51
|
Liao SG, Liu L, Wang YJ. Effect of RAD51C expression on the chemosensitivity of Eμ-Myc p19 Arf-/- cells and its clinical significance in breast cancer. Oncol Lett 2018; 15:6107-6114. [PMID: 29731842 PMCID: PMC5921229 DOI: 10.3892/ol.2018.8133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to investigate the chemosensitivity to anti-cancer drugs of RAD51 paralog C (RAD51C)-deficient Eμ-Myc p19Arf-/- cells, to detect the expression of RAD51C in breast cancer tissues by immunohistochemistry (IHC), and to explore their association with clinicopathological factors. Eμ-Myc p19Arf-/- cells were stably transfected with retroviruses co-expressing short hairpin-RNA against RAD51C and green fluorescent protein (GFP). A single-cell flow cytometry-based GFP competition assay was used to assess the change in sensitivity to anti-cancer drugs. GFP-negative cells in the same population served as an internal control. In total, tissue samples from 213 cases of breast cancer and 99 adjacent non-cancerous tissue samples were collected to construct tissue microarrays. IHC was used to detect the expression of RAD51C protein. Relevant clinical information was collected for a correlation analysis. Transfection of RAD51C-shRNA was demonstrated to effectively reduce the RAD51C protein expression in the Eμ-Myc p19Arf-/- cells. The sensitivities of the cells to three drugs, camptothecin, cisplatin and olaparib, significantly increased following RAD51C gene knockdown. In breast cancer tissue, RAD51C expression was significantly higher in the Erb-B2 receptor tyrosine kinase 2 overexpression group. The overall survival time of the patients with RAD51C-negative expression was longer than that of patients with RAD51C-positive expression. RAD51C expression was an independent prognostic factor for survival of breast cancer patients. In summary, the results indicate that silencing of RAD51C may represent a potential therapeutic strategy for malignant tumors, and that measuring RAD51C expression by IHC may have prognostic value for breast cancer patients.
Collapse
Affiliation(s)
- Shao-Guang Liao
- Department of Radiation Oncology, Fuzhou General Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Lu Liu
- Department of Oncology, Shenyang General Hospital, Shenyang, Liaoning 110000, P.R. China
| | - Ya-Jie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
52
|
Vena F, Jia R, Esfandiari A, Garcia-Gomez JJ, Rodriguez-Justo M, Ma J, Syed S, Crowley L, Elenbaas B, Goodstal S, Hartley JA, Hochhauser D. MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models. Oncotarget 2018; 9:11592-11603. [PMID: 29545922 PMCID: PMC5837749 DOI: 10.18632/oncotarget.24294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022] Open
Abstract
Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. In vivo antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.
Collapse
Affiliation(s)
- Francesca Vena
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Ruochen Jia
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Arman Esfandiari
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Juan J. Garcia-Gomez
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | | | - Jianguo Ma
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Sakeena Syed
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Lindsey Crowley
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - Samantha Goodstal
- EMD Serono Research and Development Institute, Billerica 01821, MA, USA
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O’Gorman Building, University College London, London WC1E 6DD, UK
| |
Collapse
|
53
|
Chernyy V, Pustylnyak V, Kozlov V, Gulyaeva L. Increased expression of miR-155 and miR-222 is associated with lymph node positive status. J Cancer 2018; 9:135-140. [PMID: 29290778 PMCID: PMC5743720 DOI: 10.7150/jca.22181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022] Open
Abstract
Identification of prognostic molecular markers of breast cancer is extremely important. The spreading out of the primary breast tumour cells to the lymphatic system is at the forefront of symbolising the first signs of distant organ metastasis. Deregulated genes in breast cancer tissues that spread to lymph nodes may show early predictive molecular markers. In the present study, we selected five microRNAs, which play a key function in the invasion-metastasis cascade. We investigated the levels of microRNAs in 80 paired samples of BC and matched adjoining tissues, and we examined the potential relationships between microRNA levels and positive lymph node status. Our results attest that three microRNAs (miR-21, miR-155, miR-222) were significantly up-regulated, whilst miR-205 was substantially down-regulated in BC tissues in relation to normal adjoining tissues in a heterogeneous patient cohort. The high levels of two microRNAs, miR-155 and miR-222, showed a statistical relation with the positive lymph node status, especially in patients that had triple negative BC. Conversely, miR-155 was substantially down-regulated in tumour tissues of patients who received preoperative neoadjuvant chemotherapy (NAC) compared with tumour tissues of patients without NAC in cohorts sub-classified to lymph node positive status. Our findings show evidence that the miR-155 and the miR-222 can be defined as molecular markers in regards to cancer patients to prognosticate spread to the lymph node. They also showed that the miR-155 could have crucial significances in BC treatment.
Collapse
Affiliation(s)
- Vladimir Chernyy
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Vladimir Pustylnyak
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Vadim Kozlov
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| | - Lyudmila Gulyaeva
- The Institute of Molecular Biology and Biophysics, Novosibirsk, Timakova str., 2/12, Russia
| |
Collapse
|
54
|
Tanori M, Casciati A, Berardinelli F, Leonardi S, Pasquali E, Antonelli F, Tanno B, Giardullo P, Pannicelli A, Babini G, De Stefano I, Sgura A, Mancuso M, Saran A, Pazzaglia S. Synthetic lethal genetic interactions between Rad54 and PARP-1 in mouse development and oncogenesis. Oncotarget 2017; 8:100958-100974. [PMID: 29254138 PMCID: PMC5731848 DOI: 10.18632/oncotarget.10479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/26/2016] [Indexed: 12/27/2022] Open
Abstract
Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor Rad54 and Parp-1, a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair. We introduced single or combined Rad54 and Parp-1 inactivating germline mutations in Ptc1 heterozygous mice, a well-characterized model of medulloblastoma, the most common malignant pediatric brain tumor. Our study reveals that combined inactivation of Rad54 and Parp-1 causes a marked growth delay culminating in perinatallethality, providing for the first time evidence of synthetic lethal interactions between Rad54 and Parp-1 in vivo. Although the double mutation hampered investigation of Rad54 and Parp-1 interactions in cerebellum tumorigenesis, insights were gained by showing accumulation of endogenous DNA damage and increased apoptotic rate in granule cell precursors (GCPs). A network-based approach to detect differential expression of DNA repair genes in the cerebellum revealed perturbation of p53 signaling in Rad54-/-/Parp-1-/-/Ptc1+/-, and MEFs from combined Rad54/Parp-1 mutants showed p53/p21-dependent typical senescent features. These findings help elucidate the genetic interplay between Rad54 and Parp-1 by suggesting that p53/p21-mediated apoptosis and/or senescence may be involved in synthetic lethal interactions occurring during development and inhibition of tumor growth.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Arianna Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Francesca Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Paola Giardullo
- Department of Science, University Roma Tre, Rome, Italy
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | | | - Ilaria De Stefano
- Department of Radiation Physics, Università degli Studi Guglielmo Marconi, Rome, Italy
| | | | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| |
Collapse
|
55
|
Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, Sekine R, Yoshida Y, Isobe SY, Obuse C, Nishi R, Petricci E, Nakada S, Nakano T, Shibata A. BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Rep 2017; 18:520-532. [PMID: 28076794 DOI: 10.1016/j.celrep.2016.12.042] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 11/16/2022] Open
Abstract
BRCA1 promotes homologous recombination (HR) by activating DNA-end resection. By contrast, 53BP1 forms a barrier that inhibits DNA-end resection. Here, we show that BRCA1 promotes DNA-end resection by relieving the 53BP1-dependent barrier. We show that 53BP1 is phosphorylated by ATM in S/G2 phase, promoting RIF1 recruitment, which inhibits resection. 53BP1 is promptly dephosphorylated and RIF1 released, despite remaining unrepaired DNA double-strand breaks (DSBs). When resection is impaired by CtIP/MRE11 endonuclease inhibition, 53BP1 phosphorylation and RIF1 are sustained due to ongoing ATM signaling. BRCA1 depletion also sustains 53BP1 phosphorylation and RIF1 recruitment. We identify the phosphatase PP4C as having a major role in 53BP1 dephosphorylation and RIF1 release. BRCA1 or PP4C depletion impairs 53BP1 repositioning, EXO1 recruitment, and HR progression. 53BP1 or RIF1 depletion restores resection, RAD51 loading, and HR in PP4C-depleted cells. Our findings suggest that BRCA1 promotes PP4C-dependent 53BP1 dephosphorylation and RIF1 release, directing repair toward HR.
