51
|
Trojsi F, D’Alvano G, Bonavita S, Tedeschi G. Genetics and Sex in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS): Is There a Link? Int J Mol Sci 2020; 21:ijms21103647. [PMID: 32455692 PMCID: PMC7279172 DOI: 10.3390/ijms21103647] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no known cure. Approximately 90% of ALS cases are sporadic, although multiple genetic risk factors have been recently revealed also in sporadic ALS (SALS). The pathological expansion of a hexanucleotide repeat in chromosome 9 open reading frame 72 (C9orf72) is the most common genetic mutation identified in familial ALS, detected also in 5–10% of SALS patients. C9orf72-related ALS phenotype appears to be dependent on several modifiers, including demographic factors. Sex has been reported as an independent factor influencing ALS development, with men found to be more susceptible than women. Exposure to both female and male sex hormones have been shown to influence disease risk or progression. Moreover, interplay between genetics and sex has been widely investigated in ALS preclinical models and in large populations of ALS patients carrying C9orf72 repeat expansion. In light of the current need for reclassifying ALS patients into pathologically homogenous subgroups potentially responsive to targeted personalized therapies, we aimed to review the recent literature on the role of genetics and sex as both independent and synergic factors, in the pathophysiology, clinical presentation, and prognosis of ALS. Sex-dependent outcomes may lead to optimizing clinical trials for developing patient-specific therapies for ALS.
Collapse
|
52
|
Tazelaar GHP, Boeynaems S, De Decker M, van Vugt JJFA, Kool L, Goedee HS, McLaughlin RL, Sproviero W, Iacoangeli A, Moisse M, Jacquemyn M, Daelemans D, Dekker AM, van der Spek RA, Westeneng HJ, Kenna KP, Assialioui A, Da Silva N, Povedano M, Pardina JSM, Hardiman O, Salachas F, Millecamps S, Vourc'h P, Corcia P, Couratier P, Morrison KE, Shaw PJ, Shaw CE, Pasterkamp RJ, Landers JE, Van Den Bosch L, Robberecht W, Al-Chalabi A, van den Berg LH, Van Damme P, Veldink JH, van Es MA. ATXN1 repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Commun 2020; 2:fcaa064. [PMID: 32954321 PMCID: PMC7425293 DOI: 10.1093/braincomms/fcaa064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023] Open
Abstract
Increasingly, repeat expansions are being identified as part of the complex genetic architecture of amyotrophic lateral sclerosis. To date, several repeat expansions have been genetically associated with the disease: intronic repeat expansions in C9orf72, polyglutamine expansions in ATXN2 and polyalanine expansions in NIPA1. Together with previously published data, the identification of an amyotrophic lateral sclerosis patient with a family history of spinocerebellar ataxia type 1, caused by polyglutamine expansions in ATXN1, suggested a similar disease association for the repeat expansion in ATXN1. We, therefore, performed a large-scale international study in 11 700 individuals, in which we showed a significant association between intermediate ATXN1 repeat expansions and amyotrophic lateral sclerosis (P = 3.33 × 10-7). Subsequent functional experiments have shown that ATXN1 reduces the nucleocytoplasmic ratio of TDP-43 and enhances amyotrophic lateral sclerosis phenotypes in Drosophila, further emphasizing the role of polyglutamine repeat expansions in the pathophysiology of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Steven Boeynaems
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium,Department of Genetics, Stanford University School of Medicine,
Stanford, CA 94305-5120, USA
| | - Mathias De Decker
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Joke J F A van Vugt
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Lindy Kool
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College
Dublin, Dublin D02 PN40, Republic of Ireland
| | - William Sproviero
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Matthieu Moisse
- Division of Experimental Neurology, Department of Neurosciences, KU
Leuven—University of Leuven, Leuven 3000, Belgium,Laboratory of Neurobiology, VIB, Center for Brain & Disease
Research, Leuven 3000, Belgium
| | - Maarten Jacquemyn
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and
Chemotherapy, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Annelot M Dekker
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Rick A van der Spek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center,
Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Abdelilah Assialioui
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de
Llobregat, Barcelona 08908, Spain
| | - Nica Da Silva
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical
Neuroscience Institute and United Kingdom Dementia Research Institute, King’s College
London, London SE5 9NU, UK
| | | | - Mónica Povedano
- Servei de Neurologia, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona 08908, Spain
| | | | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin D02 PN40, Republic of Ireland.,Department of Neurology, Beaumont Hospital, Dublin D02 PN40, Republic of Ireland
| | - François Salachas
- Centre de compétence SLA-Département de Neurologie, Hôpital Pitié-Salpêtrière, Paris 75651, France.,Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle Epinière, INSERM U1127, CNRS UMR7225, Sorbonne Universités, Paris 75651, France
| | - Patrick Vourc'h
- INSERM U930, Université François Rabelais, Tours 92120, France
| | - Philippe Corcia
- Centre de compétence SLA-fédération Tours-Limoges, Tours 92120, France
| | - Philippe Couratier
- Centre de compétence SLA-fédération Tours-Limoges, Limoges 87100, France
| | - Karen E Morrison
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Christopher E Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ludo Van Den Bosch
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wim Robberecht
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London SE5 9NU, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Philip Van Damme
- Division of Experimental Neurology, Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, University of Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
53
|
Huey ED, Fremont R, Manoochehri M, Gazes Y, Lee S, Cosentino S, Tierney M, Wassermann EM, Momeni P, Grafman J. Effect of Functional BDNF and COMT Polymorphisms on Symptoms and Regional Brain Volume in Frontotemporal Dementia and Corticobasal Syndrome. J Neuropsychiatry Clin Neurosci 2020; 32:362-369. [PMID: 32397876 PMCID: PMC7606216 DOI: 10.1176/appi.neuropsych.19100211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The authors examined the effects of two common functional polymorphisms-brain-derived neurotrophic factor (BDNF) Val66Met and catechol-O-methyltransferase (COMT) Val158Met-on cognitive, neuropsychiatric, and motor symptoms and MRI findings in persons with frontotemporal lobar degeneration (FTLD) syndromes. METHODS The BDNF Val66Met and COMT Val158Met polymorphisms were genotyped in 174 participants with FTLD syndromes, including behavioral variant frontotemporal dementia, primary progressive aphasia, and corticobasal syndrome. Gray matter volumes and scores on the Delis-Kaplan Executive Function System, Mattis Dementia Rating Scale, Wechsler Memory Scale, and Neuropsychiatric Inventory were compared between allele groups. RESULTS The BDNF Met allele at position 66 was associated with a decrease in depressive symptoms (F=9.50, df=1, 136, p=0.002). The COMT Val allele at position 158 was associated with impairment of executive function (F=6.14, df=1, 76, p=0.015) and decreased bilateral volume of the head of the caudate in patients with FTLD (uncorrected voxel-level threshold of p<0.001). Neither polymorphism had a significant effect on motor function. CONCLUSIONS These findings suggest that common functional polymorphisms likely contribute to the phenotypic variability seen in patients with FTLD syndromes. This is the first study to implicate BDNF polymorphisms in depressive symptoms in FTLD. These results also support an association between COMT polymorphisms and degeneration patterns and cognition in FTLD.
