51
|
Mahmud AR, Ema TI, Siddiquee MFR, Shahriar A, Ahmed H, Mosfeq-Ul-Hasan M, Rahman N, Islam R, Uddin MR, Mizan MFR. Natural flavonols: actions, mechanisms, and potential therapeutic utility for various diseases. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:47. [PMID: 37216013 PMCID: PMC10183303 DOI: 10.1186/s43088-023-00387-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Flavonols are phytoconstituents of biological and medicinal importance. In addition to functioning as antioxidants, flavonols may play a role in antagonizing diabetes, cancer, cardiovascular disease, and viral and bacterial diseases. Quercetin, myricetin, kaempferol, and fisetin are the major dietary flavonols. Quercetin is a potent scavenger of free radicals, providing protection from free radical damage and oxidation-associated diseases. Main body of the abstract An extensive literature review of specific databases (e.g., Pubmed, google scholar, science direct) were conducted using the keywords "flavonol," "quercetin," "antidiabetic," "antiviral," "anticancer," and "myricetin." Some studies concluded that quercetin is a promising antioxidant agent while kaempferol could be effective against human gastric cancer. In addition, kaempferol prevents apoptosis of pancreatic beta-cells via boosting the function and survival rate of the beta-cells, leading to increased insulin secretion. Flavonols also show potential as alternatives to conventional antibiotics, restricting viral infection by antagonizing the envelope proteins to block viral entry. Short conclusion There is substantial scientific evidence that high consumption of flavonols is associated with reduced risk of cancer and coronary diseases, free radical damage alleviation, tumor growth prevention, and insulin secretion improvement, among other diverse health benefits. Nevertheless, more studies are required to determine the appropriate dietary concentration, dose, and type of flavonol for a particular condition to prevent any adverse side effects.
Collapse
Affiliation(s)
- Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902 Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229 Bangladesh
| | | | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka, 1217 Bangladesh
| | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, 1208 Bangladesh
| | - Md. Mosfeq-Ul-Hasan
- Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200 Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Rahatul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | | |
Collapse
|
52
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
53
|
Zhuang WB, Li YH, Shu XC, Pu YT, Wang XJ, Wang T, Wang Z. The Classification, Molecular Structure and Biological Biosynthesis of Flavonoids, and Their Roles in Biotic and Abiotic Stresses. Molecules 2023; 28:molecules28083599. [PMID: 37110833 PMCID: PMC10147097 DOI: 10.3390/molecules28083599] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
With the climate constantly changing, plants suffer more frequently from various abiotic and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful environmental conditions. Flavonoids are involved in a variety of biological activities in plants, which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic technologies in order to explore the molecular mechanism of genes associated with flavonoid biosynthesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation of flavonoid content. In the present review, the classification, molecular structure and biological biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic and abiotic stress in plants were also included. In addition, the effect of applying genes associated with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic stresses was also discussed.
Collapse
Affiliation(s)
- Wei-Bing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Hang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiao-Chun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yu-Ting Pu
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Xiao-Jing Wang
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
54
|
Chitosan nanoparticles efficiently enhance the dispersibility, stability and selective antibacterial activity of insoluble isoflavonoids. Int J Biol Macromol 2023; 232:123420. [PMID: 36708890 DOI: 10.1016/j.ijbiomac.2023.123420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Natural isoflavonoids have attracted much attention in the treatment of oral bacterial infections and other diseases due to their excellent antibacterial activity and safety. However, their poor water solubility, instability and low bioavailability seriously limited the practical application. In this study, licoricidin-loaded chitosan nanoparticles (LC-CSNPs) were synthesized by self-assembly for improving the dispersion of licoricidin (LC) and strengthening antibacterial and anti-biofilm performance. Compared to free LC, the minimum inhibitory concentration of LC-CSNPs against Streptococcus mutans decreased >2-fold to 26 μg/mL, and LC-CSNPs could ablate 70 % biofilms at this concentration. The enhanced antibacterial activity was mainly attributed to the spontaneous surface adsorption of LC-CSNPs on cell membranes through electrostatic interactions. More valuably, LC-CSNPs had no inhibitory effect on the growth of probiotic. Mechanism study indicated that LC-CSNPs altered the transmembrane potential to cause bacterial cells in a hyperpolarized state, generating ROS to cause cells damage and eventually apoptosis. This work demonstrated that the chitosan-based nanoparticles have great potential in enhancing the dispersibility and antibacterial activity of insoluble isoflavonoids, offering a promising therapeutic strategy for oral infections.
Collapse
|
55
|
Wu Z, Wang Z, Xie Y, Liu G, Shang X, Zhan N. Transcriptome and Metabolome Profiling Provide Insights into Flavonoid Synthesis in Acanthus ilicifolius Linn. Genes (Basel) 2023; 14:genes14030752. [PMID: 36981022 PMCID: PMC10048380 DOI: 10.3390/genes14030752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Acanthus ilicifolius is an important medicinal plant in mangrove forests, which is rich in secondary metabolites with various biological activities. In this study, we used transcriptomic analysis to obtain differentially expressed genes in the flavonoid metabolic pathway and metabolomic methods to detect changes in the types and content in the flavonoid metabolic synthesis pathway. The results showed that DEGs were identified in the mature roots vs. leaves comparison (9001 up-regulated and 8910 down-regulated), mature roots vs. stems comparison (5861 up-regulated and 7374 down-regulated), and mature stems vs. leaves comparison (10,837 up-regulated and 11,903 down-regulated). Furthermore, two AiCHS genes and four AiCHI genes were up-regulated in the mature roots vs. stems of mature A. ilicifolius, and were down-regulated in mature stems vs. leaves, which were highly expressed in the A. ilicifolius stems. A total of 215 differential metabolites were found in the roots vs. leaves of mature A. ilicifolius, 173 differential metabolites in the roots vs. stems, and 228 differential metabolites in the stems vs. leaves. The metabolomic results showed that some flavonoids in A. ilicifolius stems were higher than in the roots. A total of 18 flavonoid differential metabolites were detected in the roots, stems, and leaves of mature A. ilicifolius. In mature leaves, quercetin-3-O-glucoside-7-O-rhamnoside, gossypitrin, isoquercitrin, quercetin 3,7-bis-O-β-D-glucoside, and isorhamnetin 3-O-β-(2″-O-acetyl-β-D-glucuronide) were found in a high content, while in mature roots, di-O-methylquercetin and isorhamnetin were the major compounds. The combined analysis of the metabolome and transcriptome revealed that DEGs and differential metabolites were related to flavonoid biosynthesis. This study provides a theoretical basis for analyzing the molecular mechanism of flavonoid synthesis in A. ilicifolius and provides a reference for further research and exploitation of its medicinal value.
Collapse
Affiliation(s)
- Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Zhen Wang
- School of Life Sciences, Langfang Normal University, Langfang 065000, China
| | - Yaojian Xie
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Guo Liu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Ni Zhan
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
- School of Life Sciences, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
56
|
Kafoud A, Salahuddin Z, Ibrahim RS, Al-Janahi R, Mazurakova A, Kubatka P, Büsselberg D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules 2023; 13:563. [PMID: 36979499 PMCID: PMC10046851 DOI: 10.3390/biom13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Neuroblastoma (NB) is an extracranial tumor of the peripheral nervous system arising from neural crest cells. It is the most common malignancy in infants and the most common extracranial solid tumor in children. The current treatment for high-risk NB involves chemotherapy and surgical resection followed by high-dose chemotherapy with autologous stem-cell rescue and radiation treatment. However, those with high-risk NB are susceptible to relapse and the long-term side effects of standard chemotherapy. Polyphenols, including the sub-class of flavonoids, contain more than one aromatic ring with hydroxyl groups. The literature demonstrates their utility in inducing the apoptosis of neuroblastoma cells, mostly in vitro and some in vivo. This review explores the use of various polyphenols outlined in primary studies, underlines the pathways involved in apoptotic activity, and discusses the dosage and delivery of these polyphenols. Primary studies were obtained from multiple databases with search the terms "neuroblastoma", "flavonoid", and "apoptosis". The in vitro studies showed that polyphenols exert an apoptotic effect on several NB cell lines. These polyphenols include apigenin, genistein, didymin, rutin, quercetin, curcumin, resveratrol, butein, bisphenols, and various plant extracts. The mechanisms of the therapeutic effects include calpain-dependent pathways, receptor-mediated apoptosis, and, notably, and most frequently, mitochondrial apoptosis pathways, including the mitochondrial proteins Bax and Bcl-2. Overall, polyphenols demonstrate potency in decreasing NB proliferation and inducing apoptosis, indicating significant potential for further in vivo research.