Collapse
Affiliation(s)
- Mayu Isono
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Atsuko Niimi
- Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yoshihiko Hagiwara
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ryota Sekine
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Shin-Ya Isobe
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Ryotaro Nishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Elena Petricci
- Department of Biotechnology, Chemistry, and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Nakano
- Gunma University Heavy Ion Medical Center, Gunma University, Maebashi, Gunma 371-8511, Japan; Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Gunma 371-8511, Japan; Department of Radiation Oncology, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Shibata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
56
|
Hromas R, Kim HS, Sidhu G, Williamson E, Jaiswal A, Totterdale TA, Nole J, Lee SH, Nickoloff JA, Kong KY. The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells. Breast Cancer Res 2017; 19:122. [PMID: 29145865 PMCID: PMC5693420 DOI: 10.1186/s13058-017-0912-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Background Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5′ endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism. Methods We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells. Results Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival. Conclusion This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0912-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| | - Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gurjit Sidhu
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Elizabeth Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Aruna Jaiswal
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Taylor A Totterdale
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Jocelyn Nole
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kimi Y Kong
- Department of Medicine and the Cancer Center, University of Florida Health, 1600 SW Archer Rd, Gainesville, FL, 32610, USA.
| |
Collapse
|
57
|
Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur-E-Alam M, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodríguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 2017; 8:1206. [PMID: 29089518 PMCID: PMC5663706 DOI: 10.1038/s41467-017-01344-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes. Reengineering polyketide synthase encoding genes to produce analogues of natural products can be slow and low-yielding. Here the authors use accelerated evolution to recombine the gene cluster for rapid production of rapamycin-related products.
Collapse
Affiliation(s)
- Aleksandra Wlodek
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Steve G Kendrew
- Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Engineered Biodesign Limited, Cambridge, CB22 3GN, UK
| | - Nigel J Coates
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Adam Hold
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Joanna Pogwizd
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Steven Rudder
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Lesley S Sheehan
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | | | - Anna E Stanley-Smith
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Tony Warneck
- Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Mohammad Nur-E-Alam
- Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Markus Radzom
- Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,BASF SE, Speyerer Str. 2, Limburgerhof, 67117, Germany
| | - Christine J Martin
- Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Lois Overvoorde
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Markiyan Samborskyy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Silke Alt
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Daniel Heine
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Guy T Carter
- Chemical and Screening Sciences, Wyeth Pharmaceuticals, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Edmund I Graziani
- Chemical and Screening Sciences, Wyeth Pharmaceuticals, 401 North Middletown Road, Pearl River, NY, 10965, USA.,Medicine Discovery Network-Synthetic Biology, Pfizer Worldwide R&D, 445 Eastern Point Rd., Groton, CT, 06340, USA
| | - Frank E Koehn
- Chemical and Screening Sciences, Wyeth Pharmaceuticals, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Leonard McDonald
- Chemical and Screening Sciences, Wyeth Pharmaceuticals, 401 North Middletown Road, Pearl River, NY, 10965, USA
| | - Alexander Alanine
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development (PRED), Basel, CH-4070, Switzerland
| | | | - Suzan Keen Chao
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development (PRED), Basel, CH-4070, Switzerland
| | - Hasane Ratni
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development (PRED), Basel, CH-4070, Switzerland
| | - Lucinda Steward
- Roche Innovation Center Basel, Pharmaceutical Research and Early Development (PRED), Basel, CH-4070, Switzerland
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, PO17 6AD, UK
| | - Mitali Sarkar-Tyson
- Defence Science and Technology Laboratory, Porton Down, PO17 6AD, UK.,Marshall Centre for Infectious Diseases, School of Biomedical Sciences, University of Western Australia, Monash Avenue, Nedlands, WA, 6009, Australia
| | - Steven J Moss
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Barrie Wilkinson
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK. .,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK. .,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Matthew A Gregory
- Isomerase Therapeutics Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK. .,Biotica Technology Ltd., Chesterford Research Park, Cambridge, CB10 1XL, UK.
| |
Collapse
|
58
|
Khan FA, Ali SO. Physiological Roles of DNA Double-Strand Breaks. J Nucleic Acids 2017; 2017:6439169. [PMID: 29181194 PMCID: PMC5664317 DOI: 10.1155/2017/6439169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
Collapse
Affiliation(s)
- Farhaan A. Khan
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| | - Syed O. Ali
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0SP, UK
| |
Collapse
|
59
|
Reh WA, Nairn RS, Lowery MP, Vasquez KM. The homologous recombination protein RAD51D protects the genome from large deletions. Nucleic Acids Res 2017; 45:1835-1847. [PMID: 27924006 PMCID: PMC5389663 DOI: 10.1093/nar/gkw1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
Homologous recombination (HR) is a DNA double-strand break (DSB) repair pathway that protects the genome from chromosomal instability. RAD51 mediator proteins (i.e. paralogs) are critical for efficient HR in mammalian cells. However, how HR-deficient cells process DSBs is not clear. Here, we utilized a loss-of-function HR-reporter substrate to simultaneously monitor HR-mediated gene conversion and non-conservative mutation events. The assay is designed around a heteroallelic duplication of the Aprt gene at its endogenous locus in isogenic Chinese hamster ovary cell lines. We found that RAD51D-deficient cells had a reduced capacity for HR-mediated gene conversion both spontaneously and in response to I-SceI-induced DSBs. Further, RAD51D-deficiency shifted DSB repair toward highly deleterious single-strand annealing (SSA) and end-joining processes that led to the loss of large chromosomal segments surrounding site-specific DSBs at an exceptionally high frequency. Deletions in the proximity of the break were due to a non-homologous end-joining pathway, while larger deletions were processed via a SSA pathway. Overall, our data revealed that, in addition to leading to chromosomal abnormalities, RAD51D-deficiency resulted in a high frequency of deletions advancing our understanding of how a RAD51 paralog is involved in maintaining genomic stability and how its deficiency may predispose cells to tumorigenesis.
Collapse
Affiliation(s)
- Wade A Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Rodney S Nairn
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Megan P Lowery
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
60
|
Bhattacharyya R, Saha B, Tyagi M, Bandyopadhyay SK, Patro BS, Chattopadhyay S. Differential modes of photosensitisation in cancer cells by berberine and coralyne. Free Radic Res 2017; 51:723-738. [DOI: 10.1080/10715762.2017.1368506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Bhaskar Saha
- Department of Biochemistry, KPC Medical College, Kolkata, India
| | - Mrityunjaya Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | | | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
61
|
Dréan A, Williamson CT, Brough R, Brandsma I, Menon M, Konde A, Garcia-Murillas I, Pemberton HN, Frankum J, Rafiq R, Badham N, Campbell J, Gulati A, Turner NC, Pettitt SJ, Ashworth A, Lord CJ. Modeling Therapy Resistance in BRCA1/2-Mutant Cancers. Mol Cancer Ther 2017; 16:2022-2034. [PMID: 28619759 PMCID: PMC6157714 DOI: 10.1158/1535-7163.mct-17-0098] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/02/2017] [Accepted: 06/05/2017] [Indexed: 01/02/2023]
Abstract
Although PARP inhibitors target BRCA1- or BRCA2-mutant tumor cells, drug resistance is a problem. PARP inhibitor resistance is sometimes associated with the presence of secondary or "revertant" mutations in BRCA1 or BRCA2 Whether secondary mutant tumor cells are selected for in a Darwinian fashion by treatment is unclear. Furthermore, how PARP inhibitor resistance might be therapeutically targeted is also poorly understood. Using CRISPR mutagenesis, we generated isogenic tumor cell models with secondary BRCA1 or BRCA2 mutations. Using these in heterogeneous in vitro culture or in vivo xenograft experiments in which the clonal composition of tumor cell populations in response to therapy was monitored, we established that PARP inhibitor or platinum salt exposure selects for secondary mutant clones in a Darwinian fashion, with the periodicity of PARP inhibitor administration and the pretreatment frequency of secondary mutant tumor cells influencing the eventual clonal composition of the tumor cell population. In xenograft studies, the presence of secondary mutant cells in tumors impaired the therapeutic effect of a clinical PARP inhibitor. However, we found that both PARP inhibitor-sensitive and PARP inhibitor-resistant BRCA2 mutant tumor cells were sensitive to AZD-1775, a WEE1 kinase inhibitor. In mice carrying heterogeneous tumors, AZD-1775 delivered a greater therapeutic benefit than olaparib treatment. This suggests that despite the restoration of some BRCA1 or BRCA2 gene function in "revertant" tumor cells, vulnerabilities still exist that could be therapeutically exploited. Mol Cancer Ther; 16(9); 2022-34. ©2017 AACR.
