51
|
Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 1996; 739:88-96. [PMID: 8955928 DOI: 10.1016/s0006-8993(96)00815-3] [Citation(s) in RCA: 409] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A sensitive quantitative fluorescence method was used to explore the time course and regional pattern of blood-brain barrier (BBB) opening after transient middle cerebral artery occlusion (MCAo). Male Sprague-Dawley rats were anesthetized with halothane and subjected to 2 h of temporary MCAo by retrograde insertion of an intraluminal nylon suture, coated with poly-L-lysine, through the external carotid artery into the internal carotid artery and MCA. Damage to the BBB was judged by extravasation of Evans Blue (EB) dye, which was administered either 2, 3, 24 or 48 h after onset of MCAo. Fluorometric quantitation of EB was performed 1 or 2 h later in six brain regions. Cerebral infarction volumes were quantitated from histopathological material at 72 h. EB extravasation first became grossly visible in the ipsilateral caudoputamen and neocortex following 3 h of MCAo, was grossly unapparent at 24-26 h, and was maximal at 48-50 h. Fluorescence quantitation confirmed that BBB opening was absent at 2-3 h but present at all later times. In the hemisphere ipsilateral to MCAo, a 179% mean increase in extravasation of EB (compared to sham rats) was measured at 4 h, 407% at 5 h, 311% at 26 h and 264% at 50 h. (in each case, P < 0.05 vs. sham). The volume of infarcted tissue at 72 h in this model was 163.6 +/- 7.7 mm3. Our results indicate that an initial, acute disruption of the BBB occurs between 3 and 5 h following MCAo, and that a later, more widespread increase in regional BBB permeability is present at 48 h. Regional measurement of Evans Blue extravasation offers a precise means of quantitating BBB disruption in focal cerebral ischemia; this method will be of considerable utility in assessing the BBB-protective properties of pharmacological agents.
Collapse
Affiliation(s)
- L Belayev
- Department of Neurology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
52
|
Lancman ME, Morris HH. Epilepsy after central nervous system infection: clinical characteristics and outcome after epilepsy surgery. Epilepsy Res 1996; 25:285-90. [PMID: 8956928 DOI: 10.1016/s0920-1211(96)00086-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fifty-six (5.8%) patients with partial epilepsy secondary to central nervous system (CNS) infection (meningitis = 20 and encephalitis = 36) were identified from 963 patients studied with prolonged video-EEG monitoring. Twenty-seven (48.2%) patients had unilateral mesial temporal lobe epilepsy (UMTLE), 9 (16.1%) had bilateral mesial temporal lobe epilepsy (BMTLE), and 20 (35.7%) had neocortical epilepsy (NE). Younger age at infection and prolonged latency between the time of infection and development of epilepsy were predictive factors for UMTLE. Predictors for BMTLE were late age of infection and short latency between infection and epilepsy development. Development of NE was associated with short latency between infection and epilepsy, and younger age at infection. When outcome after temporal lobectomy was compared between the UMTLE group and a control group with UMTLE without history of CNS infection, no statistically significant differences were found. Central nervous system infection may lead to epilepsy, which in many cases, is generated by a single portion of the brain. In such cases, epilepsy surgery should be considered, as in patients without history of CNS infection.
Collapse
Affiliation(s)
- M E Lancman
- Department of Neurology, Cleveland Clinic Foundation, OH, USA.
| | | |
Collapse
|
53
|
Minami T, Ichii M, Okazaki J, Kawaki H, Okazaki Y. Free radical scavengers suppress the accumulation of platinum in the cerebral cortex. Biol Trace Elem Res 1996; 55:1-7. [PMID: 8971349 DOI: 10.1007/bf02784163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated whether free radical scavengers and antioxidants inhibit the accumulation of platinum (Pt) in the cerebral cortex. Pt was detected in the cerebral cortex of mice after administration of cisplatin and exposure to short-term hypoxia. When mice were treated with either allopurinol (20 mg/kg) or catalase (100 mg/kg) before cisplatin administration and low oxygen exposure, Pt was not detected in the cerebral cortex. However, Pt was detected in the cerebral cortex of mice pretreated with either a low dosage of allopurinol or heat-denatured catalase. Furthermore, Pt was detected in the cerebral cortex of mice preadministered vitamin C, vitamin E, or deferoxamine. Lipid peroxide levels in the cerebral cortex increased 10 min after the treatment of hypoxia, and peaked 30 min after the treatment. These results suggested that short-term hypoxia produces free radicals, which allows Pt to pass through the blood-brain barrier and accumulate in the cerebral cortex, and that the production of free radicals is reduced by the administration of either allopurinol or catalase, which prevents Pt from passing through the barrier.
Collapse
Affiliation(s)
- T Minami
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | | | | | | | | |
Collapse
|
54
|
Ye J, Yang L, Del Bigio MR, Filgueiras CL, Ede M, Summers R, Salerno TA, Deslauriers R. Neuronal damage after hypothermic circulatory arrest and retrograde cerebral perfusion in the pig. Ann Thorac Surg 1996; 61:1316-22. [PMID: 8633934 DOI: 10.1016/0003-4975(96)00076-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Antegrade and retrograde cerebral perfusion during hypothermic circulatory arrest (HCA) has been reported to provide better brain protection during operation than hypothermic circulatory arrest alone. However, the efficacy of these techniques remains to be fully determined, especially when used for prolonged periods. We used a pig model to evaluate the histopathologic consequences of HCA and the potential benefit of cerebral perfusion during HCA. METHODS Twenty-two pigs were divided into four groups and exposed to either anesthesia alone, 120 minutes of HCA (15 degrees C), 120 minutes of retrograde cerebral perfusion at 15 degrees C during HCA, or 120 minutes of antegrade cerebral perfusion at 15 degrees C during HCA, and then reperfused for 60 minutes under cardiopulmonary bypass at 37 degrees C. The brains were perfusion fixed at the end of the experiments and examined by light microscopy. RESULTS There were no morphologic changes in any areas of the brains in the anesthesia group, and very minor changes in some areas of the brains in the antegrade cerebral perfusion. group. Varying severity of neuronal damage was found in the brains of all the pigs in the HCA and retrograde cerebral perfusion groups. The severity of ischemic damage in the brain showed the following descending order: hippocampus (CA4), caudate nucleus, cerebral cortex, putamen, thalamus, Purkinje cells of the cerebellum, pons, and mesencephalic gray matter. In the hippocampus the order of damage was CA4, CA3, polymorphous layer of the dentate gyrus, prosubiculum, CA2, CA1, and granule cell layer of the dentate gyrus. The damage in the retrograde cerebral perfusion group was less severe relative to the HCA group in many areas (no significance except mesencephalic gray matter). CONCLUSIONS These results demonstrate that the pattern of neuronal damage in pigs subjected to HCA and retrograde cerebral perfusion differs from the traditional pattern in that the caudate nucleus and hippocampal CA4 region are the most vulnerable to ischemia-hypoxia. Our results also suggest that antegrade cerebral perfusion prevented ischemic damage to the brain and retrograde cerebral perfusion provided some protection but moderately severe damage occurred.
Collapse
Affiliation(s)
- J Ye
- Institute for Biodiagnostics, National Research Council of Canada, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Hoshino S, Kobayashi S, Nakazawa S. Prolonged and extensive IgG immunoreactivity after severe fluid-percussion injury in rat brain. Brain Res 1996; 711:73-83. [PMID: 8680877 DOI: 10.1016/0006-8993(95)01329-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationships between protein extravasation, morphological changes in neurons, and reactive changes in axons were evaluated in rats subjected to right lateral fluid-percussion injury to the brain (4.8-5.6 atm, 20 ms). Serial sections of the brain were immunostained with antibodies to rat immunoglobulin G (IgG) and 68-kDa neurofilament at 1 h to 2 weeks after injury or sham injury. Ischemic changes in neurons were noted in the injured cortex at 6-48 h after injury, and macroscopic hemorrhages were noted in the right corpus callosum and external capsule at 1 h to 1 week after injury. Extracellular IgG immunostaining was observed in the right cortex and right hippocampus at 1 h to 1 week after injury, and in the cortices and hippocampi bilaterally at 2 weeks after injury, but was most prominent in those regions at 24 h after injury. Intracellular IgG staining was noted in the neurons of cortices, hippocampi, brainstem, and cerebellum at 1 h to 2 weeks after injury. The number of IgG immunoreactive neurons was greatest at 1 week after injury. Thickened IgG immunoreactive axons and reactive axonal changes seen with neurofilament immunostaining were both in the similar region of the brainstem at 1 h to 1 week after injury. It appears that prolonged and widespread breakdown of the blood-brain barrier to plasma protein occurs after severe concussive brain injury and that this breakdown is not always accompanied by morphological changes. Intra-axonal IgG immunostaining provides additional clues to the pathogenesis of axonal damage following diffuse brain injury.