Collapse
Affiliation(s)
- Edward D. Huey
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 W 168th St, P&S Box 16, New York, NY, 10032
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Columbia University College of Physicians and Surgeons, College of Physicians and Surgeons, Columbia University, New York, NY
- Cognitive Neuroscience Section, NIH/NINDS, Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Rachel Fremont
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Masood Manoochehri
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 W 168th St, P&S Box 16, New York, NY, 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 W 168th St, P&S Box 16, New York, NY, 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 W 168th St, P&S Box 16, New York, NY, 10032
- Department of Neurology, Columbia University College of Physicians and Surgeons, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Michael Tierney
- Cognitive Neuroscience Section, NIH/NINDS, Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Eric M. Wassermann
- Cognitive Neuroscience Section, NIH/NINDS, Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - Jordan Grafman
- Cognitive Neuroscience Section, NIH/NINDS, Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Cognitive Neuroscience Laboratory, Think and Speak Lab, Shirley Ryan AbilityLab, Chicago, IL
| |
Collapse
|
54
|
Moore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, Van Deerlin VM, Warren JD, Fox NC, Rossor MN, Mead S, Bocchetta M, Boeve BF, Knopman DS, Graff-Radford NR, Forsberg LK, Rademakers R, Wszolek ZK, van Swieten JC, Jiskoot LC, Meeter LH, Dopper EG, Papma JM, Snowden JS, Saxon J, Jones M, Pickering-Brown S, Le Ber I, Camuzat A, Brice A, Caroppo P, Ghidoni R, Pievani M, Benussi L, Binetti G, Dickerson BC, Lucente D, Krivensky S, Graff C, Öijerstedt L, Fallström M, Thonberg H, Ghoshal N, Morris JC, Borroni B, Benussi A, Padovani A, Galimberti D, Scarpini E, Fumagalli GG, Mackenzie IR, Hsiung GYR, Sengdy P, Boxer AL, Rosen H, Taylor JB, Synofzik M, Wilke C, Sulzer P, Hodges JR, Halliday G, Kwok J, Sanchez-Valle R, Lladó A, Borrego-Ecija S, Santana I, Almeida MR, Tábuas-Pereira M, Moreno F, Barandiaran M, Indakoetxea B, Levin J, Danek A, Rowe JB, Cope TE, Otto M, Anderl-Straub S, de Mendonça A, Maruta C, Masellis M, Black SE, Couratier P, Lautrette G, Huey ED, Sorbi S, Nacmias B, Laforce R, Tremblay MPL, Vandenberghe R, Damme PV, Rogalski EJ, Weintraub S, Gerhard A, Onyike CU, Ducharme S, Papageorgiou SG, Ng ASL, Brodtmann A, Finger E, Guerreiro R, et alMoore KM, Nicholas J, Grossman M, McMillan CT, Irwin DJ, Massimo L, Van Deerlin VM, Warren JD, Fox NC, Rossor MN, Mead S, Bocchetta M, Boeve BF, Knopman DS, Graff-Radford NR, Forsberg LK, Rademakers R, Wszolek ZK, van Swieten JC, Jiskoot LC, Meeter LH, Dopper EG, Papma JM, Snowden JS, Saxon J, Jones M, Pickering-Brown S, Le Ber I, Camuzat A, Brice A, Caroppo P, Ghidoni R, Pievani M, Benussi L, Binetti G, Dickerson BC, Lucente D, Krivensky S, Graff C, Öijerstedt L, Fallström M, Thonberg H, Ghoshal N, Morris JC, Borroni B, Benussi A, Padovani A, Galimberti D, Scarpini E, Fumagalli GG, Mackenzie IR, Hsiung GYR, Sengdy P, Boxer AL, Rosen H, Taylor JB, Synofzik M, Wilke C, Sulzer P, Hodges JR, Halliday G, Kwok J, Sanchez-Valle R, Lladó A, Borrego-Ecija S, Santana I, Almeida MR, Tábuas-Pereira M, Moreno F, Barandiaran M, Indakoetxea B, Levin J, Danek A, Rowe JB, Cope TE, Otto M, Anderl-Straub S, de Mendonça A, Maruta C, Masellis M, Black SE, Couratier P, Lautrette G, Huey ED, Sorbi S, Nacmias B, Laforce R, Tremblay MPL, Vandenberghe R, Damme PV, Rogalski EJ, Weintraub S, Gerhard A, Onyike CU, Ducharme S, Papageorgiou SG, Ng ASL, Brodtmann A, Finger E, Guerreiro R, Bras J, Rohrer JD. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurol 2020; 19:145-156. [PMID: 31810826 PMCID: PMC7007771 DOI: 10.1016/s1474-4422(19)30394-1] [Show More Authors] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/04/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. METHODS In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. FINDINGS Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35-62, for age at onset; 61%, 47-73, for age at death), and even more by family membership (66%, 56-75, for age at onset; 74%, 65-82, for age at death). In the GRN group, only 2% (0-10) of the variability of age at onset and 9% (3-21) of that of age of death was explained by the specific mutation, whereas 14% (9-22) of the variability of age at onset and 20% (12-30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11-26) of the variability of age at onset and 19% (12-29) of that of age at death. INTERPRETATION Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. FUNDING UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.
