to assign the gene locus to chromosomes of the dog and three other related canid species using fluorescence in situ hybridization. The nucleotide sequence of canine liver 5S rRNA is 120 base pairs long and identical to the 5S rRNA nucleotide sequence of all other mammalian species investigated so far. A single 5S rRNA gene cluster was localized pericentromerically on chromosomes of four canid species: dog 4q1.3, red fox 4q1.3, blue fox 3q1.3 and Chinese raccoon dog 8q1.3. Chromosome arms carrying the 5S rRNA gene cluster showed striking similarities in their QFQ banding patterns, suggesting high conservation of these chromosome arms among the four species studied. The chromosomal assignments of 5S rRNA genes are among the first gene mapping results for the blue fox and the Chinese raccoon dog, and are in accordance with published data on comparative chromosome maps from human, dog, red fox, blue fox and raccoon dogs.
Collapse
Affiliation(s)
- A Pienkowska
- Department of Animal Genetics and Breeding, Agricultural University of Poznan, Poznan, Poland
| | | | | | | | | |
Collapse
|
95
|
Da Costa L, Narla G, Willig TN, Peters LL, Parra M, Fixler J, Tchernia G, Mohandas N. Ribosomal protein S19 expression during erythroid differentiation. Blood 2003; 101:318-24. [PMID: 12393682 DOI: 10.1182/blood-2002-04-1131] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding ribosomal protein S19 (RPS19) has been shown to be mutated in 25% of the patients affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. As the role of RPS19 in erythropoiesis is still to be defined, we performed studies on RPS19 expression during terminal erythroid differentiation. Comparative analysis of the genomic sequences of human and mouse RPS19 genes enabled the identification of 4 conserved sequence elements in the 5' region. Characterization of transcriptional elements allowed the identification of the promoter in the human RPS19 gene and the localization of a strong regulatory element in the third conserved sequence element. By Northern blot and Western blot analyses of murine splenic erythroblasts infected with the anemia-inducing strain Friend virus (FAV cells), RPS19 mRNA and protein expression were shown to decrease during terminal erythroid differentiation. We anticipate that these findings will contribute to further development of our understanding of the contribution of RPS19 to erythropoiesis.
Collapse
|
96
|
Lecompte O, Ripp R, Thierry JC, Moras D, Poch O. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic Acids Res 2002; 30:5382-90. [PMID: 12490706 PMCID: PMC140077 DOI: 10.1093/nar/gkf693] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2002] [Revised: 10/24/2002] [Accepted: 10/24/2002] [Indexed: 11/14/2022] Open
Abstract
A comprehensive investigation of ribosomal genes in complete genomes from 66 different species allows us to address the distribution of r-proteins between and within the three primary domains. Thirty-four r-protein families are represented in all domains but 33 families are specific to Archaea and Eucarya, providing evidence for specialisation at an early stage of evolution between the bacterial lineage and the lineage leading to Archaea and Eukaryotes. With only one specific r-protein, the archaeal ribosome appears to be a small-scale model of the eukaryotic one in terms of protein composition. However, the mechanism of evolution of the protein component of the ribosome appears dramatically different in Archaea. In Bacteria and Eucarya, a restricted number of ribosomal genes can be lost with a bias toward losses in intracellular pathogens. In Archaea, losses implicate 15% of the ribosomal genes revealing an unexpected plasticity of the translation apparatus and the pattern of gene losses indicates a progressive elimination of ribosomal genes in the course of archaeal evolution. This first documented case of reductive evolution at the domain scale provides a new framework for discussing the shape of the universal tree of life and the selective forces directing the evolution of prokaryotes.
