51
|
A Microplate-Based Approach to Map Interactions between TDP-43 and α-Synuclein. J Clin Med 2022; 11:jcm11030573. [PMID: 35160025 PMCID: PMC8836581 DOI: 10.3390/jcm11030573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases, such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein. Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein. Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43 and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together, this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as well as interaction sites of two proteins.
Collapse
|
52
|
Shakir MN, Dugger BN. Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 2022; 81:2-15. [PMID: 34981115 PMCID: PMC8825756 DOI: 10.1093/jnen/nlab122] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the presence of neurofibrillary tangles and amyloid beta (Aβ) plaques in the brain. The disease was first described in 1906 by Alois Alzheimer, and since then, there have been many advancements in technologies that have aided in unlocking the secrets of this devastating disease. Such advancements include improving microscopy and staining techniques, refining diagnostic criteria for the disease, and increased appreciation for disease heterogeneity both in neuroanatomic location of abnormalities as well as overlap with other brain diseases; for example, Lewy body disease and vascular dementia. Despite numerous advancements, there is still much to achieve as there is not a cure for AD and postmortem histological analyses is still the gold standard for appreciating AD neuropathologic changes. Recent technological advances such as in-vivo biomarkers and machine learning algorithms permit great strides in disease understanding, and pave the way for potential new therapies and precision medicine approaches. Here, we review the history of human AD neuropathology research to include the notable advancements in understanding common co-pathologies in the setting of AD, and microscopy and staining methods. We also discuss future approaches with a specific focus on deep phenotyping using machine learning.
Collapse
Affiliation(s)
- Mustafa N Shakir
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| | - Brittany N Dugger
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| |
Collapse
|
53
|
Wegiel J, Flory M, Kuchna I, Nowicki K, Wegiel J, Ma SY, Zhong N, Bobrowicz TW, de Leon M, Lai F, Silverman WP, Wisniewski T. Developmental deficits and staging of dynamics of age associated Alzheimer's disease neurodegeneration and neuronal loss in subjects with Down syndrome. Acta Neuropathol Commun 2022; 10:2. [PMID: 34983655 PMCID: PMC8728914 DOI: 10.1186/s40478-021-01300-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The increased life expectancy of individuals with Down syndrome (DS) is associated with increased prevalence of trisomy 21-linked early-onset Alzheimer's disease (EOAD) and dementia. The aims of this study of 14 brain regions including the entorhinal cortex, hippocampus, basal ganglia, and cerebellum in 33 adults with DS 26-72 years of age were to identify the magnitude of brain region-specific developmental neuronal deficits contributing to intellectual deficits, to apply this baseline to identification of the topography and magnitude of neurodegeneration and neuronal and volume losses caused by EOAD, and to establish age-based staging of the pattern of genetically driven neuropathology in DS. Both DS subject age and stage of dementia, themselves very strongly correlated, were strong predictors of an AD-associated decrease of the number of neurons, considered a major contributor to dementia. The DS cohort was subclassified by age as pre-AD stage, with 26-41-year-old subjects with a full spectrum of developmental deficit but with very limited incipient AD pathology, and 43-49, 51-59, and 61-72-year-old groups with predominant prevalence of mild, moderately severe, and severe dementia respectively. This multiregional study revealed a 28.1% developmental neuronal deficit in DS subjects 26-41 years of age and 11.9% AD-associated neuronal loss in DS subjects 43-49 years of age; a 28.0% maximum neuronal loss at 51-59 years of age; and a 11.0% minimum neuronal loss at 61-72 years of age. A total developmental neuronal deficit of 40.8 million neurons and AD-associated neuronal loss of 41.6 million neurons reflect a comparable magnitude of developmental neuronal deficit contributing to intellectual deficits, and AD-associated neuronal loss contributing to dementia. This highly predictable pattern of pathology indicates that successful treatment of DS subjects in the fourth decade of life may prevent AD pathology and functional decline.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Shuang Yong Ma
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | | | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Wayne P. Silverman
- Department of Pediatrics, Irvine Medical Center, University of California, Irvine, CA USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
54
|
Deng X, Sun X, Yue W, Duan Y, Hu R, Zhang K, Ni J, Cui J, Wang Q, Chen Y, Li A, Fang Y. CHMP2B regulates TDP-43 phosphorylation and cytotoxicity independent of autophagy via CK1. J Cell Biol 2022; 221:212740. [PMID: 34726688 PMCID: PMC8570292 DOI: 10.1083/jcb.202103033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy–endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43–mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.
Collapse
Affiliation(s)
- Xue Deng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Yue
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongjia Duan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Rirong Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangxia Ni
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qiangqiang Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.,Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, China.,Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Vandenbark AA, Offner H, Matejuk S, Matejuk A. Microglia and astrocyte involvement in neurodegeneration and brain cancer. J Neuroinflammation 2021; 18:298. [PMID: 34949203 PMCID: PMC8697466 DOI: 10.1186/s12974-021-02355-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
The brain is unique and the most complex organ of the body, containing neurons and several types of glial cells of different origins and properties that protect and ensure normal brain structure and function. Neurological disorders are the result of a failure of the nervous system multifaceted cellular networks. Although great progress has been made in the understanding of glia involvement in neuropathology, therapeutic outcomes are still not satisfactory. Here, we discuss recent perspectives on the role of microglia and astrocytes in neurological disorders, including the two most common neurodegenerative conditions, Alzheimer disease and progranulin-related frontotemporal lobar dementia, as well as astrocytoma brain tumors. We emphasize key factors of microglia and astrocytic biology such as the highly heterogeneic glial nature strongly dependent on the environment, genetic factors that predispose to certain pathologies and glia senescence that inevitably changes the CNS landscape. Our understanding of diverse glial contributions to neurological diseases can lead advances in glial biology and their functional recovery after CNS malfunction.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Szymon Matejuk
- Medical Student of Jagiellonian University, Cracow, Poland
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| |
Collapse
|
56
|
Kondo K, Ikura T, Tanaka H, Fujita K, Takayama S, Yoshioka Y, Tagawa K, Homma H, Liu S, Kawasaki R, Huang Y, Ito N, Tate SI, Okazawa H. Hepta-Histidine Inhibits Tau Aggregation. ACS Chem Neurosci 2021; 12:3015-3027. [PMID: 34319089 DOI: 10.1021/acschemneuro.1c00164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau aggregation is a central hallmark of tauopathies such as frontotemporal lobar degeneration and progressive supranuclear palsy as well as of Alzheimer's disease, and it has been a target for therapeutic development. Herein, we unexpectedly found that hepta-histidine (7H), an inhibitor of the interaction between Ku70 and Huntingtin proteins, suppresses aggregation of Tau-R3 peptides in vitro. Addition of the trans-activator of transcription (TAT) sequence (YGRKKRRQRRR) derived from the TAT protein to 7H increased its permeability into cells, and TAT-7H treatment of iPS cell-derived neurons carrying Tau or APP mutations suppressed Tau phosphorylation. These results indicate that 7H is a promising lead compound for developing anti-aggregation drugs against Tau-related neurodegenerative diseases including Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Teikichi Ikura
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510 Tokyo, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sumire Takayama
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Su Liu
- Department of Mathematical and Life Sciences, Graduate School for Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, Graduate School for Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yong Huang
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510 Tokyo, Japan
| | - Shin-ichi Tate
- Department of Mathematical and Life Sciences, Graduate School for Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
57
|
Lee YB, Scotter EL, Lee DY, Troakes C, Mitchell J, Rogelj B, Gallo JM, Shaw CE. Cytoplasmic TDP-43 is involved in cell fate during stress recovery. Hum Mol Genet 2021; 31:166-175. [PMID: 34378050 PMCID: PMC8743001 DOI: 10.1093/hmg/ddab227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Transactive response DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalizes in patients to the cytoplasm, where it forms ubiquitin-positive inclusions in affected neurons and glia. Physiologically, cytoplasmic TDP-43 is associated with stress granules (SGs). Here, we explored TDP-43 cytoplasmic accumulation and stress granule formation following osmotic and oxidative stress. We show that sorbitol drives TDP-43 redistribution to the cytoplasm, while arsenite induces the recruitment of cytoplasmic TDP-43 to TIA-1 positive SGs. We demonstrate that inducing acute oxidative stress after TDP-43 cytoplasmic relocalization by osmotic shock induces poly (ADP-ribose) polymerase (PARP) cleavage, which triggers cellular toxicity. Recruitment of cytoplasmic TDP-43 to polyribosomes occurs in an SH-SY5Y cellular stress model and is observed in FTD brain lysate. Moreover, the processing body (P-body) marker DCP1a is detected in TDP-43 granules during recovery from stress. Overall, this study supports a central role for cytoplasmic TDP-43 in controlling protein translation in stressed cells.
Collapse
Affiliation(s)
- Youn-Bok Lee
- Department of Basic and Clinical Neuroscience Institute Maurice Wohl Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience Kings College, SE5 9NU, London, U.K
| | - Emma L Scotter
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Do-Young Lee
- Department of Basic and Clinical Neuroscience Institute Maurice Wohl Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience Kings College, SE5 9NU, London, U.K
| | - Claire Troakes
- Basic and Clinical Neuroscience Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, SE5 8AF London U.K
| | - Jacqueline Mitchell
- Department of Basic and Clinical Neuroscience Institute Maurice Wohl Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience Kings College, SE5 9NU, London, U.K
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova 10, SI-1000 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience Institute Maurice Wohl Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience Kings College, SE5 9NU, London, U.K
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience Institute Maurice Wohl Clinical Neuroscience Institute of Psychiatry, Psychology and Neuroscience Kings College, SE5 9NU, London, U.K.,UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, Camberwell, SE5 9RT, London, U.K
| |
Collapse
|
58
|
Wu R, Zhou D, Shen X, Chen F, Liu F, Gu J. Phosphorylation of trans-active response DNA-binding protein-of 43 kDa promotes its cytoplasmic aggregation and modulates its function in tau mRNA stability and exon 10 alternative splicing. J Neurochem 2021; 158:766-778. [PMID: 34107054 DOI: 10.1111/jnc.15450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/12/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Trans-active response DNA-binding protein of 43 kDa (TDP-43) promotes tau mRNA instability and tau exon 10 inclusion. Aggregation of phosphorylated TDP-43 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Casein kinase 1ε (CK1ε) phosphorylates TDP-43 at multiple sites, enhances its cytoplasmic aggregation, and modulates its function in tau mRNA processing. To determine roles of TDP-43 site-specific phosphorylation in its localization, aggregation, and function in tau mRNA processing, TDP-43 was mutated to alanine or aspartic acid at Ser379, Ser403/404, or Ser409/410 to block or mimic phosphorylation. Site-specific phosphorylation of TDP-43 and its mutants by CK1ε was studied in vitro and in cultured cells. Cytoplasmic and nuclear TDP-43 and phospho-TDP-43 were analyzed by western blots. Aggregation of TDP-43 was assessed by immunostaining and level of radioimmunoprecipitation assay buffer-insoluble TDP-43. Green florescent protein tailed with tau 3'-untranslated region and mini-tau gene pCI/SI9-LI10 were used to study tau mRNA stability and alternative splicing of tau exon 10. We found that phospho-blocking mutations of TDP-43 at Ser379, Ser403/404, or Ser409/410 were not effectively phosphorylated by CK1ε. Compared with TDP-43, higher level of phosphorylated TDP-43 in the cytoplasm was observed. Phospho-mimicking mutations at these sites enhanced cytoplasmic aggregation of TDP-43. Green florescent protein expression was not inhibited by phospho-blocking mutants of TDP-43, but tau exon 10 inclusion was further enhanced by phospho-blocking mutations at Ser379 and Ser403/404. Phosphorylation of TDP-43 at Ser379, Ser403/404, or Ser409/410 primes its phosphorylation by CK1ε, promotes TDP-43 cytoplasmic aggregation, and modulates its function in tau mRNA processing in site-specific manner.