Collapse
Affiliation(s)
- Amy Dréan
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Chris T Williamson
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rachel Brough
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Inger Brandsma
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Malini Menon
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Asha Konde
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Isaac Garcia-Murillas
- Molecular Oncology Laboratory, The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Helen N Pemberton
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rumana Rafiq
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas Badham
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - James Campbell
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicholas C Turner
- Molecular Oncology Laboratory, The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
62
|
Parrotta R, Okonska A, Ronner M, Weder W, Stahel R, Penengo L, Felley-Bosco E. A Novel BRCA1-Associated Protein-1 Isoform Affects Response of Mesothelioma Cells to Drugs Impairing BRCA1-Mediated DNA Repair. J Thorac Oncol 2017; 12:1309-1319. [DOI: 10.1016/j.jtho.2017.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/08/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023]
|
63
|
Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res 2017; 803-805:51-55. [PMID: 28781144 DOI: 10.1016/j.mrfmmm.2017.07.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
A DNA double-strand break (DSB) is considered to be a critical DNA lesion because its misrepair can cause severe mutations, such as deletions or chromosomal translocations. For the precise repair of DSBs, the repair pathway that is optimal for the particular circumstance needs to be selected. Non-homologous end joining (NHEJ) functions in G1/S/G2 phase, while homologous recombination (HR) becomes active only in S/G2 phase after DNA replication. DSB end structure is another factor affecting the repair pathway. For example, one-ended DSBs in S phase are mainly repaired by HR due to the lack of a partner DSB end for NHEJ. In contrast, two-ended DSBs, which are mainly induced by ionizing radiation, are repaired by either NHEJ or HR in G2 cells. Under the current model in terms of DSB repair pathway usage in G2 phase, NHEJ repairs ∼70% of two-ended DSBs, whereas HR repairs only ∼30%. Recent studies propose that NHEJ factors can bind all the DSB ends and are then either used to progress that pathway of DSB repair, or the repair proceeds by HR. In addition, molecular regulation by BRCA1 and 53BP1 has also been proposed. At DSB sites, BRCA1 functions to alleviate the 53BP1 barrier to resection by promoting 53BP1 dephosphorylation, followed by RIF1 release and 53BP1 repositioning. This timely 53BP1 repositioning may be important for the establishment of a chromatin environment that promotes the recruitment of EXO1 for resection in HR. This review summarizes current knowledge on factors regulating DSB repair pathway choice in terms of spatiotemporal regulation by focusing on the repair events at two-ended DSBs in G2 cells.
Collapse
Affiliation(s)
- Atsushi Shibata
- Education and Research Support Center, Gunma University and Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
64
|
Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res 2017; 806:64-74. [PMID: 28779875 DOI: 10.1016/j.mrfmmm.2017.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
DNA damage is a constant threat to genome integrity. DNA repair and damage signaling networks play a central role maintaining genome stability, suppressing tumorigenesis, and determining tumor response to common cancer chemotherapeutic agents and radiotherapy. DNA double-strand breaks (DSBs) are critical lesions induced by ionizing radiation and when replication forks encounter damage. DSBs can result in mutations and large-scale genome rearrangements reflecting mis-repair by non-homologous end joining or homologous recombination. Ionizing radiation induces genetic change immediately, and it also triggers delayed events weeks or even years after exposure, long after the initial damage has been repaired or diluted through cell division. This review covers DNA damage signaling and repair pathways and cell fate following genotoxic insult, including immediate and delayed genome instability and cell survival/cell death pathways.
Collapse
|
65
|
Orta ML, Pastor N, Burgos-Morón E, Domínguez I, Calderón-Montaño JM, Huertas Castaño C, López-Lázaro M, Helleday T, Mateos S. Zebularine induces replication-dependent double-strand breaks which are preferentially repaired by homologous recombination. DNA Repair (Amst) 2017; 57:116-124. [PMID: 28732309 DOI: 10.1016/j.dnarep.2017.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 12/19/2022]
Abstract
Zebularine is a second-generation, highly stable hydrophilic inhibitor of DNA methylation with oral bioavailability that preferentially target cancer cells. It acts primarily as a trap for DNA methyl transferases (DNMTs) protein by forming covalent complexes between DNMT protein and zebularine-substrate DNA. It's well documented that replication-blocking DNA lesions can cause replication fork collapse and thereby to the formation of DNA double-strand breaks (DSB). DSB are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSB are non-homologous end joining (NHEJ) and homologous recombination (HR). Recently, multiple functions for the HR machinery have been identified at arrested forks. Here we investigate in more detail the importance of the lesions induced by zebularine in terms of DNA damage and cytotoxicity as well as the role of HR in the repair of these lesions. When we examined the contribution of NHEJ and HR in the repair of DSB induced by zebularine we found that these breaks were preferentially repaired by HR. Also we show that the production of DSB is dependent on active replication. To test this, we determined chromosome damage by zebularine while transiently inhibiting DNA synthesis. Here we report that cells deficient in single-strand break (SSB) repair are hypersensitive to zebularine. We have observed more DSB induced by zebularine in XRCC1 deficient cells, likely to be the result of conversion of SSB into toxic DSB when encountered by a replication fork. Furthermore we demonstrate that HR is required for the repair of these breaks. Overall, our data suggest that zebularine induces replication-dependent DSB which are preferentially repaired by HR.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| | - Nuria Pastor
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Inmaculada Domínguez
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Carlos Huertas Castaño
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, c/Professor García González, No. 2, 41012, Seville, Spain
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17121, Stockholm, Sweden
| | - Santiago Mateos
- Department of Cell Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain,.
| |
Collapse
|
66
|
The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites. Nat Commun 2017; 8:15751. [PMID: 28604711 PMCID: PMC5472795 DOI: 10.1038/ncomms15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/25/2017] [Indexed: 01/06/2023] Open
Abstract
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APCCdh1 plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1. We show that the removal of USP1 depends on APCCdh1 and requires Chk1 activation known to be catalysed by ssDNA-RPA-ATR signalling at the ends designated for HDR, linking the status of end processing to RIF1 or BRCA1 recruitment. The choice between homologous recombination and non-homologous end-joining is largely influenced by cell cycle. Here the authors show that APCCdh1 promotes homologous recombination by removing USP1, allowing polyubiquitinated histones to recruit BRCA1.
Collapse
|
67
|
Allen CP, Hirakawa H, Nakajima NI, Moore S, Nie J, Sharma N, Sugiura M, Hoki Y, Araki R, Abe M, Okayasu R, Fujimori A, Nickoloff JA. Low- and High-LET Ionizing Radiation Induces Delayed Homologous Recombination that Persists for Two Weeks before Resolving. Radiat Res 2017; 188:82-93. [PMID: 28535128 DOI: 10.1667/rr14748.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genome instability is a hallmark of cancer cells and dysregulation or defects in DNA repair pathways cause genome instability and are linked to inherited cancer predisposition syndromes. Ionizing radiation can cause immediate effects such as mutation or cell death, observed within hours or a few days after irradiation. Ionizing radiation also induces delayed effects many cell generations after irradiation. Delayed effects include hypermutation, hyper-homologous recombination, chromosome instability and reduced clonogenic survival (delayed death). Delayed hyperrecombination (DHR) is mechanistically distinct from delayed chromosomal instability and delayed death. Using a green fluorescent protein (GFP) direct repeat homologous recombination system, time-lapse microscopy and colony-based assays, we demonstrate that DHR increases several-fold in response to low-LET X rays and high-LET carbon-ion radiation. Time-lapse analyses of DHR revealed two classes of recombinants not detected in colony-based assays, including cells that recombined and then senesced or died. With both low- and high-LET radiation, DHR was evident during the first two weeks postirradiation, but resolved to background levels during the third week. The results indicate that the risk of radiation-induced genome destabilization via DHR is time limited, and suggest that there is little or no additional risk of radiation-induced genome instability mediated by DHR with high-LET radiation compared to low-LET radiation.