Collapse
Affiliation(s)
- S Hoshino
- Department of Neurosurgery, Nippon Medical School, Chiba Hokusoh Hospital, Japan
| | | | | |
Collapse
|
56
|
Sims NR. Calcium, energy metabolism and the development of selective neuronal loss following short-term cerebral ischemia. Metab Brain Dis 1995; 10:191-217. [PMID: 8830281 DOI: 10.1007/bf02081026] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short-term cerebral ischemia results in the delayed loss of specific neuronal subpopulations. This review discusses changes in energy metabolism and Ca2+ distribution during ischemia and recirculation and considers the possible contribution of these changes to the development of selective neuronal loss. Severe ischemia results in a rapid decline of ATP content and a subsequent large movement of Ca2+ from the extracellular to the intracellular space. Similar changes are seen in tissue subregions containing neurons destined to die and those areas largely resistant to short-term ischemia, although differences have been observed in Ca2+ uptake between individual neurons. The large accumulation of intracellular Ca2+ is widely considered as a critical initiating event in the development of of neuronal loss but, as yet, definitive evidence has not been obtained. the increased intracellular Ca2+ content activates a number of additional processes including lipolysis of phospholipids and degradation or inactivation of some specific proteins, all of which could contribute to altered function on restoration of blood flow to the brain. Reperfusion results in a rapid recovery of ATP production. Cytoplasmic Ca2+ concentration is also restored during early recirculation as a result of both removal to the extracellular space and uptake into mitochondria. Within a few hours of recirculation, subtle increases in intracellular Ca2+ and a reduced capacity for mitochondrial respiration have been detected in some ischemia-susceptible regions. Both of these changes could potentially contribute to the development of neuronal loss. More pronounced alterations in Ca2+ homeostasis, resulting in a second period of increased mitochondrial Ca2+, develop with further recirculation in ischemia-susceptible regions. The available evidence suggests that these increases in Ca2+, although developing late, are likely to precede the irreversible loss of neuronal function and may be a necessary contributor to the final stages of this process.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
57
|
Abstract
Two-, three-, four-, five-, and twelve-week-old gerbils were subjected to various periods of bilateral carotid occlusion (BCO). Rectal and cranial temperatures were maintained at 37 degrees C during BCO, and only rectal temperature was monitored for 30 min of reperfusion. Seven days after ischemia, animals were perfusion-fixed and the neuronal densities in the hippocampal CA1 subfields were counted. The extent of cerebral ischemia during BCO was evaluated with [14C]iodoantipyrine autoradiography. The rectal temperature spontaneously fell to 33-34 degrees C during reperfusion in 2-week-old gerbils, although animals over 3 weeks old presented postischemic hyperthermia. Two-week-old animals therefore were divided into three experimental groups: In one group (2-week-old group I) rectal temperature was not regulated during 30 min of reperfusion, while in the other two groups (2-week-old groups II and III) rectal temperature was regulated at 37 and 38 degrees C, respectively, during reperfusion. Five-minute BCO produced almost complete destruction of the CA1 neurons in 12-week-old animals. In contrast, most CA1 neurons survived 30 min of BCO in 2-week-old group I and 15 min of BCO in 2-week-old groups II and III. [14C]Iodoantipyrine autoradiography revealed that BCO produced severe forebrain ischemia in 2-week-old gerbils as well as in 12-week-old gerbils. These findings indicate that developing gerbils have a greater tolerance to cerebral ischemia and that such ischemic tolerance is not due to a collateral network between the vertebrobasilar and the carotid circulations previously reported to develop more abundantly in developing gerbils.
Collapse
Affiliation(s)
- M Kusumoto
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | | | | | | |
Collapse
|
58
|
Nitsch C, Scotti AL, Nitsch FM. Distribution of parvalbumin-containing interneurons in the hippocampus of the gerbil--a qualitative and quantitative statistical analysis. J Chem Neuroanat 1995; 9:135-47. [PMID: 8561951 DOI: 10.1016/0891-0618(95)00076-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the gerbil (Meriones unguiculatus) hippocampal formation, the calcium-binding protein parvalbumin (PV) shows a unique species-specific distribution: it is present in the perforant path from the entorhinal cortex to the stratum molecular of the dentate are and cornu ammonis. A possible relation of this to the seizure-sensitivity of gerbils has been suggested. In addition, as in other species, PV is contained in a subpopulation of GABAergic nerve cells of the gerbil hippocampus. The characteristics of these PV-containing neurons are here described. Distribution and shape of the PV-positive neurons in general agreed with the features described for rat hippocampus with two notable exceptions: in CA2 PV-containing perikarya were densely crowded and gave rise to an intense immunoreactive plexus around the pyramidal cells and, in CA1, the number of stained neurons was variable, often much lower than in rats and occasionally not a single PV-positive neuron was present. In parasagittal brain sections of the lateralities 1.0, 1.6 and 2.2 mm from the midline, obtained from 27 male gerbils, the number of PV-containing neurons was determined. The data set obtained in CA3 and dentate area resembled unimodal distributions, while in CA1 a bimodal frequency distribution was present. Since parametric and non-parametric correlation tests rely on a unimodal distribution of the data set, they gave falsely significant values in CA1. The bimodal distribution suggests that, with respect to the PV-containing interneurons in CA1, two different populations of gerbils were included in our sample, those with many positive neurons and those with only a few. Since the nerve terminal staining is preserved also in those gerbils with only a few positive perikarya in CA1, it seems possible that an unknown factor influenced PV expression and storage in the soma. Sex, age, seasonal or circadian rhythm or quality of immunocytochemical staining did not influence the outcome of the quantitative analysis. However, a relation of the expression of the high affinity calcium buffering PV in interneurons and the individual seizure sensitivity of the gerbil is considered.
Collapse
Affiliation(s)
- C Nitsch
- Section of Neuroanatomy, University of Basel, Switzerland
| | | | | |
Collapse
|
59
|
Alps BJ, Calder C, Wilson AD, McBean DE, Armstrong JM. Reduction by lifarizine of the neuronal damage induced by cerebral ischaemia in rodents. Br J Pharmacol 1995; 115:1439-46. [PMID: 8564203 PMCID: PMC1908890 DOI: 10.1111/j.1476-5381.1995.tb16635.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The objective of this study was to evaluate the broad neurocytoprotective potential of the novel sodium-calcium ion channel modulator, lifarizine (RS-87476), in two rodent 72 h survival models of forebrain ischaemia. 2. Under fluothane anaesthesia, rats were subjected to 10 min four vessel occlusion and gerbils to either (i) 5 or (ii) 10 min bilateral carotid artery occlusion. 3. Rats were dosed parenterally solely post-ischaemia (reperfusion) in a series of five studies covering a range of intra-arterial/intraperitoneal (i.a./i.p.) combination doses from 2/10, 5/20, 20/100, 50/200 and 100/500 micrograms kg-1, where the initial loading dose was injected i.a. at 5 min. An i.p. dose was given at 15 min and repeated twice daily. In a sixth study, treatment at 50/200 micrograms kg-1 was deferred for 1 h. 4. Gerbils were treated (i) 15 min pre-ischaemia with either (a) 250, (b) 500 micrograms kg-1 i.p., or (c) 5 mg kg-1 by gavage (p.o.) for 3 days then at 1 h pre-ischaemia. Animals treated as (ii) received 500 micrograms kg-1 i.p. 15 min pre-ischaemia. The above doses were repeated twice daily for 3 days post-ischaemia for the respective groups. 5. In rats, the protective effect of lifarizine was regionally and cumulatively assessed in six brain regions (anterior and posterior neocortex, hippocampal CA1 subfield, thalamus, striatum, cerebellar Purkinje cells-brain stem) at each dose level. Cumulative (total) means +/-s.e.mean neurohistopathological scores(0-4) of 1.16+/-0.09 (n=5), 1.02+/-0.10 (n=5), 0.93+/-0.06 (n=6), 0.79+/-0.09 (n=9) and 0.45+/-0.16(n = 7), respectively, were obtained for the above treatment groups compared to the control (2.01 +/- 0.17,n = 16) group (P<0.0035). The score for the 1 h deferred treatment group was also significant at 0.77 +/- 0.10, n =5 (P< 0.0035). The normal group without ischaemia showed a score of 0.52 +/- 0.09 (n = 6).6. In gerbils, (i) percentage delayed neuronal death (DND) of hippocampal pyramidal cells in the CA1subfield was prevented at 250 (a) and 500 microg kg-' i.p. (b) (27.2+/- 14.6, n=6 and 26.9+/- 10.4%, n= 10 respectively, P<0.02) compared to controls (78.3+/-8.5%, n= 12) and by 5 mg kg-1 p.o. (c) (2.9+/-0.8%,n =l1, P <0.002). Mean +/- s.e.mean total brain scores (0-4) for each of 4 different features denoting cerebral 'oedema' were lower for normal brains (1.60 +/-0.34, n =6) and reduced in animals dosed at 250(a) (3.00+/-0.79, n=6) and 500 microg kg-1 i.p. (b) (3.75 0.36, n= 10) compared to controls (6.58+/-1.00,n = 12) (P< 0.02 -0.03). There was a linear relationship (r = 0.97) between the 'oedema' scores and percentage CA1 DND. Percentage CA1 DND in response to 10 min ischaemia (ii) was reduced(53.0+/-21.0%, n=6, P<0.05) compared to controls (100.0+/-0.0%, n=7).7 The significant neuroprotection shown by lifarizine in rodents substantiates findings in other species.These observations, together with its effect on ion channels and efficacy at extremely low doses offers novelty and suggests a broad spectrum of activity in ischaemia.
Collapse
Affiliation(s)
- B J Alps
- Department of Pharmacology, Syntex Research Centre, Heriot Watt University Research Park, Riccarton, Edinburgh
| | | | | | | | | |
Collapse
|
60
|
Sims NR, Zaidan E. Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. Int J Biochem Cell Biol 1995; 27:531-50. [PMID: 7671133 DOI: 10.1016/1357-2725(95)00026-l] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A brief interruption of blood flow to the brain results in the selective loss of specific subpopulations of neurons. Important advances have been made in recent years in defining the biochemical changes associated with cerebral ischaemia and reperfusion and in identifying physical and chemical interventions capable of modifying the extent of neuronal loss. Neuronal death is not irreversibly determined by the ischaemic period but develops during recirculation over a period of hours or even days in different susceptible neuronal populations. The onset of ischaemia produces a rapid decline in ATP production and an associated major redistribution of ions across the plasma membrane including a large intracellular accumulation of Ca2+ in many neurons. Alterations subsequently develop in many other metabolites. These include a marked and progressive release of neurotransmitters and a rapid accumulation of free fatty acids. Most of these alterations are reversed within the first 20 min to 1 hr of recirculation. The changes essential for initiating damage in neurons destined to die have not been definitively identified although there is some evidence suggesting roles for the intracellular Ca2+ accumulation, the release of the neurotransmitter glutamate and a brief burst of free radical production which occurs during early recirculation. During further recirculation, there are reductions in oxidative glucose metabolism and protein synthesis in many brain regions. Few changes have been detected which distinguish tissue containing ischaemia-susceptible neurons from ischaemia-resistant regions until the development of advanced degeneration and neuronal loss. Subtle changes in cytoplasmic Ca2+ content and a decrease in the respiratory capacity of mitochondria are two changes apparently selectively affecting ischaemia-susceptible regions which could contribute to neuronal loss. The mitochondrial change may be one indicator of a slowly developing post-ischaemic increase in susceptibility to oxidative damage in some cells.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, Flinders University of South Australia, Adelaide
| | | |
Collapse
|
61
|
Wiard RP, Dickerson MC, Beek O, Norton R, Cooper BR. Neuroprotective properties of the novel antiepileptic lamotrigine in a gerbil model of global cerebral ischemia. Stroke 1995; 26:466-72. [PMID: 7886726 DOI: 10.1161/01.str.26.3.466] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND PURPOSE Elevated glutamate levels are thought to be a primary cause of neuronal death after global cerebral ischemia. The purpose of this study was to investigate the potential neuroprotective effects of lamotrigine, a novel antiepileptic drug that inhibits the release of glutamate in vitro, with both behavioral and histological measures of global ischemia in gerbils. METHODS The common carotid arteries of gerbils were occluded for either 5, 10, or 15 minutes. Twenty-one days after reperfusion, gerbils were tested for impairments in a spatial memory task (Morris water maze). After water maze testing the animals were killed, and damage to hippocampal pyramidal cells was assessed. The effect of lamotrigine on the behavioral and histological outcome of either 5 or 15 minutes of global ischemia was evaluated. RESULTS Bilateral occlusion of the common carotid arteries for 5 minutes resulted in severe degeneration of hippocampal CA1 and CA2 pyramidal cells. Lamotrigine significantly prevented loss of hippocampal CA1 neurons when administered acutely (100 mg/kg PO) immediately after reperfusion or when administered in two equal doses of 30 or 50 mg/kg 2 hours before and immediately after reperfusion. Gerbils subjected to 5 minutes of ischemic insult were not impaired in their ability to solve a spatial memory task 21 days after cerebral ischemia. However, gerbils subjected to 10 and 15 minutes of carotid artery occlusion showed significant impairment in their ability to solve a water maze task. Lamotrigine significantly protected against the cognitive deficits associated with 15 minutes of cerebral ischemia. Histologically, increased durations of cerebral ischemia resulted in a progressive loss of CA1, CA2, and CA3 pyramidal cells. Lamotrigine completely protected gerbils exposed to 15 minutes of cerebral ischemia against CA3 cell loss and greatly reduced damage to the CA1 and CA2 cell tracts of the hippocampus. Lamotrigine also reduced the mortality associated with 15 minutes of ischemia. CONCLUSIONS Lamotrigine had neuroprotective effects in a gerbil model of global cerebral ischemia. Lamotrigine protected gerbils against behavioral deficits resulting from 15 minutes of carotid occlusion and also prevented histological damage resulting from 5 and 15 minutes of global cerebral ischemia.