Collapse
Affiliation(s)
- Ruozhen Wu
- Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Dingwei Zhou
- Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xin Shen
- Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jianlan Gu
- Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
59
|
Arezoumandan S, Cai X, Kalkarni P, Davis SA, Wilson K, Ferris CF, Cairns NJ, Gitcho MA. Hippocampal neurobiology and function in an aged mouse model of TDP-43 proteinopathy in an APP/PSEN1 background. Neurosci Lett 2021; 758:136010. [PMID: 34090937 DOI: 10.1016/j.neulet.2021.136010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Aging is a major risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. TDP-43 proteinopathy is reported to be associated with AD pathology is almost 50% of cases. Our exploratory study examined near end-stage (28 months old) mice selectively driving expression of human TDP-43 in the hippocampus and cortex in an APP/PSEN1 background. We hypothesized that hippocampal neuropathology caused by β-amyloidosis with TDP-43 proteinopathy induced in this model, resembling the pathology seen in AD cases, manifest with changes in resting state functional connectivity. In vivo magnetic resonance imaging and post-mortem histology were performed on four genotypes: wild type, APP/PSEN1, Camk2a/TDP-43, and Camk2a/TDP-43/APP/PSEN1. Our results revealed loss of functional coupling in hippocampus and amygdala that was associated with severe neuronal loss in dentate gyrus of Camk2a/TDP-43/APP/PSEN1 mice compared to APP/PSEN1 and wild type mice. The loss of cells was accompanied by high background of β-amyloid plaques with sparse phosphorylated TDP-43 pathology. The survival rate was also reduced in Camk2a/TDP-43/APP/PSEN1 mice compared to other groups. This end-of-life study provides exploratory data to reach a better understanding of the role of TDP-43 hippocampal neuropathology in diseases with co-pathologies of TDP-43 proteinopathy and β-amyloidosis such as AD and limbic predominant age-related TDP-43 encephalopathy (LATE).
Collapse
Affiliation(s)
- Sanaz Arezoumandan
- Department of Biological Sciences, Delaware State University, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Xuezhu Cai
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Praveen Kalkarni
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Stephani A Davis
- Department of Biological Sciences, Delaware State University, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Katherine Wilson
- Department of Biological Sciences, Delaware State University, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA
| | - Craig F Ferris
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Michael A Gitcho
- Department of Biological Sciences, Delaware State University, Dover, DE, USA; Delaware Center for Neuroscience Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
60
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
61
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
62
|
Hunter S, Hokkanen SRK, Keage HAD, Fleming J, Minett T, Polvikoski T, Allinson K, Brayne C. TDP-43 Related Neuropathologies and Phosphorylation State: Associations with Age and Clinical Dementia in the Cambridge City over-75s Cohort. J Alzheimers Dis 2021; 75:337-350. [PMID: 32280087 DOI: 10.3233/jad-191093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathologies associated with the Tar-DNA binding protein 43 KDa (TDP-43) are associated with neurodegenerative diseases and aging. Phosphorylation of cellular proteins is a well-accepted mechanism of biological control and can be associated with disease pathways. Phosphorylation state associated with TDP-43 associated pathology has not been investigated with respect to dementia status in a population representative sample. TDP-43 immunohistochemistry directed toward phosphorylated (TDP-43P) and unphosphorylated (TDP-43U) was assessed in sections of hippocampus and temporal cortex from 222 brains donated to the population representative Cambridge City over-75s Cohort. Relationships between dementia status and age at death for TDP-43 immunoreactive pathologies by phosphorylation state were investigated. TDP-43 pathologies are common in the oldest old in the population and often do not conform to MacKenzie classification. Increasing age is associated with glial (TDP-43P) and neuronal inclusions (TDP-43P and TDP-43U), neurites, and granulovacuolar degeneration (GVD). Dementia status is associated with GVD and glial (TDP-43 P) and neural inclusions (TDP-43 P and U). Dementia severity was associated with glial (TDP-43P) and neuronal inclusions (TDP-43U and TDP-43P), GVD, and neurites. The associations between dementia severity and both glial cytoplasmic inclusions and GVD were independent from other pathologies and TDP-43 neuronal cytoplasmic inclusions. TDP-43 pathology contributes to dementia status and progression in a variety of ways in different phosphorylation states involving both neurons and glia, independently from age and from classic Alzheimer-related pathologies. TDP-43 pathologies as cytoplasmic inclusions in neurons or glia or as GVD contribute independently to dementia.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Suvi R K Hokkanen
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, Australia
| | - Jane Fleming
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Thais Minett
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tuomo Polvikoski
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Kieren Allinson
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carol Brayne
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
63
|
Tomé SO, Gomes LA, Li X, Vandenberghe R, Tousseyn T, Thal DR. TDP-43 interacts with pathological τ protein in Alzheimer's disease. Acta Neuropathol 2021; 141:795-799. [PMID: 33797585 DOI: 10.1007/s00401-021-02295-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
|
64
|
Tziortzouda P, Van Den Bosch L, Hirth F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat Rev Neurosci 2021; 22:197-208. [PMID: 33654312 DOI: 10.1038/s41583-021-00431-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Cytoplasmic aggregation of TAR DNA-binding protein 43 (TDP43; also known as TARDBP or TDP-43) is a key pathological feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP43 typically resides in the nucleus but can shuttle between the nucleus and the cytoplasm to exert its multiple functions, which include regulation of the splicing, trafficking and stabilization of RNA. Cytoplasmic mislocalization and nuclear loss of TDP43 have both been associated with ALS and FTD, suggesting that calibrated levels and correct localization of TDP43 - achieved through an autoregulatory loop and tightly controlled nucleocytoplasmic transport - safeguard its normal function. Furthermore, TDP43 can undergo phase transitions, including its dispersion into liquid droplets and its accumulation into irreversible cytoplasmic aggregates. Thus, autoregulation, nucleocytoplasmic transport and phase transition are all part of an intrinsic control system regulating the physiological levels and localization of TDP43, and together are essential for the cellular homeostasis that is affected in neurodegenerative disease.
Collapse
Affiliation(s)
- Paraskevi Tziortzouda
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
65
|
Josephs KA, Martin PR, Weigand SD, Tosakulwong N, Buciuc M, Murray ME, Petrucelli L, Senjem ML, Spychalla AJ, Knopman DS, Boeve BF, Petersen RC, Parisi JE, Dickson DW, Jack CR, Whitwell JL. Protein contributions to brain atrophy acceleration in Alzheimer's disease and primary age-related tauopathy. Brain 2021; 143:3463-3476. [PMID: 33150361 DOI: 10.1093/brain/awaa299] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of amyloid-β and tau deposition in the brain, hippocampal atrophy and increased rates of hippocampal atrophy over time. Another protein, TAR DNA binding protein 43 (TDP-43) has been identified in up to 75% of cases of Alzheimer's disease. TDP-43, tau and amyloid-β have all been linked to hippocampal atrophy. TDP-43 and tau have also been linked to hippocampal atrophy in cases of primary age-related tauopathy, a pathological entity with features that strongly overlap with those of Alzheimer's disease. At present, it is unclear whether and how TDP-43 and tau are associated with early or late hippocampal atrophy in Alzheimer's disease and primary age-related tauopathy, whether either protein is also associated with faster rates of atrophy of other brain regions and whether there is evidence for protein-associated acceleration/deceleration of atrophy rates. We therefore aimed to model how these proteins, particularly TDP-43, influence non-linear trajectories of hippocampal and neocortical atrophy in Alzheimer's disease and primary age-related tauopathy. In this longitudinal retrospective study, 557 autopsied cases with Alzheimer's disease neuropathological changes with 1638 ante-mortem volumetric head MRI scans spanning 1.0-16.8 years of disease duration prior to death were analysed. TDP-43 and Braak neurofibrillary tangle pathological staging schemes were constructed, and hippocampal and neocortical (inferior temporal and middle frontal) brain volumes determined using longitudinal FreeSurfer. Bayesian bivariate-outcome hierarchical models were utilized to estimate associations between proteins and volume, early rate of atrophy and acceleration in atrophy rates across brain regions. High TDP-43 stage was associated with smaller cross-sectional brain volumes, faster rates of brain atrophy and acceleration of atrophy rates, more than a decade prior to death, with deceleration occurring closer to death. Stronger associations were observed with hippocampus compared to temporal and frontal neocortex. Conversely, low TDP-43 stage was associated with slower early rates but later acceleration. This later acceleration was associated with high Braak neurofibrillary tangle stage. Somewhat similar, but less striking, findings were observed between TDP-43 and neocortical rates. Braak stage appeared to have stronger associations with neocortex compared to TDP-43. The association between TDP-43 and brain atrophy occurred slightly later in time (∼3 years) in cases of primary age-related tauopathy compared to Alzheimer's disease. The results suggest that TDP-43 and tau have different contributions to acceleration and deceleration of brain atrophy rates over time in both Alzheimer's disease and primary age-related tauopathy.