Collapse
Affiliation(s)
- Christopher P Allen
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Hirokazu Hirakawa
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Nakako Izumi Nakajima
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sophia Moore
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Jingyi Nie
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Neelam Sharma
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| | - Mayumi Sugiura
- c Division of Natural Sciences, Research Group of Biological Sciences, Nara Women's University, Nara, Japan
| | - Yuko Hoki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryoko Araki
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Masumi Abe
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Ryuichi Okayasu
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Akira Fujimori
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Jac A Nickoloff
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, Colorado
| |
Collapse
|
68
|
Yang S, Wang XQ. XLF-mediated NHEJ activity in hepatocellular carcinoma therapy resistance. BMC Cancer 2017; 17:344. [PMID: 28526069 PMCID: PMC5437682 DOI: 10.1186/s12885-017-3345-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
Background DNA repair pathways are used by cancer cells to overcome many standard anticancer treatments, causing therapy resistance. Here, we investigated the role of XRCC4-like factor (XLF), a core member of the non-homologous end joining (NHEJ) repair pathway, in chemoresistance in hepatocellular carcinoma (HCC). Methods qRT-PCR analysis and western blotting were performed to detect expression levels of genes and proteins related to NHEJ. NHEJ repair capacity was assessed in vitro (cell-free) and in vivo by monitoring the activity of the NHEJ pathway. Cell viability and IC50 assays were used to measure sensitivity to drug therapy. A xenograft HCC model was used to develop methods of targeting XLF-induced chemosensitization. Clinicopathological analysis was conducted on patients with HCC treated with transarterial chemoembolization (TACE). Results Many conventional cancer chemotherapeutics induce DNA double-strand breaks (DSBs). HCC cells respond to these breaks by increasing their NHEJ activity, resulting in resistance. XLF-knockdown cells show an inhibition of NHEJ activity in both cell-free and live-cell assays as well as a high level of unrepaired cellular DSBs. These results indicate that XLF facilitates DNA end-joining and therefore promotes NHEJ activity in cancer cells. Consequently, knockdown of XLF significantly chemosensitized resistant cells both in vitro and in xenograft tumors. A low rate of XLF genomic alteration was found in patients with primary HCC, but XLF expression was induced after drug treatment. Clinically, a high level of XLF expression is significantly associated with advanced HCC and shorter overall survival. Conclusion Chemotherapy-induced overexpression of XLF and XLF-mediated enhancements in NHEJ activity contribute to chemoresistance in HCC cells and patients with HCC. Targeting XLF to modulate DSB repair could enhance drug sensitivity and may be a therapeutically useful addition to conventional therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3345-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sitian Yang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
69
|
Jahid S, Sun J, Gelincik O, Blecua P, Edelmann W, Kucherlapati R, Zhou K, Jasin M, Gümüş ZH, Lipkin SM. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair. Oncotarget 2017; 8:71574-71586. [PMID: 29069730 PMCID: PMC5641073 DOI: 10.18632/oncotarget.17776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.
Collapse
Affiliation(s)
- Sohail Jahid
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Jian Sun
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Ozkan Gelincik
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Pedro Blecua
- Division of Clinical Genetics, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Winfried Edelmann
- Department of Cell Biology and Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, 10461, NY, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA
| | - Kathy Zhou
- Department of Biostatistics and Epidemiology, Weill Cornell Medical College, 10021, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 10029, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029, NY, USA
| | - Steven M Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| |
Collapse
|
70
|
Grunewald T, Ledermann JA. Targeted Therapies for Ovarian Cancer. Best Pract Res Clin Obstet Gynaecol 2017; 41:139-152. [DOI: 10.1016/j.bpobgyn.2016.12.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/31/2022]
|
71
|
Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, Matias PM, Maslen SL, Skehel JM, Stewart GS, Davies CC. PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell 2017; 65:900-916.e7. [PMID: 28238654 PMCID: PMC5344794 DOI: 10.1016/j.molcel.2017.01.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/20/2016] [Accepted: 01/17/2017] [Indexed: 11/29/2022]
Abstract
Protein post-translation modification plays an important role in regulating DNA repair; however, the role of arginine methylation in this process is poorly understood. Here we identify the arginine methyltransferase PRMT5 as a key regulator of homologous recombination (HR)-mediated double-strand break (DSB) repair, which is mediated through its ability to methylate RUVBL1, a cofactor of the TIP60 complex. We show that PRMT5 targets RUVBL1 for methylation at position R205, which facilitates TIP60-dependent mobilization of 53BP1 from DNA breaks, promoting HR. Mechanistically, we demonstrate that PRMT5-directed methylation of RUVBL1 is critically required for the acetyltransferase activity of TIP60, promoting histone H4K16 acetylation, which facilities 53BP1 displacement from DSBs. Interestingly, RUVBL1 methylation did not affect the ability of TIP60 to facilitate ATM activation. Taken together, our findings reveal the importance of PRMT5-mediated arginine methylation during DSB repair pathway choice through its ability to regulate acetylation-dependent control of 53BP1 localization.
Collapse
Affiliation(s)
- Thomas L Clarke
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Pilar Sanchez-Bailon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Kelly Chiang
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joaquin Herrero-Ruiz
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Tiago M Bandeiras
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Pedro M Matias
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Clare C Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
72
|
PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. MENOPAUSE REVIEW 2017; 15:215-219. [PMID: 28250726 PMCID: PMC5327624 DOI: 10.5114/pm.2016.65667] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/28/2016] [Indexed: 02/03/2023]
Abstract
Poly(ADP-ribose) polymerases have shown true promise in early clinical studies due to reported activity in BRCA-associated cancers. PARP inhibitors may represent a potentially important new class of chemotherapeutic agents directed at targeting cancers with defective DNA-damage repair. In order to widen the prospective patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. In addition, a more sophisticated understanding of the toxicity profile is required if PARP inhibitors are to be employed in the curative, rather than the palliative, setting. PARP inhibitors have successfully moved into clinical practice in the past few years, with approval granted from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past two years. The United States FDA approval of olaparib applies to fourth-line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval of olaparib for maintenance therapy in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. This review covers the current understanding of PARP, its inhibition, and the basis of the excitement surrounding these new agents. It also evaluates future approaches and directions required to achieve full understanding of the intricate interplay of these agents at the cellular level.
Collapse
|
73
|
Kim HS, Nickoloff JA, Wu Y, Williamson EA, Sidhu GS, Reinert BL, Jaiswal AS, Srinivasan G, Patel B, Kong K, Burma S, Lee SH, Hromas RA. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks. J Biol Chem 2017; 292:2795-2804. [PMID: 28049724 PMCID: PMC5314175 DOI: 10.1074/jbc.m116.758235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/29/2016] [Indexed: 01/21/2023] Open
Abstract
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Yuehan Wu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Elizabeth A Williamson
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gurjit Singh Sidhu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Brian L Reinert
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Aruna S Jaiswal
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gayathri Srinivasan
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Bhavita Patel
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Kimi Kong
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Sandeep Burma
- the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| | - Robert A Hromas
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| |
Collapse
|
74
|
Vriend LEM, Krawczyk PM. Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst) 2016; 50:1-13. [PMID: 28087249 DOI: 10.1016/j.dnarep.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Homologous recombination (HR) is an essential, widely conserved mechanism that utilizes a template for accurate repair of DNA breaks. Some early HR models, developed over five decades ago, anticipated single-strand breaks (nicks) as initiating lesions. Subsequent studies favored a more double-strand break (DSB)-centered view of HR initiation and at present this pathway is primarily considered to be associated with DSB repair. However, mounting evidence suggests that nicks can indeed initiate HR directly, without first being converted to DSBs. Moreover, recent studies reported on novel branches of nick-initiated HR (nickHR) that rely on single-, rather than double-stranded repair templates and that are characterized by mechanistically and genetically unique properties. The physiological significance of nickHR is not well documented, but its high-fidelity nature and low mutagenic potential are relevant in recently developed, precise gene editing approaches. Here, we review the evidence for stimulation of HR by nicks, as well as the data on the interactions of nickHR with other DNA repair pathways and on its mechanistic properties. We conclude that nickHR is a bona-fide pathway for nick repair, sharing the molecular machinery with the canonical HR but nevertheless characterized by unique properties that secure its inclusion in DNA repair models and warrant future investigations.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
75
|
Wang J, Ding Q, Fujimori H, Motegi A, Miki Y, Masutani M. Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors. Oncotarget 2016; 7:7701-14. [PMID: 26713604 PMCID: PMC4884948 DOI: 10.18632/oncotarget.6715] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is one of the leading causes of death worldwide, and therefore, new and improved approaches for the treatment of breast cancer are desperately needed. CtIP (RBBP8) is a multifunctional protein that is involved in various cellular functions, including transcription, DNA replication, DNA repair and the G1 and G2 cell cycle checkpoints. CtIP plays an important role in homologous recombination repair by interacting with tumor suppressor protein BRCA1. Here, we analyzed the expression profile of CtIP by data mining using published microarray data sets. We found that CtIP expression is frequently decreased in breast cancer patients, and the patient group with low-expressing CtIP mRNA is associated with a significantly lower survival rate. The knockdown of CtIP in breast cancer MCF7 cells reduced Rad51 foci numbers and enhanced f H2AX foci formation after f-irradiation, suggesting that deficiency of CtIP decreases homologous recombination repair and delays DNA double strand break repair. To explore the effect of CtIP on PARP inhibitor therapy for breast cancer, CtIP-depleted MCF7 cells were treated with PARP inhibitor olaparib (AZD2281) or veliparib (ABT-888). As in BRCA mutated cells, PARP inhibitors showed cytotoxicity to CtIP-depleted cells by preventing cells from repairing DNA damage, leading to decreased cell viability. Further, a xenograft tumor model in mice with MCF7 cells demonstrated significantly increased sensitivity towards PARP inhibition under CtIP deficiency. In summary, this study shows that low level of CtIP expression is associated with poor prognosis in breast cancer, and provides a rationale for establishing CtIP expression as a biomarker of PARP inhibitor response, and consequently offers novel therapeutic options for a significant subset of patients.
