51
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
An approach to design potent anti-Alzheimer’s agents by 3D-QSAR studies on fused 5,6-bicyclic heterocycles as γ-secretase modulators using kNN–MFA methodology. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
53
|
Mhatre SD, Michelson SJ, Gomes J, Tabb LP, Saunders AJ, Marenda DR. Development and characterization of an aged onset model of Alzheimer's disease in Drosophila melanogaster. Exp Neurol 2014; 261:772-81. [DOI: 10.1016/j.expneurol.2014.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
|
54
|
Van Assche R, Temmerman L, Dias DA, Boughton B, Boonen K, Braeckman BP, Schoofs L, Roessner U. Metabolic profiling of a transgenic Caenorhabditis elegans Alzheimer model. Metabolomics 2014; 11:477-486. [PMID: 25750603 PMCID: PMC4342517 DOI: 10.1007/s11306-014-0711-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 12/30/2022]
Abstract
Despite decades of research, no early-onset biomarkers are currently available for Alzheimer's disease, a cureless neurodegenerative disease afflicting millions worldwide. In this study, transgenic Caenorhabditis elegans were used to investigate changes in the metabolome after induced expression of amyloid-β. GC- and LC-MS-based platforms determined a total of 157 differential features. Some of these were identified using in-house (GC-MS) or public libraries (LC-MS), revealing changes in allantoin, cystathionine and tyrosine levels. Since C. elegans is far better suited to metabolomics studies than most other model systems, the accordance of these findings with vertebrate literature is promising and argues for further use of C. elegans as a model of human pathology in the study of AD.
Collapse
Affiliation(s)
- Roel Van Assche
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel A Dias
- Metabolomics Australia, School of Botany, University of Melbourne, Melbourne, Australia
| | - Berin Boughton
- Metabolomics Australia, School of Botany, University of Melbourne, Melbourne, Australia
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Bart P Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ute Roessner
- Metabolomics Australia, School of Botany, University of Melbourne, Melbourne, Australia
| |
Collapse
|
55
|
Hunter S, Brayne C. Integrating the molecular and the population approaches to dementia research to help guide the future development of appropriate therapeutics. Biochem Pharmacol 2014; 88:652-60. [DOI: 10.1016/j.bcp.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
|
56
|
Chen KF, Possidente B, Lomas DA, Crowther DC. The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer's disease. Dis Model Mech 2014; 7:445-58. [PMID: 24574361 PMCID: PMC3974455 DOI: 10.1242/dmm.014134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/06/2014] [Indexed: 01/13/2023] Open
Abstract
Circadian behavioural deficits, including sleep irregularity and restlessness in the evening, are a distressing early feature of Alzheimer's disease (AD). We have investigated these phenomena by studying the circadian behaviour of transgenic Drosophila expressing the amyloid beta peptide (Aβ). We find that Aβ expression results in an age-related loss of circadian behavioural rhythms despite ongoing normal molecular oscillations in the central clock neurons. Even in the absence of any behavioural correlate, the synchronised activity of the central clock remains protective, prolonging lifespan, in Aβ flies just as it does in control flies. Confocal microscopy and bioluminescence measurements point to processes downstream of the molecular clock as the main site of Aβ toxicity. In addition, there seems to be significant non-cell-autonomous Aβ toxicity resulting in morphological and probably functional signalling deficits in central clock neurons.
Collapse
Affiliation(s)
- Ko-Fan Chen
- Department of Genetics, Downing Site, Cambridge, CB2 3EH, UK
| | - Bernard Possidente
- Biology Department and Neuroscience Program, Skidmore College, Saratoga Springs, NY 12866, USA
| | - David A. Lomas
- Department of Medicine, University College London, London, W1T 7NF, UK
| | - Damian C. Crowther
- Department of Genetics, Downing Site, Cambridge, CB2 3EH, UK
- Cambridge Institute for Medical Research, Wellcome/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
57
|
Accumulation of amyloid-like Aβ1-42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro 2014; 6:AN20130044. [PMID: 24521233 PMCID: PMC4379859 DOI: 10.1042/an20130044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal accumulation of Aβ (amyloid β) within AEL (autophagy-endosomal-lysosomal) vesicles is a prominent neuropathological feature of AD (Alzheimer's disease), but the mechanism of accumulation within vesicles is not clear. We express secretory forms of human Aβ1-40 or Aβ1-42 in Drosophila neurons and observe preferential localization of Aβ1-42 within AEL vesicles. In young animals, Aβ1-42 appears to associate with plasma membrane, whereas Aβ1-40 does not, suggesting that recycling endocytosis may underlie its routing to AEL vesicles. Aβ1-40, in contrast, appears to partially localize in extracellular spaces in whole brain and is preferentially secreted by cultured neurons. As animals become older, AEL vesicles become dysfunctional, enlarge and their turnover appears delayed. Genetic inhibition of AEL function results in decreased Aβ1-42 accumulation. In samples from older animals, Aβ1-42 is broadly distributed within neurons, but only the Aβ1-42 within dysfunctional AEL vesicles appears to be in an amyloid-like state. Moreover, the Aβ1-42-containing AEL vesicles share properties with AD-like extracellular plaques. They appear to be able to relocate to extracellular spaces either as a consequence of age-dependent neurodegeneration or a non-neurodegenerative separation from host neurons by plasma membrane infolding. We propose that dysfunctional AEL vesicles may thus be the source of amyloid-like plaque accumulation in Aβ1-42-expressing Drosophila with potential relevance for AD.