Collapse
Affiliation(s)
- Keith A Josephs
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Peter R Martin
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Nirubol Tosakulwong
- Department of Health Science Research (Biostatistics), Mayo Clinic, Rochester, MN, USA
| | - Marina Buciuc
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Melissa E Murray
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience (Molecular Neuroscience), Mayo Clinic, Jacksonville, FL, USA
| | - Matthew L Senjem
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Anthony J Spychalla
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Dennis W Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | - Clifford R Jack
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Whitwell
- Department of Radiology (Radiology Research) Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
66
|
Laos V, Bishop D, Ganguly P, Schonfeld G, Trapp E, Cantrell KL, Buratto SK, Shea JE, Bowers MT. Catalytic Cross Talk between Key Peptide Fragments That Couple Alzheimer's Disease with Amyotrophic Lateral Sclerosis. J Am Chem Soc 2021; 143:3494-3502. [PMID: 33621087 DOI: 10.1021/jacs.0c12729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aβ assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43307-319, and a neurotoxic physiologically observed fragment of Aβ, Aβ25-35. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aβ25-35 with the toxic wild type TDP-43307-319 peptide and with the nontoxic synthetic TDP-43307-319 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43307-319 WT monomer in the acceleration of Aβ25-35 aggregation to its toxic cylindrin and β barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43307-319 and dimers or higher order oligomers of WT TDP-43307-319 do not promote aggregation of Aβ25-35 but rather dissociate preformed toxic higher order oligomers of Aβ25-35. Reasons for these very different behaviors are reported.
Collapse
Affiliation(s)
- Veronica Laos
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Dezmond Bishop
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Pritam Ganguly
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Grace Schonfeld
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Ellen Trapp
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Kristi Lazar Cantrell
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Steven K Buratto
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Michael T Bowers
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
67
|
Tando S, Kasai T, Mizuta I, Takahashi H, Yaoi T, Saito K, Hojo T, Mizuno T, Hasegawa M, Itoh K. An autopsy case of corticobasal syndrome due to asymmetric degeneration of the motor cortex and substantia nigra with TDP-43 proteinopathy, associated with Alzheimer's disease pathology. Neuropathology 2021; 41:214-225. [PMID: 33537992 DOI: 10.1111/neup.12723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
We herein report a case of corticobasal syndrome (CBS) due to asymmetric degeneration of the motor cortex and substantia nigra with transactivation response DNA-binding protein of 43 kDa (TDP-43) proteinopathy, associated with Alzheimer's disease (AD) pathology. An 85-year-old man initially noticed that he had difficulty in walking and had trouble in moving his right hand and lower limb one year later. His gait disturbance was aggravated, and at the age of 87 years, his neurological examination revealed parkinsonism and positive frontal lobe signs. Brain magnetic resonance imaging (MRI) revealed atrophy of the left frontotemporal lobe and cerebral peduncle, and cerebral blood flow scintigraphy revealed hypoperfusion of the left frontotemporal lobe, leading to a possible diagnosis of CBS. At the age of 89 years, he was bedridden, and rarely spoke. He died of aspiration pneumonia five years after the onset of initial symptoms. At the autopsy, the brain weighed 1280 g and showed left-sided hemiatrophy of the cerebrum and cerebral peduncle. Neuropathological examination revealed AD pathology (Braak AT8 stage V, Braak stage C, CERAD B, Thal classification 5). Phosphorylated TDP-43 (p-TDP-43) immunohistochemistry revealed widespread deposits of dystrophic neurites (DNs), glial cytoplasmic inclusions (GCIs), and neuronal cytoplasmic inclusions (NCIs), which were most remarkable in layers II/III of the motor cortex and predominant on the left hemisphere of the frontal cortex, these neuropathology being consistent with frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) type A. Interestingly, neuronal loss in the substantia nigra was more severe on the left than the right side, with a few phosphorylated tau (p-tau) and p-TDP-43 deposits. It is highly likely that asymmetric TDP-43 pathology rather than symmetric tau pathology contributed to the laterality of degeneration of the cerebral cortex, substantia nigra, and pyramidal tract, which led us to suggest that TDP-43 proteinopathy might be a primary cause.
Collapse
Affiliation(s)
- So Tando
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kasai
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisashi Takahashi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kozo Saito
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohito Hojo
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
68
|
TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nat Struct Mol Biol 2021; 28:132-142. [PMID: 33398173 DOI: 10.1038/s41594-020-00537-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) was initially thought to be associated with oxidative stress when it was first linked to mutant superoxide dismutase 1 (SOD1). The subsequent discovery of ALS-linked genes functioning in RNA processing and proteostasis raised the question of how different biological pathways converge to cause the disease. Both familial and sporadic ALS are characterized by the aggregation of the essential DNA- and RNA-binding protein TDP-43, suggesting a central role in ALS etiology. Here we report that TDP-43 aggregation in neuronal cells of mouse and human origin causes sensitivity to oxidative stress. Aggregated TDP-43 sequesters specific microRNAs (miRNAs) and proteins, leading to increased levels of some proteins while functionally depleting others. Many of those functionally perturbed gene products are nuclear-genome-encoded mitochondrial proteins, and their dysregulation causes a global mitochondrial imbalance that augments oxidative stress. We propose that this stress-aggregation cycle may underlie ALS onset and progression.
Collapse
|
69
|
Matsukawa K, Kukharsky MS, Park SK, Park S, Watanabe N, Iwatsubo T, Hashimoto T, Liebman SW, Shelkovnikova TA. Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol 2021; 18:1546-1554. [PMID: 33427561 PMCID: PMC8583295 DOI: 10.1080/15476286.2020.1860580] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathological changes involving TDP-43 protein (‘TDP-43 proteinopathy’) are typical for several neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). FTLD-TDP cases are characterized by increased binding of TDP-43 to an abundant lncRNA, NEAT1, in the cortex. However it is unclear whether enhanced TDP-43-NEAT1 interaction represents a protective mechanism. We show that accumulation of human TDP-43 leads to upregulation of the constitutive NEAT1 isoform, NEAT1_1, in cultured cells and in the brains of transgenic mice. Further, we demonstrate that overexpression of NEAT1_1 ameliorates TDP-43 toxicity in Drosophila and yeast models of TDP-43 proteinopathy. Thus, NEAT1_1 upregulation may be protective in TDP-43 proteinopathies affecting the brain. Approaches to boost NEAT1_1 expression in the CNS may prove useful in the treatment of these conditions.
Collapse
Affiliation(s)
- Koji Matsukawa
- Department of Neuropathology, University of Tokyo, Tokyo, Japan
| | - Michail S Kukharsky
- Department of Medicinal and Biological Chemistry, Institute of Physiologically Active Compounds of Russian Academy of Sciences, Chernogolovka, Russian Federation
| | | | - Sangeun Park
- Department of Pharmacology, University of Nevada, Reno, USA
| | | | | | | | | | | |
Collapse
|
70
|
Klotz S, König T, Erdler M, Ulram A, Nguyen A, Ströbel T, Zimprich A, Stögmann E, Regelsberger G, Höftberger R, Budka H, Kovacs GG, Gelpi E. Co-incidental C9orf72 expansion mutation-related frontotemporal lobar degeneration pathology and sporadic Creutzfeldt-Jakob disease. Eur J Neurol 2020; 28:1009-1015. [PMID: 33131137 PMCID: PMC7898301 DOI: 10.1111/ene.14621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Background The C9orf72 hexanucleotide expansion mutation is the most common cause of genetic frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS) and combined FTD‐ALS. Its underlying neuropathology combines TDP‐43 pathology and dipeptide repeat protein (DPR) deposits and may also associate with other neurodegeneration‐associated protein aggregates. Herein we present a unique combination of C9orf72 mutation with sporadic Creutzfeldt−Jakob disease (CJD) in a 74‐year‐old patient with rapidly progressive dementia. Methods Detailed neuropathological examination including immunohistochemistry for several proteinopathies. Genetic analysis was conducted by repeat primed polymerase chain reaction (PCR). Furthermore, we analyzed additional C9orf72 mutation carriers for prion−protein (PrP) deposits in brain tissue and screened the cerebellar cortex of other CJD cases for p62/DPR neuronal inclusions to assess the frequency of combined pathologies. Results Postmortem brain examination of a patient with a rapidly progressive neurological deterioration of 8 months’ duration confirmed the diagnosis of CJD. She harbored valine homozygosity at PRNP codon 129. In addition, a frontotemporal lobar degeneration (FTLD)‐pattern with TDP‐43 protein aggregates and p62+/C9RANT+ positive inclusions along with a high degree of Alzheimer‐related pathology (A3B3C3) were identified. The suspected C9orf72 expansion mutation was confirmed by repeat‐primed PCR. Screening of 13 C9orf72 cases showed no pathological PrP aggregates and screening of 100 CJD cases revealed no other C9orf72 expansion mutation carriers. Conclusion A combination of a C9orf72 expansion mutation‐related FTLD with sporadic CJD in the same patient is rare. While the rarity of both diseases makes this concurrence most likely to be coincidental, questions regarding a potential link between these two neurodegenerative pathologies deserve further studies.
Collapse
Affiliation(s)
- Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marcus Erdler
- Department of Neurology, Klinik Donaustadt mit Ludwig-Boltzmann-Institut, Vienna, Austria
| | - Andreas Ulram
- Department of Neurosurgery, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Anita Nguyen
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Ströbel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | | | | | - Günther Regelsberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Herbert Budka
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Austrian Reference Center for Human Prion Diseases (OERPE), Vienna, Austria
| |
Collapse
|
71
|
Robinson AC, Chew-Graham S, Davidson YS, Horan MA, Roncaroli F, Minshull J, du Plessis D, Pal P, Payton A, Pendleton N, Mann DMA. A Comparative Study of Pathological Outcomes in The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age and Brains for Dementia Research Cohorts. J Alzheimers Dis 2020; 73:619-632. [PMID: 31796669 PMCID: PMC7029329 DOI: 10.3233/jad-190580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, we have characterized and compared individuals whose brains were donated as part of The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age (UoM) with those donated through the Manchester arm of the UK Brains for Dementia Research (BDR) program. The aim of this study was to investigate how differences in study recruitment may affect final pathological composition of cohort studies. The UoM cohort was established as a longitudinal study of aging and cognition whereas the BDR program was established, prima facie, to collect brains from both demented and non-demented individuals for the purpose of building a tissue research resource. Consequently, the differences in recruitment patterns generated differences in demographic, clinical, and neuropathological characteristics. There was a higher proportion of recruits with dementia [mostly Alzheimer's disease (AD)] within the BDR cohort than in the UoM cohort. In pathological terms, the BDR cohort was more 'polarized', being more composed of demented cases with high Braak pathology scores and non-demented cases with low Braak scores, and fewer non-AD pathology cases, than the UoM cohort. In both cohorts, cerebral amyloid angiopathy tended to be greater in demented than non-demented individuals. Such observations partly reflect the recruitment of demented and non-demented individuals into the BDR cohort, and also that insufficient study time may have elapsed for disease onset and development in non-demented individuals to take place. Conversely, in the UoM cohort, where there had been nearly 30 years of study time, a broader spread of AD-type pathological changes had 'naturally' evolved in the brains of both demented and non-demented participants.