Collapse
Affiliation(s)
- Junhui Wang
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Molecular Genetics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hiroaki Fujimori
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto 606-8501 Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mitsuko Masutani
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
76
|
Kawashima Y, Yamaguchi N, Teshima R, Narahara H, Yamaoka Y, Anai H, Nishida Y, Hanada K. Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 2016; 22:84-93. [PMID: 27976495 DOI: 10.1111/gtc.12457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
Abstract
A DNA double-strand break (DSB) is one of the most cytotoxic DNA lesions because unrepaired DSBs cause chromosomal aberrations and cell death. Although many physiological DSBs occur at DNA replication sites, the molecular mechanisms underlying this remain poorly understood. There was therefore a need to develop a highly specific method to detect DSB fragments containing DNA replication sites. Here we investigated whether pulsed-field gel electrophoresis (PFGE) combined with visualization of DNA replication sites by immunoblotting using halogenized deoxyuridines, such as BrdU and IdU, was sufficient for this detection. Our methodology enabled us to reproduce previously reported data. In addition, this methodology was also applied to the detection of bacterial infection-induced DSBs on human chromosomal DNA. Based on our findings, we propose that this strategy combining PFGE with immunoblot analysis will be applicable to studies analyzing the mechanistic details of DNA repair, the DNA damage response and the activity of DNA-damaging agents.
Collapse
Affiliation(s)
- Yuri Kawashima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nahomi Yamaguchi
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Rie Teshima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
77
|
Kim HS, Williamson EA, Nickoloff JA, Hromas RA, Lee SH. Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks. J Biol Chem 2016; 292:1414-1425. [PMID: 27974460 DOI: 10.1074/jbc.m116.745646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Stalling at DNA replication forks generates stretches of single-stranded (ss) DNA on both strands that are exposed to nucleolytic degradation, potentially compromising genome stability. One enzyme crucial for DNA replication fork repair and restart of stalled forks in human is Metnase (also known as SETMAR), a chimeric fusion protein consisting of a su(var)3-9, enhancer-of-zeste and trithorax (SET) histone methylase and transposase nuclease domain. We previously showed that Metnase possesses a unique fork cleavage activity necessary for its function in replication restart and that its SET domain is essential for recovery from hydroxyurea-induced DNA damage. However, its exact role in replication restart is unclear. In this study, we show that Metnase associates with exonuclease 1 (Exo1), a 5'-exonuclease crucial for 5'-end resection to mediate DNA processing at stalled forks. Metnase DNA cleavage activity was not required for Exo1 5'-exonuclease activity on the lagging strand daughter DNA, but its DNA binding activity mediated loading of Exo1 onto ssDNA overhangs. Metnase-induced enhancement of Exo1-mediated DNA strand resection required the presence of these overhangs but did not require Metnase's DNA cleavage activity. These results suggest that Metnase enhances Exo1-mediated exonuclease activity on the lagging strand DNA by facilitating Exo1 loading onto a single strand gap at the stalled replication fork.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Elizabeth A Williamson
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Robert A Hromas
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
78
|
Cao J, Lin G, Gong Y, Pan P, Ma Y, Huang P, Ying M, Hou T, He Q, Yang B. DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine's p53-dependent synergistic anti-tumor efficiency with melphalan. Cancer Lett 2016; 383:115-124. [DOI: 10.1016/j.canlet.2016.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
|
79
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
80
|
Oestergaard VH, Lisby M. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond. Chromosoma 2016; 126:213-222. [PMID: 27796495 DOI: 10.1007/s00412-016-0617-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
Collision between the molecular machineries responsible for transcription and replication is an important source of genome instability. Certain transcribed regions known as chromosomal fragile sites are particularly prone to recombine and mutate in a manner that correlates with specific transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription-replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how transcription-replication conflicts transition from S phase into various aberrant DNA structures in mitosis.
Collapse
Affiliation(s)
- Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloees Vej 5, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
81
|
Kelso AA, Goodson SD, Chavan S, Say AF, Turchick A, Sharma D, Ledford LL, Ratterman E, Leskoske K, King AV, Attaway CC, Bandera Y, Foulger SH, Mazin AV, Temesvari LA, Sehorn MG. Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase. Mol Biochem Parasitol 2016; 210:71-84. [PMID: 27678398 DOI: 10.1016/j.molbiopara.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Suchitra Chavan
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Amanda F Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey Turchick
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - LeAnna L Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Erin Ratterman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Kristin Leskoske
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ada V King
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Yura Bandera
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Lesly A Temesvari
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA.
| |
Collapse
|
82
|
Parplys AC, Seelbach JI, Becker S, Behr M, Wrona A, Jend C, Mansour WY, Joosse SA, Stuerzbecher HW, Pospiech H, Petersen C, Dikomey E, Borgmann K. High levels of RAD51 perturb DNA replication elongation and cause unscheduled origin firing due to impaired CHK1 activation. Cell Cycle 2016; 14:3190-202. [PMID: 26317153 DOI: 10.1080/15384101.2015.1055996] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In response to replication stress ATR signaling through CHK1 controls the intra-S checkpoint and is required for the maintenance of genomic integrity. Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double strand breaks and interstrand crosslinks. In addition, HR, with its key player RAD51, provides critical support for the recovery of stalled forks during replication. High levels of RAD51 are regularly found in various cancers, yet little is known about the effect of the increased RAD51 expression on intra-S checkpoint signaling. Here, we describe a role for RAD51 in driving genomic instability caused by impaired replication and intra-S mediated CHK1 signaling by studying an inducible RAD51 overexpression model as well as 10 breast cancer cell lines. We demonstrate that an excess of RAD51 decreases I-Sce-I mediated HR despite formation of more RAD51 foci. Cells with high RAD51 levels display reduced elongation rates and excessive dormant origin firing during undisturbed growth and after damage, likely caused by impaired CHK1 activation. In consequence, the inability of cells with a surplus of RAD51 to properly repair complex DNA damage and to resolve replication stress leads to higher genomic instability and thus drives tumorigenesis.
Collapse
Affiliation(s)
- Ann Christin Parplys
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Jasna Irena Seelbach
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Saskia Becker
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Matthias Behr
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Agnieszka Wrona
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Camilla Jend
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Wael Yassin Mansour
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany.,b Tumor Biology Department; National Cancer Institute; Cairo University ; Cairo , Egypt
| | - Simon Andreas Joosse
- d Department of Tumor Biology ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | - Helmut Pospiech
- f Leibniz Institute for Age Research - Fritz Lipmann Institute ; Jena , Germany.,g Faculty of Biochemistry and Molecular Medicine; University of Oulu ; Oulu , Finland
| | - Cordula Petersen
- c Department of Radiotherapy and Radiooncology ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Ekkehard Dikomey
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | - Kerstin Borgmann
- a Laboratory of Radiobiology & Experimental Radiooncology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| |
Collapse
|
83
|
Ethier JL, Lheureux S, Oza A. The role of cediranib in ovarian cancer: current status and further investigation. Expert Opin Orphan Drugs 2016. [DOI: 10.1080/21678707.2016.1196130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
84
|
Wemhoff S, Klassen R, Beetz A, Meinhardt F. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B. PLoS One 2016; 11:e0157611. [PMID: 27472060 PMCID: PMC4966947 DOI: 10.1371/journal.pone.0157611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.
Collapse
Affiliation(s)
- Sabrina Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Anja Beetz
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
85
|
DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci U S A 2016; 113:E4311-9. [PMID: 27407148 DOI: 10.1073/pnas.1605828113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.