Collapse
Affiliation(s)
- Aisha Kafoud
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Zoya Salahuddin
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Raghad Sabaawi Ibrahim
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Reem Al-Janahi
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
57
|
Zhang J, Ji C, Zhai X, Tong H, Hu J. Frontiers and hotspots evolution in anti-inflammatory studies for coronary heart disease: A bibliometric analysis of 1990-2022. Front Cardiovasc Med 2023; 10:1038738. [PMID: 36873405 PMCID: PMC9978200 DOI: 10.3389/fcvm.2023.1038738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is characterized by forming of arterial plaques composed mainly of lipids, calcium, and inflammatory cells. These plaques narrow the lumen of the coronary artery, leading to episodic or persistent angina. Atherosclerosis is not just a lipid deposition disease but an inflammatory process with a high-specificity cellular and molecular response. Anti-inflammatory treatment for CHD is a promising therapy; several recent clinical studies (CANTOS, COCOLT, and LoDoCo2) provide therapeutic directions. However, bibliometric analysis data on anti-inflammatory conditions in CHD are lacking. This study aims to provide a comprehensive visual perspective on the anti-inflammatory research in CHD and will contribute to further research. MATERIALS AND METHODS All the data were collected from the Web of Science Core Collection (WoSCC) database. We used the Web of Science's systematic tool to analyze the year of countries/regions, organizations, publications, authors, and citations. CiteSpace and VOSviewer were used to construct visual bibliometric networks to reveal the current status and emerging hotspot trends for anti-inflammatory intervention in CHD. RESULTS 5,818 papers published from 1990 to 2022 were included. The number of publications has been on the rise since 2003. Libby Peter is the most prolific author in the field. "Circulation" was ranked first in the number of journals. The United States has contributed the most to the number of publications. The Harvard University System is the most published organization. The top 5 clusters of keywords co-occurrence are inflammation, C-reactive protein, coronary heart disease, nonsteroidal anti-inflammatory, and myocardial infarction. The top 5 literature citation topics are chronic inflammatory diseases, cardiovascular risk; systematic review, statin therapy; high-density lipoprotein. In the past 2 years, the strongest keyword reference burst is "Nlrp3 inflammasome," and the strongest citation burst is "Ridker PM, 2017 (95.12)." CONCLUSION This study analyzes the research hotspots, frontiers, and development trends of anti-inflammatory applications in CHD, which is of great significance for future studies.
Collapse
Affiliation(s)
- Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenyang Ji
- Science and Technology College of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xu Zhai
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
58
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
59
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
60
|
Ashenafi E, Abula T, Abay SM, Arayaselassie M, Taye S, Muluye RA. Analgesic and Anti-Inflammatory Effects of 80% Methanol Extract and Solvent Fractions of the Leaves of Vernonia auriculifera Hiern. (Asteraceae). J Exp Pharmacol 2023; 15:29-40. [PMID: 36733956 PMCID: PMC9888398 DOI: 10.2147/jep.s398487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Background The leaves of V. auriculifera has been used traditionally for the treatment of inflammatory disorders, and pain in various parts of Ethiopia. However, to our knowledge, the analgesic and anti-inflammatory activity of the crude extract and solvent fractions has never been experimentally studied. Objective To assess the analgesic and anti-inflammatory activities of V. auriculifera leaf extract and solvent fractions in rodent models. Material and methods Air-dried leaves of V. auriculifera were grounded and macerated using 80% methanol. The air-dried, grounded leaves were also successively extracted with ethyl acetate, and methanol. The residue was then macerated in water for 72 hr. The extract's peripheral analgesic activity, as well as the solvent fractions, were determined using an acetic acid-induced writhing test. The hot plate model was used to assess the central analgesic effect. Carrageenan-induced hind paw edema and cotton pellet-induced granuloma models were used to assess the anti-inflammatory effect in rats. Results The 80% methanol leaf extract and solvent fractions have demonstrated significant (p < 0.05) peripheral and central analgesic activity. Both 80% methanol leaf extract and solvent fractions of V. auriculifera were found to have anti-inflammatory activity in a carrageenan-induced rat paw edema model. In the cotton pellet-induced granuloma model, all concentrations of 80% methanol leaf extract (ME), methanol fraction (MEF), and aqueous fractions (AQF) of V. auriculifera inhibited exudate and granuloma formation. Although all tested doses significantly inhibited granuloma mass formation, only the medium and highest ethyl acetate fraction (EAF) doses significantly inhibited the generation of inflammatory exudate. Conclusion This study's findings indicate that the solvent fractions and 80% methanol extract of V. auriculifera have analgesic and anti-inflammatory properties. This study's findings not only confirm the plants' traditional claim but also provide clues for further investigation of the active principles of this plant for the development of effective and safe analgesic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ephrem Ashenafi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia,Correspondence: Ephrem Ashenafi, Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, Email
| | - Teferra Abula
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Arayaselassie
- Department of Pathology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samson Taye
- Department of Biomedical Research Team, Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Rekik Ashebir Muluye
- Department of Biomedical Research Team, Traditional and Modern Medicine Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
61
|
Michalak M, Zagórska-Dziok M, Klimek-Szczykutowicz M, Szopa A. Phenolic Profile and Comparison of the Antioxidant, Anti-Ageing, Anti-Inflammatory, and Protective Activities of Borago officinalis Extracts on Skin Cells. Molecules 2023; 28:868. [PMID: 36677923 PMCID: PMC9865334 DOI: 10.3390/molecules28020868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, methanol and water-methanol extracts of borage (Borago officinalis) herb dried using various methods were analysed for their phenolic profile and biological activity. Twelve compounds, including flavonoids (astragalin, kaempferol 4-glucoside, rutoside, and vitexin) and phenolic acids (caffeic, chlorogenic, 3,4-dihydroxyphenylacetic, ferulic, p-hydroxybenzoic, protocatechuic, rosmarinic, and syringic), were determined qualitatively and quantitatively in B. officinalis extracts by the HPLC-DAD method. The highest total flavonoid content was confirmed for the methanol extract from the hot-air-dried herb, while the methanol extract from the air-dried herb was most abundant in phenolic acids. The results of in vitro tests on human keratinocytes (HaCaT) and fibroblasts (BJ) showed that the extracts were able to reduce the intracellular level of reactive oxygen species in skin cells. Tests performed to assess inhibition of protein denaturation, lipoxygenase activity, and proteinase activity demonstrated that borage extracts have anti-inflammatory properties. In addition, the methanol extract of the herb dried in a convection oven showed the strongest inhibition of both collagenase and elastase activity, which is indicative of anti-ageing properties. The results show that the borage extracts are a source of valuable bioactive compounds with beneficial properties in the context of skin cell protection.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Kielnarowa 386a, 36-020 Tyczyn, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
62
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
63
|
Coletro HN, Bressan J, Diniz AP, Hermsdorff HHM, Pimenta AM, Meireles AL, Mendonça RDD, Carraro JCC. Total Polyphenol Intake, Polyphenol Subtypes, and Prevalence of Hypertension in the CUME Cohort. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:15-26. [PMID: 34648393 DOI: 10.1080/07315724.2021.1977735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective:Epidemiological studies have shown associations between polyphenol consumption and reduced risk of cardiovascular diseases. This study aimed to assess the association between polyphenol intake and the prevalence of hypertension.Methods:This cross-sectional study was performed on data from the Cohort of Universities of Minas Gerais (CUME) project. Participants completed an online food frequency questionnaire, and polyphenol intake was assessed using the Phenol-Explorer database and articles. Hypertension was determined by a medical diagnosis, having a blood pressure ≥ 130 mmHg/80 mmHg, or using antihypertensive drugs. Adjusted logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (95% CIs) for the prevalence of hypertension.Results:The prevalence of hypertension was 39.57%, and the average intake of total polyphenols was 860.79 mg/day. The highest (5th quintile) intake of flavonoids (mean: 368.46mg/day; OR: 0.83; 95%CI 0.70; 0.97), hydroxybenzoic acids (mean: 379.38mg/day; OR: 0.77; 95%CI: 0.66;0.91), and flavonols (mean: 44.13mg/day; OR: 0.79; 95%CI: 0.67; 0.93) was inversely associated with hypertension prevalence, compared to the lowest intake (1st quintile).Conclusions:Our findings demonstrate that the intake of flavonoids, hydroxybenzoic acids, and flavonols is associated with a lower prevalence of hypertension.