Collapse
Affiliation(s)
- Andrew C Robinson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Stephen Chew-Graham
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Yvonne S Davidson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Michael A Horan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Federico Roncaroli
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK.,Neuropathology Unit, Salford Royal Hospital, Greater Manchester, England, UK
| | - James Minshull
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Daniel du Plessis
- Neuropathology Unit, Salford Royal Hospital, Greater Manchester, England, UK
| | - Piyali Pal
- Department of Neuropathology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Antony Payton
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - David M A Mann
- Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience & Experimental Psychology, The University of Manchester, Salford Royal Hospital, Salford, UK
| |
Collapse
|
72
|
Prudencio M, Humphrey J, Pickles S, Brown AL, Hill SE, Kachergus JM, Shi J, Heckman MG, Spiegel MR, Cook C, Song Y, Yue M, Daughrity LM, Carlomagno Y, Jansen-West K, de Castro CF, DeTure M, Koga S, Wang YC, Sivakumar P, Bodo C, Candalija A, Talbot K, Selvaraj BT, Burr K, Chandran S, Newcombe J, Lashley T, Hubbard I, Catalano D, Kim D, Propp N, Fennessey S, NYGC ALS Consortium, Fagegaltier D, Phatnani H, Secrier M, Fisher EM, Oskarsson B, van Blitterswijk M, Rademakers R, Graff-Radford NR, Boeve BF, Knopman DS, Petersen RC, Josephs KA, Thompson EA, Raj T, Ward M, Dickson DW, Gendron TF, Fratta P, Petrucelli L. Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J Clin Invest 2020; 130:6080-6092. [PMID: 32790644 PMCID: PMC7598060 DOI: 10.1172/jci139741] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
No treatment for frontotemporal dementia (FTD), the second most common type of early-onset dementia, is available, but therapeutics are being investigated to target the 2 main proteins associated with FTD pathological subtypes: TDP-43 (FTLD-TDP) and tau (FTLD-tau). Testing potential therapies in clinical trials is hampered by our inability to distinguish between patients with FTLD-TDP and FTLD-tau. Therefore, we evaluated truncated stathmin-2 (STMN2) as a proxy of TDP-43 pathology, given the reports that TDP-43 dysfunction causes truncated STMN2 accumulation. Truncated STMN2 accumulated in human induced pluripotent stem cell-derived neurons depleted of TDP-43, but not in those with pathogenic TARDBP mutations in the absence of TDP-43 aggregation or loss of nuclear protein. In RNA-Seq analyses of human brain samples from the NYGC ALS cohort, truncated STMN2 RNA was confined to tissues and disease subtypes marked by TDP-43 inclusions. Last, we validated that truncated STMN2 RNA was elevated in the frontal cortex of a cohort of patients with FTLD-TDP but not in controls or patients with progressive supranuclear palsy, a type of FTLD-tau. Further, in patients with FTLD-TDP, we observed significant associations of truncated STMN2 RNA with phosphorylated TDP-43 levels and an earlier age of disease onset. Overall, our data uncovered truncated STMN2 as a marker for TDP-43 dysfunction in FTD.
Collapse
Affiliation(s)
- Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Jack Humphrey
- Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience and Friedman Brain Institute, and
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sarah Pickles
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah E. Hill
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | | | - J. Shi
- Department of Cancer Biology, and
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Matthew R. Spiegel
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prasanth Sivakumar
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Cristian Bodo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Ana Candalija
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Bhuvaneish T. Selvaraj
- UK Dementia Research Institute and Euan MacDonald Centre for Motor Neurone Disease (MND) Research, The University of Edinburgh, United Kingdom
| | - Karen Burr
- UK Dementia Research Institute and Euan MacDonald Centre for Motor Neurone Disease (MND) Research, The University of Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute and Euan MacDonald Centre for Motor Neurone Disease (MND) Research, The University of Edinburgh, United Kingdom
| | | | - Tammaryn Lashley
- Department of Neurodegenerative Disease, and
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
| | | | | | - Duyang Kim
- Center for Genomics of Neurodegenerative Disease, and
| | - Nadia Propp
- Center for Genomics of Neurodegenerative Disease, and
| | | | | | | | | | - Maria Secrier
- University College London Genetics Institute, London, United Kingdom
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | | | | | | | | | | | | | - Towfique Raj
- Ronald M. Loeb Center for Alzheimer’s Disease, Nash Family Department of Neuroscience and Friedman Brain Institute, and
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, Maryland, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| |
Collapse
|
73
|
Van Schoor E, Koper MJ, Ospitalieri S, Dedeene L, Tomé SO, Vandenberghe R, Brenner D, Otto M, Weishaupt J, Ludolph AC, Van Damme P, Van Den Bosch L, Thal DR. Necrosome-positive granulovacuolar degeneration is associated with TDP-43 pathological lesions in the hippocampus of ALS/FTLD cases. Neuropathol Appl Neurobiol 2020; 47:328-345. [PMID: 32949047 DOI: 10.1111/nan.12668] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023]
Abstract
AIM Granulovacuolar degeneration (GVD) in Alzheimer's disease (AD) involves the necrosome, which is a protein complex consisting of phosphorylated receptor-interacting protein kinase 1 (pRIPK1), pRIPK3 and phosphorylated mixed lineage kinase domain-like protein (pMLKL). Necrosome-positive GVD was associated with neuron loss in AD. GVD was recently linked to the C9ORF72 mutation in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with transactive response DNA-binding protein (TDP-43) pathology (FTLD-TDP). Therefore, we investigated whether GVD in cases of the ALS-FTLD-TDP spectrum (ALS/FTLD) shows a similar involvement of the necrosome as in AD, and whether it correlates with diagnosis, presence of protein aggregates and cell death in ALS/FTLD. METHODS We analysed the presence and distribution of the necrosome in post-mortem brain and spinal cord of ALS and FTLD-TDP patients (n = 30) with and without the C9ORF72 mutation, and controls (n = 22). We investigated the association of the necrosome with diagnosis, the presence of pathological protein aggregates and neuronal loss. RESULTS Necrosome-positive GVD was primarily observed in hippocampal regions of ALS/FTLD cases and was associated with hippocampal TDP-43 inclusions as the main predictor of the pMLKL-GVD stage, as well as with the Braak stage of neurofibrillary tangle pathology. The central cortex and spinal cord, showing motor neuron loss in ALS, were devoid of any accumulation of pRIPK1, pRIPK3 or pMLKL. CONCLUSIONS Our findings suggest a role for hippocampal TDP-43 pathology as a contributor to necrosome-positive GVD in ALS/FTLD. The absence of necroptosis-related proteins in motor neurons in ALS argues against a role for necroptosis in ALS-related motor neuron death.
Collapse
Affiliation(s)
- E Van Schoor
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - M J Koper
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - S Ospitalieri
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - L Dedeene
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Laboratory for Molecular Neurobiomarker Research, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - S O Tomé
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium
| | - R Vandenberghe
- Laboratory of Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - D Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - M Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - J Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany
| | - A C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
| | - P Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - L Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - D R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven Brain Institute (LBI), Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
74
|
McAleese KE, Walker L, Erskine D, Johnson M, Koss D, Thomas AJ, Attems J. Concomitant LATE-NC in Alzheimer's disease is not associated with increased tau or amyloid-β pathological burden. Neuropathol Appl Neurobiol 2020; 46:722-734. [PMID: 32896913 DOI: 10.1111/nan.12664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/23/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022]
Abstract
AIMS Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is present in approximately 50% of Alzheimer's disease (AD) cases and is associated with accelerated cognitive decline. Studies indicate a potential synergistic relationship between LATE-NC and hyperphosphorylated tau. It is unknown if LATE-NC is an independent driver of cognitive impairment or exerts its influence through synergistic relationships with tau. This cliniconeuropathological study investigated the impact of LATE-NC on quantified measures of AD-associated pathology and its impact on clinical measures. METHODS A total of 61 AD cases underwent neuropathological assessment for LATE-NC and quantitative assessment [area covered by immunoreactivity (IR)] for early conformational tau (MC-1), late-stage hyperphosphorylated tau (AT8) and amyloid-β in the amygdala and five neocortical regions. Clinical measures included age of disease onset, final Mini-Mental State Examination (MMSE) score and rate of cognitive decline. RESULTS LATE-NC was present in 41 AD cases (AD/LATE-NC; 67.2%). No significant differences in MC-1-IR, AT8-IR or 4G8-IR were observed in any region between AD/LATE-NC and AD without LATE-NC, indicating no accelerated aggregation or hyperphosphorylation of tau proteins in the AD/LATE-NC cases. Final MMSE was significantly lower in AD/LATE-NC cases and was significantly associated with LATE-NC score even when controlled for the presence of both MC-1-IR and AT8-IR (P = 0.009). CONCLUSION The presence of LATE-NC in AD is not associated with an increase in the burden of early or late tau or Aβ pathology. LATE-NC is associated with a lower final MMSE score independent of tau pathology.