Collapse
|
86
|
Gil Del Alcazar CR, Todorova PK, Habib AA, Mukherjee B, Burma S. Augmented HR Repair Mediates Acquired Temozolomide Resistance in Glioblastoma. Mol Cancer Res 2016; 14:928-940. [PMID: 27358111 DOI: 10.1158/1541-7786.mcr-16-0125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults and is universally fatal. The DNA alkylating agent temozolomide is part of the standard-of-care for GBM. However, these tumors eventually develop therapy-driven resistance and inevitably recur. While loss of mismatch repair (MMR) and re-expression of MGMT have been shown to underlie chemoresistance in a fraction of GBMs, resistance mechanisms operating in the remaining GBMs are not well understood. To better understand the molecular basis for therapy-driven temozolomide resistance, mice bearing orthotopic GBM xenografts were subjected to protracted temozolomide treatment, and cell lines were generated from the primary (untreated) and recurrent (temozolomide-treated) tumors. As expected, the cells derived from primary tumors were sensitive to temozolomide, whereas the cells from the recurrent tumors were significantly resistant to the drug. Importantly, the acquired resistance to temozolomide in the recurrent lines was not driven by re-expression of MGMT or loss of MMR but was due to accelerated repair of temozolomide-induced DNA double-strand breaks (DSB). Temozolomide induces DNA replication-associated DSBs that are primarily repaired by the homologous recombination (HR) pathway. Augmented HR appears to underpin temozolomide resistance in the recurrent lines, as these cells were cross-resistant to other agents that induced replication-associated DSBs, exhibited faster resolution of damage-induced Rad51 foci, and displayed higher levels of sister chromatid exchanges (SCE). Furthermore, in light of recent studies demonstrating that CDK1 and CDK2 promote HR, it was found that CDK1/2 inhibitors countered the heightened HR in recurrent tumors and sensitized these therapy-resistant tumor cells to temozolomide. IMPLICATIONS Augmented HR repair is a novel mechanism underlying acquired temozolomide resistance in GBM, and this raises the possibility of improving the therapeutic response to temozolomide by targeting HR with small-molecule inhibitors of CDK1/2. Mol Cancer Res; 14(10); 928-40. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas. North Texas VA Medical Center, Dallas, Texas
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
87
|
Schouten PC, Dackus GMHE, Marchetti S, van Tinteren H, Sonke GS, Schellens JHM, Linn SC. A phase I followed by a randomized phase II trial of two cycles carboplatin-olaparib followed by olaparib monotherapy versus capecitabine in BRCA1- or BRCA2-mutated HER2-negative advanced breast cancer as first line treatment (REVIVAL): study protocol for a randomized controlled trial. Trials 2016; 17:293. [PMID: 27323902 PMCID: PMC4915081 DOI: 10.1186/s13063-016-1423-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Preclinical studies in breast cancer models showed that BRCA1 or BRCA2 deficient cell lines, when compared to BRCA proficient cell lines, are extremely sensitive to PARP1 inhibition. When combining the PARP1 inhibitor olaparib with cisplatin in a BRCA1-mutated breast cancer mouse model, the combination induced a larger response than either of the two compounds alone. Several clinical studies have investigated single agent therapy or combinations of both drugs, but no randomized clinical evidence exists for the superiority of carboplatin-olaparib versus standard of care therapy in patients with BRCA1- or BRCA2--mutated metastatic breast cancer. Methods/design This investigator-initiated study contains two parts. Part 1 is a traditional 3 + 3 dose escalation study of the carboplatin-olaparib combination followed by olaparib monotherapy. The carboplatin dose will be escalated from area under the curve (AUC) 3 to AUC 4 with an olaparib dose of 25 mg BID. Olaparib is subsequently escalated to 50, 75, and 100 mg BID until >1/6 of patients develop dose-limiting toxicity (DLT). The dose level below will be the maximum tolerable dose (MTD). It is expected that 15–20 patients are needed in Part I. In Part 2 BRCA1- or BRCA2-mutated HER2-negative breast cancer patients will be randomized between standard capecitabine 1250 mg/m2 BID day 1–14 q day 22, versus 2 cycles carboplatin-olaparib followed by olaparib monotherapy 300 mg BID. In total 104 events in 110 patients need to be observed to detect a 75 % clinically meaningful improvement in progression-free survival (PFS), from a median of 4 months (control) to 7 months (experimental) assuming a 2-year accrual and ≥6 months of follow-up with 80 % power (5 %, two-sided significance level). After progression on first line treatment, patients will receive physician’s best choice of paclitaxel, vinorelbine, eribulin, or capecitabine (experimental arm only) at standard dose. A compassionate use program of olaparib is available for patients in the standard arm after progression on second line treatment. Discussion Results might be pivotal for registration of olaparib as standard first line treatment in advanced BRCA1- or BRCA2-mutated breast cancer. Trial registration ClinicalTrials.gov identifier: NCT02418624. Registered on 9 March 2015. EudraCT number: 2013-005590-41. Registered on 15 October 2014. Protocol version 3.0. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1423-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philip C Schouten
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Gwen M H E Dackus
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Department of Pathology, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Serena Marchetti
- Division of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Harm van Tinteren
- Department of Biometrics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Division of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Division of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Department of Clinical Pharmacology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.,Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands. .,Department of Pathology, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands. .,Division of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| |
Collapse
|
88
|
Vriend LEM, Prakash R, Chen CC, Vanoli F, Cavallo F, Zhang Y, Jasin M, Krawczyk PM. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Res 2016; 44:5204-17. [PMID: 27001513 PMCID: PMC4914091 DOI: 10.1093/nar/gkw179] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored. Here, we applied Cas9 nickases to study (nick)HR in mammalian cells. We find that (nick)HR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Francesca Cavallo
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
89
|
Ozden O, Bishehsari F, Bauer J, Park SH, Jana A, Baik SH, Sporn JC, Staudacher JJ, Yazici C, Krett N, Jung B. Expression of an Oncogenic BARD1 Splice Variant Impairs Homologous Recombination and Predicts Response to PARP-1 Inhibitor Therapy in Colon Cancer. Sci Rep 2016; 6:26273. [PMID: 27197561 PMCID: PMC4873788 DOI: 10.1038/srep26273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 01/30/2023] Open
Abstract
BRCA1-associated RING domain protein 1 (BARD1) stabilizes BRCA1 protein by forming a heterodimeric RING-RING complex, and impacts function of BRCA1, including homologous recombination (HR) repair. Although colon cancer cells usually express wild type BRCA1, presence of an oncogenic BARD1 splice variant (SV) in select cancers may render BRCA1 dysfunctional and allow cells to become sensitive to HR targeting therapies. We previously reported association of loss of full-length (FL) BARD1 with poor prognosis in colon cancer as well as expression of various BARD1 SVs with unknown function. Here we show that loss of BARD1 function through the expression of a BARD1 SV, BARD1β, results in a more malignant phenotype with decreased RAD51 foci formation, reduced BRCA1 E3 ubiquitin ligase activity, and decreased nuclear BRCA1 protein localization. BARD1β sensitizes colon cancer cells to poly ADP ribose polymerase 1 (PARP-1) inhibition even in a FL BRCA1 background. These results suggest that expression of BARD1β may serve as a future biomarker to assess suitability of colon cancers for HR targeting with PARP-1 inhibitors in treatment of advanced colon cancer.
Collapse
Affiliation(s)
- Ozkan Ozden
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, 60612, U.S.A
| | - Jessica Bauer
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Seong-Hoon Park
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Arundhati Jana
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Seung Hyun Baik
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Judith C Sporn
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Cemal Yazici
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Nancy Krett
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology, University of Illinois at Chicago, Chicago, IL 60612, U.S.A
| |
Collapse
|
90
|
Ledermann JA, Drew Y, Kristeleit RS. Homologous recombination deficiency and ovarian cancer. Eur J Cancer 2016; 60:49-58. [PMID: 27065456 DOI: 10.1016/j.ejca.2016.03.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
The discovery that PARP inhibitors block an essential pathway of DNA repair in cells harbouring a BRCA mutation has opened up a new therapeutic avenue for high-grade ovarian cancers. BRCA1 and BRCA2 proteins are essential for high-fidelity repair of double-strand breaks of DNA through the homologous recombination repair (HRR) pathway. Deficiency in HRR (HRD) is a target for PARP inhibitors. The first PARP inhibitor, olaparib, has now been licensed for BRCA-mutated ovarian cancers. While mutated BRCA genes are individually most commonly associated with HRD other essential HRR proteins may be mutated or functionally deficient potentially widening the therapeutic opportunities for PARP inhibitors. HRD is the first phenotypically defined predictive marker for therapy with PARP inhibitors in ovarian cancer. Several different PARP inhibitors are being trialled in ovarian cancer and this class of drugs has been shown to be a new selective therapy for high-grade ovarian cancer. Around 20% of high-grade serous ovarian cancers harbour germline or somatic BRCA mutations and testing for BRCA mutations should be incorporated into routine clinical practice. The expanded use of PARP inhibitors in HRD deficient (non-BRCA mutant) tumours using a signature of HRD in clinical practice requires validation.