Collapse
Affiliation(s)
- Odile Lecompte
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, ULP), BP163, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
97
|
Uechi T, Maeda N, Tanaka T, Kenmochi N. Functional second genes generated by retrotransposition of the X-linked ribosomal protein genes. Nucleic Acids Res 2002; 30:5369-75. [PMID: 12490704 PMCID: PMC140079 DOI: 10.1093/nar/gkf696] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have identified a new class of ribosomal protein (RP) genes that appear to have been retrotransposed from X-linked RP genes. Mammalian ribosomes are composed of four RNA species and 79 different proteins. Unlike RNA constituents, each protein is typically encoded by a single intron- containing gene. Here we describe functional autosomal copies of the X-linked human RP genes, which we designated RPL10L (ribosomal protein L10-like gene), RPL36AL and RPL39L after their progenitors. Because these genes lack introns in their coding regions, they were likely retrotransposed from X-linked genes. The identities between the retrotransposed genes and the original X-linked genes are 89-95% in their nucleotide sequences and 92-99% in their amino acid sequences, respectively. Northern blot and PCR analyses revealed that RPL10L and RPL39L are expressed only in testis, whereas RPL36AL is ubiquitously expressed. Although the role of the autosomal RP genes remains unclear, they may have evolved to compensate for the reduced dosage of X-linked RP genes.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Base Sequence
- Blotting, Northern
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 3/genetics
- Chromosomes, Human, X/genetics
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Databases, Nucleic Acid
- Exons
- Female
- Gene Dosage
- Gene Expression Profiling
- Genes/genetics
- Genes, Duplicate/genetics
- Genetic Linkage
- Humans
- Introns
- Male
- Molecular Sequence Data
- Mutagenesis, Insertional
- Radiation Hybrid Mapping
- Retroelements/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Tamayo Uechi
- Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | |
Collapse
|
98
|
Zhang Z, Harrison P, Gerstein M. Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 2002; 12:1466-82. [PMID: 12368239 PMCID: PMC187539 DOI: 10.1101/gr.331902] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2002] [Accepted: 08/12/2002] [Indexed: 11/24/2022]
Abstract
Mammals have 79 ribosomal proteins (RP). Using a systematic procedure based on sequence-homology, we have comprehensively identified pseudogenes of these proteins in the human genome. Our assignments are available at http://www.pseudogene.org or http://bioinfo.mbb.yale.edu/genome/pseudogene. In total, we found 2090 processed pseudogenes and 16 duplications of RP genes. In relation to the matching parent protein, each of the processed pseudogenes has an average relative sequence length of 97% and an average sequence identity of 76%. A small number (258) of them do not contain obvious disablements (stop codons or frameshifts) and, therefore, could be mistaken as functional genes, and 178 are disrupted by one or more repetitive elements. On average, processed pseudogenes have a longer truncation at the 5' end than the 3' end, consistent with the target-primed-reverse-transcription (TPRT) mechanism. Interestingly, on chromosome 16, an RPL26 processed pseudogene was found in the intron region of a functional RPS2 gene. The large-scale distribution of RP pseudogenes throughout the genome appears to result, chiefly, from random insertions with the numbers on each chromosome, consequently, proportional to its size. In contrast to RP genes, the RP pseudogenes have the highest density in GC-intermediate regions (41%-46%) of the genome, with the density pattern being between that of LINEs and Alus. This can be explained by a negative selection theory as we observed that GC-rich RP pseudogenes decay faster in GC-poor regions. Also, we observed a correlation between the number of processed pseudogenes and the GC content of the associated functional gene, i.e., relatively GC-poor RPs have more processed pseudogenes. This ranges from 145 pseudogenes for RPL21 down to 3 pseudogenes for RPL14. We were able to date the RP pseudogenes based on their sequence divergence from present-day RP genes, finding an age distribution similar to that for Alus. The distribution is consistent with a decline in retrotransposition activity in the hominid lineage during the last 40 Myr. We discuss the implications for retrotransposon stability and genome dynamics based on these new findings.
Collapse
Affiliation(s)
- Zhaolei Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
99
|
Nadano D, Notsu T, Matsuda T, Sato T. A human gene encoding a protein homologous to ribosomal protein L39 is normally expressed in the testis and derepressed in multiple cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:430-6. [PMID: 12359333 DOI: 10.1016/s0167-4781(02)00445-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We identified and characterized a gene encoding a protein that was 92% identical to human ribosomal protein L39. This gene was located on the long arm of chromosome 3, and was composed of three exons and two long introns. Analysis of mRNA expression in 16 types of normal human tissues showed that this gene was expressed specifically in the testis, in sharp contrast to the ubiquitous expression of the ribosomal protein L39 gene. Surprisingly, the new gene was expressed in 19 out of 24 human cancer samples of various tissue origins. When the new gene was expressed in the cell, a translated product was observed by immunofluorescence microscopy in the nucleus, especially strongly in the nucleolus, and in the cytoplasm. Association of this protein with the large subunit of cytoplasmic ribosomes was detected by polyacrylamide-agarose composite gel electrophoresis followed by immunodetection. These immunochemical data suggest a relationship between the new gene and the ribosome.
Collapse
Affiliation(s)
- Daita Nadano
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Japan.
| | | | | | | |
Collapse
|
100
|
Abstract
Genomic array analysis of endogenous mammalian ribonucleoproteins has recently revealed three novel findings: (1) mRNA binding proteins are associated with unique subpopulations of messages, (2) the compositions of these mRNA subsets can vary with growth conditions, and (3) the same mRNA species can be found in multiple mRNP complexes. Based on these and other findings, we propose a model of posttranscriptional gene expression in which mRNA binding proteins regulate mRNAs as subpopulations during cell growth and development. This model predicts that functionally related genes are regulated posttranscriptionally as groups by specific mRNA binding proteins that recognize sequence elements in common among the mRNAs.
Collapse
Affiliation(s)
- Jack D Keene
- Center for RNA Biology, Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|