Collapse
Affiliation(s)
- K E McAleese
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - L Walker
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - D Erskine
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - M Johnson
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - D Koss
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - A J Thomas
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - J Attems
- Translation and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
75
|
Scialò C, Tran TH, Salzano G, Novi G, Caponnetto C, Chiò A, Calvo A, Canosa A, Moda F, Caroppo P, Silani V, Ticozzi N, Ratti A, Borroni B, Benussi L, Ghidoni R, Furlanis G, Manganotti P, Senigagliesi B, Parisse P, Brasselet R, Buratti E, Legname G. TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun 2020; 2:fcaa142. [PMID: 33094285 PMCID: PMC7566418 DOI: 10.1093/braincomms/fcaa142] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
The pathological deposition of the transactive response DNA-binding protein of 43 kDa occurs in the majority (∼97%) of amyotrophic lateral sclerosis and in around 45% of frontotemporal lobar degeneration cases. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration clinically overlap, presenting a continuum of phenotypes. Both amyotrophic lateral sclerosis and frontotemporal lobar degeneration lack treatments capable of interfering with the underlying pathological process and early detection of transactive response DNA-binding protein of 43 kDa pathology would facilitate the development of disease-modifying drugs. The real-time quaking-induced conversion reaction showed the ability to detect prions in several peripheral tissues of patients with different forms of prion and prion-like diseases. Despite transactive response DNA-binding protein of 43 kDa displays prion-like properties, to date the real-time quaking-induced conversion reaction technology has not yet been adapted to this protein. The aim of this study was to adapt the real-time quaking-induced conversion reaction technique for the transactive response DNA-binding protein of 43 kDa substrate and to exploit the intrinsic ability of this technology to amplify minute amount of mis-folded proteins for the detection of pathological transactive response DNA-binding protein of 43 kDa species in the cerebrospinal fluid of amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients. We first optimized the technique with synthetic transactive response DNA-binding protein of 43 kDa–pre-formed aggregates and with autopsy-verified brain homogenate samples and subsequently analysed CSF samples from amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients and controls. Transactive response DNA-binding protein of 43 kDa real-time quaking-induced conversion reaction was able to detect as little as 15 pg of transactive response DNA-binding protein of 43 kDa aggregates, discriminating between a cohort of patients affected by amyotrophic lateral sclerosis and frontotemporal lobar degeneration and age-matched controls with a total sensitivity of 94% and a specificity of 85%. Our data give a proof-of-concept that transactive response DNA-binding protein of 43 kDa is a suitable substrate for the real-time quaking-induced conversion reaction. Transactive response DNA-binding protein of 43 kDa real-time quaking-induced conversion reaction could be an innovative and useful tool for diagnosis and drug development in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The cerebrospinal fluid detection of transactive response DNA-binding protein of 43 kDa pathological aggregates may be exploited as a disease biomarker for amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients.
Collapse
Affiliation(s)
- Carlo Scialò
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste, Italy
| | - Giulia Salzano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste, Italy
| | - Giovanni Novi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Claudia Caponnetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Andrea Calvo
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Canosa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Paola Caroppo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, 'Aldo Ravelli' Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center, 'Aldo Ravelli' Center for Neurotechnology and Experimental Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Furlanis
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Neurology Unit, University Hospital and Health Services of Trieste, University of Trieste, Trieste, Italy
| | - Beatrice Senigagliesi
- University of Trieste, Trieste, Italy.,Nano Innovation Laboratory, Elettra-Sincrotrone Trieste, Italy
| | - Pietro Parisse
- Nano Innovation Laboratory, Elettra-Sincrotrone Trieste, Italy
| | - Romain Brasselet
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Trieste, Italy
| |
Collapse
|
76
|
Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer's Disease. eNeuro 2020; 7:ENEURO.0125-20.2020. [PMID: 32847866 PMCID: PMC7540926 DOI: 10.1523/eneuro.0125-20.2020] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cognitive impairment in Alzheimer’s disease (AD) is associated with dysregulation of the RNA and protein expression profiles in the brain. Recent studies have highlighted the importance of RNA post-transcriptional regulation (epitranscriptomics) in higher order brain functions. Specifically, N6-methyladenosine (m6A), which controls RNA stability, splicing, translation and trafficking, plays an important role in learning and memory. This raises the question of whether m6A signaling is perturbed in AD. To address this, we investigated the expression profile of known m6A-regulatory genes using a public RNA-seq dataset and identified a subset of genes which were significantly dysregulated in the human AD brain. Among these, genes encoding the m6A methyltransferase, METTL3, and a member of the m6A methyltransferase complex (MACOM), RBM15B, were downregulated and upregulated in the hippocampus, respectively. These findings were validated at the protein level using an independent cohort of postmortem human brain samples. Unexpectedly, we observed an accumulation of methyltransferase-like 3 (METTL3), but not RBM15B, in the insoluble fractions, which positively correlated with the levels of insoluble Tau protein in the postmortem human AD samples. Aberrant expression and distribution of METTL3 in the hippocampus of the AD brain may therefore represent an epitranscriptomic mechanism underlying the altered gene expression patterns associated with disease pathogenesis.
Collapse
|
77
|
Sekine A, Nemoto K, Hatanaka K, Watanabe R, Arai T. A case of concomitant dementia with Lewy bodies and argyrophilic grain disease with prominent psychiatric symptoms. Psychogeriatrics 2020; 20:760-762. [PMID: 32659849 DOI: 10.1111/psyg.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Aya Sekine
- Department of Psychiatry, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Ryohei Watanabe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
78
|
Lopez OL, Kofler J, Chang Y, Berman SB, Becker JT, Sweet RA, Nadkarni N, Patira R, Kamboh MI, Cohen AD, Snitz BE, Kuller LH, Klunk WE. Hippocampal sclerosis, TDP-43, and the duration of the symptoms of dementia of AD patients. Ann Clin Transl Neurol 2020; 7:1546-1556. [PMID: 32735084 PMCID: PMC7480925 DOI: 10.1002/acn3.51135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To examine the relationship between duration of the cognitive symptoms, from the earliest reported symptom to death, and hippocampal sclerosis (HS) and TAR-DNA binding protein of 43kDA (TDP-43) in Alzheimer's disease (AD) patients. METHODS The study was conducted in 359 cognitively impaired patients who met the pathological criteria for AD (NIA-Reagan intermediate or high). The mean age at onset was 69.5 ± 8.8 years (range 37-95) and the mean duration of the symptoms was 10.5 ± 4.2 years. The association between symptoms duration and HS and TDP-43 was examined with logistic regression analyses controlling for age at death, atherosclerosis in the Circle of Willis (CW), cerebral infarcts, gender, baseline Mini Mental State Examination scores, APOE-4 allele, and presence of Lewy bodies (LB). RESULTS HS was present in 18% (n = 64) and TDP-43 in 51.5% (n = 185) of the patients. HS and TDP-43 were more frequent in patients whose symptoms lasted more than 10 years. LBs were present in 72% of the patients with HS and in 64% of the patients with TDP-43. Age at onset was not associated with TDP-43 or HS. HS was associated with duration of symptoms and LB, TDP-43, and atherosclerosis in the CW. TDP-43 was associated with duration of symptoms, LB, and HS. INTERPRETATION HS and TDP-43 are present in early and late onset AD. However, their presence is mainly driven by the duration of symptoms and the presence of LB. This suggests that HS and TDP-43 are part of the later neuropathological changes in AD.
Collapse
Affiliation(s)
- Oscar L. Lopez
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Julia Kofler
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - YueFang Chang
- Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Sarah B. Berman
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - James T. Becker
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Robert A. Sweet
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Neelesh Nadkarni
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Riddhi Patira
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - M. Ilyas Kamboh
- Department of Human GeneticsUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Ann D. Cohen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Beth E. Snitz
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Lewis H. Kuller
- Department of EpidemiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - William E. Klunk
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| |
Collapse
|
79
|
Neumann M, Mackenzie IRA. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2020; 45:19-40. [PMID: 30357887 DOI: 10.1111/nan.12526] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical syndrome associated with frontotemporal lobar degeneration (FTLD) as a relatively consistent neuropathological hallmark feature. However, the discoveries in the past decade of many of the relevant pathological proteins aggregating in human FTD brains in addition to several new FTD causing gene mutations underlined that FTD is a diverse condition on the neuropathological and genetic basis. This resulted in a novel molecular classification of these conditions based on the predominant protein abnormality and allows most cases of FTD to be placed now into one of three broad molecular subgroups; FTLD with tau, TAR DNA-binding protein 43 or FET protein accumulation (FTLD-tau, FTLD-TDP and FTLD-FET respectively). This review will provide an overview of the molecular neuropathology of non-tau FTLD, insights into disease mechanisms gained from the study of human post mortem tissue as well as discussion of current controversies in the field.
Collapse
Affiliation(s)
- M Neumann
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany.,Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - I R A Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
80
|
Hickman RA, Flowers XE, Wisniewski T. Primary Age-Related Tauopathy (PART): Addressing the Spectrum of Neuronal Tauopathic Changes in the Aging Brain. Curr Neurol Neurosci Rep 2020; 20:39. [PMID: 32666342 DOI: 10.1007/s11910-020-01063-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Primary age-related tauopathy (PART) was recently proposed as a pathologic diagnosis for brains that harbor neurofibrillary tangles (Braak stage ≤ 4) with little, if any, amyloid burden. We sought to review the clinicopathologic findings related to PART. RECENT FINDINGS Most adult human brains show at least focal tauopathic changes, and the majority of individuals with PART do not progress to dementia. Older age and cognitive impairment correlate with increased Braak stage, and multivariate analyses suggest that the rate of cognitive decline is less than matched patients with Alzheimer disease (AD). It remains unclear whether PART is a distinct tauopathic entity separate from AD or rather represents an earlier histologic stage of AD. Cognitive decline in PART is usually milder than AD and correlates with tauopathic burden. Biomarker and ligand-based radiologic studies will be important to define PART antemortem and prospectively follow its natural history.
Collapse
Affiliation(s)
- Richard A Hickman
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA.
| | - Xena E Flowers
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, PH 15-124, New York, NY, 10032, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| |
Collapse
|
81
|
Jamerlan A, An SSA. The influence of Aβ-dependent and independent pathways on TDP-43 proteinopathy in Alzheimer's disease: a possible connection to LATE-NC. Neurobiol Aging 2020; 95:161-167. [PMID: 32814257 DOI: 10.1016/j.neurobiolaging.2020.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that results from the accumulation of plaques by cleaved Aβ42 peptides as well as neurofibrillary tangles of tau proteins. This accumulation triggers a complex cascade of cytotoxic, neuroinflammatory, and oxidative stresses that lead to neuronal death throughout the progression of the disease. Much of research in AD focused on the 2 pathologic proteins. Interestingly, another form of dementia with similar clinical manifestations of AD, but preferentially affected much older individuals, was termed as limbic-predominant age-related transactive response DNA-binding protein 43 (TDP-43) encephalopathy (LATE) and involved the cytotoxic intraneuronal deposition of phosphorylated TDP-43. TDP-43 proteinopathy was also found to be involved in AD pathology leading to the possibility that AD and LATE may share a common upstream etiology. This paper discusses the roles molecular pathways known in AD may have on influencing TDP-43 proteinopathy and the development of AD, LATE, or the 2 being comorbid with each other.