Collapse
Affiliation(s)
- R P Wiard
- Division of Pharmacology, Burroughs Wellcome Co, Research Triangle Park, NC 27709
| | | | | | | | | |
Collapse
|
62
|
Shea TB. Role of glial-derived nexin in neuronal differentiation and in acute brain injury and potential involvement in exacerbation of neurodegeneration in Alzheimer's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 20:171-84. [PMID: 7795655 DOI: 10.1016/0165-0173(94)00010-m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T B Shea
- Laboratories for Molecular Neuroscience, Mailman Research Center, McLean Hospital, Belmont, MA 02178, USA
| |
Collapse
|
63
|
Tabuchi E, Ono T, Nishijo H, Endo S, Kuze S. Ischemic neuronal damage specific to monkey hippocampus: histological investigation. Brain Res Bull 1995; 37:73-87. [PMID: 7606482 DOI: 10.1016/0361-9230(94)00262-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We previously reported lesions confined specifically to the hippocampus when produced by occluding eight vessels (the bilateral vertebral, common, internal, and external carotid arteries), which supply blood to the brain. However, histopathological changes in the primate brain, caused by ischemic injury, have not previously been thoroughly investigated. In the present study, macaque monkeys were subjected to 5-18-min ischemia by occluding the eight vessels. After the brains were perfused and fixed 5 days after the occlusion, all regions were histologically investigated for ischemic cell changes. Ischemia for 5 min produced no ischemic cell change. Ischemia for 10-15 min produced cell death limited to the deeper portion of the pyramidal cell layer of the CA1 subfield in the hippocampus. In most monkeys, no cell death was observed in any brain region outside of the hippocampus after ischemia for up to 15 min. Ischemia for 18 min produced more widespread cell death in the CA1 subfield of the hippocampus, and cell death was no longer confined to the hippocampus, but was observed in layers III, V, and VI of the neocortices, the striatum, and some other regions. Brains that were perfused and fixed 1 year after 15-min ischemic insult revealed no ischemic cell morphological change in any region, but the number of pyramidal cells in the CA1 subfield was decreased to about half. The results indicate that the CA1 subfield of the monkey hippocampus is the precise region of the brain most susceptible to ischemic insult in the primate forebrain, and after a critical time (15-min ischemia in this procedure) ischemic cell changes occur suddenly and extensively. Ischemia due to occlusion of eight arteries for 10-15 min could produce a model of human amnesia caused by transient ischemic insult.
Collapse
Affiliation(s)
- E Tabuchi
- Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
64
|
Sugimoto K, Abe K, Lee TH, Sakurai E, Yanai K, Kogure K, Itoyama Y, Watanabe T. Histamine depletion in brain caused by treatment with (S)alpha-fluoromethylhistidine enhances ischemic damage of gerbil hippocampal CA2 neurons. Brain Res 1994; 666:279-83. [PMID: 7882040 DOI: 10.1016/0006-8993(94)90784-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of (S)alpha-fluoromethylhistidine (FMH), a specific inhibitor of histamine synthesis from histidine, on ischemic damage was examined in gerbil brain after forebrain ischemia. Two h after subcutaneous FMH injection, the histamine content of the brain was significantly reduced. Neuronal loss in the CA2 region of the hippocampus 7 days after 3 min ischemia was enhanced by treatment with FMH. These results indicate that depletion of brain histamine aggravates neuronal death of hippocampal CA2 neurons after 3 min ischemia.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Pharmacology I, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Gerhart DZ, Leino RL, Taylor WE, Borson ND, Drewes LR. GLUT1 and GLUT3 gene expression in gerbil brain following brief ischemia: an in situ hybridization study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 25:313-22. [PMID: 7808230 DOI: 10.1016/0169-328x(94)90167-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GLUT1 and GLUT3 mRNAs in normal and post-ischemic gerbil brains were examined qualitatively and semi-quantitatively using in situ hybridization in conjunction with image analysis. Coronal brain sections at the level of the anterior hippocampus were prepared three hours, one day, and three days after animals were subjected to six min of ischemia. The sections were hybridized with vector- and PCR-generated RNA probes labeled with 35S. Microscopic evaluation of hybridized brain sections coated with autoradiographic emulsion indicated that GLUT1 mRNA was associated with brain microvessels, choroid plexus, and some ependymal cells. GLUT1 mRNA was not observed in neurons, except that one day following ischemia, this mRNA was induced in neurons of the dentate gyrus. GLUT3 mRNA was detected only in neurons. Image analysis of film autoradiograms revealed that both the GLUT1 and GLUT3 messages increased following ischemia but returned nearly to control levels by day three. In the CA1 region of the hippocampus the increase in GLUT3 mRNA was not statistically significant, and by day three the level had fallen significantly below the control, coinciding with the degeneration of the CA1 neurons. Our results suggest that the brain possesses mechanisms for induction and up-regulation of glucose transporter gene expression.
Collapse
Affiliation(s)
- D Z Gerhart
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Minnesota, Duluth 55812
| | | | | | | | | |
Collapse
|
66
|
Soriano MA, Tortosa A, Planas AM, Rodriguez-Farré E, Ferrer I. Induction of HSP70 mRNA and HSP70 protein in the hippocampus of the developing gerbil following transient forebrain ischemia. Brain Res 1994; 653:191-8. [PMID: 7982052 DOI: 10.1016/0006-8993(94)90389-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of a 20-min transient episode of forebrain ischemia on the induction of HSP70 mRNA and protein, and the histopathological outcome in the hippocampus of the developing gerbil, were examined at postnatal days (P) 7, 15, 21 and 30 and in adulthood. 4 days after the ischemic episode, P7 gerbils did not show apparent histological abnormalities; however, from P15 onwards, ischemia resulted in necrosis in selected areas of the hippocampus. At P15 and P21, necrosis was observed in the base of the granular cell layer of the dentate gyrus and in the CA3 pyramidal cell layer, whereas at P30 and adult necrosis was apparent in the CA1 pyramidal cell layer. HSP70 mRNA induction was not found in ischemic P7 and P15 gerbils while, from P21 onwards, induction was observed in the dentate gyrus and CA1 pyramidal cell layer. In addition, at P30 and adult, HSP70 mRNA expression was also seen in CA3 pyramidal cell layer. Induction of HSP70 immunoreactivity was not seen at P7 but, from P15 onwards, ischemia induced HSP70 immunoreactivity in different areas: in dentate gyrus granular and molecular layers, from P15 onwards; in CA1 pyramidal cell layer, from P21 onwards; and in CA3 pyramidal cell layer, from P30 onwards. Results show selective age-dependent patterns of vulnerability to ischemia in the gerbil hippocampus which, overall, were not well-correlated to the corresponding HSP70 mRNA and protein induction patterns.
Collapse
Affiliation(s)
- M A Soriano
- Unitat de Neuropatologia, Serivei d'Anatomia Patològica, Hospital Princeps d'Espanya, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
67
|
Dirnagl U, Niwa K, Sixt G, Villringer A. Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging. Stroke 1994; 25:1028-38. [PMID: 8165674 DOI: 10.1161/01.str.25.5.1028] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that cerebral hypoperfusion after experimental global cerebral ischemia is caused by plugging of the microcirculation with activated leukocytes using in vivo microscopic observation of the behavior of leukocytes in the cortical microcirculation during the transition from postischemic hyperperfusion to hypoperfusion. METHODS Anesthetized and ventilated rats (n = 24) were equipped with a closed cranial window. Physiological variables and cortical regional cerebral blood flow (laser-Doppler flowmetry) were measured continuously. Leukocytes were labeled intravitally with rhodamine 6G and visualized in the microcirculation of the brain surface and outer layers of the cortex with confocal laser scanning microscopy from preischemia to 4 hours after reperfusion that followed 10 minutes of global cerebral ischemia (rCBF < 10% of control). RESULTS In controls (n = 8), there were no signs of leukocyte activation over the 4-hour observation period. In ischemic rats (n = 16), during the transition from hyperperfusion to hypoperfusion there was no change in the behavior of leukocytes. Most notably, no capillary pluggers were seen. In the postischemic period only a slight increase of the number of leukocytes rolling along or sticking to the venular endothelium was seen, and very few capillaries were plugged by leukocytes. Extravasation of leukocytes into the brain tissue was observed in 8 rats beginning 2 hours after ischemia with a variable degree between animals. CONCLUSIONS Because there was only mild activation of leukocyte-endothelium interaction within the first hours of reperfusion after 10 minutes of global forebrain ischemia, because no leukocytes plugged superficial cortical capillaries during the transition from hyperperfusion to hypoperfusion, and because the regional cerebral blood flow transition was very rapid, we speculate that leukocyte plugging is not responsible for the early cortical hypoperfusion seen after brief global ischemia in rats.