Collapse
Affiliation(s)
- Katrina M Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Jennifer Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Martin N Rossor
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Simon Mead
- Institute of Prion Diseases, University College London, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lieke H Meeter
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Elise Gp Dopper
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Janne M Papma
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Julie S Snowden
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Jennifer Saxon
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Matthew Jones
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Cerebral Function Unit, Salford Royal NHS Foundation Trust and Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Isabelle Le Ber
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Camuzat
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexis Brice
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Paola Caroppo
- Institut du Cerveau et de la Moelle épinière & Centre de Référence des Démences Rares ou précoces, Institut de la Mémoire et de la Maladie d'Alzheimer, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Michela Pievani
- Alzheimer's Neuroimaging & Epidemiology Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Lucente
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha Krivensky
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Linn Öijerstedt
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Marie Fallström
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Håkan Thonberg
- Center for Alzheimer Research, Division of Neurogenetics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Nupur Ghoshal
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - John C Morris
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio G Fumagalli
- Department of Pathophysiology and Transplantation, Centro Dino Ferrari, University of Milan, Milan, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Ian R Mackenzie
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ging-Yuek R Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pheth Sengdy
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Howie Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Joanne B Taylor
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Carlo Wilke
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Patricia Sulzer
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - John R Hodges
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John Kwok
- Brain and Mind Centre & Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Myriam Barandiaran
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Begoña Indakoetxea
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain; Center for Networked Biomedical Research on Neurodegenerative Disease, Carlos III Health Institute, Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | - Mario Masellis
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Philippe Couratier
- Centre de Compétence Démences Rares, Centre Hospitalier et Universitaire Limoges, Limoges, France
| | - Geraldine Lautrette
- Centre de Compétence Démences Rares, Centre Hospitalier et Universitaire Limoges, Limoges, France
| | - Edward D Huey
- Departments of Psychiatry and Neurology, Columbia University, New York, NY, USA
| | - Sandro Sorbi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Marie-Pier L Tremblay
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Hôpital de l'Enfant-Jésus, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Rik Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Emily J Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, USA
| | - Alexander Gerhard
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, Essen, Germany
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simon Ducharme
- Montreal Neurological Institute, McConnell Brain Imaging Centre, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Sokratis G Papageorgiou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Adeline Su Lyn Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
55
|
Sudre CH, Bocchetta M, Heller C, Convery R, Neason M, Moore KM, Cash DM, Thomas DL, Woollacott IOC, Foiani M, Heslegrave A, Shafei R, Greaves C, van Swieten J, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler C, Gerhard A, Levin J, Danek A, Frisoni GB, Sorbi S, Otto M, Zetterberg H, Ourselin S, Cardoso MJ, Rohrer JD. White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. NEUROIMAGE-CLINICAL 2019; 24:102077. [PMID: 31835286 PMCID: PMC6911860 DOI: 10.1016/j.nicl.2019.102077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/03/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative disorders with both sporadic and genetic forms. Mutations in the progranulin gene (GRN) are a common cause of genetic FTD, causing either a behavioural presentation or, less commonly, language impairment. Presence on T2-weighted images of white matter hyperintensities (WMH) has been previously shown to be more commonly associated with GRN mutations rather than other forms of FTD. The aim of the current study was to investigate the longitudinal change in WMH and the associations of WMH burden with grey matter (GM) loss, markers of neurodegeneration and cognitive function in GRN mutation carriers. 336 participants in the Genetic FTD Initiative (GENFI) study were included in the analysis: 101 presymptomatic and 32 symptomatic GRN mutation carriers, as well as 203 mutation-negative controls. 39 presymptomatic and 12 symptomatic carriers, and 73 controls also had longitudinal data available. Participants underwent MR imaging acquisition including isotropic 1 mm T1-weighted and T2-weighted sequences. WMH were automatically segmented and locally subdivided to enable a more detailed representation of the pathology distribution. Log-transformed WMH volumes were investigated in terms of their global and regional associations with imaging measures (grey matter volumes), biomarker concentrations (plasma neurofilament light chain, NfL, and glial fibrillary acidic protein, GFAP), genetic status (TMEM106B risk genotype) and cognition (tests of executive function). Analyses revealed that WMH load was higher in both symptomatic and presymptomatic groups compared with controls and this load increased over time. In particular, lesions were seen periventricularly in frontal and occipital lobes, progressing to medial layers over time. However, there was variability in the WMH load across GRN mutation carriers – in the symptomatic group 25.0% had none/mild load, 37.5% had medium and 37.5% had a severe load – a difference not fully explained by disease duration. GM atrophy was strongly associated with WMH load both globally and in separate lobes, and increased WMH burden in the frontal, periventricular and medial regions was associated with worse executive function. Furthermore, plasma NfL and to a lesser extent GFAP concentrations were seen to be associated with increased lesion burden. Lastly, the presence of the homozygous TMEM106B rs1990622 TT risk genotypic status was associated with an increased accrual of WMH per year. In summary, WMH occur in GRN mutation carriers and accumulate over time, but are variable in their severity. They are associated with increased GM atrophy and executive dysfunction. Furthermore, their presence is associated with markers of WM damage (NfL) and astrocytosis (GFAP), whilst their accrual is modified by TMEM106B genetic status. WMH load may represent a target marker for trials of disease modifying therapies in individual patients but the variability across the GRN population would prevent use of such markers as a global outcome measure across all participants in a trial.
Collapse
Affiliation(s)
- Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Carolin Heller
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rhian Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mollie Neason
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Katrina M Moore
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - David L Thomas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Martha Foiani
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Amanda Heslegrave
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rachelle Shafei
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - Caroline Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques Université Laval Québec, Québec, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- University of Milan, Centro Dino Ferrari, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologica Carlo Besta, Milano, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Giovanni B Frisoni
- Instituto di Recovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Henrik Zetterberg
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | | |
Collapse
|
56
|
Yan H, Kubisiak T, Ji H, Xiao J, Wang J, Burmeister M. The recurrent mutation in TMEM106B also causes hypomyelinating leukodystrophy in China and is a CpG hotspot. Brain 2019; 141:e36. [PMID: 29444210 DOI: 10.1093/brain/awy029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huifang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Kubisiak
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Haoran Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Margit Burmeister
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.,Departments of Computational Medicine and Bioinformatics, Psychiatry and Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
57
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
58
|
Simons C, Dyment D, Bent SJ, Crawford J, D'Hooghe M, Kohlschütter A, Venkateswaran S, Helman G, Poll-The BT, Makowski CC, Ito Y, Kernohan K, Hartley T, Waisfisz Q, Taft RJ, van der Knaap MS, Wolf NI. A recurrent de novo mutation in TMEM106B causes hypomyelinating leukodystrophy. Brain 2019; 140:3105-3111. [PMID: 29186371 DOI: 10.1093/brain/awx314] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Hypomyelinating leukodystrophies are a heterogeneous group of disorders with a clinical presentation that often includes early-onset nystagmus, ataxia and spasticity and a wide range of severity. Using next-generation sequencing techniques and GeneMatcher, we identified four unrelated patients with brain hypomyelination, all with the same recurrent dominant mutation, c.754G>A p.(Asp252Asn), in TMEM106B. The mutation was confirmed as de novo in three of the cases, and the mildly affected father of the fourth affected individual was confirmed as mosaic for this variant. The protein encoded by TMEM106B is poorly characterized but is reported to have a role in regulation of lysosomal trafficking. Polymorphisms in TMEM106B are thought to modify disease onset in frontotemporal dementia, but its relation to myelination is not understood. Clinical presentation in three of the four patients is remarkably benign compared to other hypomyelinating disorders, with congenital nystagmus and mild motor delay. These findings add TMEM106B to the growing list of genes causing hypomyelinating disorders and emphasize the essential role lysosomes play in myelination.