Collapse
Affiliation(s)
- Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam-si, Republic of Korea.
| |
Collapse
|
82
|
Serafín V, Gamella M, Pedrero M, Montero-Calle A, Razzino CA, Yáñez-Sedeño P, Barderas R, Campuzano S, Pingarrón JM. Enlightening the advancements in electrochemical bioanalysis for the diagnosis of Alzheimer's disease and other neurodegenerative disorders. J Pharm Biomed Anal 2020; 189:113437. [PMID: 32629192 DOI: 10.1016/j.jpba.2020.113437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders (NDD), and particularly Alzheimer's disease (AD), are one of the greatest challenges facing our current medicine and society because of its increasing incidence and the high burden imposed both on patients' families and health systems. Despite this, their accurate diagnosis, mostly conducted by cerebrospinal fluid (CSF) analysis or neuroimaging techniques, costly, time-consuming, and unaffordable for most of the population, remains a complex task. In this situation, electrochemical biosensors are flourishing as promising alternative tools for the simple, fast, and low-cost diagnosis of NDD/AD. This review article provides the relevant clinical details of NDD/AD along with the closely related genetic (genetic mutations, polymorphisms of ApoE and specific miRNAs) and proteomic (amyloid-β peptides, total and phosphorylated tau protein) biomarkers circulating mostly in CSF. In addition, the article systematically enlightens a general view of the electrochemical affinity biosensors (mostly aptasensors and immunosensors) reported in the past two years for the determination of such biomarkers. The different developed strategies, analytical performances and applications are comprehensively discussed. Recent advancements in signal amplification methodologies involving smart designs and the use of nanomaterials and rational surface chemistries, as well as the challenges that must be struggled and the prospects in electrochemical affinity biosensing to bring more accessibility to NDD/AD diagnosis, prognosis, and follow-up, are also pointed out.
Collapse
Affiliation(s)
- V Serafín
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - M Gamella
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - M Pedrero
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - A Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - C A Razzino
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - P Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - R Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain.
| | - S Campuzano
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain.
| | - J M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain.
| |
Collapse
|
83
|
Serafín V, Razzino CA, Gamella M, Pedrero M, Povedano E, Montero-Calle A, Barderas R, Calero M, Lobo AO, Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Disposable immunoplatforms for the simultaneous determination of biomarkers for neurodegenerative disorders using poly(amidoamine) dendrimer/gold nanoparticle nanocomposite. Anal Bioanal Chem 2020; 413:799-811. [PMID: 32474723 DOI: 10.1007/s00216-020-02724-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Early diagnosis in primary care settings can increase access to therapies and their efficiency as well as reduce health care costs. In this context, we report in this paper the development of a disposable immunoplatform for the rapid and simultaneous determination of two protein biomarkers recently reported to be involved in the pathological process of neurodegenerative disorders (NDD), tau protein (tau), and TAR DNA-binding protein 43 (TDP-43). The methodology involves implementation of a sandwich-type immunoassay on the surface of dual screen-printed carbon electrodes (dSPCEs) electrochemically grafted with p-aminobenzoic acid (p-ABA), which allows the covalent immobilization of a gold nanoparticle-poly(amidoamine) (PAMAM) dendrimer nanocomposite (3D-Au-PAMAM). This scaffold was employed for the immobilization of the capture antibodies (CAbs). Detector antibodies labeled with horseradish peroxidase (HRP) and amperometric detection at - 0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system were used. The developed methodology exhibits high sensitivity and selectivity for determining the target proteins, with detection limits of 2.3 and 12.8 pg mL-1 for tau and TDP-43, respectively. The simultaneous determination of tau and TDP-43 was accomplished in raw plasma samples and brain tissue extracts from healthy individuals and NDD-diagnosed patients. The analysis can be performed in just 1 h using a simple one-step assay protocol and small sample amounts (5 μL plasma and 2.5 μg brain tissue extracts). Graphical abstract.
Collapse
Affiliation(s)
- Verónica Serafín
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Claudia A Razzino
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.,Institute of Research and Development, University of Vale do Paraiba, Sao Jose dos Campos, SP, 12244-000, Brazil
| | - Maria Gamella
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Pedrero
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Eloy Povedano
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, 28220, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, 28220, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, 28220, Madrid, Spain.,Alzheimer's Center Reina Sofía Foundation - CIEN Foundation and CIBERNED, Carlos III Institute of Health, Majadahonda, 28220, Madrid, Spain
| | - Anderson O Lobo
- LIMAV - Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Department of Materials Engineering, Federal University of Piaui, Teresina, PI, 64049-550, Brazil
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
84
|
Josephs KA, Mackenzie I, Frosch MP, Bigio EH, Neumann M, Arai T, Dugger BN, Ghetti B, Grossman M, Hasegawa M, Herrup K, Holton J, Jellinger K, Lashley T, McAleese KE, Parisi JE, Revesz T, Saito Y, Vonsattel JP, Whitwell JL, Wisniewski T, Hu W. LATE to the PART-y. Brain 2020; 142:e47. [PMID: 31359030 PMCID: PMC6736234 DOI: 10.1093/brain/awz224] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Ian Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Matthew P Frosch
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eileen H Bigio
- Feinberg School of Medicine, Northwesterm University, Chicago, IL, USA
| | - Manuela Neumann
- Department of Neuropathology, University of Tübingen and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, CA, USA
| | - Bernardino Ghetti
- Pathology and Laboratory Medicine, Indiana University, Indiana, IL, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Karl Herrup
- Department of Neurology, Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janice Holton
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kurt Jellinger
- Institute of Clinical Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Tammaryn Lashley
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tamas Revesz
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Yuko Saito
- National Center of Neurology and Pathology Brain Bank, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | - William Hu
- Department of Neurology and Center for Neurodegenerative Diseases Research, Emory University, Atlanta, GA, USA
| |
Collapse
|
85
|
Buciuc M, Whitwell JL, Boeve BF, Ferman TJ, Graff-Radford J, Savica R, Kantarci K, Fields JA, Knopman DS, Petersen RC, Parisi JE, Murray ME, Dickson DW, Josephs KA. TDP-43 is associated with a reduced likelihood of rendering a clinical diagnosis of dementia with Lewy bodies in autopsy-confirmed cases of transitional/diffuse Lewy body disease. J Neurol 2020; 267:1444-1453. [PMID: 32006160 PMCID: PMC7189897 DOI: 10.1007/s00415-020-09718-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/02/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Trans-active response DNA-binding protein of 43 kDa (TDP-43) can be detected in up to 63% of autopsy-confirmed Lewy body disease (LBD) cases. It is unclear whether TDP-43 is associated with a decreased likelihood of a clinical diagnosis of probable dementia with Lewy bodies (pDLB) during life. METHODS In an autopsy cohort of 395 cognitively impaired patients from the Mayo Clinic Alzheimer's Disease Research Center, we determined the presence of TDP-43 in the hippocampus [hTDP-43(+)] and examined associations between hTDP-43 and an antemortem pDLB clinical diagnosis with multiple regression analyses. For this study, given our specific question, we only counted transitional and diffuse Lewy body disease as LBD positive (LBD+). RESULTS One-hundred forty-five cases (37%) were hTDP-43(+) and 156 (39%) were LBD+; co-pathology was noted in 63 (16%) cases. Patients with pDLB- LBD+ were more likely to be older, hTDP-43(+) and have high Braak neurofibrillary tangle (NFT) status compared to the pDLB+ LBD+ patients. After accounting for older age at death and high Braak NFT status, hTDP-43(+) status was associated with the absence of a clinical diagnosis of pDLB despite LBD+ status (p < 0.05). CONCLUSION The absence of a diagnosis of pDLB during life in patients with LBD is associated with older age, high Braak NFT stage and hTDP-43, each feature contributing independently to a lower likelihood of a clinical diagnosis of pDLB during life.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Jennifer L Whitwell
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Tanis J Ferman
- Department of Psychiatry (Neuropsychology), Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Jonathan Graff-Radford
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Rodolfo Savica
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Julie A Fields
- Department of Psychiatry (Neuropsychology), Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Keith A Josephs
- Department of Neurology, College of Medicine and Science, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
86
|
Hicks D, Jones A, Pickering-Brown S, Hooper N. The cellular expression and proteolytic processing of the amyloid precursor protein is independent of TDP-43. Biosci Rep 2020; 40:BSR20200435. [PMID: 32301481 PMCID: PMC7189496 DOI: 10.1042/bsr20200435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition, of which one of the cardinal pathological hallmarks is the extracellular accumulation of amyloid β (Aβ) peptides. These peptides are generated via proteolysis of the amyloid precursor protein (APP), in a manner dependent on the β-secretase, BACE1 and the multicomponent γ-secretase complex. Recent data also suggest a contributory role in AD of transactive response DNA binding protein 43 (TDP-43). There is little insight into a possible mechanism linking TDP-43 and APP processing. To this end, we used cultured human neuronal cells to investigate the ability of TDP-43 to interact with APP and modulate its proteolytic processing. Immunocytochemistry showed TDP-43 to be spatially segregated from both the extranuclear APP holoprotein and its nuclear C-terminal fragment. The latter (APP intracellular domain) was shown to predominantly localise to nucleoli, from which TDP-43 was excluded. Furthermore, neither overexpression of each of the APP isoforms nor siRNA-mediated knockdown of APP had any effect on TDP-43 expression. Doxycycline-stimulated overexpression of TDP-43 was explored in an inducible cell line. Overexpression of TDP-43 had no effect on expression of the APP holoprotein, nor any of the key proteins involved in its proteolysis. Furthermore, increased TDP-43 expression had no effect on BACE1 enzymatic activity or immunoreactivity of Aβ1-40, Aβ1-42 or the Aβ1-40:Aβ1-42 ratio. Also, siRNA-mediated knockdown of TDP-43 had no effect on BACE1 immunoreactivity. Taken together, these data indicate that TDP-43 function and/or dysfunction in AD is likely independent from dysregulation of APP expression and proteolytic processing and Aβ generation.