Collapse
Affiliation(s)
- U Dirnagl
- Department of Neurology, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
68
|
Pratt J, Roux M, Henneguelle E, Stutzmann JM, Laduron PM. Neuroprotective effects of colchicine in the gerbil model of cerebral ischaemia. Neurosci Lett 1994; 169:114-8. [PMID: 8047263 DOI: 10.1016/0304-3940(94)90369-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The tropolonic alkaloid colchicine significantly reduces the behavioural, electroencephalographic and histological damage seen after a 6-min occlusion of the two common carotid arteries of the Mongolian gerbil if the compound is administered at 2 or 4 mg/kg i.p. immediately upon reperfusion. A 45% increase in high-frequency ECoG activity and significant reduction of 80% in the hypermotility of the gerbils, with 63% less faults in a passive avoidance paradigm, were observed in conjunction with considerable protection of the hippocampus, after a single dose of 4 mg/kg colchicine. No adverse effects of colchicine treatment on animal movement and body weight were observable. Colchicine's possible mode of action, via inhibition of cellular transport systems, is discussed.
Collapse
Affiliation(s)
- J Pratt
- Department of Biology, Rhône-Poulenc Rorer, Centre de Recherche de Vitry-Alfortville (CRVA), Vitry-sur-Seine, France
| | | | | | | | | |
Collapse
|
69
|
Nagahiro S, Goto S, Korematsu K, Sumi M, Takahashi M, Ushio Y. Disruption of the blood-cerebrospinal fluid barrier by transient cerebral ischemia. Brain Res 1994; 633:305-11. [PMID: 8137165 DOI: 10.1016/0006-8993(94)91553-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The influence of transient cerebral ischemia on blood-brain and blood-cerebrospinal fluid (CSF) barrier permeability was studied sequentially by magnetic resonance imaging (MRI) contrast enhancement using gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) in rats. The unilateral internal carotid and middle cerebral arteries were transiently occluded by inserting a nylon thread into the carotid artery and removing it following a variable interval of 5 to 60 min. Contrast enhancement of the lateral ventricle on the affected side was seen in the enhanced T1-weighted image at the early stage of reperfusion 6 h after the start of ischemia in most of the rats subjected to 30- and 60-min ischemia, and in 3 of 6 rats in the 15-min ischemia group. Autoradiograms of Gd-[14C]DTPA in rats subjected to 60-min ischemia demonstrated that the tracer strongly accumulated in the choroid plexus, the wall of the lateral ventricle and its surrounding brain tissue. On the other hand, parenchymal enhancement of the striatum was seen only in the 60-min ischemia group and appeared later on Day 1 or Day 7. These results indicate that ventricular enhancement on MRI in this model is caused by disruption of the blood-CSF barrier at the choroid plexus of the lateral ventricle. This is the first reported study to demonstrate blood-CSF barrier disruption by transient ischemia.
Collapse
Affiliation(s)
- S Nagahiro
- Laboratory for Cerebrovascular Disorders and Neuroscience, Kumamoto University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Hata R, Matsumoto M, Yamamoto K, Ohtsuki T, Ogawa S, Handa N, Kubo T, Matsunaga T, Nishimura T, Kamada T. An ischemic opening of the blood-brain barrier may deteriorate brain stem auditory evoked potentials following transient hindbrain ischemia in gerbils. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1994; 60:197-9. [PMID: 7976544 DOI: 10.1007/978-3-7091-9334-1_53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To clarify the effect of vasogenic brain edema on the brainstem, the relationships between waveform changes in brainstem auditory evoked potentials (BAEP) and blood-brain barrier (BBB) disturbance following transient hindbrain ischemia were investigated. Hindbrain ischemia was induced in gerbils by bilateral occlusion of the vertebral arteries. The animals were divided into three groups subjected to 0, 5, and 30 min of bilateral vertebral occlusion (BVO-0',-5', and -30' groups; n = 4 in each group). Two hours after recirculation, Evans blue (EB) solution was injected into the saphenous vein. The brains were removed after 30 min of circulation, and all areas stained macroscopically by EB were noted and recorded. During hindbrain ischemia, BAEP disappeared within 3 min. In the BVO-5' group, BAEP reappeared and returned to normal within 10 min after reperfusion, whereas in the BVO-30' group, BAEP never returned to normal and finally disappeared within 30 min after reperfusion. In the BVO-5' group, no EB staining was visible. On the other hand, in the BVO-30' group, EB staining was seen in the medial part of the tegmentum in the midbrain in two animals, and around the vestibular nucleus in the lateral parts of the pons in three. These results demonstrate the close relationship between the reversibility of ischemia-induced changes in BAEP and BBB disturbance in the brainstem.
Collapse
Affiliation(s)
- R Hata
- First Department of Internal Medicine, University of Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Resuscitation of the brain after a period of global ischemia is limited by two classes of post-ischemic pathologies: hemodynamic disturbances which prevent the adequate re-oxygenation of the ischemic brain, and metabolic disturbances which may lead to delayed neuronal death in so-called selectively vulnerable brain regions. The hemodynamic disturbances can be classified into the no-reflow phenomenon and the post-ischemic hypoperfusion syndrome. The no-reflow phenomenon results from a combination of increased blood viscosity and perivascular edema; the severity increases with the duration of ischemia, and the treatment is by combining arterial hypertension with dehydration and anticoagulation. The post-ischemic hypoperfusion syndrome is independent of the duration of ischemia, it develops after a delay and is due to an impairment of the metabolic/hemodynamic coupling mechanisms; there is no specific treatment at the present. The most important metabolic disturbance leading to delayed neuronal death is prolonged inhibition of protein synthesis. The injury is manifested already after 5 min ischemia but it progresses little if ischemia is prolonged to 1 h. Inhibition occurs at the translation level due to selective inhibition of polypeptide chain initiation. After brief periods of ischemia, the disturbance can be reversed by various anesthetics and hypothermia but there is no treatment if ischemia is prolonged. Exitotoxity, free radical-mediated reactions, disturbances of polyamine metabolism, acidosis and selective disturbances of gene expression may also be involved but are probably of lesser importance.
Collapse
Affiliation(s)
- K A Hossmann
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| |
Collapse
|
72
|
Furuta S, Ohta S, Hatakeyama T, Nakamura K, Sakaki S. Recovery of protein synthesis in tolerance-induced hippocampal CA1 neurons after transient forebrain ischemia. Acta Neuropathol 1993; 86:329-36. [PMID: 8256582 DOI: 10.1007/bf00369444] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein synthesis at various recirculation times after 5-min transient forebrain ischemia was evaluated in gerbil hippocampal CA1 pyramidal neurons that had acquired tolerance to delayed-type ischemic injury. Evaluation was performed by observing polyribosomes under electron microscopy, and by [14C]leucine autoradiography. Hippocampal CA1 pyramidal neurons in the gerbils acquired stable and reproducible tolerance to delayed-type ischemic injury subsequent to a 5-min ischemia by pretreatment that consisted of loading two 2-min ischemic periods at a 1-day interval, followed by 48 h of recirculation. During the early phase following the 5-min ischemia, polyribosomal disaggregation, loss of dendritic microtubules, and significant suppression of radiolabeled leucine incorporation were observed in the tolerance-induced CA1 neurons as well as in the non-tolerance-induced neurons. While these findings persisted in the non-tolerance-induced neurons throughout the duration of the experiment, most of the tolerance-induced neurons demonstrated reaggregation of cytosomal ribosomes, increase in the number of dendritic microtubules, and restoration of impaired amino acid incorporation 24 h after the ischemia. These findings suggest that recovery of protein synthesis during the early post ischemic phase is essential for CA1 neuron survival after ischemic injury.
Collapse
Affiliation(s)
- S Furuta
- Department of Neurological Surgery, Ehime University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
73
|
Ogawa N, Tanaka K, Kondo Y, Asanuma M, Mizukawa K, Mori A. The preventive effect of cyclosporin A, an immunosuppressant, on the late onset reduction of muscarinic acetylcholine receptors in gerbil hippocampus after transient forebrain ischemia. Neurosci Lett 1993; 152:173-6. [PMID: 8515872 DOI: 10.1016/0304-3940(93)90511-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that a late onset reduction of muscarinic acetylcholine receptors (LORMAR) occurs in the gerbil hippocampus after 5 min of transient ischemia. This reduction begins as late as 7 days post-ischemia and accompanies the accumulation of glia, but is subsequent to completion of the disappearance of CA1 pyramidal cells. In the present study, we showed that this LORMAR was prevented by daily post-ischemic administration of the immunosuppressant cyclosporin A (CsA). The effectiveness of CsA against the LORMAR indicates that an immune mechanism may be involved in the progressive brain damage occurring after transient ischemia.
Collapse
Affiliation(s)
- N Ogawa
- Department of Neuroscience, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Nitsch C, Scotti AL, Monard D, Heim C, Sontag KH. The glia-derived protease nexin 1 persists for over 1 year in rat brain areas selectively lesioned by transient global ischaemia. Eur J Neurosci 1993; 5:292-7. [PMID: 8261109 DOI: 10.1111/j.1460-9568.1993.tb00496.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The re-expression of the developmentally regulated serine protease inhibitor glia-derived nexin (GDN) was investigated 1 year after transient global ischaemia induced by the four-vessel occlusion technique in rats. The CA1 sector of the hippocampus was severely shrunken due to the absence of pyramidal cells, but still clearly discernible due to the continued presence of the parvalbumin-containing GABAergic neurons. In this partially neuron-depleted hippocampus, GDN immunoreactivity was found in reactive astrocytes containing glial fibrillary acidic protein. GDN-positive astrocytes were also found in other lesioned areas, the reticular thalamic nucleus and the cerebellar cortex. Thus, the re-expression of GDN in the adult excitotoxically lesioned brain described previously in the gerbil model of ischaemia persists. The continued presence of the protease inhibitor might disturb the proteolytic balance and lead to the deposition of pathological breakdown products of proteins, e.g. beta-amyloid.