Collapse
|
58
|
Steffensmeier AM, Tare M, Puli OR, Modi R, Nainaparampil J, Kango-Singh M, Singh A. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (aβ42) mediated neurodegeneration. PLoS One 2013; 8:e78717. [PMID: 24260128 PMCID: PMC3832507 DOI: 10.1371/journal.pone.0078717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/22/2013] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300), a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42) aggregates that trigger neuronal cell death by unknown mechanism(s). We have developed a transgenic Drosophila eye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb) as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due to three fold induction of cell death in comparison to the wild type. Higher Crb levels affect axonal targeting from the retina to the brain. The structure function analysis identified intracellular domain of Crb to be required for Aβ42-mediated-neurodegeneration. We demonstrate a novel neuroprotective role of Crb in Aβ42-mediated-neurodegeneration.
Collapse
Affiliation(s)
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Rohan Modi
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Jaison Nainaparampil
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
59
|
Berglund EC, Kuklinski NJ, Karagündüz E, Ucar K, Hanrieder J, Ewing AG. Freeze-drying as sample preparation for micellar electrokinetic capillary chromatography-electrochemical separations of neurochemicals in Drosophila brains. Anal Chem 2013; 85:2841-6. [PMID: 23387977 DOI: 10.1021/ac303377x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Micellar electrokinetic capillary chromatography with electrochemical detection has been used to quantify biogenic amines in freeze-dried brains of Drosophila melanogaster. Freeze-drying samples offers a way to preserve the biological sample while making dissection of these tiny samples easier and faster. Fly samples were extracted in cold acetone and dried in a rotary evaporator. Extraction and drying times were optimized in order to avoid contamination by red pigment from the fly eyes and still have intact brain structures. Single freeze-dried fly brain samples were found to produce representative electropherograms as a single hand-dissected brain sample. With utilization of the faster dissection time that freeze-drying affords, the number of brains in a fixed homogenate volume can be increased to concentrate the sample. Thus, concentrated brain samples containing five or fifteen preserved brains were analyzed for their neurotransmitter content, and four analytes; N-acetyloctopamine, N-acetylserotonin, N-acetyltyramine, and N-acetyldopamine were found to correspond well with previously reported values.
Collapse
Affiliation(s)
- E Carina Berglund
- Department of Molecular Biology and Chemistry, Analytical Chemistry, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
60
|
Newman T, Sinadinos C, Johnston A, Sealey M, Mudher A. Using Drosophila models of neurodegenerative diseases for drug discovery. Expert Opin Drug Discov 2012; 6:129-40. [PMID: 22647132 DOI: 10.1517/17460441.2011.549124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are increasing in prevalence as our aging population increases in size. Despite this, currently there are no disease-modifying drugs available for the treatment of these conditions. Drosophila melanogaster is a highly tractable model organism that has been successfully used to emulate various aspects of these diseases in vivo. These Drosophila models have not been fully exploited in drug discovery and design strategies. AREAS COVERED This review explores how Drosophila models can be used to facilitate drug discovery. Specifically, we review their uses as a physiologically-relevant medium to high-throughput screening tool for the identification of therapeutic compounds and discuss how they can aid drug discovery by highlighting disease mechanisms that may serve as druggable targets in the future. The reader will appreciate how the various attributes of Drosophila make it an unsurpassed model organism and how Drosophila models of neurodegeneration can contribute to drug discovery in a variety of ways. EXPERT OPINION Drosophila models of human neurodegenerative diseases can make a significant contribution to the unmet need of disease-modifying therapeutic intervention for the treatment of these increasingly common neurodegenerative conditions.
Collapse
Affiliation(s)
- Tracey Newman
- University of Southampton, School of Medicine, Life Science Building 85, Southampton, SO17 1BJ, UK +44 2380 597642 ;
| | | | | | | | | |
Collapse
|
61
|
Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer's Disease Models. Int J Alzheimers Dis 2012; 2012:381029. [PMID: 22888461 PMCID: PMC3408674 DOI: 10.1155/2012/381029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/31/2012] [Indexed: 11/17/2022] Open
Abstract
The world health organization (WHO) estimated that 18 million people are struck by Alzheimer's disease (AD). The USA, France, Germany, and other countries launched major programmes targeting the identification of risk factors, the improvement of caretaking, and fundamental research aiming to postpone the onset of AD. The glycogen synthase kinase 3 (GSK-3) is implicated in multiple cellular processes and has been linked to the pathogenesis of several diseases including diabetes mellitus, cancer, and AD. Inhibition of GSK-3 leads to neuroprotective effects, decreased β-amyloid production, and a reduction in tau hyperphosphorylation, which are all associated with AD. Various classes of small molecule GSK-3 inhibitors have been published in patents and original publications. Herein, we present a comprehensive summary of small molecules reported to interact with GSK-3. We illustrate the interactions of the inhibitors with the active site. Furthermore, we refer to the biological characterisation in terms of activity and selectivity for GSK-3, elucidate in vivo studies and pre-/clinical trials.