Collapse
Affiliation(s)
- Hillary Nascimento Coletro
- Postgraduate Program in Health and Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda Popolino Diniz
- Postgraduate Program in Health and Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Adriano Marçal Pimenta
- Department of Maternal-Child Nursing and Public Health, School of Nursing, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Lúcia Meireles
- Department of Clinical and Social Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Raquel de Deus Mendonça
- Department of Clinical and Social Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Júlia Cristina Cardoso Carraro
- Department of Clinical and Social Nutrition, School of Nutrition, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
64
|
Li J, Cao X, Chu T, Lin K, Chen L, Lv J, Tan Y, Chen M, Li M, Wang K, Zheng Q, Li D. The circHMGCS1-miR-205-5p-ErBB3 axis mediated the Sanggenon C-induced anti-proliferation effects on human prostate cancer. Pharmacol Res 2023; 187:106584. [PMID: 36462326 DOI: 10.1016/j.phrs.2022.106584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PCa) is associated with a high incidence and metastasis rate globally, resulting in an unsatisfactory prognosis and a huge economic burden due to the current deficient of therapeutic strategies. As the most abundant component of Cortex Mori, Sanggenon C (SC) is well known to possess bioactivities in tumors, but its mechanism is poorly understood. Consequently, we attempted to investigate whether SC could modulate circular RNA(s) levels and hence anti-PCa development. We found that SC dramatically promoted cell apoptosis and induced G0/G1 phase arrest in PCa cell lines via the circHMGCS1-miR-205-5p-ErBB3 axis. In brief, circHMGCS1 is highly expressed in PCa and is positively correlated with the degree of malignancy. Over-expression of circHMGCS1 is not only associated with the proliferation of PCa cells but also blocks SC-induced pro-apoptotic effects. As a verified sponge of circHMGCS1, miR-205-5p is down-regulated in PCa tumors, which negatively regulates PCa cell proliferation by modulating ErBB3 expression. After miR-205-5p mimics or inhibitors were used to transfect PCa cells, the effects of circHMGCS1 OE and SC on PCa cells were completely diminished. Similar to miR-205-5p inhibitors, siErBB3 could oppose SC-triggered pro-apoptotic effects on PCa cells. All these results were confirmed in vivo. Together, SC exerts its anti-tumor effects on PCa by inhibiting circHMGCS1 expression and results in the latter losing the ability to sponge miR-205-5p. Subsequently, unfettered miR-205-5p could mostly down-regulate ErBB3 expression by binding to the 5'UTR of ErBB3 mRNA, which eventually resulted in PCa cell cycle arrest and pro-apoptosis.
Collapse
Affiliation(s)
- Jie Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Xinyue Cao
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Ting Chu
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kehao Lin
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Lei Chen
- School of Nursing, Binzhou Medical University, 264003, Yantai, China
| | - Junlin Lv
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Yujun Tan
- Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., 273400, Linyi, China
| | - Miaomiao Chen
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Kejun Wang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
65
|
Jha RK, Khan RJ, Parthiban A, Singh E, Jain M, Amera GM, Singh RP, Ramachandran P, Ramachandran R, Sachithanandam V, Muthukumaran J, Singh AK. Identifying the natural compound Catechin from tropical mangrove plants as a potential lead candidate against 3CL pro from SARS-CoV-2: An integrated in silico approach. J Biomol Struct Dyn 2022; 40:13392-13411. [PMID: 34644249 DOI: 10.1080/07391102.2021.1988710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a member of beta coronaviruses, is a single-stranded, positive-sense RNA virus responsible for the COVID-19 pandemic. With global fatalities of the pandemic exceeding 4.57 million, it becomes crucial to identify effective therapeutics against the virus. A protease, 3CLpro, is responsible for the proteolysis of viral polypeptides into functional proteins, which is essential for viral pathogenesis. This indispensable activity of 3CLpro makes it an attractive target for inhibition studies. The current study aimed to identify potential lead molecules against 3CLpro of SARS-CoV-2 using a manually curated in-house library of antiviral compounds from mangrove plants. This study employed the structure-based virtual screening technique to evaluate an in-house library of antiviral compounds against 3CLpro of SARS-CoV-2. The library was comprised of thirty-three experimentally proven antiviral molecules extracted from different species of tropical mangrove plants. The molecules in the library were virtually screened using AutoDock Vina, and subsequently, the top five promising 3CLpro-ligand complexes along with 3CLpro-N3 (control molecule) complex were subjected to MD simulations to comprehend their dynamic behaviour and structural stabilities. Finally, the MM/PBSA approach was used to calculate the binding free energies of 3CLpro complexes. Among all the studied compounds, Catechin achieved the most significant binding free energy (-40.3 ± 3.1 kcal/mol), and was closest to the control molecule (-42.8 ± 5.1 kcal/mol), and its complex with 3CLpro exhibited the highest structural stability. Through extensive computational investigations, we propose Catechin as a potential therapeutic agent against SARS-CoV-2. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - A Parthiban
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India.,Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation, AVIT campus, Chennai, India
| | - Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India.,Department of Biotechnology, College of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Ramesh Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - V Sachithanandam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Chennai, Tamil Nadu, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P., India
| |
Collapse
|
66
|
Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals (Basel) 2022; 12:ani12233279. [PMID: 36496798 PMCID: PMC9738477 DOI: 10.3390/ani12233279] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The biological effects of oxidative stress and associated free radicals on farm animal performance, productivity, and product quality may be managed via dietary interventions-specifically, the provision of feeds, supplements, and forages rich in antioxidants. To optimize this approach, it is important first to understand the development of free radicals and their contributions to oxidative stress in tissue systems of farm animals or the human body. The interactions between prooxidants and antioxidants will impact redox homeostasis and, therefore, the well-being of farm animals. The impact of free radical formation on the oxidation of lipids, proteins, DNA, and biologically important macromolecules will likewise impact animal performance, meat and milk quality, nutritional value, and longevity. Dietary antioxidants, endogenous antioxidants, and metal-binding proteins contribute to the 'antioxidant defenses' that control free radical formation within the biological systems. Different bioactive compounds of varying antioxidant potential and bio-accessibility may be sourced from tailored feeding systems. Informed and successful provision of dietary antioxidants can help alleviate oxidative stress. However, knowledge pertaining to farm animals, their unique biological systems, and the applications of novel feeds, specialized forages, bioactive compounds, etc., must be established. This review summarized current research to direct future studies towards more effective controls for free radical formation/oxidative stress in farm animals so that productivity and quality of meat and milk can be optimized.
Collapse
Affiliation(s)
- Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Ali Kiani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
67
|
Selective Structural Derivatization of Flavonoid Acetamides Significantly Impacts Their Bioavailability and Antioxidant Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238133. [PMID: 36500226 PMCID: PMC9741454 DOI: 10.3390/molecules27238133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
Flavonoids show abundant favorable physicochemical and drug related properties, leading to substantial biological applications which are limited by undesirable properties such as poor solubility, high polarity, low bioavailability, and enzymatic degradations. Chemical modification with bioisosteres can be used to address some of these challenges. We report the synthesis and characterization of partial flavonoid acetamide derivatives from quercetin, apigenin and luteolin and the evaluation of their structure-activity relationships based on antioxidant, bioavailability, drug likeness, and toxicity properties. The sequential synthesis was achieved with 76.67-87.23% yield; the structures of the compounds were confirmed using 1H & 13C NMR characterizations. The purity of each compound was determined by HPLC while the molecular weights were determined by mass spectrometry. The % bioavailability was determined using the dialysis tubing procedure and the values were in the range 15.97-38.12%. The antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and expressed as the IC50 values which were in the range 31.52-198.41 µM. The drug likeness and the toxicity properties of compounds 4, 5, 7, 11 and 15 were predicted using computational tools and showed satisfactory results. A structure-activity relationship evaluation reveals that hydroxyl and methylene groups attached on the 2-phenylchromen-4-one structure of the flavonoid play a colossal role in the overall antioxidant and bioavailability properties. The improved bioavailability and excellent drug relevance and toxicity properties present flavonoid acetamide derivatives as prospective drug candidates for further evaluations.
Collapse
|
68
|
Hey-Hadavi J, Velisetty P, Mhatre S. Trends and recent developments in pharmacotherapy of acute pancreatitis. Postgrad Med 2022; 135:334-344. [PMID: 36305300 DOI: 10.1080/00325481.2022.2136390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acute pancreatitis (AP), a complex inflammatory disease of the pancreas, is associated with increased morbidity and mortality. Currently, no specific therapies are approved for its treatment, and management is primarily based on supportive care. Despite enhanced understanding of AP pathogenesis, patients remain at significant risk owing to a lack of targeted drug treatments. Therefore, there is an urgent need for effective pharmacological therapeutic measures which may inhibit the early systemic inflammation, thereby preventing subsequent organ failure. This narrative review summarizes the available treatment options for AP and highlights the potential drug classes and pharmacologic therapies including those under clinical development. Although, several therapies targeting different aspects of AP pathogenesis have been investigated, some therapies with promising preclinical activity have been rendered ineffective in clinical trials. Other novel drug classes or molecules including dabigatran (anticoagulant), ulinastatin (protease inhibitor), infliximab (monoclonal antibody), spautin-A41 (autophagy inhibitor), and CM4620-Injectible Emulsion (calcium channel inhibitor) await further clinical assessment. Alternative treatment options using stem cells and nanoparticles are also being explored and may hold promise for AP therapy. However, challenges for exploring targeted treatment approaches include disease complexity, timing of therapeutic intervention, and establishing appropriate clinical endpoints. Understanding the role of specific biomarkers may help in identifying appropriate targets for drug discovery and facilitate determining relevant clinical study endpoints to monitor disease severity and progression, thereby aiding in design of more precise therapies with improved clinical outcomes.