Collapse
Affiliation(s)
- Cas Simons
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - David Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephen J Bent
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Marc D'Hooghe
- Department of Neurology, General Hospital Sint-Jan, Brugge, Belgium
| | - Alfried Kohlschütter
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sunita Venkateswaran
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Guy Helman
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia
| | - Bwee-Tien Poll-The
- Department of Child Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia.,Illumina Inc, San Diego, California, USA
| | | | - Marjo S van der Knaap
- Department of Child Neurology, VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
59
|
An update on genetic frontotemporal dementia. J Neurol 2019; 266:2075-2086. [PMID: 31119452 PMCID: PMC6647117 DOI: 10.1007/s00415-019-09363-4] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a highly heritable group of neurodegenerative disorders, with around 30% of patients having a strong family history. The majority of that heritability is accounted for by autosomal dominant mutations in the chromosome 9 open reading frame 72 (C9orf72), progranulin (GRN), and microtubule-associated protein tau (MAPT) genes, with mutations more rarely seen in a number of other genes. This review will discuss the recent updates in the field of genetic FTD. Age at symptom onset in genetic FTD is variable with recently identified genetic modifiers including TMEM106B (in GRN carriers particularly) and a polymorphism at a locus containing two overlapping genes LOC101929163 and C6orf10 (in C9orf72 carriers). Behavioural variant FTD (bvFTD) is the most common diagnosis in each of the genetic groups, although in C9orf72 carriers amyotrophic lateral sclerosis either alone, or with bvFTD, is also common. An atypical neuropsychiatric presentation is also seen in C9orf72 carriers and family members of carriers are at greater risk of psychiatric disorders including schizophrenia and autistic spectrum disorders. Large natural history studies of presymptomatic genetic FTD are now underway both in Europe/Canada (GENFI—the Genetic FTD Initiative) and in the US (ARTFL/LEFFTDS study), collaborating together under the banner of the FTD Prevention Initiative (FPI). These studies are taking forward the validation of cognitive, imaging and fluid biomarkers that aim to robustly measure disease onset, staging and progression in genetic FTD. Grey matter changes on MRI and hypometabolism on FDG-PET are seen at least 10 years before symptom onset with white matter abnormalities seen earlier, but the pattern and exact timing of changes differ between different genetic groups. In contrast, tau PET has yet to show promise in genetic FTD. Three key fluid biomarkers have been identified so far that are likely to be helpful in clinical trials—CSF or blood neurofilament light chain levels (in all groups), CSF or blood progranulin levels (in GRN carriers) and CSF poly(GP) dipeptide repeat protein levels (in C9orf72 carriers). Increased knowledge about genetic FTD has led to more clinical presymptomatic genetic testing but this has not yet been mirrored in the development of either an accepted FTD-specific testing protocol or provision of appropriate psychological support mechanisms for those living through the at-risk phase. This will become even more relevant as disease-modifying therapy trials start in each of the genetic groups over the next few years.
Collapse
|
60
|
Zhou X, Rademakers R. TMEM106B and myelination: rare leukodystrophy families reveal unexpected connections. Brain 2019; 140:3069-3080. [PMID: 29194508 DOI: 10.1093/brain/awx318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
61
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
62
|
Rostalski H, Leskelä S, Huber N, Katisko K, Cajanus A, Solje E, Marttinen M, Natunen T, Remes AM, Hiltunen M, Haapasalo A. Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS. Front Neurosci 2019; 13:486. [PMID: 31156371 PMCID: PMC6529740 DOI: 10.3389/fnins.2019.00486] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Hannah Rostalski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Anne M Remes
- Medical Research Center, Oulu University Hospital, Oulu, Finland.,Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
63
|
Convery R, Mead S, Rohrer JD. Review: Clinical, genetic and neuroimaging features of frontotemporal dementia. Neuropathol Appl Neurobiol 2019; 45:6-18. [DOI: 10.1111/nan.12535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- R. Convery
- Dementia Research Centre; Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; London UK
| | - S. Mead
- UCL Institute of Prion Diseases; MRC Prion Unit at UCL; London UK
| | - J. D. Rohrer
- Dementia Research Centre; Department of Neurodegenerative Disease; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|
64
|
Goldman JS, Van Deerlin VM. Alzheimer's Disease and Frontotemporal Dementia: The Current State of Genetics and Genetic Testing Since the Advent of Next-Generation Sequencing. Mol Diagn Ther 2019; 22:505-513. [PMID: 29971646 DOI: 10.1007/s40291-018-0347-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of next-generation sequencing has changed genetic diagnostics, allowing clinicians to test concurrently for phenotypically overlapping conditions such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, to interpret genetic results, clinicians require an understanding of the benefits and limitations of different genetic technologies, such as the inability to detect large repeat expansions in such diseases as C9orf72-associated FTD and amyotrophic lateral sclerosis. Other types of mutations such as large deletions or duplications and triple repeat expansions may also go undetected. Additionally, the concurrent testing of multiple genes or the whole exome increases the likelihood of discovering variants of unknown significance. Our goal here is to review the current knowledge about the genetics of AD and FTD and suggest up-to-date guidelines for genetic testing for these dementias. Despite the improvements in diagnosis due to biomarkers testing, AD and FTD can have overlapping symptoms. When used appropriately, genetic testing can elucidate the diagnosis and specific etiology of the disease, as well as provide information for the family and determine eligibility for clinical trials. Prior to ordering genetic testing, clinicians must determine the appropriate genes to test, the types of mutations that occur in these genes, and the best type of genetic test to use. Without this analysis, interpretation of genetic results will be difficult. Patients should be counseled about the benefits and limitations of different types of genetic tests so they can make an informed decision about testing.
Collapse
Affiliation(s)
- Jill S Goldman
- Taub Institute, Columbia University Medical Center, 630 W. 168th St., Box 16, New York, NY, 10032, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, 7.103 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
65
|
Vatsavayai SC, Nana AL, Yokoyama JS, Seeley WW. C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol 2019; 137:1-26. [PMID: 30368547 DOI: 10.1007/s00401-018-1921-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
What are the most important and treatable pathogenic mechanisms in C9orf72-FTD/ALS? Model-based efforts to address this question are forging ahead at a blistering pace, often with conflicting results. But what does the human neuropathological literature reveal? Here, we provide a critical review of the human studies to date, seeking to highlight key gaps or uncertainties in our knowledge. First, we engage the C9orf72-specific mechanisms, including C9orf72 haploinsufficiency, repeat RNA foci, and dipeptide repeat protein inclusions. We then turn to some of the most prominent C9orf72-associated features, such as TDP-43 loss-of-function, TDP-43 aggregation, and nuclear transport defects. Finally, we review potential disease-modifying epigenetic and genetic factors and the natural history of the disease across the lifespan. Throughout, we emphasize the importance of anatomical precision when studying how candidate mechanisms relate to neuronal, regional, and behavioral findings. We further highlight methodological approaches that may help address lingering knowledge gaps and uncertainties, as well as other logical next steps for the field. We conclude that anatomically oriented human neuropathological studies have a critical role to play in guiding this fast-moving field toward effective new therapies.
Collapse
Affiliation(s)
- Sarat C Vatsavayai
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA.