Collapse
Affiliation(s)
| | - Yvette Drew
- Northern Institute for Cancer Research and Northern Centre for Cancer Care, Newcastle University, UK
| | | |
Collapse
|
91
|
Tripathi K, Mani C, Clark DW, Palle K. Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget 2016; 7:12537-53. [PMID: 26871286 PMCID: PMC4914303 DOI: 10.18632/oncotarget.7247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Camptothecin (CPT) and its analogues are chemotherapeutic agents that covalently and reversibly link DNA Topoisomerase I to its nicked DNA intermediate eliciting the formation of DNA double strand breaks (DSB) during replication. The repair of these DSB involves multiple DNA damage response and repair proteins. Here we demonstrate that CPT-induced DNA damage promotes functional interactions between BRCA2, FANCD2, Rad18, and Rad51 to repair the replication-associated DSB through homologous recombination (HR). Loss of any of these proteins leads to equal disruption of HR repair, causes chromosomal aberrations and sensitizes cells to CPT. Rad18 appears to function upstream in this repair pathway as its downregulation prevents activation of FANCD2, diminishes BRCA2 and Rad51 protein levels, formation of nuclear foci of all three proteins and recovery of stalled or collapsed replication forks in response to CPT. Taken together this work further elucidates the complex interplay of DNA repair proteins in the repair of replication-associated DSB.
Collapse
Affiliation(s)
- Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - Chinnadurai Mani
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| | - Komaraiah Palle
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, 36604, USA
| |
Collapse
|
92
|
Tulbah S, Alabdulkarim H, Alanazi M, Parine NR, Shaik J, Pathan AAK, Al-Amri A, Khan W, Warsy A. Polymorphisms in RAD51 and their relation with breast cancer in Saudi females. Onco Targets Ther 2016; 9:269-77. [PMID: 26834486 PMCID: PMC4716748 DOI: 10.2147/ott.s93343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The present study aimed at investigating the relationship between rs1801320 (G>C), rs1801321 (G>T), and rs2619681 (C>T) RAD51 gene polymorphisms and the risk of breast cancer development in Saudi females. The genotypes were analyzed using TaqMan genotyping assay and polymerase chain reaction-restriction fragment length polymorphism. The genotype and allele frequencies were computed using chi-square or Fisher’s exact test (two-tailed) by SPSS 21 software. The results showed that rs1801321G>T GG genotype and G allele frequency were strongly (P<0.0001) related to an elevated risk of breast cancer, while the mutant T allele appeared to provide protection against breast cancer development as observed from the significantly lower (P<0.0001) frequencies of the TT and GT genotypes in cancer patients compared to the healthy controls. The variant rs1801320G>C showed no significant differences in the frequencies of the genotypes and alleles in the patients and the control groups. The CC genotype and C allele frequency of rs2619681 (C>T) variant were significantly (P=0.012) higher in cancer patients, whereas the T allele showed a protective effect against cancer development. The frequencies of the three single-nucleotide polymorphisms did not differ in cancer patients with different tumor grades and human epidermal growth factor receptor 2 status (+ or −). However, the genotype frequency of rs1801320 (135G>C) differed in the patients with estrogen receptor (ER)+ and ER−, where CC genotype showed a significantly higher prevalence in the females with ER− who were suffering from breast cancer. In addition, the frequency of C allele of rs2619681 (C>T) was also significantly higher in the breast cancer patients who were ER+ and progesterone receptor (PR)+ compared to those with ER− and PR−. In the Saudi females, rs1801320 did not show an association with risk of breast cancer. Taken together, the results suggest that RAD51 rs1801321 polymorphism may be involved in the etiology of breast cancer in the Saudi females; however, further studies are necessary to confirm this relation.
Collapse
Affiliation(s)
- Sahar Tulbah
- Department of Biochemistry, College of Science, King Saud University, Center of Scientific and Medical Colleges, Riyadh, Saudi Arabia
| | - Huda Alabdulkarim
- Department of Hematology/Oncology, King Fahad Medical City Hospital, Comprehensive Cancer Center, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narasimha Reddy Parine
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jilani Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Akbar Ali Khan Pathan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Al-Amri
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wajahatullah Khan
- Basic Sciences Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Arjumand Warsy
- Department of Biochemistry, College of Science, King Saud University, Center of Scientific and Medical Colleges, Riyadh, Saudi Arabia
| |
Collapse
|
93
|
Shao J, Xu Z, Peng X, Chen M, Zhu Y, Xu L, Zhu H, Yang B, Luo P, He Q. Gefitinib Synergizes with Irinotecan to Suppress Hepatocellular Carcinoma via Antagonizing Rad51-Mediated DNA-Repair. PLoS One 2016; 11:e0146968. [PMID: 26752698 PMCID: PMC4709237 DOI: 10.1371/journal.pone.0146968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Chemotherapy is the only choice for most of the advanced hepatocellular carcinoma (HCC) patients, while few agents were available, making it an urgent need to develop new chemotherapy strategies. A phase II clinical trial suggested that the efficacy of irinotecan in HCC was limited due to dose-dependent toxicities. Here, we found that gefitinib exhibited synergistic activity in combination with SN-38, an active metabolite of irinotecan, in HCC cell lines. And the enhanced apoptosis induced by gefitinib plus SN-38 was a result from caspase pathway activation. Mechanistically, gefitinib dramatically promoted the ubiquitin–proteasome-dependent degradation of Rad51 protein, suppressed the DNA repair, gave rise to more DNA damages, and ultimately resulted in the synergism of these two agents. In addition, the increased antitumor efficacy of gefitinib combined with irinotecan was further validated in a HepG2 xenograft mice model. Taken together, our data demonstrated for the first time that the combination of irinotecan and gefitinib showed potential benefit in HCC, which suggests that Rad51 is a promising target and provides a rationale for clinical trials investigating the efficacy of the combination of topoisomerase I inhibitors and gefitinib in HCC.
Collapse
Affiliation(s)
- Jinjin Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueming Peng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanrun Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- * E-mail: (PL); (QH)
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- * E-mail: (PL); (QH)
| |
Collapse
|
94
|
Gillespie DA, Ryan KM. Autophagy is critically required for DNA repair by homologous recombination. Mol Cell Oncol 2016; 3:e1030538. [PMID: 27308547 PMCID: PMC4845186 DOI: 10.1080/23723556.2015.1030538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 10/23/2022]
Abstract
Autophagy delivers damaged cytoplasmic constituents to lysosomes for degradation, thus preserving cellular integrity and protecting against disease. Remarkably, autophagy-deficient cells also exhibit aberrant DNA damage responses with therapeutic implications, such as suppression of checkpoint kinase-1 function, impaired DNA double-strand break repair by homologous recombination, and increased reliance on error-prone non-homologous end-joining for survival.
Collapse
Affiliation(s)
- David A Gillespie
- Centre for Biomedical Research of the Canary Islands; Department of Anatomy; Anatomical Pathology and Physiology, Faculty of Medicine, Universidad de La Laguna; Tenerife, Spain
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute; Garscube Estate, Switchback Rd, Glasgow, UK
| |
Collapse
|
95
|
Alagpulinsa DA, Ayyadevara S, Yaccoby S, Shmookler Reis RJ. A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Mol Cancer Ther 2015; 15:241-50. [PMID: 26719576 DOI: 10.1158/1535-7163.mct-15-0660] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
Abstract
PARP1/2 are required for single-strand break repair, and their inhibition causes DNA replication fork collapse and double-strand break (DSB) formation. These DSBs are primarily repaired via homologous recombination (HR), a high-fidelity repair pathway. Should HR be deficient, DSBs may be repaired via error-prone nonhomologous end-joining mechanisms, or may persist, ultimately resulting in cell death. The combined disruption of PARP and HR activities thus produces synthetic lethality. Multiple myeloma cells are characterized by chromosomal instability and pervasive DNA damage, implicating aberrant DNA repair. Cyclin-dependent kinases (CDK), upstream modulators of HR, are dysregulated in multiple myeloma. Here, we show that a CDK inhibitor, dinaciclib, impairs HR repair and sensitizes multiple myeloma cells to the PARP1/2 inhibitor ABT-888. Dinaciclib abolishes ABT-888-induced BRCA1 and RAD51 foci and potentiates DNA damage, indicated by increased γH2AX foci. Dinaciclib treatment reduces expression of HR repair genes, including Rad51, and blocks BRCA1 phosphorylation, a modification required for HR repair, thus inhibiting HR repair of chromosome DSBs. Cotreatment with dinaciclib and ABT-888 in vitro resulted in synthetic lethality of multiple myeloma cells, but not normal CD19(+) B cells, and slowed growth of multiple myeloma xenografts in SCID mice almost two-fold. These findings support combining dinaciclib with PARP inhibitors for multiple myeloma therapy. Mol Cancer Ther; 15(2); 241-50. ©2015 AACR.