Collapse
Affiliation(s)
- David A. Hicks
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Alys C. Jones
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Stuart M. Pickering-Brown
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
87
|
Tomé SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M, von Arnim CAF, Thal DR. Distinct molecular patterns of TDP-43 pathology in Alzheimer's disease: relationship with clinical phenotypes. Acta Neuropathol Commun 2020; 8:61. [PMID: 32349792 PMCID: PMC7189555 DOI: 10.1186/s40478-020-00934-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The co-existence of multiple pathologies and proteins is a common feature in the brains of cognitively impaired elderly individuals. Transactive response DNA-binding protein (TDP-43) has been discovered to accumulate in limbic brain regions of a portion of late-onset Alzheimer's disease (AD) patients, in addition to amyloid-β and τ protein. However, it is not yet known whether the TDP-43 species in the AD brain differ in their composition, when compared among different AD cases and to frontotemporal lobar degeneration cases with TDP-43 inclusions (FTLD-TDP). Furthermore, it is not known whether TDP-43 pathology in AD is related to symptoms of the frontotemporal dementia (FTD) spectrum. In this study, we investigated the molecular pattern of TDP-43 lesions with five different antibodies against different phosphorylated (pTDP-43) and non-phosphorylated TDP-43 epitopes. We analyzed a cohort of 97 autopsy cases, including brains from 20 non-demented individuals, 16 cognitively normal pathologically-defined preclinical AD (p-preAD), 51 neuropathologically-confirmed AD cases and 10 FTLD-TDP cases as positive controls. We observed distinct neuropathological patterns of TDP-43 among AD cases. In 11 neuropathologically-confirmed AD cases we found dystrophic neurites (DNs), neuronal cytoplasmic inclusions (NCIs) and/or neurofibrillary tangle (NFT)-like lesions not only positive for pTDP-43409/410, but also for pTDP-43 phosphorylated at serines 403/404 (pTDP-43403/404) and non-phosphorylated, full-length TDP-43, as seen with antibodies against C-terminal TDP-43 and N-terminal TDP-43. These cases were referred to as ADTDP + FL because full-length TDP-43 was presumably present in the aggregates. FTLD-TDP cases showed a similar molecular TDP-43 pattern. A second pattern, which was not seen in FTLD-TDP, was observed in most of p-preAD, as well as 30 neuropathologically-confirmed AD cases, which mainly exhibited NFTs and NCIs stained with antibodies against TDP-43 phosphorylated at serines 409/410 (pTDP-43409, pTDP-43409/410). Because only phosphorylated C-terminal species of TDP-43 could be detected in the lesions we designated these AD cases as ADTDP + CTF. Ten AD cases did not contain any TDP-43 pathology and were referred to as ADTDP-. The different TDP-43 patterns were associated with clinically typical AD symptoms in 80% of ADTDP + CTF cases, 63,6% of ADTDP + FL and 100% of the ADTDP- cases. On the other hand, clinical symptoms characteristic for FTD were observed in 36,4% of ADTDP + FL, in 16,6% of the ADTDP + CTF, and in none of the ADTDP- cases. Our findings provide evidence that TDP-43 aggregates occurring in AD cases vary in their composition, suggesting the distinction of different molecular patterns of TDP-43 pathology ranging from ADTDP- to ADTDP + CTF and ADTDP + FL with possible impact on their clinical picture, i.e. a higher chance for FTD-like symptoms in ADTDP + FL cases.
Collapse
Affiliation(s)
- Sandra O Tomé
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences - Laboratory of Cognitive Neurology, KU- Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
- Department of Neurosciences - Laboratory for Neurobiology, KU-Leuven and Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology - Translational Cell and Tissue Research Unit, KU-Leuven, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
88
|
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 2020; 9:180239. [PMID: 30836866 PMCID: PMC6451366 DOI: 10.1098/rsob.180239] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Wei Wu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Qiu Han
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Cencen Li
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| |
Collapse
|
89
|
Orme T, Hernandez D, Ross OA, Kun-Rodrigues C, Darwent L, Shepherd CE, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, Rogaeva E, St. George-Hyslop P, Londos E, Zetterberg H, Morgan K, Troakes C, Al-Sarraj S, Lashley T, Holton J, Compta Y, Van Deerlin V, Trojanowski JQ, Serrano GE, Beach TG, Lesage S, Galasko D, Masliah E, Santana I, Pastor P, Tienari PJ, Myllykangas L, Oinas M, Revesz T, Lees A, Boeve BF, Petersen RC, Ferman TJ, Escott-Price V, Graff-Radford N, Cairns NJ, Morris JC, Pickering-Brown S, Mann D, Halliday G, Stone DJ, Dickson DW, Hardy J, Singleton A, Guerreiro R, Bras J. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathol Commun 2020; 8:5. [PMID: 31996268 PMCID: PMC6990558 DOI: 10.1186/s40478-020-0879-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.
Collapse
|
90
|
Buciuc M, Wennberg AM, Weigand SD, Murray ME, Senjem ML, Spychalla AJ, Boeve BF, Knopman DS, Jack CR, Kantarci K, Parisi JE, Dickson DW, Petersen RC, Whitwell JL, Josephs KA. Effect Modifiers of TDP-43-Associated Hippocampal Atrophy Rates in Patients with Alzheimer's Disease Neuropathological Changes. J Alzheimers Dis 2020; 73:1511-1523. [PMID: 31929165 PMCID: PMC7081101 DOI: 10.3233/jad-191040] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with hippocampal atrophy in Alzheimer's disease (AD), but whether the association is modified by other factors is unknown. OBJECTIVE To evaluate whether the associations between TDP-43 and hippocampal volume and atrophy rate are affected by age, gender, apolipoprotein E (APOE) ɛ4, Lewy bodies (LBs), amyloid-β (Aβ), or Braak neurofibrillary tangle (NFT) stage. METHODS In this longitudinal neuroimaging-clinicopathological study of 468 cases with AD neuropathological changes (Aβ-positive) that had completed antemortem head MRI, we investigated how age, gender, APOEɛ4, presence of LBs, Aβ, TDP-43, and Braak NFT stages are associated with hippocampal volumes and rates of atrophy over time. We included field strength in the models since our cohort included 1.5T and 3T scans. We then determined whether the associations between hippocampal atrophy and TDP-43 are modified by these factors using mixed effects models. RESULTS Older age, female gender, APOEɛ4, higher field strength, higher TDP-43, and Braak NFT stages were associated with smaller hippocampi. Rate of atrophy was greater with higher TDP-43 and Braak NFT stage, but lower in older patients. The association of TDP-43 with greater rate of atrophy was enhanced in APOEɛ4 carriers (p = 0.04). CONCLUSION Neurodegenerative effects of TDP-43 seem to be independent of most factors except perhaps APOE in cases with AD neuropathological changes. TDP-43 and tau appear to behave independently of one another.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E. Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
91
|
Laos V, Bishop D, Lang CA, Marsh NM, Cantrell KL, Buratto SK, Singh AK, Bowers MT. Modulating ALS-Related Amyloidogenic TDP-43 307-319 Oligomeric Aggregates with Computationally Derived Therapeutic Molecules. Biochemistry 2019; 59:499-508. [PMID: 31846303 DOI: 10.1021/acs.biochem.9b00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 aggregates are a salient feature of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and a variety of other neurodegenerative diseases, including Alzheimer's disease (AD). With an anticipated growth in the most susceptible demographic, projections predict neurodegenerative diseases will potentially affect 15 million people in the United States by 2050. Currently, there are no cures for ALS, FTD, or AD. Previous studies of the amyloidogenic core of TDP-43 have demonstrated that oligomers greater than a trimer are associated with toxicity. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These molecules were generated on the basis of key chemical features necessary for blood-brain barrier permeability, low adverse side effects, and target selectivity. Combining ion-mobility mass spectrometry and atomic force microscopy with the JPS computational method allows us to more efficiently evaluate a potential drug's efficacy in disrupting the development of putative toxic species. Our results demonstrate the dissociation of higher-order oligomers in the presence of these novel JPS-generated inhibitors into smaller oligomer species. Additionally, drugs approved by the Food and Drug Administration for the treatment of ALS were also evaluated and demonstrated to maintain higher-order oligomeric assemblies. Possible mechanisms for the observed action of the JPS molecules are discussed.
Collapse
Affiliation(s)
- Veronica Laos
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Dezmond Bishop
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | | | - Nicole M Marsh
- Department of Chemistry , Westmont College , Santa Barbaraa , California 93108 , United States
| | - Kristi Lazar Cantrell
- Department of Chemistry , Westmont College , Santa Barbaraa , California 93108 , United States
| | - Steven K Buratto
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | - Ambuj K Singh
- Department of Computer Science , University of California, Santa Barbara , Santa Barbara , California 93106-5110 , United States
| | - Michael T Bowers
- Department of Chemistry & Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
92
|
Apicco DJ, Zhang C, Maziuk B, Jiang L, Ballance HI, Boudeau S, Ung C, Li H, Wolozin B. Dysregulation of RNA Splicing in Tauopathies. Cell Rep 2019; 29:4377-4388.e4. [PMID: 31875547 PMCID: PMC6941411 DOI: 10.1016/j.celrep.2019.11.093] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological aggregation of RNA binding proteins (RBPs) is associated with dysregulation of RNA splicing in PS19 P301S tau transgenic mice and in Alzheimer's disease brain tissues. The dysregulated splicing particularly affects genes involved in synaptic transmission. The effects of neuroprotective TIA1 reduction on PS19 mice are also examined. TIA1 reduction reduces disease-linked alternative splicing events for the major synaptic mRNA transcripts examined, suggesting that normalization of RBP functions is associated with the neuroprotection. Use of the NetDecoder informatics algorithm identifies key upstream biological targets, including MYC and EGFR, underlying the transcriptional and splicing changes in the protected compared to tauopathy mice. Pharmacological inhibition of MYC and EGFR activity in neuronal cultures tau recapitulates the neuroprotective effects of TIA1 reduction. These results demonstrate that dysfunction of RBPs and RNA splicing processes are major elements of the pathophysiology of tauopathies, as well as potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Daniel J Apicco
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Brandon Maziuk
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lulu Jiang
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather I Ballance
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Samantha Boudeau
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Hu Li
- Mayo Clinic, Rochester, MN, USA.
| | - Benjamin Wolozin
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA; Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| |
Collapse
|
93
|
Garbarino S, Lorenzi M, Oxtoby NP, Vinke EJ, Marinescu RV, Eshaghi A, Ikram MA, Niessen WJ, Ciccarelli O, Barkhof F, Schott JM, Vernooij MW, Alexander DC. Differences in topological progression profile among neurodegenerative diseases from imaging data. eLife 2019; 8:e49298. [PMID: 31793876 PMCID: PMC6922631 DOI: 10.7554/elife.49298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023] Open
Abstract
The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile - a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease.