- Department of Pathology, University of California, San Francisco, Box 1207, San Francisco, CA, 94143-1207, USA.
| |
Collapse
|
66
|
Bradley WG, Andrew AS, Traynor BJ, Chiò A, Butt TH, Stommel EW. Gene-Environment-Time Interactions in Neurodegenerative Diseases: Hypotheses and Research Approaches. Ann Neurosci 2018; 25:261-267. [PMID: 31000966 DOI: 10.1159/000495321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS), Alzheimer's, and Parkinson's diseases are age-related neurodegenerative diseases. ALS is not a single entity but a syndrome with many different causes. In all 3 diseases, gene mutations account for only 10-15% of cases. Many environmental and lifestyle factors have been implicated as risk factors for ALS, though none have been proven to cause the disease. It is generally believed that ALS results from interactions between environmental risk factors and genetic predisposing factors. The advent of next-generation sequencing and recent advances in research into environmental risk factors offer the opportunity to investigate these interactions. Summary We propose a hypothesis to explain the syndrome of ALS based on the interaction of many individual environmental risk factors with many individual genetic predisposing factors. We hypothesize that there are many such combinations of individual, specific, genetic, and environmental factors, and that each combination can lead to the development of the syndrome of ALS. We also propose a hypothesis that explains the overlap between the age-related neurodegenerations and their genetic underpinnings. Age and duration of exposure are crucial factors in these age-related neurodegenerative diseases, and we consider how these may relate to gene-environment interactions. Key Messages To date, genetic studies and environmental studies have investigated the causes of ALS separately. We argue that this univariate approach will not lead to discoveries of important gene-environment interactions. We propose new research approaches to investigating gene-environment interactions based on these hypotheses.
Collapse
Affiliation(s)
- Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Tanya H Butt
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
67
|
Ito Y, Hartley T, Baird S, Venkateswaran S, Simons C, Wolf NI, Boycott KM, Dyment DA, Kernohan KD. Lysosomal dysfunction in TMEM106B hypomyelinating leukodystrophy. NEUROLOGY-GENETICS 2018; 4:e288. [PMID: 30643851 PMCID: PMC6317987 DOI: 10.1212/nxg.0000000000000288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Affiliation(s)
- Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Stephen Baird
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sunita Venkateswaran
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cas Simons
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute (Y.I., T.H., S.B., K.M.B., D.A.D., K.D.K.), Ottawa, Ontario, Canada; Division of Neurology (S.V.), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Institute for Molecular Bioscience (C.S.), University of Queensland, St. Lucia, Queensland, Australia; and Department of Child Neurology (N.I.W.), VU University Medical Center, and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
68
|
Kang J, Lim L, Song J. TMEM106B, a risk factor for FTLD and aging, has an intrinsically disordered cytoplasmic domain. PLoS One 2018; 13:e0205856. [PMID: 30332472 PMCID: PMC6192649 DOI: 10.1371/journal.pone.0205856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
TMEM106B was initially identified as a risk factor for FTLD, but recent studies highlighted its general role in neurodegenerative diseases. Very recently TMEM106B has also been characterized to regulate aging phenotypes. TMEM106B is a 274-residue lysosomal protein whose cytoplasmic domain functions in the endosomal/autophagy pathway by dynamically and transiently interacting with diverse categories of proteins but the underlying structural basis remains completely unknown. Here we conducted bioinformatics analysis and biophysical characterization by CD and NMR spectroscopy, and obtained results reveal that the TMEM106B cytoplasmic domain is intrinsically disordered with no well-defined three-dimensional structure. Nevertheless, detailed analysis of various multi-dimensional NMR spectra allowed defining residue-specific conformations and dynamics. Overall, the TMEM106B cytoplasmic domain is lacking of any tight tertiary packing and relatively flexible. However, several segments are populated with dynamic/nascent secondary structures and have relatively restricted backbone motions on ps-ns time scale, as indicated by their positive {1H}-15N steady-state NOE. Our study thus decodes that being intrinsically disordered may allow the TMEM106B cytoplasmic domain to dynamically and transiently interact with a variety of distinct partners.
Collapse
Affiliation(s)
- Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
69
|
Koga S, Kouri N, Walton RL, Ebbert MTW, Josephs KA, Litvan I, Graff-Radford N, Ahlskog JE, Uitti RJ, van Gerpen JA, Boeve BF, Parks A, Ross OA, Dickson DW. Corticobasal degeneration with TDP-43 pathology presenting with progressive supranuclear palsy syndrome: a distinct clinicopathologic subtype. Acta Neuropathol 2018; 136:389-404. [PMID: 29926172 PMCID: PMC6309287 DOI: 10.1007/s00401-018-1878-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022]
Abstract
Corticobasal degeneration (CBD) is a clinically heterogeneous tauopathy, which has overlapping clinicopathologic and genetic characteristics with progressive supranuclear palsy (PSP). This study aimed to elucidate whether transactive response DNA-binding protein of 43 kDa (TDP-43) pathology contributes to clinicopathologic heterogeneity of CBD. Paraffin-embedded sections of the midbrain, pons, subthalamic nucleus, and basal forebrain from 187 autopsy-confirmed CBD cases were screened with immunohistochemistry for phospho-TDP-43. In cases with TDP-43 pathology, additional brain regions (i.e., precentral, cingulate, and superior frontal gyri, hippocampus, medulla, and cerebellum) were immunostained. Hierarchical clustering analysis was performed based on the topographical distribution and severity of TDP-43 pathology, and clinicopathologic and genetic features were compared between the clusters. TDP-43 pathology was observed in 45% of CBD cases, most frequently in midbrain tegmentum (80% of TDP-43-positive cases), followed by subthalamic nucleus (69%). TDP-43-positive CBD was divided into TDP-limited (52%) and TDP-severe (48%) by hierarchical clustering analysis. TDP-severe patients were more likely to have been diagnosed clinically as PSP compared to TDP-limited and TDP-negative patients (80 vs 32 vs 30%, P < 0.001). The presence of downward gaze palsy was the strongest factor for the antemortem diagnosis of PSP, and severe TDP-43 pathology in the midbrain tectum was strongly associated with downward gaze palsy. In addition, tau burden in the olivopontocerebellar system was significantly greater in TDP-positive than TDP-negative CBD. Genetic analyses revealed that MAPT H1/H1 genotype frequency was significantly lower in TDP-severe than in TDP-negative and TDP-limited CBD (65 vs 89 vs 91%, P < 0.001). The homozygous minor allele frequencies in GRN rs5848 and TMEM106B rs3173615 were not significantly different between the three groups. In conclusion, the present study indicates that CBD with severe TDP-43 pathology is a distinct clinicopathologic subtype of CBD, characterized by PSP-like clinical presentations, severe tau pathology in the olivopontocerebellar system, and low frequency of MAPT H1 haplotype.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Naomi Kouri
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Irene Litvan
- Parkinson and Other Movement Disorder Center, Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | | | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Adam Parks
- Department of Neuropsychology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
70
|
Papadopoulos C, Meyer H. Detection and Clearance of Damaged Lysosomes by the Endo-Lysosomal Damage Response and Lysophagy. Curr Biol 2018; 27:R1330-R1341. [PMID: 29257971 DOI: 10.1016/j.cub.2017.11.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lysosomal membrane permeabilization or lysosomal rupture is recognized as a common and severe stress condition relevant for infection, cellular degeneration and cancer. However, the cellular response mechanisms that protect cells from the consequences of lysosomal damage and ensure lysosomal quality control and homeostasis have only recently been explored. Key elements of this response involve the specific sensing of the damage followed by extensive modification of the organelles with ubiquitin to mark them for clearance by selective macroautophagy, termed lysophagy. Efficient lysophagy is ensured by additional layers of regulation, including modulation by the ubiquitin-directed AAA-ATPase VCP/p97. Lysophagy shares many features with mitophagy, the macroautophagic removal of damaged mitochondria. This review aims to gather available data from different fields and to define the key steps necessary for sensing and subsequent clearance of damaged lysosomes. We conclude with a discussion of disease implications with a focus on neurodegeneration.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.