Collapse
|
69
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
70
|
Crowe-White KM, Evans LW, Kuhnle GGC, Milenkovic D, Stote K, Wallace T, Handu D, Senkus KE. Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv Nutr 2022; 13:2070-2083. [PMID: 36190328 PMCID: PMC9776652 DOI: 10.1093/advances/nmac105] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/28/2023] Open
Abstract
Guideline recommendation for a plant bioactive such as flavan-3-ols is a departure from previous recommendations because it is not based on deficiencies but rather improvement in health outcomes. Nevertheless, there is a rapidly growing body of clinical data reflecting benefits of flavan-3-ol intake that outweigh potential harms. Thus, the objective of the Expert Panel was to develop an intake recommendation for flavan-3-ols and cardiometabolic outcomes to inform multiple stakeholders including clinicians, policymakers, public health entities, and consumers. Guideline development followed the process set forth by the Academy of Nutrition and Dietetics, which includes use of the Evidence to Decision Framework. Studies informing this guideline (157 randomized controlled trials and 15 cohort studies) were previously reviewed in a recently published systematic review and meta-analysis. Quality and strength-of-evidence along with risk-of-bias in reporting was reviewed. In drafting the guideline, data assessments and opinions by authoritative scientific bodies providing guidance on the safety of flavan-3-ols were considered. Moderate evidence supporting cardiometabolic protection resulting from flavan-3-ol intake in the range of 400-600 mg/d was supported in the literature. Further, increasing consumption of dietary flavan-3-ols can help improve blood pressure, cholesterol concentrations, and blood sugar. Strength of evidence was strongest for some biomarkers (i.e., systolic blood pressure, total cholesterol, HDL cholesterol, and insulin/glucose dynamics). It should be noted that this is a food-based guideline and not a recommendation for flavan-3-ol supplements. This guideline was based on beneficial effects observed across a range of disease biomarkers and endpoints. Although a comprehensive assessment of available data has been reviewed, evidence gaps identified herein can inform scientists in guiding future randomized clinical trials.
Collapse
Affiliation(s)
| | - Levi W Evans
- USDA-ARS, Western Human Nutrition Research Center, Davis, CA, USA
| | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Kim Stote
- State University of New York, Empire State College, Saratoga Springs, NY, USA
| | - Taylor Wallace
- Department of Nutrition and Food Studies, George Mason University, Washington, DC, USA,Produce for Better Health Foundation, Washington, DC, USA
| | - Deepa Handu
- Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - Katelyn E Senkus
- Department of Human Nutrition, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
71
|
Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022; 27:molecules27196348. [PMID: 36234882 PMCID: PMC9573533 DOI: 10.3390/molecules27196348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Rosmarinus officinalis is a well-studied plant, known for its therapeutic properties. However, its biological activity against several diseases is not known in detail. The aim of this study is to present new data regarding the cytotoxic activity of a hydroethanolic extract of Rosmarinus officinalis on glioblastoma (A172) and rhabdomyosarcoma (TE671) cancer cell lines. The chemical composition of the extract is evaluated using liquid chromatography combined with time-of-flight mass spectrometry, alongside its total phenolic content and antioxidant activity. The extract showed a promising time- and dose-dependent cytotoxic activity against both cell lines. The lowest IC50 values for both cell lines were calculated at 72 h after treatment and correspond to 0.249 ± 1.09 mg/mL for TE671 cell line and 0.577 ± 0.98 mg/mL for A172 cell line. The extract presented high phenolic content, equal to 35.65 ± 0.03 mg GAE/g of dry material as well as a strong antioxidant activity. The IC50 values for the antioxidant assays were estimated at 12.8 ± 2.7 μg/mL (DPPH assay) and 6.98 ± 1.9 μg/mL (ABTS assay). The compound detected in abundance was carnosol, a phenolic diterpene, followed by the polyphenol rosmarinic acid, while the presence of phenolic compounds such as rhamnetin glucoside, hesperidin, cirsimaritin was notable. These preliminary results suggest that R. officinalis is a potential, alternative source of bioactive compounds to further examine for abilities against glioblastoma and rhabdomyosarcoma.
Collapse
|
72
|
Antidyslipidemic, Antioxidant, and Anti-inflammatory Effects of Jelly Drink Containing Polyphenol-Rich Roselle Calyces Extract and Passion Fruit Juice with Pulp in Adults with Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4631983. [PMID: 36187334 PMCID: PMC9519340 DOI: 10.1155/2022/4631983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Oxidative stress and inflammation play key roles in the pathophysiology in the pathophysiology of dyslipidemia, which are positive risks that increase atherosclerosis leading to important healthcare problems. Therefore, we aimed to study the antioxidant, anti-inflammatory, and lipid-lowering effects of jelly drink containing polyphenol-rich roselle calyces extract and passion fruit juice with pulp concentrate (RP jelly drink) in comparison to a placebo jelly drink for 8 weeks. Forty-three adults with dyslipidemia were randomly assigned into two groups: the RP jelly drink group and the placebo group. Glucose, total cholesterol (TC) triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), oxidative stress biomarkers, inflammatory parameters, and monocyte chemotactic protein-1 (MCP-1) were measured with fasting blood samples at baseline, 4 weeks and 8 weeks of intervention. Results showed a significant decrease in LDL-C and TG, respectively, after 8 weeks of RP jelly drink consumption (LDL-C: 107.63 ± 22.98 mg/dL; TG: 109.79 ± 38.83 mg/dL) compared to baseline measurements (LDL-C: 128.43 ± 32.74 mg/dL; TG: 132.33 ± 75.11 mg/dL). These may be possible due to reduced inflammation and improvements in oxidative stress, as demonstrated by the reduction of tumor necrosis factor- (TNF-) α and malondialdehyde (MDA), and the enhancement of glutathione (GSH) after consuming the RP jelly drink for 8 weeks. However, no significant differences of treatment on glucose, total cholesterol, MCP-1, interleukin-6, and interleukin-10 were observed. In conclusion, daily consumption of RP jelly drink for 8 weeks resulted in significant improvement in lipid profiles in subjects with dyslipidemia. However, more research is needed to assess its nutritional and functional potential.
Collapse
|
73
|
Chaparro-Hernández I, Rodríguez-Ramírez J, Barriada-Bernal LG, Méndez-Lagunas L. Tree ferns (Cyatheaceae) as a source of phenolic compounds – A review. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
74
|
Barreto Linhares LPM, Pereira BVN, Dantas MKG, Bezerra WMDS, Viana-Marques DDA, de Lima LRA, Sette-de-Souza PH. Schinopsis brasiliensis Engler-Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals (Basel) 2022; 15:1028. [PMID: 36015176 PMCID: PMC9414610 DOI: 10.3390/ph15081028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Brazil has the most incredible biodiversity globally and has a vast storehouse of molecules to be discovered. However, there are no pharmacological and phytochemical studies on most native plants. Parts of Schinopsis brasiliensis Engler, a tree from the Anacardiaceae family, are used by several traditional communities to treat injuries and health problems. The objective of this scoping review was to summarize the pharmacological information about S. brasiliensis, from ethnobotanical to phytochemical and biological studies. Data collection concerning the geographical distribution of S. brasiliensis specimens was achieved through the Reflora Virtual Herbarium. The study's protocol was drafted using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The search strategy used the keyword "Schinopsis brasiliensis" in the databases: PUBMED, EMBASE, SCOPUS, Science Direct, Web of Science, SciFinder, and SciELO. Rayyan was used for the selection of eligible studies. In total, 35 studies were included in the paper. The most recurrent therapeutic indications were for general pain, flu and inflammation. The bark was the most studied part of the plant. The most used preparation method was decoction and infusion, followed by syrup. Phytochemical investigations indicate the presence of tannins, flavonoids, phenols, and polyphenols. Most of the substances were found in the plant's leaf and bark. Important biological activities were reported, such as antimicrobial, antioxidant, and anti-inflammatory. S. brasiliensis is used mainly by communities in the semi-arid region of northeastern Brazil to treat several diseases. Pharmacological and phytochemical studies together provide scientific support for the popular knowledge of the medicinal use of S. brasiliensis. In vitro and in vivo analyses reported antimicrobial, antioxidant, anti-inflammatory, antinociceptive, cytotoxic, photoprotective, preservative, molluscicidal, larvicidal, and pupicidal effects. It is essential to highlight the need for future studies that elucidate the mechanisms of action of these phytocompounds.