Collapse
Affiliation(s)
- Sara Garbarino
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Université Côte d’Azur, Inria, Epione Research ProjectSophia AntipolisFrance
| | - Marco Lorenzi
- Université Côte d’Azur, Inria, Epione Research ProjectSophia AntipolisFrance
| | - Neil P Oxtoby
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Elisabeth J Vinke
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
| | - Razvan V Marinescu
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| | - Arman Eshaghi
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUnited Kingdom
| | - M Arfan Ikram
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUnited Kingdom
| | - Frederik Barkhof
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
- Department of Radiology and Nuclear medicineVUmcAmsterdamNetherlands
| | - Jonathan M Schott
- Dementia Research Centre, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Meike W Vernooij
- Department of EpidemiologyErasmus Medical CenterRotterdamNetherlands
- Department of Radiology and Nuclear medicineErasmus MCRotterdamNetherlands
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
94
|
Role of physical nucleation theory in understanding conformational conversion between pathogenic and nonpathogenic aggregates of low-complexity amyloid peptides. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
95
|
Bejanin A, Murray ME, Martin P, Botha H, Tosakulwong N, Schwarz CG, Senjem ML, Chételat G, Kantarci K, Jack CR, Boeve BF, Knopman DS, Petersen RC, Giannini C, Parisi JE, Dickson DW, Whitwell JL, Josephs KA. Antemortem volume loss mirrors TDP-43 staging in older adults with non-frontotemporal lobar degeneration. Brain 2019; 142:3621-3635. [PMID: 31562527 PMCID: PMC6821218 DOI: 10.1093/brain/awz277] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the transactive response DNA-binding protein of 43 kDa (TDP-43) has been recognized as a major protein in normal and pathological ageing, increasing the risk of cognitive impairment and dementia. In conditions distinct from the frontotemporal lobar degenerations, TDP-43 appears to progress in a stereotypical pattern. In the present study, we aimed at providing a better understanding of the effects of TDP-43 and other age-related neuropathologies on cross-sectional grey matter volume in a cohort of non-FTLD subjects. We included 407 individuals with an antemortem MRI and post-mortem brain tissue from the Mayo Clinic Alzheimer's Disease Research Center, Mayo Clinic Alzheimer's Disease Patient Registry, or the Mayo Clinic Study of Aging. All individuals were assigned pathological stages for TDP-43, tau, amyloid-β, Lewy bodies, argyrophilic grain disease and vascular pathologies. Robust regressions were performed in regions of interest and voxel-wise to explore the relationships between TDP-43 stages and grey matter volume while controlling for other pathologies. Grey matter volumes adjusted for pathological and demographic variables were also computed for each TDP-43-positive case to further characterize the sequential involvement of brain structures associated with TDP-43, irrespective of the TDP-43 staging scheme. Robust regressions showed that the extent of TDP-43 pathology was associated with the extent of grey matter atrophy. Specifically, we found that the volume in medial temporal regions (i.e. amygdala, entorhinal cortex, hippocampus) decreased progressively with advancing TDP-43 stages. Importantly, these effects were of similar magnitude to those related to tau stages. Additional analyses using adjusted grey matter volume demonstrated a sequential pattern of volume loss associated with TDP-43, starting within the medial temporal lobe, followed by early involvement of the temporal pole, and eventually encompassing additional temporal and frontal regions. Altogether, this study demonstrates the major and independent contribution of TDP-43 pathology on neurodegeneration and provides further insight into the regional distribution of TDP-43 in non-FTLD subjects. Along with previous studies, these findings emphasized the importance of targeting TDP-43 in future clinical trials to prevent its detrimental effect on grey matter volume and, eventually, cognition.
Collapse
Affiliation(s)
- Alexandre Bejanin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | | | - Peter Martin
- Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Gael Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
96
|
Kawakami I, Arai T, Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 2019; 138:751-770. [PMID: 31555895 PMCID: PMC6800885 DOI: 10.1007/s00401-019-02077-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) was identified as a major disease-associated component in the brain of patients with amyotrophic lateral sclerosis (ALS), as well as the largest subset of patients with frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), which characteristically exhibits cytoplasmic inclusions that are positive for ubiquitin but negative for tau and α-synuclein. TDP-43 pathology occurs in distinct brain regions, involves disparate brain networks, and features accumulation of misfolded proteins in various cell types and in different neuroanatomical regions. The clinical phenotypes of ALS and FTLD-TDP (FTLD with abnormal intracellular accumulations of TDP-43) correlate with characteristic distribution patterns of the underlying pathology across specific brain regions with disease progression. Recent studies support the idea that pathological protein spreads from neuron to neuron via axonal transport in a hierarchical manner. However, little is known to date about the basis of the selective cellular and regional vulnerability, although the information would have important implications for the development of targeted and personalized therapies. Here, we aim to summarize recent advances in the neuropathology, genetics and animal models of TDP-43 proteinopathy, and their relationship to clinical phenotypes for the underlying selective neuronal and regional susceptibilities. Finally, we attempt to integrate these findings into the emerging picture of TDP-43 proteinopathy, and to highlight key issues for future therapy and research.
Collapse
Affiliation(s)
- Ito Kawakami
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and Institute, Tokyo, Japan
| | - Tetsuaki Arai
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
97
|
Mackiewicz MM, Overk C, Achim CL, Masliah E. Pathogenesis of age-related HIV neurodegeneration. J Neurovirol 2019; 25:622-633. [PMID: 30790184 PMCID: PMC6703984 DOI: 10.1007/s13365-019-00728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer's disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid β, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.
Collapse
Affiliation(s)
| | - Cassia Overk
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cristian L Achim
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging/NIH, Bethesda, MD, USA.
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, MD, USA.
| |
Collapse
|
98
|
Gu J, Hu W, Tan X, Qu S, Chu D, Gong CX, Iqbal K, Liu F. Elevation of casein kinase 1ε associated with TDP-43 and tau pathologies in Alzheimer's disease. Brain Pathol 2019; 30:283-297. [PMID: 31376192 DOI: 10.1111/bpa.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of extracellular amyloid β plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated microtubule-associated protein tau in the brain. Aggregation of transactive response DNA-binding protein of 43 kDa (TDP-43) in the neuronal cytoplasm is another feature of AD. However, how TDP-43 is associated with AD pathogenesis is unknown. Here, we found that casein kinase 1ε (CK1ε) phosphorylated TDP-43 at Ser403/404 and Ser409/410. In AD brains, the level of CK1ε was dramatically increased and positively correlated with the phosphorylation of TDP-43 at Ser403/404 and Ser409/410. Overexpression of CK1ε promoted its cytoplasmic aggregation and suppressed TDP-43-promoted tau mRNA instability and tau exon 10 inclusion, leading to an increase of tau and 3R-tau expressions. Levels of CK1ε and TDP-43 phosphorylation were positively correlated with the levels of total tau and 3R-tau in human brains. Furthermore, we observed, in pilot immunohistochemical studies, that the severe tau pathology was accompanied by robust TDP-43 pathology and a high level of CK1ε. Taken together, our findings suggest that the elevation of CK1ε in AD brain may phosphorylate TDP-43, promote its cytoplasmic aggregation and suppress its function in tau mRNA processing, leading to acceleration/exacerbation of tau pathology. Thus, the elevation of CK1ε may link TDP-43 to tau pathogenesis in AD brain.
Collapse
Affiliation(s)
- Jianlan Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Xuefeng Tan
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuting Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| |
Collapse
|
99
|
Gu J, Chu D, Jin N, Chen F, Liu F. Cyclic AMP-Dependent Protein Kinase Phosphorylates TDP-43 and Modulates Its Function in Tau mRNA Processing. J Alzheimers Dis 2019; 70:1093-1102. [DOI: 10.3233/jad-190368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianlan Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
100
|
Matej R, Tesar A, Rusina R. Alzheimer's disease and other neurodegenerative dementias in comorbidity: A clinical and neuropathological overview. Clin Biochem 2019; 73:26-31. [PMID: 31400306 DOI: 10.1016/j.clinbiochem.2019.08.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Neuropathological diagnostic criteria of neurodegenerative disorders are based on the presence of specific inclusions in a specific area of brain tissue that correlate with clinical manifestations. Concomitant neurodegenerative disorders correspond to a combination of two (or more) different fully developed diseases in the same patient. Concomitant neurodegenerative pathology represents the presence of definite neurodegeneration and deposits of pathological proteins specific for another disease, which is not, however, fully developed. Very frequent overlaps include Alzheimer's disease and alpha-synuclein inclusions. Nevertheless, careful neuropathological investigations reveal an increasing frequency of different co-pathologies in examined brains. In Alzheimer's disease, protein TDP-43 may co-aggregate, but it is not clear whether this is atypical isolated Alzheimer's disease or overlap of Alzheimer's disease with early frontotemporal lobar degeneration. Comorbidities of Alzheimer's disease and tauopathies are relatively rare. A combination of vascular pathology with primary neurodegeneration (mostly Alzheimer's disease or dementia with Lewy bodies) is historically called mixed dementia. Overlap of different neuropathologically confirmed neurodegenerations could lead to atypical and unusual clinical presentations and may be responsible for faster disease progression. Several CSF biomarkers have been evaluated for their utility in diagnostic processes in different neurodegenerative dementias; however, evidence regarding their role in neurodegenerative overlaps is still limited.
Collapse
Affiliation(s)
- Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer Hospital, Prague, Czech Republic; Department of Pathology, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Adam Tesar
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic
| | - Robert Rusina
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, General University Hospital, Prague, Czech Republic; Department of Neurology, Third Faculty of Medicine, Charles University, Thomayer Hospital, Prague, Czech Republic.
| |
Collapse
|