Collapse
Affiliation(s)
- C Nitsch
- Anatomisches Institut, Universität Basel, Switzerland
| | | | | | | | | |
Collapse
|
75
|
Gass P, Muelhardt C, Sommer C, Becker CM, Kiessling M. NMDA and glycine receptor mRNA expression following transient global ischemia in the gerbil brain. J Cereb Blood Flow Metab 1993; 13:337-41. [PMID: 8382215 DOI: 10.1038/jcbfm.1993.42] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Excitotoxic activation of postsynaptic N-methyl-D-aspartate (NMDA) receptors is thought to be a key event for the molecular pathogenesis of postischemic delayed neuronal death in CA1 hippocampus. To assess a possible interference of ischemia with NMDA receptor expression, transcription of the NMDA receptor 1 (NMDA-R1) gene was examined by in situ hybridization in the gerbil brain after 5 min of global ischemia and various recirculation intervals. In normal gerbil brain, NMDA-R1 was strongly expressed and equally abundant in CA1 and CA3 neurons. After ischemia, expression remained unchanged for 24 h, followed by a selective decline in mRNA levels in CA1 neurons, resulting in the complete disappearance of hybridization signals after 4 days. NMDA-R1 expression in forebrain neurons less vulnerable or resistant to ischemia including CA3 and dentate granule cells remained unchanged. Similar in situ data were obtained for the beta subunit of the inhibitory glycine receptor (Gly-R). This subunit is also abundantly expressed in the pyramidal cell layer of the hippocampus, but not known to be involved in the mechanisms of post-ischemic excitotoxicity.
Collapse
Affiliation(s)
- P Gass
- Center for Molecular Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
76
|
Yoshizumi H, Fujibayashi Y, Kikuchi H. A new approach to the integrity of dual blood-brain barrier functions of global ischemic rats. Barrier and carrier functions. Stroke 1993; 24:279-84; discussion 284-5. [PMID: 8421829 DOI: 10.1161/01.str.24.2.279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE We studied the influence of reperfusion on carrier and barrier functions of the blood-brain barrier after transient global ischemia in rats. METHODS We used iodine-125-labeled 3-iodo-alpha-methyl-L-tyrosine and carbon-14-labeled sucrose as tracers for studying carrier and barrier functions of the blood-brain barrier, respectively. Brain uptakes of these two tracers were measured in Wistar rats subjected to either 15- or 30-minute four-vessel occlusion developed by Pulsinelli and Brierly before recirculation for 3, 6, 24, 48, and 72 hours. Tracer (5 microCi) was injected intravenously in each rat 30 minutes before killing the animal. RESULTS Following 15- or 30-minute ischemia, [14C]sucrose uptakes were significantly higher at 3 and 6 hours of reperfusion before recovery to control values after reperfusing for 24 to 48 hours in almost all brain regions. However, a rebound in radioligand uptake was significantly manifested in some sites at 72 hours after reperfusion (p < 0.05 to p < 0.01). Uptakes of 125I-3-iodo-alpha-methyl-L-tyrosine were brain site-dependent: significantly (p < 0.05) higher in cortex (3 and 48 hours after reperfusion) and thalamus (3, 6, and 48 hours after reperfusion) but significantly (p < 0.05 to p < 0.01) lower in striatum, cortex (72 hours after reperfusion), and midbrain (6, 24, and 72 hours after reperfusion). Because the [14C]sucrose uptake in brain was 10% lower than that of 125I-3-iodo-alpha-methyl-L-tyrosine, the change in absolute transport of the latter tracer was approximated to its brain uptake. CONCLUSIONS The carrier and barrier functions of the blood-brain barrier should be evaluated separately. The radioligand 125I-3-iodo-alpha-methyl-L-tyrosine may serve as a useful tool to evaluate the carrier function of the blood-brain barrier after transient cerebral ischemia in rats.
Collapse
Affiliation(s)
- H Yoshizumi
- Department of Neurosurgery, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
77
|
Preston E, Sutherland G, Finsten A. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat. Neurosci Lett 1993; 149:75-8. [PMID: 8469386 DOI: 10.1016/0304-3940(93)90351-k] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A sensitive radiotracer method was used to explore the time course and regional pattern of blood-brain barrier (BBB) opening that occurs in a rat forebrain ischemia model that mimics temporary cardiac arrest. Immediately following 10 min of ischemia, transfer constants (Ki) for blood to brain permeation of [3H]sucrose were augmented severalfold, indicating widespread BBB opening. After 6 h, a delayed intensification of opening was evident in striatum and hippocampus, regions known to undergo selective, delayed neuronal death. There was generalized BBB recovery by 24 h except in experiments that involved prolonged ischemia (25 min) or concomitant brain hyperthermia (41 degrees C, 10 min). These protocols evoked a third opening; a marked upward increment in Ki and % H2O developed in neocortex between 6 and 24 h post-ischemia. Pharmacological or other manipulations of these temporal and regional patterns of altered transfer constants may aid understanding of the interplay between microvascular damage, edema, and neuronal death following brain ischemia.
Collapse
Affiliation(s)
- E Preston
- Biomedical NMR Section, National Research Council, Ottawa, Ont., Canada
| | | | | |
Collapse
|
78
|
Yokoi F, Komiyama T, Ito T, Hayashi T, Lio M, Hara T. Application of carbon-11 labelled nicotine in the measurement of human cerebral blood flow and other physiological parameters. EUROPEAN JOURNAL OF NUCLEAR MEDICINE 1993; 20:46-52. [PMID: 8420783 DOI: 10.1007/bf02261245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using positron emission tomography (PET), we measured the regional cerebral blood flow (rCBF) in five normal human subjects after intravenous injection of carbon-11 labeled (R)nicotine. The rCBF of the same subjects was measured by PET using the C15O2 inhalation steady-state method. The distribution of 11C activity in the brain after injection of 11C-(R)nicotine was almost equivalent to the CBF image obtained with the C15O2 inhalation stead-state method. The kinetics of 11C-(R)nicotine in the brain was analysed using a two-compartment model consisting of vascular and brain tissue compartments. The rCBF values obtained with 11C-(R)nicotine were higher than with C15O2 gas. The relatively long fixed distribution of 11C-(R)nicotine with a short uptake period allows stimulation studies by measurement of CBF to be performed with better photon flux and a longer imaging time than are possible with H215O.
Collapse
Affiliation(s)
- F Yokoi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Saito K, Nowak TS, Markey SP, Heyes MP. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem 1993; 60:180-92. [PMID: 8417138 DOI: 10.1111/j.1471-4159.1993.tb05836.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood-brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Saito
- Section on Analytical Biochemistry, National Institute of Mental Health, Bethesda, MD 20892
| | | | | | | |
Collapse
|
80
|
Dirnagl U. Cerebral ischemia: the microcirculation as trigger and target. PROGRESS IN BRAIN RESEARCH 1993; 96:49-65. [PMID: 8332748 DOI: 10.1016/s0079-6123(08)63258-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- U Dirnagl
- Department of Neurology, University of Munich, Germany
| |
Collapse
|
81
|
Abstract
Biosynthesis of the polyamines spermidine and spermine and their precursor putrescine is controlled by the activity of the two key enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC). In the adult brain, polyamine synthesis is activated by a variety of physiological and pathological stimuli, resulting most prominently in an increase in ODC activity and putrescine levels. The sharp rise in putrescine levels observed following severe cellular stress is most probably the result of an increase in ODC activity and decrease in SAMDC activity or an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Spermidine and spermine levels are usually less affected by stress and are reduced in severely injured areas. Changes of polyamine synthesis and metabolism are most pronounced in those pathological conditions that induce cell injury, such as severe metabolic stress, exposure to neurotoxins or seizure. Putrescine levels correlate closely with the density of cell necrosis. Because of the close relationship between the extent of post-stress changes in polyamine metabolism and density of cellular injury, it has been suggested that polyamines play a role in the manifestation of structural defects. Four different mechanisms of polyamine-dependent cell injury are plausible: (1) an overactivation of calcium fluxes and neurotransmitter release in areas with an overshoot in putrescine formation; (2) disturbances of the calcium homeostasis resulting from an impairment of the calcium buffering capacity of mitochondria in regions in which spermine levels are reduced; (3) an overactivation of the NMDA receptor complex caused by a release of polyamines into the extracellular space during ischemia or after ischemia and prolonged recirculation in the tissue surrounding severely damaged areas; (4) an overproduction of hydrogen peroxide resulting from an activation of the interconversion of spermidine into putrescine via the enzymes spermidine N-acetyltransferase and polyamine oxidase. Insofar as a sharp activation of polyamine synthesis is a common response to a variety of physiological and pathological stimuli, studying stress-induced changes in polyamine synthesis and metabolism may help to elucidate the molecular mechanisms involved in the development of cell injury induced by severe stress.
Collapse
Affiliation(s)
- W Paschen
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| |
Collapse
|
82
|
Silver IA, Erecińska M. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab 1992; 12:759-72. [PMID: 1324251 DOI: 10.1038/jcbfm.1992.107] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Changes in intra- and extracellular [Ca2+] and [H+], together with alterations in tissue PO2 and local blood flow, were measured in areas CA1 and CA3 of the hippocampus during recovery (up to 8 h) after an 8-min period of low-flow ischemia. Restoration of blood supply was followed by an immediate rise in flow and tissue PO2 above normal, with large fluctuations in both persisting for up to 4 h. In area CA1, [Ca2+]i decreased rapidly from an ischemic mean value of 30 microM to a control mean level of 73.1 nM in 20-30 min, whereas normalization of [Ca2+]e took approximately 1 h. Recovery of [Ca2+]i was accelerated by preischemic administration of a calcium antagonist, nifedipine, and a free radical scavenger, N-tert-butyl-alpha-phenylnitrone (PBN), but not by MK-801, a blocker of N-methyl-D-aspartate receptors. There was a secondary rise in [Ca2+]i in many cells beginning approximately 2 h after reperfusion. This was attenuated somewhat by PBN but not clearly influenced by either nifedipine or MK-801. Changes of [Ca2+]i in area CA3 were much smaller and slightly slower than in area CA1 and were not affected by the drugs mentioned above. In both areas CA1 and CA3, pHe and pHi fell during ischemia to an average value of 6.2, from which there was a rapid initial recovery in the first 5-10 min when blood flow was restored. Thereafter tissue pH rose slowly and did not reach control levels for approximately 1 h, and in some microareas not at all. It is concluded that (a) effective mechanisms for restoring normal [Ca2+]i remain intact after 8 min of low-flow ischemia; (b) in neurons of area CA1, some insidious change in the homeostasis of calcium triggers a secondary rise in its free cytosolic concentration, which may be causally related to activation of irreversible cell damage; and (c) the changes in [Ca2+]i and [Ca2+]e during and following 8 min of ischemia can be adequately accounted for by movements of a fixed pool of Ca between intra- and extracellular compartments, and possible mechanisms are discussed.