Collapse
Affiliation(s)
| | - Bruna Vanessa Nunes Pereira
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco–Garanhuns, Recife 55294-902, Brazil
| | | | | | - Daniela de Araújo Viana-Marques
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco–Garanhuns, Recife 55294-902, Brazil
| | - Luiza Rayanna Amorim de Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco–Garanhuns, Recife 55294-902, Brazil
| | - Pedro Henrique Sette-de-Souza
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental, Universidade de Pernambuco–Garanhuns, Recife 55294-902, Brazil
- Faculdade de Odontologia, Universidade de Pernambuco–Arcoverde, Recife 56503-146, Brazil
| |
Collapse
|
75
|
Mićović T, Katanić Stanković JS, Bauer R, Nöst X, Marković Z, Milenković D, Jakovljević V, Tomović M, Bradić J, Stešević D, Stojanović D, Maksimović Z. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115201. [PMID: 35358622 DOI: 10.1016/j.jep.2022.115201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal properties of hyssop have been used in traditional medicine since ancient times, inter alia, in diseases/conditions with an inherent inflammatory process. AIM OF THE STUDY Accordingly, the aim of this study was to investigate the anti-inflammatory properties of hyssop herb preparations (essential oil and methanol extracts) in vivo, in vitro and in silico. MATERIALS AND METHODS For in vitro testing of essential oils and extracts of hyssop herb, the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays were used. In vivo anti-inflammatory potential of the extracts (at doses of 50, 100 and 200 mg/kg) was assessed using the carrageenan-induced rat paw edema test. Molecular docking and dynamics were used for in silico testing of the inhibitory activity of chlorogenic (CA) and rosmarinic (RA) acids, as the dominant compounds in the tested methanol extracts against COX-1 and COX-2 enzymes. RESULTS Significant inhibitory activity was shown in the COX-2 test regarding extracts (essential oils did not exhibit any significant activity). Namely, all analyzed extracts, at a concentration of 20 μg/mL, showed a percentage of inhibition of COX-2 enzyme (54.04-63.04%), which did not indicate a statistically significant difference from the positive control of celecoxib (61.60%) at a concentration of 8.8 μM. In vivo testing showed that all methanol extracts of hyssop herb, at the highest test dose of 200 mg/kg in the third and fourth hours, after carrageenan administration, exhibited a statistically significant (p < 0.05) inhibitory effect on the increase in rat paw edema in relation to control. This activity is comparable or higher in relation to the reference substance, indomethacin, at a concentration of 8 mg/kg. The preliminary in silico results suggest that investigated compounds (RA and CA) showed better inhibitory activity against COX-1 and COX-2 than standard non-steroidal anti-inflammatory drug (NSAID), ibuprofen, as evident from the free binding energy (ΔGbind in kJ mol-1). The binding energies of the docked compounds to COX-1 and -2 were found to be in the range between -47.4 and -49.2 kJ mol-1. Ibuprofen, as the one NSAID, for the same receptors targets, showed remarkably higher binding energy (ΔGbind = -31.3 kJ mol-1 to COX-1, and ΔGbind = -30.9 kJ mol-1 to COX-2). CONCLUSION The results obtained not only support the traditional use of hyssop herb in inflammatory conditions in folk medicine, but also open the door to and the need for further in vivo testing of extracts in order to examine the molecular mechanism of anti-inflammatory activity in living systems and possibly develop a new anti-inflammatory drug or supplement.
Collapse
Affiliation(s)
- Tijana Mićović
- Institute for Medicines and Medical Devices of Montenegro, Bulevar Ivana Crnojevića 64a, 81000, Podgorica, Montenegro
| | - Jelena S Katanić Stanković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Xuehong Nöst
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Zoran Marković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Dejan Milenković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia; Department of Human Pathology, First Moscow State Medical University I. M. Sechenov, Trubetskaya street 8, str. 2, 119991, Moscow, Russia
| | - Marina Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela Stešević
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro
| | - Danilo Stojanović
- Department of Botany, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| |
Collapse
|
76
|
Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries ( Rubus idaeus): A General Review. Antioxidants (Basel) 2022; 11:antiox11061192. [PMID: 35740089 PMCID: PMC9230908 DOI: 10.3390/antiox11061192] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Raspberries (Rubus idaeus) possess a wide phenolic family profile; this serves the role of self-protection for the plant. Interest in these compounds have significantly increased, since they have been classified as nutraceuticals due to the positive health effects provided to consumers. Extensive chemical, in vitro and in vivo studies have been performed to prove and validate these benefits and their possible applications as an aid when treating several chronic degenerative diseases, characterized by oxidative stress and an inflammatory response. While many diseases could be co-adjuvanted by the intake of these phenolic compounds, this review will mainly discuss their effects on cancer. Anthocyanins and ellagitannins are known to provide a major antioxidant capacity in raspberries. The aim of this review is to summarize the current knowledge concerning the phenolic compound family of raspberries, and topics discussed include their characterization, biosynthesis, bioavailability, cytotoxicity, antioxidant and anti-inflammatory activities.
Collapse
|
77
|
Shi M, Gu J, Wu H, Rauf A, Emran TB, Khan Z, Mitra S, Aljohani ASM, Alhumaydhi FA, Al-Awthan YS, Bahattab O, Thiruvengadam M, Suleria HAR. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce-A Comprehensive Review. Antioxidants (Basel) 2022; 11:1158. [PMID: 35740055 PMCID: PMC9219965 DOI: 10.3390/antiox11061158] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Lettuce is one of the most famous leafy vegetables worldwide with lots of applications from food to other specific uses. There are different types in the lettuce group for consumers to choose from. Additionally, lettuce is an excellent source of bioactive compounds such as polyphenols, carotenoids, and chlorophyll with related health benefits. At the same time, nutrient composition and antioxidant compounds are different between lettuce varieties, especially for green and red lettuce types. The benefit of lettuce consumption depends on its composition, particularly antioxidants, which can function as nutrients. The health benefits rely on their biochemical effect when reaching the bloodstream. Some components can be released from the food matrix and altered in the digestive system. Indeed, the bioaccessibility of lettuce is measuring the quantity of these compounds released from the food matrix during digestion, which is important for health-promoting features. Extraction of bioactive compounds is one of the new trends observed in lettuce and is necessarily used for several application fields. Therefore, this review aims to demonstrate the nutritional value of lettuce and its pharmacological properties. Due to their bioaccessibility and bioavailability, the consumer will be able to comprehensively understand choosing a healthier lettuce diet. The common utilization pattern of lettuce extracted nutrients will also be summarized for further direction.
Collapse
Affiliation(s)
- Min Shi
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Jingyu Gu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Hanjing Wu
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi 94640, Pakistan;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Abdullah S. M. Aljohani
- Department of Veterinary of Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
- Department of Biology Faculty of Sciences, Ibb University, Ibb 70270, Yemen
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia; (Y.S.A.-A.); (O.B.)
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| | - Hafiz A. R. Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; (M.S.); (J.G.); (H.W.)
| |
Collapse
|
78
|
Daidzein Activates Akt Pathway to Promote the Proliferation of Female Germline Stem Cells through Upregulating Clec11a. Stem Cell Rev Rep 2022; 18:3021-3032. [PMID: 35655001 DOI: 10.1007/s12015-022-10394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Female germline stem cells (FGSCs) have been successfully isolated and characterized from postnatal mammalian and human ovarian tissues. However, the effects and mechanisms of action of natural small-molecule compounds on FGSCs are largely unknown. Here, we found that daidzein promoted the viability and proliferation of FGSCs. To elucidate the mechanism underlying this, we performed RNA-Sequence in daidzein-treated FGSCs and controls. The results showed that there were 153 upregulated and 156 downregulated genes in daidzein treatment. We confirmed the expression of some genes related to cell proliferation in the sequencing results by RT-PCR, such as Type C lectin domain family 11 member a (Clec11a), Mucin1 (Muc1), Glutathione peroxidase 3 (Gpx3), and Tet methylcytosine dioxygenase 1 (Tet1). The high expression of Clec11a at the protein level after daidzein treatment was also confirmed by western blotting. Furthermore, recombinant mouse Clec11a (rmClec11a) protein was shown to promote the viability and proliferation of FGSCs. However, knockdown of Clec11a inhibited the viability and proliferation of FGSCs, which could not be rescued by the administration of daidzein. These results indicate that daidzein promoted the viability and proliferation of FGSCs through Clec11a. In addition, both daidzein and rmClec11a activated the Akt signaling pathway in FGSCs. However, Clec11a knockdown inhibited this pathway, which could not be rescued by daidzein administration. Taken together, our findings revealed that daidzein activates the Akt signaling pathway to promote cell viability and proliferation through upregulating Clec11a. This study should deepen our understanding of the developmental mechanism of FGSCs and female infertility.
Collapse
|
79
|
Cheng L, Feng Y, Hu Y, Shen Y, Li C, Ren DF. The Synergistic Anti-inflammatory Activity and Interaction Mechanism of Ellagic Acid and a Bioactive Tripeptide (Phe-Pro-Leu) from Walnut Meal. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:286-291. [PMID: 35641802 DOI: 10.1007/s11130-022-00979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The anti-inflammatory effect of the interaction between ellagic acid (EA) and a bioactive tripeptide (FPL) from walnut meal was investigated in this study. We found that lipopolysaccharide (LPS) -induced expression of nitric oxide, tumor necrosis factor-α, interleukin-6, and interleukin-1β were significantly inhibited by the interaction of EA and FPL in RAW264.7 macrophage cells. Cell viability assays and CompuSyn simulations predicted the highest synergistic effect of the combination at doses of EA-25 µM and FPL-100 µM, with the lowest combination index (CI) values reaching 0.56. Fluorescence spectra revealed the intrinsic fluorescence of phenylalanine in FPL was quenched by interaction with EA. Fourier transform infrared spectroscopy indicated FPL had electrostatic and hydrophobic interactions with EA through N-H, C = O, C-N bonds and the secondary structure of FPL had effectively changed, with a decrease in α-helix when interacting with EA. Our results demonstrated that the synergistic anti-inflammatory effect of EA and FPL as potential inflammatory inhibitors in food industry.