| | - Hemmo Meyer
- Molecular Biology I, Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.
| |
Collapse
|
71
|
Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ, Scott KL, Gibbons DL. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun 2018; 9:2731. [PMID: 30013069 PMCID: PMC6048095 DOI: 10.1038/s41467-018-05013-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Metastatic lung cancer is the leading cause of cancer-associated mortality worldwide, therefore necessitating novel approaches to identify specific genetic drivers for lung cancer progression and metastasis. We recently performed an in vivo gain-of-function genetic screen to identify driver genes of lung cancer metastasis. In the study reported here, we identify TMEM106B as a primary robust driver of lung cancer metastasis. Ectopic expression of TMEM106B could significantly promote the synthesis of enlarged vesicular lysosomes that are laden with elevated levels of active cathepsins. In a TFEB-dependent manner, TMEM106B could modulate the expression of lysosomal genes of the coordinated lysosomal expression and regulation (CLEAR) pathway in lung cancer cells and patient samples. We also demonstrate that TMEM106B-induced lysosomes undergo calcium-dependent exocytosis, thereby releasing active lysosomal cathepsins necessary for TMEM106B-mediated cancer cell invasion and metastasis in vivo, which could be therapeutically prevented by pharmacological inhibition of cathepsins. Further, in TCGA LUAD data sets, 19% of patients show elevated expression of TMEM106B, which predicts for poor disease-free and overall-survival.
Collapse
Affiliation(s)
- Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Laura A Gibson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leticia B Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
72
|
Ren Y, van Blitterswijk M, Allen M, Carrasquillo MM, Reddy JS, Wang X, Beach TG, Dickson DW, Ertekin-Taner N, Asmann YW, Rademakers R. TMEM106B haplotypes have distinct gene expression patterns in aged brain. Mol Neurodegener 2018; 13:35. [PMID: 29970152 PMCID: PMC6029036 DOI: 10.1186/s13024-018-0268-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Background Single nucleotide polymorphisms (SNPs) inherited as one of two common haplotypes at the transmembrane protein 106B (TMEM106B) locus are associated with the risk of multiple neurodegenerative diseases, including frontotemporal lobar degeneration with pathological inclusions of TDP-43. Among the associated variants, rs3173615 (encoding p.T185S) is the only coding variant; however, non-coding variants may also contribute to disease risk. It has been reported that the risk haplotype is associated with higher levels of TMEM106B and increased levels of TMEM106B cause cytotoxicity; however, the precise mechanism through which TMEM106B haplotypes contribute to neurodegeneration is unclear. Methods We utilized RNA sequencing data derived from temporal cortex (TCX) and cerebellum (CER) from 312 North American Caucasian subjects neuropathologically diagnosed with Alzheimer’s disease, progressive supranuclear palsy, pathological aging or normal controls to analyze transcriptome signatures associated with the risk (TT) and protective (SS) TMEM106B haplotypes. In cohorts matched for disease phenotype, we used Analysis of Variance (ANOVA) to identify differentially expressed genes and Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene networks associated with the risk and protective TMEM106B haplotypes. Results A total of 110 TCX and 116 CER samples were included in the analyses. When comparing TT to SS carriers, we detected 593 differentially expressed genes in TCX and 7 in CER. Gene co-expression network analyses further showed that in both TCX and CER the SS haplotype was positively correlated with gene networks involved in synaptic transmission, whereas the TT haplotype was positively correlated with gene networks enriched for immune response. Gene expression patterns of 5 cell-type-specific markers revealed significantly reduced expression of the neuronal marker and relative increases in all other cell markers in TT as compared to SS carriers in TCX with a similar but non-significant trend in CER. Conclusions By comparing the common TMEM106B risk and protective haplotypes we identified significant and partly conserved transcriptional differences across TCX and CER and striking changes in cell-type composition, especially in TCX. These findings illustrate the profound effect of TMEM106B haplotypes on brain health and highlight the importance to better understand TMEM106B’s function and dysfunction in the context of neurodegenerative diseases. Electronic supplementary material The online version of this article (10.1186/s13024-018-0268-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Joseph S Reddy
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
73
|
Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 2018; 17:548-558. [PMID: 29724592 PMCID: PMC6237181 DOI: 10.1016/s1474-4422(18)30126-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.
Collapse
|
74
|
Nicholson AM, Zhou X, Perkerson RB, Parsons TM, Chew J, Brooks M, DeJesus-Hernandez M, Finch NA, Matchett BJ, Kurti A, Jansen-West KR, Perkerson E, Daughrity L, Castanedes-Casey M, Rousseau L, Phillips V, Hu F, Gendron TF, Murray ME, Dickson DW, Fryer JD, Petrucelli L, Rademakers R. Loss of Tmem106b is unable to ameliorate frontotemporal dementia-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Acta Neuropathol Commun 2018; 6:42. [PMID: 29855382 PMCID: PMC5984311 DOI: 10.1186/s40478-018-0545-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
Loss-of-function mutations in progranulin (GRN) and a non-coding (GGGGCC)n hexanucleotide repeat expansions in C9ORF72 are the two most common genetic causes of frontotemporal lobar degeneration with aggregates of TAR DNA binding protein 43 (FTLD-TDP). TMEM106B encodes a type II transmembrane protein with unknown function. Genetic variants in TMEM106B associated with reduced TMEM106B levels have been identified as disease modifiers in individuals with GRN mutations and C9ORF72 expansions. Recently, loss of Tmem106b has been reported to protect the FTLD-like phenotypes in Grn-/- mice. Here, we generated Tmem106b-/- mice and examined whether loss of Tmem106b could rescue FTLD-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Our results showed that neither partial nor complete loss of Tmem106b was able to rescue behavioral deficits induced by the expression of (GGGGCC)66 repeats (66R). Loss of Tmem106b also failed to ameliorate 66R-induced RNA foci, dipeptide repeat protein formation and pTDP-43 pathological burden. We further found that complete loss of Tmem106b increased astrogliosis, even in the absence of 66R, and failed to rescue 66R-induced neuronal cell loss, whereas partial loss of Tmem106b significantly rescued the neuronal cell loss but not neuroinflammation induced by 66R. Finally, we showed that overexpression of 66R did not alter expression of Tmem106b and other lysosomal genes in vivo, and subsequent analyses in vitro found that transiently knocking down C9ORF72, but not overexpression of 66R, significantly increased TMEM106B and other lysosomal proteins. In summary, reducing Tmem106b levels failed to rescue FTLD-like phenotypes in a mouse model mimicking the toxic gain-of-functions associated with overexpression of 66R. Combined with the observation that loss of C9ORF72 and not 66R overexpression was associated with increased levels of TMEM106B, this work suggests that the protective TMEM106B haplotype may exert its effect in expansion carriers by counteracting lysosomal dysfunction resulting from a loss of C9ORF72.