Collapse
Affiliation(s)
- I A Silver
- Department of Pathology and Microbiology, University of Bristol Medical School, England
| | | |
Collapse
|
83
|
Robinson PJ, Noronha J, DeGeorge JJ, Freed LM, Nariai T, Rapoport SI. A quantitative method for measuring regional in vivo fatty-acid incorporation into and turnover within brain phospholipids: review and critical analysis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1992; 17:187-214. [PMID: 1467810 DOI: 10.1016/0165-0173(92)90016-f] [Citation(s) in RCA: 208] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An experimental method and its associated mathematical model are described to quantitate in vivo incorporation rates into and turnovers of fatty acids (FAs) within stable brain metabolic compartments, particularly phospholipids. A radiolabeled FA is injected i.v. in a rat, and arterial plasma unacylated FA radioactivities and unlabeled concentrations are sampled until the animal is killed after 15 min, when the brain is analyzed biochemically or with quantitative autoradiography. Unbound unacylated label in blood easily crosses the blood-brain barrier; rapidly equilibrates in the unacylated FA, acyl-CoA and phosphatidate-diacylglycerol brain pools; then is incorporated into phospholipids and other stable metabolic compartments. Uptake and incorporation of labeled FAs are independent of cerebral blood flow at constant brain blood volume. Different labeled FAs enter specific sn positions of different brain phospholipids, suggesting that a combination of probes can be used to investigate metabolism of these phospholipids. Thus, [9,10-3-H]palmitate preferentially labels the sn1 position of phosphatidylcholine; [1-14C]arachidonate the sn2 positions of phosphatidylinositol and phosphatidylcholine; and [1-14C]docosahexaenoate the sn2 positions of phosphatidylethanolamine and phosphatidylcholine. The FA model provides an operational equation for rates of incorporation of FAs into brain phospholipids, taking into account intracerebral recycling and de novo synthesis of the FA, as well as entry into brain of FA from acylated blood sources. The equation is essentially independent of specific details of the proposed model, and can be used to calculate turnovers and half-lives of FAs within different phospholipid classes. For the model to be most applicable, experiments should satisfy conditions for pulse-labeling of the phospholipids, with brain sampling times short enough to minimize exchange of label between stable metabolic compartments. A 15-20 min sampling time satisfies these criteria. The FA method has been used to elucidate the dynamics of brain phospholipids metabolism in relation to brain development, brain tumor, chronically reduced auditory input, transient ischemic insult, axotomy with and without nerve regeneration, and cholinergic stimulation in animals with or without a chronic unilateral lesion of the nucleus basalis magnocellularis.
Collapse
Affiliation(s)
- P J Robinson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
84
|
Kawagoe J, Abe K, Sato S, Nagano I, Nakamura S, Kogure K. Distributions of heat shock protein-70 mRNAs and heat shock cognate protein-70 mRNAs after transient global ischemia in gerbil brain. J Cereb Blood Flow Metab 1992; 12:794-801. [PMID: 1506443 DOI: 10.1038/jcbfm.1992.110] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Distributions of heat shock protein (HSP)-70 mRNAs and heat shock cognate protein (HSC)-70 mRNAs after 10 min of transient global ischemia were investigated in gerbil forebrain by in situ hybridization using cloned cDNA probes selective for the mRNAs. Expression of HSP70 immunoreactivity was also examined in the same brains. In hippocampal CA1 neuronal cells, in which only a minimal induction of immunoreactive HSP70 protein was found, the strong hybridization for HSP70 mRNA disappeared at around 2 days before the death of CA1 cells became evident. Furthermore, in hippocampal CA3 cells, a striking induction of HSP70 mRNA was sustained even at 2 days along with a prominent accumulation of HSP70 immunoreactivity. In contrast to the case of HSP70 mRNA, HSC70 mRNA was present in most neuronal cells, especially dense in CA3 cells, of the sham brain. A co-induction of HSP70 and HSC70 mRNAs was observed in several cell populations after the reperfusion with a peak at 8 h, although the magnitude of HSC70 mRNA induction was lower than that of HSP70 mRNA, particularly in CA1 cells. The expression of HSC70 mRNA in CA1 cells also disappeared at around 2 days. All the induced signals of HSP70 and HSC70 mRNAs in other cell populations were diminished and returned to the sham level, respectively, by 7 days. These results are the first to show the time courses of distribution of HSP70 and HSC70 mRNAs and the immunoreactive HSP70 protein in the same gerbil brain after ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Kawagoe
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
85
|
Sims NR. Energy metabolism and selective neuronal vulnerability following global cerebral ischemia. Neurochem Res 1992; 17:923-31. [PMID: 1407279 DOI: 10.1007/bf00993269] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, Flinders University of South Australia, Adelaide
| |
Collapse
|
86
|
Kuroiwa T, Bonnekoh P, Hossmann KA. Laser doppler flowmetry in CA1 sector of hippocampus and cortex after transient forebrain ischemia in gerbils. Stroke 1992; 23:1349-54. [PMID: 1519291 DOI: 10.1161/01.str.23.9.1349] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Local differences in the hemodynamic response to transient ischemia could be involved in the development of selective vulnerability. These differences were studied in vulnerable and nonvulnerable regions of the brain. METHODS Five gerbils were subjected to 10 minutes of bilateral forebrain ischemia, and cerebral blood flow was measured continuously in the frontal cortex and CA1 sector of the hippocampus using laser Doppler flowmetry. Carotid artery pressure was recorded simultaneously with a pressure transducer. RESULTS After induction of ischemia, blood flow in the cortex and CA1 sector decreased to 11.8% and 18.0% of the baseline value, respectively. After release of the vascular occlusion, blood flow in the cortex returned to the preischemic level at 7.5 minutes (recovery time), reached the hyperemic peak (123.8%) at 12.4 minutes (peak latency), and again decreased to the preischemic level at 27.2 minutes. In the CA1 sector, blood flow returned to the preischemic level at 2.1 minutes, reached the hyperemic peak (122.2%) at 5.7 minutes, and decreased again to the preischemic level at 21.3 minutes. In both the cortex and CA1 sector, recovery time and peak latency correlated inversely with the amount of residual blood flow during ischemia. Histologically, cortical neurons were not injured but only 14.6% of CA1 neurons survived 1 week after ischemia. CONCLUSIONS CA1 neurons were selectively injured despite the milder percentage decrease of blood flow during ischemia and the more prompt recovery of flow after ischemia. These findings stress the importance of intrinsic rather than hemodynamic factors in the pathogenesis of selective vulnerability of CA1 neurons after transient bilateral forebrain ischemia.
Collapse
Affiliation(s)
- T Kuroiwa
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, FRG
| | | | | |
Collapse
|
87
|
Ikeda J, Mies G, Nowak TS, Joó F, Klatzo I. Evidence for increased calcium influx across the choroid plexus following brief ischemia of gerbil brain. Neurosci Lett 1992; 142:257-9. [PMID: 1454224 DOI: 10.1016/0304-3940(92)90386-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following 5 min ischemia of gerbil brain, unidirectional transfer of calcium from plasma to cerebrospinal fluid was measured quantitatively with 45CaCl2 at 4 days postischemic recirculation. 45Ca influx across the choroid plexus increased significantly from 0.0101 +/- 0.001 min-1 measured in sham-operated animals (n = 15) to 0.0294 +/- 0.002 min-1 determined in ischemic animals (n = 21; P less than 0.05). Histological examination of choroid plexus was carried out in Cresyl violet-stained sections from gerbils subjected to 5 min ischemia followed by 4 days (n = 6) and 7 days (n = 7) postischemic recirculation. Increased calcium transfer to cerebrospinal fluid was associated with cell damage of choroid plexus observed at 4 days postischemia. Endothelial choroid plexus injury was still detectable at 7 days after the ischemic insult suggesting a long-lasting pathomorphological process. Postischemic alterations in choroid plexus functions apparently expose brain tissue to much higher calcium influx into cerebrospinal fluid which, in turn, may contribute to calcium-related cell damage of the central nervous system.
Collapse
Affiliation(s)
- J Ikeda
- Laboratory of Neuropathology and Neuroanatomical Sciences, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
88
|
Furukawa K, Yamana K, Kogure K. Postischemic alterations of complex spike cell discharges and evoked potentials in rat hippocampal CA1 region. Acta Neurol Scand 1992; 86:142-7. [PMID: 1329428 DOI: 10.1111/j.1600-0404.1992.tb05056.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Postischemic alterations of spontaneous discharges of complex spike cells (CS cells) and evoked potential in the rat hippocampal CA1 region were studied. Following 5 min of ischemia, CS cell discharge reappeared approximately 5 min after reperfusion and the frequency remained low, reaching a final value of 66.1 +/- 16.0% (n = 11) of preischemic frequency 2 h later. However, only one of 7 CS cells subjected to 20 min of ischemia exhibited discharges 2 h later. In the group with 5 min of ischemia, we obtained CS cell discharges from all rats at both 1 and 2 days after ischemia, with cluster frequencies indistinguishable from preischemic levels. In the group with 20 min of ischemia, discharges were noted in 7 neurons of 11 rats after 1 day, and in only 2 neurons of 8 rats after 2 days: their mean frequencies were lower than preischemic levels. In experiments of evoked potentials, the mean percentages of amplitudes of the post-synaptic potential (psp) 2 h after 3, 5 and 20 min of ischemia were 98.0 +/- 10.7 (n = 8), 70.7 +/- 8.22 (n = 9) and 45.1 +/- 6.34% (n = 7) of preischemic amplitudes, respectively. These results suggest that the functional deterioration of spike generation, as well as synaptic transmission, starts during transient ischemia and/or at the early stage of reperfusion.