Collapse
Affiliation(s)
- Le Cheng
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yanxia Feng
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yue Hu
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi, 710127, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
80
|
Cheng CS, Gu QH, Zhang JK, Tao JH, Zhao TR, Cao JX, Cheng GG, Lai GF, Liu YP. Phenolic Constituents, Antioxidant and Cytoprotective Activities, Enzyme Inhibition Abilities of Five Fractions from Vaccinium dunalianum Wight. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113432. [PMID: 35684371 PMCID: PMC9181978 DOI: 10.3390/molecules27113432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.
Collapse
Affiliation(s)
- Chang-Shu Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Qing-Hui Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jin-Ke Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jun-Hong Tao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Tian-Rui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Jian-Xin Cao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Gui-Guang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
| | - Guo-Fang Lai
- Yunnan Institute for Food and Drug Control, Kunming 650106, China
- Correspondence: (G.-F.L.); (Y.-P.L.)
| | - Ya-Ping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (C.-S.C.); (Q.-H.G.); (J.-K.Z.); (J.-H.T.); (T.-R.Z.); (J.-X.C.); (G.-G.C.)
- Correspondence: (G.-F.L.); (Y.-P.L.)
| |
Collapse
|
81
|
Peng F, Yin H, Du B, Niu K, Yang Y, Wang S. Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115086. [PMID: 35157952 DOI: 10.1016/j.jep.2022.115086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chestnut flowers were one of the by-products during chestnut industrial processing. Chestnut (Castanea mollissima Blume) flower is rich in flavonoids and has been used as a traditional medicine to treat a variety of diseases including respiratory disorders for a long history. AIM OF THE STUDY The present study aims to investigate the potential anti-inflammatory effect of flavonoids from chestnut flower (FCF) in lipopolysaccharide (LPS)-treated RAW 264.7 cells and stimulated acute lung injury (ALI) in mice. MATERIALS AND METHODS HPLC-ESI-MS/MS was applied to identify flavonoids from Chestnut flower. The ROS content in cells and lung tissue was measured by flow cytometry. The malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and glutathione (GSH) content in cells and bronchoalveolar lavage fluid (BALF) was analyzed by photometry. Furthermore, the level of pro-inflammatory factors was analyzed by ELISA, and the expression of inflammatory gene mRNA by fluorescence quantitative PCR. H&E staining was used to evaluate the degree of lung tissue injury in mice. MPO activity was used to measure the degree of neutrophil infiltration. Total protein content was detected by BCA method. RESULTS A total of forty-nine flavonoids compounds were tentatively identified in FCF by mass spectrometry analysis. The results of cell experiment suggested that FCF could alleviate oxidative injury via increasing SOD activity and GSH content, as well as inhibiting the production of intracellular ROS and MDA. FCF exerted its protective effect by suppressing the expression of both inducible nitric oxide synthase (iNOS) and cycooxygenase 2 (COX-2) to inhibit the synthesis of pro-inflammatory factors and cytokines, including NO, PGE2, TNF-α, IL-6 and IL-1β. Besides, FCF treatment could alleviate the thickening of alveolar wall and pulmonary congestion in LPS-treated ALI mice, and significantly inhibit the activity of myeloperoxidas (MPO) and the expression of cytokines in BALF. CONCLUSIONS FCF could ameliorate inflammation and oxidative stress in LPS-treated inflammation, resulting in an overall improvement in both macroscopic and histological parameters.
Collapse
Affiliation(s)
- Fei Peng
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Collaborative Innovation Centre of Hebei Chestnut Industry, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Hongyang Yin
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Bin Du
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Collaborative Innovation Centre of Hebei Chestnut Industry, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Kui Niu
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Collaborative Innovation Centre of Hebei Chestnut Industry, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Yuedong Yang
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Collaborative Innovation Centre of Hebei Chestnut Industry, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China; Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China.
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
82
|
Chatterjee A, Khanra R, Chattopadhyay M, Ghosh S, Sahu R, Nandi G, Maji HS, Chakraborty P. Pharmacological studies of rhizomes of extract of Cyperus tegetum, emphasized on anticancer, anti-inflammatory and analgesic activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115035. [PMID: 35085743 DOI: 10.1016/j.jep.2022.115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With over 950 species, Cyperus is one of the most promising health boosting genera in the Cyperaceae family. Traditional uses of Cyperus sp. have been described for gastrointestinal blood abnormalities, menstrual irregularities, and inflammatory diseases, among others. Cyperus tegetum Roxb belonging to Cyperaceae family, is used in traditional medicine to treat skin cancers. AIM OF THE STUDY The present study was carried out to explore the potential effect of the extract of the plant Cyperus tegetum against different pharmacological activity namely inflammatory, analgesic activity as well as skin cancer activity in mice. MATERIALS AND METHODS Cytotoxicity of the extract was measured by MTT and Live/death assay on HeLa cell line. Skin cancer was induced by 7,12-dimethylbenz(a) anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice to measure its effects. RESULT Stigmasterol and some poly phenolic compounds are identified using HPTLC process from the methanol extract of the rhizome of the plant Cyperus tegetum (CT-II). After confirmation of the presence of different polyphenolic compound and triterpenoids in the extract, it was subject to MTT and Live/death assay on HeLa cell line. From the observation it could be concluded that the IC50 of the extract is 300 μg/ml. Thus, the CTII was evaluated further for its in vivo anticancer property. In the tumorigenesis study, the number of tumor growths, the area and weight of the tumor significantly decreases with increment in the dose of CT-II extract and some elevated enzyme release in renal (creatinine, urea) as well as hepatic (AST, ALT, ALP) enzymes are also controlled with the increased dose of the same extract. The elevated enzyme release may be due to cancer induced rupture of the plasma and cellular damage. This CT-II extract also exhibits some other pharmacological activity like anti-inflammatory and analgesic activity. CONCLUSION As metabolic activation via carcinogens and inflammation response plays important role in development of cancer, antioxidant, anti-inflammatory and analgesic properties can be correlated with anti-cancer properties. Taken all the above studies, it was illustrated that the extract of Cyperus tegetum might be a promising compound to reduce skin cancer risk.
Collapse
Affiliation(s)
- Atanu Chatterjee
- Bengal School of Technology, Chinsurah, Hooghly, West Bengal, India.
| | - Ritu Khanra
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, West Bengal, India.
| | | | - Santanu Ghosh
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, West Bengal, India.
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India.
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India.
| | - Himangshu Sekhar Maji
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata, West Bengal, India.
| | - Pranabesh Chakraborty
- Maulana Abul Kalam Azad University of Technology, Bidhannagar, Kolkata, West Bengal, India.
| |
Collapse
|
83
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
84
|
Zineb OY, Rashwan AK, Karim N, Lu Y, Tangpong J, Chen W. Recent Developments in Procyanidins on Metabolic Diseases, Their Possible Sources, Pharmacokinetic Profile, and Clinical Outcomes. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ould Yahia Zineb
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Biomedical Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
85
|
Effect of Phenolic Extract from Red Beans (Phaseolus vulgaris L.) on T-2 Toxin-Induced Cytotoxicity in HepG2 Cells. Foods 2022; 11:foods11071033. [PMID: 35407120 PMCID: PMC8997370 DOI: 10.3390/foods11071033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Red beans contain human bioactive compounds such as polyphenols. Several in vitro studies have proposed the natural compounds as an innovative strategy to modify the toxic effects produced by mycotoxins. Hence, in this work, a complete investigation of the polyphenolic fraction of red beans was performed using a Q-Orbitrap high-resolution mass spectrometry analysis. Notably, epicatechin and delphinidin were the most detected polyphenols found in red bean extracts (3.297 and 3.108 mg/Kg, respectively). Moreover, the red bean extract was evaluated against the T-2 toxin (T-2) induced cytotoxicity in hepatocarcinoma cells (HepG2) by direct treatment, simultaneous treatment, and pre-treatment assays. These data showed that T-2 affected the cell viability in a dose-dependent manner, as well as observing a cytotoxic effect and a significant increase in ROS production at 30 nM. The simultaneous treatment and the pre-treatment of HepG2 cells with red bean extract was not able to modify the cytotoxic T-2 effect. However, the simultaneous treatment of T-2 at 7.5 nM with the red bean extract showed a significant decrease in ROS production, with respect to the control. These results suggest that the red bean extract could modulate oxidative stress on HepG2 cells.