Collapse
Affiliation(s)
- David A Alagpulinsa
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas. Department of Geriatrics, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Srinivas Ayyadevara
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas. Department of Geriatrics, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Shmuel Yaccoby
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert J Shmookler Reis
- McClellan Veterans Medical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas. Department of Geriatrics, University of Arkansas for Medical Science, Little Rock, Arkansas.
| |
Collapse
|
96
|
Wu Y, Lee SH, Williamson EA, Reinert BL, Cho JH, Xia F, Jaiswal AS, Srinivasan G, Patel B, Brantley A, Zhou D, Shao L, Pathak R, Hauer-Jensen M, Singh S, Kong K, Wu X, Kim HS, Beissbarth T, Gaedcke J, Burma S, Nickoloff JA, Hromas RA. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair. PLoS Genet 2015; 11:e1005675. [PMID: 26684013 PMCID: PMC4684289 DOI: 10.1371/journal.pgen.1005675] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022] Open
Abstract
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ. The cell itself damages its own DNA throughout the cell cycle as a result of oxidative metabolism, and this damage creates barriers for replication fork progression. Thus, DNA replication is not a smooth and continuous process, but rather one of stalls and restarts. Therefore, proper replication fork restart is crucial to maintain the integrity of the cell’s genome, and preventing its own death or immortalization. To restart after stalling, the replication fork subverts a DNA repair pathway termed homologous recombination. Using any other pathway for fork repair will result in an unstable genome. How the homologous recombination repair pathway is initiated at the replication fork is not well defined. In this study we demonstrate the previously uncharacterized EEPD1 protein is a novel gatekeeper for the initiation of this fork repair pathway. EEPD1 promotes 5’ end resection, the initial step of homologous recombination, which also prevents alternative fork repair pathways that lead to unstable chromosomes. Thus, EEPD1 protects the integrity of the cell genome by promoting the safe homologous recombination fork repair pathway.
Collapse
Affiliation(s)
- Yuehan Wu
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Suk-Hee Lee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elizabeth A. Williamson
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Brian L. Reinert
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Ju Hwan Cho
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Fen Xia
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Aruna Shanker Jaiswal
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Gayathri Srinivasan
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Bhavita Patel
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Alexis Brantley
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Lijian Shao
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sudha Singh
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
| | - Kimi Kong
- Department of Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Xaiohua Wu
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun-Suk Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Timothy Beissbarth
- Department of Medical Statistics, and General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Department of Medical Statistics, and General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, United States of America
| | - Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail: (JAN); (RAH)
| | - Robert A. Hromas
- Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida, United States of America
- * E-mail: (JAN); (RAH)
| |
Collapse
|
97
|
Abstract
Loss of function or mutation of the ataxia-telangiectasia mutated gene product (ATM) results in inherited genetic disorders characterized by neurodegeneration, immunodeficiency, and cancer. Ataxia-telangiectasia mutated (ATM) gene product belongs to the PI3K-like protein kinase (PIKKs) family and is functionally implicated in mitogenic signal transduction, chromosome condensation, meiotic recombination, cell-cycle control, and telomere maintenance. The ATM protein kinase is primarily activated in response to DNA double strand breaks (DSBs), the most deleterious form of DNA damage produced by ionizing radiation (IR) or radiomimetic drugs. It is detected at DNA damage sites, where ATM autophosphorylation causes dissociation of the inactive homodimeric form to the activated monomeric form. Interestingly, heat shock can activate ATM independent of the presence of DNA strand breaks. ATM is an integral part of the sensory machinery that detects DSBs during meiosis, mitosis, or DNA breaks mediated by free radicals. These DNA lesions can trigger higher order chromatin reorganization fuelled by posttranslational modifications of histones and histone binding proteins. Our group, and others, have shown that ATM activation is tightly regulated by chromatin modifications. This review summarizes the multiple approaches used to discern the role of ATM and other associated proteins in chromatin modification in response to DNA damage.
Collapse
|
98
|
Cortez MA, Valdecanas D, Niknam S, Peltier HJ, Diao L, Giri U, Komaki R, Calin GA, Gomez DR, Chang JY, Heymach JV, Bader AG, Welsh JW. In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e270. [PMID: 26670277 PMCID: PMC5014539 DOI: 10.1038/mtna.2015.47] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/11/2015] [Indexed: 01/20/2023]
Abstract
MiR-34a, an important tumor-suppressing microRNA, is downregulated in several types of cancer; loss of its expression has been linked with unfavorable clinical outcomes in non-small-cell lung cancer (NSCLC), among others. MiR-34a represses several key oncogenic proteins, and a synthetic mimic of miR-34a is currently being tested in a cancer trial. However, little is known about the potential role of miR-34a in regulating DNA damage response and repair. Here, we demonstrate that miR-34a directly binds to the 3' untranslated region of RAD51 and regulates homologous recombination, inhibiting double-strand-break repair in NSCLC cells. We further demonstrate the therapeutic potential of miR-34a delivery in combination with radiotherapy in mouse models of lung cancer. Collectively, our results suggest that administration of miR-34a in combination with radiotherapy may represent a novel strategy for treating NSCLC.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Valdecanas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Lixia Diao
- Department of Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uma Giri
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John Victor Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - James William Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
99
|
Hyun M, Choi S, Stevnsner T, Ahn B. The Caenorhabditis elegans Werner syndrome protein participates in DNA damage checkpoint and DNA repair in response to CPT-induced double-strand breaks. Cell Signal 2015; 28:214-223. [PMID: 26691982 DOI: 10.1016/j.cellsig.2015.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022]
Abstract
The RecQ helicases play roles in maintenance of genomic stability in species ranging from Escherichia coli to humans and interact with proteins involved in DNA metabolic pathways such as DNA repair, recombination, and replication. Our previous studies found that the Caenorhabditis elegans WRN-1 RecQ protein (a human WRN ortholog) exhibits ATP-dependent 3'-5' helicase activity and that the WRN-1 helicase is stimulated by RPA-1 on a long forked DNA duplex. However, the role of WRN-1 in response to S-phase associated with DSBs is unclear. We found that WRN-1 is involved in the checkpoint response to DSBs after CPT, inducing cell cycle arrest, is recruited to DSBs by RPA-1 and functions upstream of ATL-1 and ATM-1 for CHK-1 phosphorylation in the S-phase checkpoint. In addition, WRN-1 and RPA-1 recruitments to the DSBs require MRE-11, suggesting that DSB processing controlled by MRE-11 is important for WRN-1 at DSBs. The repair of CPT-induced DSBs is greatly reduced in the absence of WRN-1. These observations suggest that WRN-1 functions downstream of RPA-1 and upstream of CHK-1 in the DSB checkpoint pathway and is also required for the repair of DSB.
Collapse
Affiliation(s)
- Moonjung Hyun
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seoyun Choi
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Tinna Stevnsner
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Byungchan Ahn
- Department of Life Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
100
|
Herr P, Lundin C, Evers B, Ebner D, Bauerschmidt C, Kingham G, Palmai-Pallag T, Mortusewicz O, Frings O, Sonnhammer E, Helleday T. A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discov 2015; 1:15034. [PMID: 27462432 PMCID: PMC4860774 DOI: 10.1038/celldisc.2015.34] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022] Open
Abstract
To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation.
Collapse
Affiliation(s)
- Patrick Herr
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Cecilia Lundin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Bastiaan Evers
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Christina Bauerschmidt
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Guy Kingham
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford, UK
| | | | - Oliver Mortusewicz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Oliver Frings
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Erik Sonnhammer
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|