Collapse
Affiliation(s)
- K Furukawa
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
89
|
Hoffmann MC, Nitsch C, Scotti AL, Reinhard E, Monard D. The prolonged presence of glia-derived nexin, an endogenous protease inhibitor, in the hippocampus after ischemia-induced delayed neuronal death. Neuroscience 1992; 49:397-408. [PMID: 1436472 DOI: 10.1016/0306-4522(92)90105-b] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The presence of glia-derived nexin and glia fibrillary acidic protein (GFAP) was investigated in the hippocampus of Mongolian gerbils (Meriones unguiculatus) after transient forebrain ischemia. Bilateral clamping of the common carotid arteries for 7 min resulted in selective degeneration of CA1 pyramidal cells after a delay of three to four days, the so-called delayed neuronal death. Immunoreactivity for glia-derived nexin was found in astrocytes of all CA1 layers and was detectable until day 90 (the longest survival time studied). Astroglial reactivity was demonstrated in parallel by staining for GFAP. The co-localization of glia-derived nexin and GFAP was confirmed by double immunocytochemistry. Ultrastructural studies showed the exclusive presence of glia-derived nexin in astrocytes, in the vicinity of degenerating and preserved neuronal structures. Perivascular glia was intensely stained, but endothelial cells were devoid of immunoreactivity. Glia-derived nexin is a potent protease inhibitor with in vitro neurite-promoting activity. During adulthood, it is mainly present in the olfactory system, where receptor neurons are constantly being replaced. The ability of astrocytes to renew the expression of glia-derived nexin after selective delayed neuronal death and the prolonged presence of the protease inhibitor in a zone where degeneration occurs in the immediate neighborhood of preserved neuronal elements indicate that glia-derived nexin may play a role in structural rearrangements of the central nervous system.
Collapse
Affiliation(s)
- M C Hoffmann
- Section of Neuroanatomy, Anatomy Institute of the University, Basel, Switzerland
| | | | | | | | | |
Collapse
|
90
|
Abstract
The objective was to explore whether the increased incorporation of 45Ca into selectively vulnerable neurons, observed after transient ischemia, can be explained by enhanced blood-tissue and/or enhanced blood-CSF transfer. Anesthetized rats were subjected to 15 min of forebrain ischemia, with recirculation for 20 or 60 min, or 24 h. The transfer constants (Kin) and unidirectional fluxes (Jin) for calcium in tissue and CSF were determined following i.v. injection of 45Ca, integration of the curve for plasma-specific activity over 10 min, and sampling of cisternal CSF, and tissue (cortex, caudoputamen, hippocampus, and cerebellum). Predictably, values for Kin and Jin in control animals were much larger in CSF than in tissues, and hippocampus had higher values than the other areas, probably because of its closeness to the lateral ventricle. Ischemia failed to alter the Kin and Jin values, demonstrating that the low permeability of blood-brain and blood-CSF barriers to calcium is upheld both in the immediate recirculation period, and after 24 h of recirculation. The results support the contention that the increased 45Ca incorporation during recovery is due to increased calcium cycling across functionally altered cell membranes.
Collapse
Affiliation(s)
- S Ohta
- Laboratory for Experimental Brain Research, University of Lund, Sweden
| | | | | |
Collapse
|
91
|
Klisch J, Bode-Greuel KM. Ketanserin reduces neuronal calcium accumulation and cell death in the hippocampus of the Mongolian gerbil after transient forebrain ischemia. Brain Res 1992; 578:1-7. [PMID: 1511266 DOI: 10.1016/0006-8993(92)90221-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Excessive neuronal activity combined with an increased release of neurotransmitters is supposed to contribute to the delayed neuronal degeneration in animal models of transient cerebral ischemia. Since evidence is accumulating that serotonin (5-HT) exerts an excitatory effect on neurons via 5-HT2 receptors we tested the hypothesis that 5-HT2 receptor antagonists could protect neurons in the gerbil after transient bilateral carotid occlusion. In a first series of experiments, the 5-HT2 receptor antagonist ketanserin was injected intraperitoneally 15 min prior to 5 min of forebrain ischemia and given twice daily on the following 3 days. At a dose of 10 mg/kg i.p., the number of intact hippocampal CA1 neurons was significantly higher than in the saline-treated group and reached 74% of the sham-operated controls. In addition, the degree of neuronal damage correlated with an increased intracellular Ca2+ content in CA1 pyramidal neurons as revealed by arsenazo(III) staining with a procedure modified for paraffin sections. In a second series of experiments, ketanserin (10 mg/kg) was injected at various times after onset of ischemia. Up to a period of 90 min after ischemia, the number of intact CA1 pyramidal cells in ketanserin-treated animals was still significantly higher than in the saline-treated group. These results indicate that 5-HT2 receptor antagonists may protect neurons against ischemic damage even when the treatment is started after onset of ischemia. It remains to be investigated whether the neuroprotective effect of ketanserin is due to a neuronal action or to an inhibition of cerebrovascular vasospasm.
Collapse
Affiliation(s)
- J Klisch
- Institute for Neurobiology, Troponwerke, Köln, FRG
| | | |
Collapse
|
92
|
Dawson DA, Robinson MJ, Macrae IM, Reid JL, McCulloch J. Autoradiographic evaluation of forskolin and D1 dopamine receptor binding in a rat model of focal cerebral ischaemia. Brain Res 1992; 577:210-7. [PMID: 1535017 DOI: 10.1016/0006-8993(92)90276-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-ischaemic changes in forskolin and D1 dopamine receptor (labelled with SCH23390) binding sites were evaluated in a rat unilateral middle cerebral artery occlusion (MCA) model. The changes in binding were assessed acutely (2 h post-MCA occlusion) in relation to local cerebral blood flow (lCBF) and chronically (24 h post-MCA occlusion) in relation to histopathological alterations. Two hours following occlusion lCBF was significantly reduced throughout the territory of the MCA. Despite the widespread hypoperfusion, significant reductions in binding were only observed in the dorsolateral caudate nucleus--the region with the most profound reduction in blood flow (6% of the control contralateral lCBF value). Forskolin binding sites were reduced to 40% of the contralateral value while D1 binding sites were reduced to 80% of the contralateral value. Analysis of the relationship between forskolin binding and CBF in the caudate nucleus revealed that the ischaemic threshold for alteration in forskolin binding sites 2 h after MCA occlusion was approximately 34 ml/100 g/min. Twenty-four h post-occlusion forskolin binding sites were further reduced in the dorsolateral caudate nucleus (to 6% of contralateral) while D1 binding showed minimal reduction from that observed at 2 h. The areas of reduced binding corresponded to the area of histopathological change in the caudate nucleus and rostral neocortex. In conclusion, reduction in forskolin binding progresses further than reduction in D1 binding within the first 24 h following focal cerebral ischaemia. For both forskolin and D1 binding sites, the areas of reduced binding 24 h post-MCA occlusion predicted the area of histopathological change.
Collapse
Affiliation(s)
- D A Dawson
- University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, UK
| | | | | | | | | |
Collapse
|
93
|
Kuroda Y, Inglis FM, Miller JD, McCulloch J, Graham DI, Bullock R. Transient glucose hypermetabolism after acute subdural hematoma in the rat. J Neurosurg 1992; 76:471-7. [PMID: 1738029 DOI: 10.3171/jns.1992.76.3.0471] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic brain damage occurs in most patients with acute subdural hematoma, yet many aspects of the distribution and extent of this damage remain unexplained. Previous studies in rat model, which produces a region of infarction under the hematoma, have implicated an "excitotoxic" mechanism, suggesting that high concentrations of excitatory amino acids may exacerbate ischemic damage. A study is described in which local glucose utilization is measured 2 or 4 hours after induction of acute subdural hematoma in the rat. These changes are compared to those produced by introducing the same volume of inert silicone gel into the subdural space. Massive increases (up to 142%) in glucose utilization occurred throughout both hippocampi and in a variable zone around the ischemic core, but these had normalized by 4 hours after blood injection. Hippocampal hypermetabolism was not seen after introduction of the silicone mass, suggesting that diffusible substances from the clotted blood may be responsible for these changes. This transient hypermetabolism accords with an excitotoxic process, which may amplify brain damage after acute subdural hematoma.
Collapse
Affiliation(s)
- Y Kuroda
- Department of Neurosurgery, Wellcome Surgical Institute, Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
94
|
Jacobs TP, Kempski O, McKinley D, Dutka AJ, Hallenbeck JM, Feuerstein G. Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia. Stroke 1992; 23:367-73. [PMID: 1542898 DOI: 10.1161/01.str.23.3.367] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Delayed deterioration of neurological function after central nervous system ischemia is a well-documented clinical problem. The purpose of our study was to elucidate the role of spinal cord blood flow and spinal cord-blood barrier integrity in the evolution of delayed neurological deterioration after transient spinal cord ischemia in rabbits. METHODS Anesthetized rabbits were subjected to lumbar spinal cord ischemia (25 minutes) and variable periods of reperfusion (30 minutes to 48 hours after ischemia). Regional spinal cord blood flow was monitored by carbon-14-labeled iodoantipyrine autoradiography; vascular permeability was assessed by quantitative microhistofluorescence of Evans blue-albumin in frozen sections of spinal cord. Hindlimb motor function was assessed by standard scoring system and tissue edema by wet/dry weight method. RESULTS Hindlimb motor function indicated complete paralysis during ischemia and partial gradual recovery upon reperfusion (up to 8 hours), followed by progressive deterioration to severe deficits over 48 hours. Severe vascular permeability disruption was noticed early (30 minutes) after reperfusion, but almost complete recovery reestablished at 8 hours was followed by a secondary progressive increase in vascular permeability. Blood flow was reduced by 20-30% (p less than 0.01) 4 hours after ischemia in the gray matter, but hyperemia (200-300%, p less than 0.01) was observed 12-24 hours after ischemia. Spinal cord water content increased by 5.7% (p less than 0.05) 24 hours after ischemia. CONCLUSIONS This study demonstrates that delayed neurological and motor deterioration after spinal cord ischemia is associated with severe progressive breakdown of spinal cord-blood barrier integrity that develops late (hours) after the injury. Our data suggest that no ischemic insult in early or late reperfusion is associated with delayed motor deterioration.