Collapse
|
86
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
87
|
Maffei S, Franchini M, Fortunato L, Guiducci L. Long-term effects of a combination of isoflavones, agnus castus and magnolia extracts on climacteric symptoms and cardiometabolic risk profile in postmenopausal women. Gynecol Endocrinol 2022; 38:339-344. [PMID: 35257639 DOI: 10.1080/09513590.2022.2047171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To evaluate the long-term effects of a combination of isoflavones, agnus castus and magnolia extracts (combined isoflavone compound [CIC]) on climacteric symptoms and cardiometabolic risk in symptomatic postmenopausal women. METHODS This interventional, prospective study evaluated climacteric symptoms, mood and sleep disorders using the 21-item Greene Climacteric Scale (GCS) and 7-item Insomnia Severity Index (ISI) questionnaires; and cardiovascular, metabolic and thrombotic risk markers at baseline (T0) and after 12 months of CIC treatment (T1). RESULTS In healthy postmenopausal women (N = 71), 12-month CIC treatment significantly reduced patient-reported vasomotor symptoms (100% vs. 17%), mood disorders (67% vs. 25%) and sleep disorders (89% vs. 19%%) (all p < .001) compared with baseline; and significantly improved GCS psychological, somatic, and vasomotor domain scores and ISI sleep disturbance scores (all p < .05). CIC significantly reduced systolic (p = .022) and diastolic blood pressure (p < .001), and heart rate (p < .001); glucose concentrations (p = .018), HOMA index (p = .013), and ALT (p = .035), homocysteine (p = .005) and NT-proBNP (p = .003) levels. CONCLUSIONS Long-term CIC therapy improved vasomotor symptoms, mood disorders, sleep disorders, hemodynamic measurements and cardiometabolic risk markers in healthy postmenopausal women. CLINICALTRIALS.GOV IDENTIFIER NCT03699150.
Collapse
Affiliation(s)
- Silvia Maffei
- Department of Cardiovascular Endocrinology and Metabolism, Gynecological and Cardiovascular Endocrinology Unit, "Gabriele Monasterio Foundation" and Italian National Research Council (CNR) Pisa, Italy
| | | | | | | |
Collapse
|
88
|
Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113410. [PMID: 35279519 DOI: 10.1016/j.ecoenv.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric PM2.5 exposure greatly contributes to the incidence of and mortality from cardiovascular disease (CVD). Owing to the crucial role of vascular calcification in the progression of CVD, it is imperative to elucidate the effects of PM2.5 on vascular calcification to understand the toxic mechanisms of haze-induced CVD. However, the effects of PM2.5 exposure on vascular calcification and the underlying molecular mechanisms are still unclear. In this work, the in vitro and in vivo models were used to illuminate the effects of PM2.5 on vascular calcification. We found that PM2.5 promoted the deposition of hydroxyapatite in calcifying vascular cells. Moreover, hydroxyapatite deposition was significantly enhanced by 3.5 times compared with those in the control group in aortas of ApoE-/- mice after exposure winter PM2.5 (1.5 mg/kg b.w.), accompanied by activation of the OPG/RANKL pathway and inflammatory cytokines' expressions. Moreover, PM2.5-induced reactive oxygen species (ROS) generation was observed. NAC, an ROS inhibitor, observably alleviated the promotion effects of PM2.5 on vascular calcification. Furthermore, rutin effectively prevented vascular calcification by regulating the OPG/RANKL pathway. Our results suggest that PM2.5 play an important role in the occurrence and development of vascular calcification, and that rutin has an antagonistic effect on it.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoying Wu
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Feihong Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
89
|
Kim SH, Lee YC. Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. Int J Mol Sci 2022; 23:ijms23073638. [PMID: 35409001 PMCID: PMC8998173 DOI: 10.3390/ijms23073638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several plant-based nanoscale-encapsulated antioxidant compounds (rutin, myricetin, β-carotene, fisetin, lycopene, quercetin, genkwanin, lutein, resveratrol, eucalyptol, kaempferol, glabridin, pinene, and whole-plant bio-active compounds) are briefly introduced in this paper, along with their characteristics. Antioxidants’ bioavailability has become one of the main research topics in bio-nanomedicine. Two low patient compliance drug delivery pathways (namely, the oral and topical delivery routes), are described in detail in this paper, for nanoscale colloidal systems and gel formulations. Both routes and/or formulations seek to improve bioavailability and maximize the drug agents’ efficiency. Some well-known compounds have been robustly studied, but many remain elusive. The objective of this review is to discuss recent studies and advantages of nanoscale formulations of plant-derived antioxidant compounds.
Collapse
|
90
|
Xia H, Zhang X, Shen Y, Guo Y, Wang T, Wang J, Lin L, Deng H, Deng Q, Xu K, Lv X, Liang D. Comparative analysis of flavonoids in white and red table grape cultivars during ripening by widely targeted metabolome and transcript levels. J Food Sci 2022; 87:1650-1661. [PMID: 35315060 DOI: 10.1111/1750-3841.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The flavonoid metabolites were compared between red 'Summer Black' (SB) and white 'Shine Muscat' (SM) table grapes during fruit development based on widely targeted metabolome. A total of 134 flavonoids were identified in two cultivars, including 37 flavones, 33 flavonols, and 11 anthocyanidins, and so on. From young to veraison, the composition and the content of most flavonoids were decreasing in both cultivars but increased at maturation in SB. In general, SB has higher flavonoid compositions and content than SM during the whole fruit development, especially the content of anthocyanin after veraison. While the SM had higher content of flavonols such as quercetin, kaempferol and their derivatives. The expression of anthocyanin-related genes such as UFGT, OMT, GST, MATE, MYBA1, and MYBA2 was remarkably higher in SB than those in SM, which may attribute to higher anthocyanin content, while the higher expression of F3H and FLS resulted higher level of flavonols in SM. These results improve our understanding of flavonoid profiles and molecular mechanism in table grape cultivars.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xuefeng Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yanqiu Shen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Tong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Kunfu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
91
|
Kaempferol Regresses Carcinogenesis through a Molecular Cross Talk Involved in Proliferation, Apoptosis and Inflammation on Human Cervical Cancer Cells, HeLa. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kaempferol, a flavonoid, contains a plethora of therapeutic properties and has demonstrated its efficacy against cancer. This study aims to unravel the molecular targets that are being modulated by kaempferol on HeLa cells. Various assays were performed, namely: MTT assay, flow cytometry to analyze DNA content and quantitate apoptosis. Quantitative PCR and protein profiling were performed to evaluate the modulated manifestation of different genes involved in apoptosis, cell growth and inflammation. Kaempferol exhibited reduction in cell viability of HeLa cells (IC50 = 50 µM 48 h), whereas it did not show any significant effect on viability of the AC-16 cell line. Kaempferol-impacted apoptosis was definitive, as it induced DNA fragmentation, caused disruption of membrane potential, accumulation of cells in the G2-M phase and augmented early apoptosis. Consistently, kaempferol induced apoptosis in HeLa cells by modulating the expression of various genes at both transcript and protein levels. It upregulated the expression of pro-apoptotic genes, including APAF1, BAX, BAD, Caspases 3, and 9, etc., at the transcript level and Bad, Bax, p27, p53, p21, Caspases 3 and 8 etc. at the protein level, while it downregulated the expression of pro-survival gene BCL-2, BIRC8, MCL-1, XIAP, and NAIP at the transcript level and Bcl-2, XIAP, Livin, clap-2 at the protein level. Kaempferol attenuated oxidative stress by upregulating GSH activity and anti-inflammatory response by suppressing NF-kB pathways. Moreover, kaempferol averted rampant cell division and induced apoptosis by modulating AKT/MTOR and MAP kinase pathways. Hence, kaempferol can be considered as a natural therapeutic agent with a differential profile.
Collapse
|
92
|
The intake of flavonoids, stilbenes, and tyrosols, mainly consumed through red wine and virgin olive oil, is associated with lower carotid and femoral subclinical atherosclerosis and coronary calcium. Eur J Nutr 2022; 61:2697-2709. [PMID: 35254491 PMCID: PMC9279214 DOI: 10.1007/s00394-022-02823-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022]
Abstract
Purpose It is suggested that polyphenols back the cardiovascular protection offered by the Mediterranean diet. This study evaluates the association of specific types of dietary polyphenols with prevalent subclinical atherosclerosis in middle-aged subjects. Methods Ultrasonography and TC were performed on 2318 men from the Aragon Workers Health Study, recruited between 2011 and 2014, to assess the presence of plaques in carotid and femoral arteries and coronary calcium. Polyphenol intake was assessed using a validated semi-quantitative 136-item food frequency questionnaire. The Phenol Explorer database was used to derive polyphenol class intake. Logistic and linear regressions were used to estimate the cross-sectional association of polyphenols intake with femoral and carotid subclinical atherosclerosis and coronary calcium. Results A higher intake of flavonoids (third vs. first tertile) was associated with a lower risk of both carotid (OR 0.80: CI 95% 0.62–1.02; P trend 0.094) and femoral (0.62: 0.48–0.80, P trend < 0.001) subclinical atherosclerosis. A higher intake of stilbenes was associated with a lower risk of femoral subclinical atherosclerosis (0.62: 0.46–0.83; P trend 0.009) and positive coronary calcium (0.75: 0.55–1.03; P trend 0.131). A higher intake of tyrosols was also associated with a lower risk of positive coronary calcium (0.80: 0.62–1.03; P trend 0.111). The associations remained similar when adjusted for blood lipids and blood pressure. Conclusion Dietary flavonoids, stilbenes, and tyrosols, whose main sources are red wine and virgin olive oil, are associated with lower prevalence of subclinical atherosclerosis in middle-aged subjects. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02823-0.