Collapse
Affiliation(s)
- Alexandra M. Nicholson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Ralph B. Perkerson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Tammee M. Parsons
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mariely DeJesus-Hernandez
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - NiCole A. Finch
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Billie J. Matchett
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Karen R. Jansen-West
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Emilie Perkerson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Monica Castanedes-Casey
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Linda Rousseau
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY 14853 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
75
|
Chen Y, Sud N, Hettinghouse A, Liu CJ. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev 2018; 41:65-74. [PMID: 29699937 DOI: 10.1016/j.cytogfr.2018.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disease caused by deficiency of beta-glucocerebrosidase (GCase) resulting in lysosomal accumulation of its glycolipid substrate glucosylceramide. The activity of GCase depends on many factors such as proper folding and lysosomal localization, which are influenced by mutations in GCase encoding gene, and regulated by various GCase-binding partners including Saposin C, progranulin and heat shock proteins. In addition, proinflammatory molecules also contribute to pathogenicity of GD. In this review, we summarize the molecules that are known to be important for the pathogenesis of GD, particularly those modulating GCase lysosomal appearance and activity. In addition, small molecules that inhibit inflammatory mediators, calcium ion channels and other factors associated with GD are also described. Discovery and characterization of novel molecules that impact GD are not only important for deciphering the pathogenic mechanisms of the disease, but they also provide new targets for drug development to treat the disease.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neetu Sud
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
76
|
Townley RA, Boeve BF, Benarroch EE. Progranulin: Functions and neurologic correlations. Neurology 2017; 90:118-125. [PMID: 29263224 DOI: 10.1212/wnl.0000000000004840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ryan A Townley
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | - Bradley F Boeve
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
77
|
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH. Amyotrophic lateral sclerosis. Lancet 2017; 390:2084-2098. [PMID: 28552366 DOI: 10.1016/s0140-6736(17)31287-4] [Citation(s) in RCA: 877] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis is characterised by the progressive loss of motor neurons in the brain and spinal cord. This neurodegenerative syndrome shares pathobiological features with frontotemporal dementia and, indeed, many patients show features of both diseases. Many different genes and pathophysiological processes contribute to the disease, and it will be necessary to understand this heterogeneity to find effective treatments. In this Seminar, we discuss clinical and diagnostic approaches as well as scientific advances in the research fields of genetics, disease modelling, biomarkers, and therapeutic strategies.
Collapse
Affiliation(s)
- Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Beaumont, Ireland
| | - Adriano Chio
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK; NIHR Dementia Biomedical Research Unit, King's College London, London, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
78
|
Harding SR, Bocchetta M, Gordon E, Cash DM, Cardoso MJ, Druyeh R, Ourselin S, Warren JD, Mead S, Rohrer JD. The TMEM106B risk allele is associated with lower cortical volumes in a clinically diagnosed frontotemporal dementia cohort. J Neurol Neurosurg Psychiatry 2017; 88:997-998. [PMID: 28446602 PMCID: PMC5740537 DOI: 10.1136/jnnp-2017-315641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 11/03/2022]
Affiliation(s)
- Sophie R Harding
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Translational Imaging Group, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - M Jorge Cardoso
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Translational Imaging Group, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Ron Druyeh
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Sebastian Ourselin
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Translational Imaging Group, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
79
|
Pang SYY, Teo KC, Hsu JS, Chang RSK, Li M, Sham PC, Ho SL. The role of gene variants in the pathogenesis of neurodegenerative disorders as revealed by next generation sequencing studies: a review. Transl Neurodegener 2017; 6:27. [PMID: 29046784 PMCID: PMC5639582 DOI: 10.1186/s40035-017-0098-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
The clinical diagnosis of neurodegenerative disorders based on phenotype is difficult in heterogeneous conditions with overlapping symptoms. It does not take into account the disease etiology or the highly variable clinical course even amongst patients diagnosed with the same disorder. The advent of next generation sequencing (NGS) has allowed for a system-wide, unbiased approach to identify all gene variants in the genome simultaneously. With the plethora of new genes being identified, genetic rather than phenotype-based classification of Mendelian diseases such as spinocerebellar ataxia (SCA), hereditary spastic paraplegia (HSP) and Charcot-Marie-Tooth disease (CMT) has become widely accepted. It has also become clear that gene variants play a role in common and predominantly sporadic neurodegenerative diseases such as Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). The observation of pleiotropy has emerged, with mutations in the same gene giving rise to diverse phenotypes, which further increases the complexity of phenotype-genotype correlation. Possible mechanisms of pleiotropy include different downstream effects of different mutations in the same gene, presence of modifier genes, and oligogenic inheritance. Future directions include development of bioinformatics tools and establishment of more extensive public genotype/phenotype databases to better distinguish deleterious gene variants from benign polymorphisms, translation of genetic findings into pathogenic mechanisms through in-vitro and in-vivo studies, and ultimately finding disease-modifying therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Kay-Cheong Teo
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Jacob Shujui Hsu
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Richard Shek-Kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| | - Miaoxin Li
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China.,Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, People's Republic of China
| | - Pak-Chung Sham
- Centre for Genomic Sciences, University of Hong Kong, Hong Kong, People's Republic of China
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
80
|
Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice. Neuron 2017; 95:281-296.e6. [PMID: 28728022 DOI: 10.1016/j.neuron.2017.06.026] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Progranulin (GRN) and TMEM106B are associated with several common neurodegenerative disorders including frontotemporal lobar degeneration (FTLD). A TMEM106B variant modifies GRN-associated FTLD risk. However, their functional relationship in vivo and the mechanisms underlying the risk modification remain unclear. Here, using transcriptomic and proteomic analyses with Grn-/- and Tmem106b-/- mice, we show that, while multiple lysosomal enzymes are increased in Grn-/- brain at both transcriptional and protein levels, TMEM106B deficiency causes reduction in several lysosomal enzymes. Remarkably, Tmem106b deletion from Grn-/- mice normalizes lysosomal protein levels and rescues FTLD-related behavioral abnormalities and retinal degeneration without improving lipofuscin, C1q, and microglial accumulation. Mechanistically, TMEM106B binds vacuolar-ATPase accessory protein 1 (AP1). TMEM106B deficiency reduces vacuolar-ATPase AP1 and V0 subunits, impairing lysosomal acidification and normalizing lysosomal protein levels in Grn-/- neurons. Thus, Grn and Tmem106b genes have opposite effects on lysosomal enzyme levels, and their interaction determines the extent of neurodegeneration.