Collapse
Affiliation(s)
- T P Jacobs
- National Institutes of Health, Bethesda, Md
| | | | | | | | | | | |
Collapse
|
95
|
Maeda M, Akai F, Nishida S, Yanagihara T. Intracerebral distribution of albumin after transient cerebral ischemia: light and electron microscopic immunocytochemical investigation. Acta Neuropathol 1992; 84:59-66. [PMID: 1502882 DOI: 10.1007/bf00427216] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The blood-brain barrier breaks down following cerebral ischemia, but the exact sequence of events for extravasation of serum proteins and their parenchymal distribution remain uncertain. We studied the distribution of serum albumin in the hippocampus of the gerbil brain using light and electron microscopic immunocytochemical techniques. With light microscopy, there was no reaction for albumin for the first 12 h after unilateral common carotid artery occlusion for 10 min and reperfusion. At 12 h, the reaction was weak and limited to the neuropil in the subiculum-CA1 region (between the subiculum and the medial CA1 region). After 24 h, the reaction became intense in the neuropil and neuronal perikarya in the subiculum-CA1 and medial CA1 regions. The electron microscopic immunocytochemical study of the subiculum-CA1 and medial CA1 regions revealed electron-dense immunoprecipitates in the extracellular space and the peripheral part of the apical dendrites as early as 30 min after reperfusion and in the astrocytic cytoplasm after reperfusion for 1 h. However, immunoprecipitates were not found in the neuronal perikarya until after reperfusion for 24 h. The present study demonstrated prompt appearance of albumin in the extracellular space of the brain parenchyma after re-establishment of cerebral circulation and prompt accumulation in the peripheral part of the dendrites with spreading to neuronal perikarya, likely in the process of degeneration and death.
Collapse
Affiliation(s)
- M Maeda
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
96
|
Morioka T, Kalehua AN, Streit WJ. Progressive expression of immunomolecules on microglial cells in rat dorsal hippocampus following transient forebrain ischemia. Acta Neuropathol 1992; 83:149-57. [PMID: 1557947 DOI: 10.1007/bf00308474] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We show a differential up-regulation of immunomolecules in the rat dorsal hippocampus accompanying neuronal cell death as a consequence of transient forebrain ischemia (four-vessel occlusion model). Using a panel of monoclonal antibodies (mAbs), we have examined the time course of expression of major histocompatibility complex (MHC) antigens class I (OX-18) and class II (OX-6), leukocyte common antigen (OX-1), CD4 (W3/25) and CD8 (OX-8) antigens, CR3 complement receptor (OX-42), as well as brain macrophage antigen (ED2). The study was performed at time intervals ranging from 1 to 28 days after reperfusion. Throughout all post-ischemic time periods, strongly enhanced immunoreactivity on microglial cells in the CA1 region and dentate hilus and, to a lesser extent, in CA3 was demonstrated with mAb OX-42. MHC class I-positive cells (OX-18) appeared on day 2, whereas cells immunoreactive with OX-1 and W3/25 became evident in the CA1 and hilar regions on post-ischemic day 6. In contrast, MHC class II (Ia) antigen was first detected on indigenous microglia by day 13. In some animals, the OX-8 antibody resulted in the labelling of scattered CD8-positive lymphocytes, but perivascular inflammatory infiltrates were absent. No changes in the expression of ED2 immunoreactivity on perivascular cells could be observed. The results show that following ischemic injury, microglial cells demonstrate a time-dependent up-regulation and de novo expression of certain immunomolecules, indicative of their immunocompetence. The findings are compared with those obtained in other models of brain injury.
Collapse
Affiliation(s)
- T Morioka
- Department of Neurological Surgery, University of Florida Health Science Center, Gainesville 32610-0244
| | | | | |
Collapse
|
97
|
Cole DJ, Matsumura JS, Drummond JC, Schultz RL, Wong MH. Time- and pressure-dependent changes in blood-brain barrier permeability after temporary middle cerebral artery occlusion in rats. Acta Neuropathol 1991; 82:266-73. [PMID: 1759559 DOI: 10.1007/bf00308811] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
After 180 min of temporary middle cerebral artery occlusion in rats, the affect of phenylephrine-induced hypertension on blood-brain barrier permeability was assessed. One of the following blood-pressure regimens was maintained during either a 30- or 120-min period of reperfusion: (a) 30/Norm, 30 min of normotensive reperfusion was allowed; (b) 30/HTN, mean arterial blood pressure was increased by 35 mm Hg during 30 min of reperfusion; (c) 120/Norm, 120 min of normotensive reperfusion was allowed; or (d) 120/HTN, mean arterial blood pressure was increased by 35 mm Hg during 120 min of reperfusion. Evans blue (30 mg/kg) was given, and brains were analyzed for Evans blue by spectrophotometry. Evans blue (microgram/g brain tissue, mean +/- SD) was greater (P less than 0.05) in both hypertensive groups versus their time matched normotensive groups (30/HTN: 80 +/- 16 versus 18 +/- 6 in the 30/Norm group; 120/HTN: 17 +/- 6 versus 8 +/- 3 in the 120/Norm group). In addition, Evans blue was greater (P less than 0.05) in both 30-min groups versus their pressure matched 120-min groups (30/Norm: 18 +/- 6 versus 8 +/- 3 in the 120/Norm group; 30/HTN: 80 +/- 16 versus 17 +/- 6 in the 120/HTN group). The data are consistent with previous studies which have demonstrated an opening of the blood-brain barrier at the onset of reperfusion. In addition, the data support a hypothesis that changes in blood-brain barrier permeability are more sensitive to hypertension in the early period of reperfusion.
Collapse
Affiliation(s)
- D J Cole
- Department of Anesthesiology, Loma Linda University, CA 92354
| | | | | | | | | |
Collapse
|
98
|
Marciani MG, Santone G, Sancesario G, Massa R, Stanzione P, Bernardi G. Epileptic activity following cerebral ischemia in Mongolian gerbils is depressed by CPP, a competitive antagonist of the N-methyl-D-aspartate receptor. Neurosci Lett 1991; 129:306-10. [PMID: 1836055 DOI: 10.1016/0304-3940(91)90487-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 10-min bilateral carotid occlusion (BCO) in Mongolian gerbils induces transient generalized epileptic discharges in the hippocampal and cortical regions, which are followed by long lasting interictal spiking activity. An initial peak of this activity occurs within 18-36 h after BCO, then it decreases slowly and completely disappears by the 6th-7th day. On the 7th day, morphological evidence shows a selective loss of CA1 hippocampal neurons. 4-(3-Phosphonopropyl)-2-piperazine-carboxylic acid (CPP), a competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor was administered (7 or 15 mg/kg i.p.) immediately after clamping, and again every 12 h for 3 consecutive days. It induced a dose-related depression of epileptic activity, while, on the other hand, at both dosages, it always prevented the loss of CA1 neurons. The results are discussed in view of the different mechanisms mediating cell damage and epileptic activity.
Collapse
Affiliation(s)
- M G Marciani
- Clinica Neurologica, Dipartimento di Sanità Pubblica, II Università di Roma-Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
99
|
Kitagawa K, Matsumoto M, Tagaya M, Ueda H, Oku N, Kuwabara K, Ohtsuki T, Handa N, Kimura K, Kamada T. Temporal profile of serum albumin extravasation following cerebral ischemia in a newly established reproducible gerbil model for vasogenic brain edema: a combined immunohistochemical and dye tracer analysis. Acta Neuropathol 1991; 82:164-71. [PMID: 1927273 DOI: 10.1007/bf00294441] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the temporal profile of the extravasation of serum albumin in a reproducible gerbil model of unilateral cerebral ischemia, using immunohistochemical and dye-tracer techniques to evaluate albumin accumulation and the occurrence of active extravasation, respectively. After 30 min of cerebral ischemia and subsequent reperfusion, immunostaining for albumin became visible in the lateral part of the thalamus during the first 3 h, and then expanded to other brain regions up to 24 h. At both 24 h and 3 days after reperfusion, massive extravasation of albumin was noted in the whole ischemic hemisphere, and this had decreased again by 7 days after reperfusion. The extent and the degree of albumin immunopositivity were almost the same in all animals examined at each period after reperfusion. The extravasation of Evans blue, which was allowed to circulate for 30 min before death, was limited to the lateral part of the thalamus during the first 6 h of reperfusion. In the circumscribed area of massive albumin extravasation, many neurons were immunopositive for albumin; most of these neurons appeared to be intact and also showed immunostaining for microtubule-associated protein 2. The current investigation clearly demonstrated that (1) albumin extravasation was produced with reliable reproducibility in this model, (2) the lateral part of the thalamus was the region most vulnerable to ischemic blood-brain barrier damage, and (3) many apparently intact neurons in the ischemic region were positive for albumin.
Collapse
Affiliation(s)
- K Kitagawa
- First Department of Internal Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ogawa N, Haba K, Mizukawa K, Asanuma M, Hirata H, Mori A. Loss of N-methyl-D-aspartate (NMDA) receptor binding in rat hippocampal areas at the chronic stage after transient forebrain ischemia: histological and NMDA receptor binding studies. Neurochem Res 1991; 16:519-24. [PMID: 1836545 DOI: 10.1007/bf00974869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although neuronal death following brain ischemia was originally considered to be due to an energy deficiency resulting from an impaired respiratory chain, the observation of "delayed neuronal death" indicated some other factor. It is believed that delayed neuronal death after transient forebrain ischemia appears as a result of release of glutamate, an excitatory amino acid. In the present study, transient ischemia for 20 minutes in a rat four-vessel occlusion model was induced, and serial changes in histology and N-methyl-D-aspartate receptor (NMDA-R) binding were evaluated up to the chronic stage. Destruction of pyramidal cells and extensive astrocytic proliferation in the CA1 area of the hippocampus was completed by 10 days after cerebral ischemia followed by cerebral blood recirculation. However, the glutamate receptor subtype, NMDA-R, showed no change in all brain regions until after 10 days, but decreased in the hippocampus to 50% after 21 days despite no evidence of histological progression of neuronal death. The results show that the time course for appearance of light microscopic damage in the hippocampal region does not parallel that for depletion of NMDA-R binding sites.
Collapse
Affiliation(s)
- N Ogawa
- Department of Neurochemistry, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|