Collapse
|
93
|
Sharma S, Chaudhary S, Harchanda A. Rhododendron arboreum: A Critical Review on Phytochemicals, Health
Benefits and Applications in the Food Processing Industries. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210921104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Rhododendron is a resourceful, evergreen shrub or a small tree with an ornate display
of scarlet red or pale pink flowers that belongs to the family Ericaceae. Rhododendron
plants are traditionally used to treat numerous human ailments like blood dysentery, headache,
asthma, cough, stomachache, fever, inflammation and fungal infections. Rhododendron also
has economic, medicinal, and pharmacological importance. Rhododendron has been regarded
as a rich source of secondary metabolites. Apart from aesthetic and sacred values, from past
times, Rhododendron juice was prepared from the flowers to curb allergies, treat diabetes and
deal with inflammations. Recent studies have shown several promising activities particularly
relaxant, digestive enzyme, antioxidant, antimicrobial, antispasmodic, anticancer and antagonistic
effects. With the rapidly growing popularity of Rhododendron arboreum, it is important
to have a comprehensive reference for its nutritional benefits with the growing search for natural
and healthy foods. This work aimed to review the recent advances in research carried out to
date for the purposive evaluation of the nutritional quality and potential health benefits of Rhododendron
arboreum for its utilization in food processing industries for composing novel value-
added products, to achieve high consumer acceptability and health benefits.
Collapse
Affiliation(s)
- Simple Sharma
- Department of Food Science and Technology, I. K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway,
Punjab 144603, India
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University,
Phagwara, Punjab-144411, India
| | - Sahil Chaudhary
- Department of Food Science and Technology, I. K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway,
Punjab 144603, India
| | - Archu Harchanda
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University,
Phagwara, Punjab-144411, India
| |
Collapse
|
94
|
Ijardar SP, Singh V, Gardas RL. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022; 27:1368. [PMID: 35209161 PMCID: PMC8877072 DOI: 10.3390/molecules27041368] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/31/2023] Open
Abstract
Recently, deep eutectic solvent (DES) or ionic liquid (IL) analogues have been considered as the newest green solvent, demonstrating the potential to replace harsh volatile organic solvents. DESs are mainly a combination of two compounds: hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD), which have the ability to interact through extensive hydrogen bonds. A thorough understanding of their physicochemical properties is essential, given their successful applications on an industrial scale. The appropriate blend of HBA to HBD can easily fine-tune DES properties for desired applications. In this context, we have reviewed the basic information related to DESs, the two most studied physicochemical properties (density and viscosity), and their performance as a solvent in (i) drug delivery and (ii) extraction of biomolecules. A broader approach of various factors affecting their performance has been considered, giving a detailed picture of the current status of DESs in research and development.
Collapse
Affiliation(s)
- Sushma P. Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India;
| | - Vickramjeet Singh
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India;
| | - Ramesh L. Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
95
|
Rudrapal M, Khairnar SJ, Khan J, Dukhyil AB, Ansari MA, Alomary MN, Alshabrmi FM, Palai S, Deb PK, Devi R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front Pharmacol 2022; 13:806470. [PMID: 35237163 PMCID: PMC8882865 DOI: 10.3389/fphar.2022.806470] [Citation(s) in RCA: 323] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Pune, India
- *Correspondence: Mithun Rudrapal,
| | | | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdulaziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, India
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
96
|
Xia X, Chen C, Yang L, Wang Y, Duan A, Wang D. Analysis of metabolites in young and mature Docynia delavayi (Franch.) Schneid leaves using UPLC-ESI-MS/MS. PeerJ 2022; 10:e12844. [PMID: 35186461 PMCID: PMC8820213 DOI: 10.7717/peerj.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
Docynia delavayi (Franch.) Schneid is a plant used both as food and traditional folk medicine. The leaves of D. delavayi are rich in polyphenols, plants with phenolic content are known to be extremely beneficial in terms of human nutrition. In the present study, we used metabolome technology (UPLC-ESI-MS/MS) to examine the young and mature D. delavayi leaves on metabolites changes, which were then analyzed and compared. As a result, 477 metabolites (including 111 flavonoids, 47 others (consisted of nine vitamin, 18 saccharides and alcohols, and 20 unassigned metabolites), 71 phenolic acids, 52 amino acids and derivatives, 18 alkaloids, 61 lipids, 24 terpenoids, 33 nucleotides and derivatives, 18 lignans and coumarins, 12 tannins, 30 organic acids) were identified, of which 281 differentially accumulated metabolites, including 146 up-regulated metabolites and 135 down-regulated metabolites. The result of clustering and PCA analyses showed that young and mature leaves were separated, which indicated that there was a great difference in metabolites between young and mature leaves. Meanwhile, we also found that both young and mature leaves displayed unique metabolites with important biological functions. KEGG enrichment analysis showed that 90 of the differential metabolites were mainly concentrated in 68 KEGG pathways. The result will greatly complement the existing knowledge on the D. delavayi leaves for lays a foundation for subsequent development and utilization.
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Can Chen
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yuchang Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Anan Duan
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China,Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Dawei Wang
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China,Key Laboratory for Forest Genetic and Tree Improvement & Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| |
Collapse
|
97
|
da Silva GF, de Souza Júnior ET, Almeida RN, Fianco ALB, do Espirito Santo AT, Lucas AM, Vargas RMF, Cassel E. The Response Surface Optimization of Supercritical CO 2 Modified with Ethanol Extraction of p-Anisic Acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030970. [PMID: 35164235 PMCID: PMC8840752 DOI: 10.3390/molecules27030970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
A widely disseminated native species from Australia, Acacia mearnsii, which is mainly cultivated in Brazil and South Africa, represents a rich source of natural tannins used in the tanning process. Many flowers of the Acacia species are used as sources of compounds of interest for the cosmetic industry, such as phenolic compounds. In this study, supercritical fluid extraction was used to obtain non-volatile compounds from A. mearnsii flowers for the first time. The extract showed antimicrobial activity and the presence of p-anisic acid, a substance with industrial and pharmaceutical applications. The fractionation of the extract was performed using a chromatographic column and the fraction containing p-anisic acid presented better minimum inhibitory concentration (MIC) results than the crude extract. Thus, the extraction process was optimized to maximize the p-anisic acid extraction. The response surface methodology and the Box–Behnken design was used to evaluate the pressure, temperature, the cosolvent, and the influence of the particle size on the extraction process. After the optimization process, the p-anisic acid yield was 2.51% w/w and the extraction curve was plotted as a function of time. The simulation of the extraction process was performed using the three models available in the literature.
Collapse
|
98
|
Triantafillidis JK, Triantafyllidi E, Sideris M, Pittaras T, Papalois AE. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. METHODS The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. RESULTS More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. CONCLUSION A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
Affiliation(s)
- John K. Triantafillidis
- GI Department, Metropolitan General Hospital, 15562 Holargos, Greece;
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
| | - Eleni Triantafyllidi
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
| | - Michail Sideris
- Women’s Health Research Unit, Queen Mary University of London, London E1 2AB, UK;
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Apostolos E. Papalois
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 60 El. Venizelou Street, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
99
|
Hammi KM, Essid R, Khadraoui N, Ksouri R, Majdoub H, Tabbene O. Antimicrobial, antioxidant and antileishmanial activities of Ziziphus lotus leaves. Arch Microbiol 2022; 204:119. [PMID: 34989872 DOI: 10.1007/s00203-021-02733-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate antimicrobial and antioxidant activities of different fractions obtained from edible Tunisian Ziziphus Lotus leaves of Tozeur region. Different organic extracts were tested: cyclohexane, dichloromethane, ethyl acetate, n-butanol and water. Bio-guided fractionation revealed that dichloromethane fraction is the most active against S. aureus and Methicillin-resistant S. aureus strains. Moreover, this fraction showed the highest antileishmanial activity with IC50 values of 20.55 ± 0.34 μg/mL and 15.37 ± 0.17 μg/mL against L. major and L. infantum, respectively. The potentialities of antibacterial and leishmanicidal activities found in dichloromethane could be explained by the presence of major flavonoids such as catechin, rutin and luteolin 7-O-glucoside as revealed by HPLC system. The observed moderate antifungal activity, which was only given by butanolic fraction against pathogen fungi, may be attributed to the presence of chlorogenic acid. Furthermore, dichloromethane and butanolic fraction showed a good DPPH (2,2-diphenyl-1-picryl hydrazyl) scavenging activity and Ferric reducing power. These results suggest that Ziziphus lotus leaf fractions might be used as antioxidant and antimicrobialagent.
Collapse
Affiliation(s)
- Khaoula Mkadmini Hammi
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia.,Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Rym Essid
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia.
| | - Nadine Khadraoui
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM), Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Bd. de l'environnement, 5019, Monastir, Tunisia
| | - Olfa Tabbene
- Laboratoire des Substances Bioactives, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
100
|
Synthesis of new halogenated flavonoid-based isoxazoles: in vitro and in silico evaluation of a-amylase inhibitory potential, a SAR analysis and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|