Collapse
|
81
|
Intracellular Proteolysis of Progranulin Generates Stable, Lysosomal Granulins that Are Haploinsufficient in Patients with Frontotemporal Dementia Caused by GRN Mutations. eNeuro 2017; 4:eN-NWR-0100-17. [PMID: 28828399 PMCID: PMC5562298 DOI: 10.1523/eneuro.0100-17.2017] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Homozygous or heterozygous mutations in the GRN gene, encoding progranulin (PGRN), cause neuronal ceroid lipofuscinosis (NCL) or frontotemporal dementia (FTD), respectively. NCL and FTD are characterized by lysosome dysfunction and neurodegeneration, indicating PGRN is important for lysosome homeostasis in the brain. PGRN is trafficked to the lysosome where its functional role is unknown. PGRN can be cleaved into seven 6-kDa proteins called granulins (GRNs); however, little is known about how GRNs are produced or if levels of GRNs are altered in FTD-GRN mutation carriers. Here, we report the identification and characterization of antibodies that reliably detect several human GRNs by immunoblot and immunocytochemistry. Using these tools, we find that endogenous GRNs are present within multiple cell lines and are constitutively produced. Further, extracellular PGRN is endocytosed and rapidly processed into stable GRNs within lysosomes. Processing of PGRN into GRNs is conserved between humans and mice and is modulated by sortilin expression and mediated by cysteine proteases (i.e. cathpesin L). Induced lysosome dysfunction caused by alkalizing agents or increased expression of transmembrane protein 106B (TMEM106B) inhibit processing of PGRN into GRNs. Finally, we find that multiple GRNs are haploinsufficient in primary fibroblasts and cortical brain tissue from FTD-GRN patients. Taken together, our findings raise the interesting possibility that GRNs carry out critical lysosomal functions and that loss of GRNs should be explored as an initiating factor in lysosomal dysfunction and neurodegeneration caused by GRN mutations.
Collapse
|
82
|
Premi E, Grassi M, van Swieten J, Galimberti D, Graff C, Masellis M, Tartaglia C, Tagliavini F, Rowe JB, Laforce R, Finger E, Frisoni GB, de Mendonça A, Sorbi S, Gazzina S, Cosseddu M, Archetti S, Gasparotti R, Manes M, Alberici A, Cardoso MJ, Bocchetta M, Cash DM, Ourselin S, Padovani A, Rohrer JD, Borroni B. Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain 2017; 140:1784-1791. [PMID: 28460069 PMCID: PMC5445253 DOI: 10.1093/brain/awx103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/04/2017] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the slope of the correlation between education and grey matter volume (P = 0.007). Together, these results indicate that brain atrophy in presymptomatic carriers of common frontotemporal dementia mutations is affected by both genetic and environmental factors such that TMEM106B enhances the benefit of cognitive reserve on brain structure. These findings should be considered in evaluating outcomes in future disease-modifying trials, and support the search for protective mechanisms in people at risk of dementia that might facilitate new therapeutic strategies.
Collapse
Affiliation(s)
- Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Italy
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogenetics, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Mario Masellis
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Giovanni B Frisoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Don Gnocchi", Florence, Italy
| | - Stefano Gazzina
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maura Cosseddu
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Department of Laboratories, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | | | - Marta Manes
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuel J Cardoso
- Dementia Research Centre, UCL Institute of Neurology, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | | | - David M Cash
- Dementia Research Centre, UCL Institute of Neurology, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Sebastian Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | |
Collapse
|
83
|
Konno T, Ross OA, Teive HAG, Sławek J, Dickson DW, Wszolek ZK. DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism Relat Disord 2017. [PMID: 28625595 DOI: 10.1016/j.parkreldis.2017.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perry syndrome (PS) is a rare hereditary neurodegenerative disease characterized by autosomal dominant parkinsonism, psychiatric symptoms, weight loss, central hypoventilation, and distinct TDP-43 pathology. The mutated causative gene for PS is DCTN1, which encodes the dynactin subunit p150Glued. Dynactin is a motor protein involved in axonal transport; the p150Glued subunit has a critical role in the overall function. Since the discovery of DCTN1 in PS, it has been increasingly recognized that DCTN1 mutations can exhibit more diverse phenotypes than previously thought. Progressive supranuclear palsy- and/or frontotemporal dementia-like phenotypes have been associated with the PS phenotypes. In addition, DCTN1 mutations were identified in a family with motor-neuron disease before the discovery in PS. In this review, we analyze the clinical and genetic aspects of DCTN1-related neurodegeneration and discuss its pathogenesis. We also describe three families with PS, Canadian, Polish, and Brazilian. DCTN1 mutation was newly identified in two of them, the Canadian and Polish families. The Canadian family was first described in late 1970's but was never genetically tested. We recently had the opportunity to evaluate this family and to test the gene status of an affected family member. The Polish family is newly identified and is the first PS family in Poland. Although still rare, DCTN1-related neurodegeneration needs to be considered in a differential diagnosis of parkinsonian disorders, frontotemporal dementia, and motor-neuron diseases, especially if there is family history.
Collapse
Affiliation(s)
- Takuya Konno
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, PR, 80060-150, Brazil
| | - Jarosław Sławek
- Department of Neurological-Psychiatric Nursing, Medical University of Gdansk, Poland; Department of Neurology, St. Adalbert Hospital, Copernicus Ltd., Gdansk, Poland
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
84
|
Amick J, Ferguson SM. C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease. Traffic 2017; 18:267-276. [PMID: 28266105 DOI: 10.1111/tra.12477] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The discovery that expansion of a hexanucleotide repeat within a noncoding region of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia raised questions about C9orf72 protein function and potential disease relevance. The major predicted structural feature of the C9orf72 protein is a DENN (differentially expressed in normal and neoplastic cells) domain. As DENN domains are best characterized for regulation of specific Rab GTPases, it has been proposed that C9orf72 may also act through regulation of a GTPase target. Recent genetic and cell biological studies furthermore indicate that the C9orf72 protein functions at lysosomes as part of a larger complex that also contains the Smith-Magenis chromosome region 8 (SMCR8) and WD repeat-containing protein 41 (WDR41) proteins. An important role for C9orf72 at lysosomes is supported by defects in lysosome morphology and mTOR complex 1 (mTORC1) signaling arising from C9orf72 KO in diverse model systems. Collectively, these new findings define a C9orf72-containing protein complex and a lysosomal site of action as central to C9orf72 function and provide a foundation for the elucidation of direct physiological targets for C9orf72. Further elucidation of mechanisms whereby C9orf72 regulates lysosome function will help to determine how the reductions in C9orf72 expression levels that accompany hexanucleotide repeat expansions contribute to disease pathology.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
85
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|