Collapse
|
62
|
Rincon-Limas DE, Jensen K, Fernandez-Funez P. Drosophila models of proteinopathies: the little fly that could. Curr Pharm Des 2012; 18:1108-22. [PMID: 22288402 PMCID: PMC3290773 DOI: 10.2174/138161212799315894] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/19/2011] [Indexed: 02/08/2023]
Abstract
Alzheimer’s, Parkinson’s, and Huntington’s disease are complex neurodegenerative conditions with high prevalence characterized by protein misfolding and deposition in the brain. Considerable progress has been made in the last two decades in identifying the genes and proteins responsible for several human ‘proteinopathies’. A wide variety of wild type and mutant proteins associated with neurodegenerative conditions are structurally unstable, misfolded, and acquire conformations rich in ß-sheets (ß-state). These conformers form highly toxic self-assemblies that kill the neurons in stereotypical patterns. Unfortunately, the detailed understanding of the molecular and cellular perturbations caused by these proteins has not produced a single disease-modifying therapy. More than a decade ago, several groups demonstrated that human proteinopathies reproduce critical features of the disease in transgenic flies, including protein misfolding, aggregation, and neurotoxicity. These initial reports led to an explosion of research that has contributed to a better understanding of the molecular mechanisms regulating conformational dynamics and neurotoxic cascades. To remain relevant in this competitive environment, Drosophila models will need to expand their flexible, innovative, and multidisciplinary approaches to find new discoveries and translational applications.
Collapse
Affiliation(s)
- Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0236, USA.
| | | | | |
Collapse
|
63
|
The bad, the good, and the ugly about oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:163913. [PMID: 22619696 PMCID: PMC3350994 DOI: 10.1155/2012/163913] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and cancer (e.g., leukemia) are the most devastating disorders affecting millions of people worldwide. Except for some kind of cancers, no effective and/or definitive therapeutic treatment aimed to reduce or to retard the clinic and pathologic symptoms induced by AD and PD is presently available. Therefore, it is urgently needed to understand the molecular basis of these disorders. Since oxidative stress (OS) is an important etiologic factor of the pathologic process of AD, PD, and cancer, understanding how intracellular signaling pathways respond to OS will have a significant implication in the therapy of these diseases. Here, we propose a model of minimal completeness of cell death signaling induced by OS as a mechanistic explanation of neuronal and cancer cell demise. This mechanism might provide the basis for therapeutic design strategies. Finally, we will attempt to associate PD, cancer, and OS. This paper critically analyzes the evidence that support the “oxidative stress model” in neurodegeneration and cancer.
Collapse
|
64
|
Hong YK, Lee S, Park SH, Lee JH, Han SY, Kim ST, Kim YK, Jeon S, Koo BS, Cho KS. Inhibition of JNK/dFOXO pathway and caspases rescues neurological impairments in Drosophila Alzheimer’s disease model. Biochem Biophys Res Commun 2012; 419:49-53. [DOI: 10.1016/j.bbrc.2012.01.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/10/2023]
|
65
|
Wentzell JS, Bolkan BJ, Carmine-Simmen K, Swanson TL, Musashe DT, Kretzschmar D. Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration. Neurobiol Dis 2012; 46:78-87. [PMID: 22266106 DOI: 10.1016/j.nbd.2011.12.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/06/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022] Open
Abstract
The processing of Amyloid Precursor Proteins (APPs) results in several fragments, including soluble N-terminal ectodomains (sAPPs) and C-terminal intracellular domains (AICD). sAPPs have been ascribed neurotrophic or neuroprotective functions in cell culture, although β-cleaved sAPPs can have deleterious effects and trigger neuronal cell death. Here we describe a neuroproprotective function of APP and fly APPL (Amyloid Precursor Protein-like) in vivo in several Drosophila mutants with progressive neurodegeneration. We show that expression of the N-terminal ectodomain is sufficient to suppress the progressive degeneration in these mutants and that the secretion of the ectodomain is required for this function. In addition, a protective effect is achieved by expressing kuzbanian (which has α-secretase activity) whereas expression of fly and human BACE aggravates the phenotypes, suggesting that the protective function is specifically mediated by the α-cleaved ectodomain. Furthermore, genetic and molecular studies suggest that the N-terminal fragments interact with full-length APPL activating a downstream signaling pathway via the AICD. Because we show protective effects in mutants that affect different genes (AMP-activated protein kinase, MAP1b, rasGAP), we propose that the protective effect is not due to a genetic interaction between APPL and these genes but a more general aspect of APP proteins. The result that APP proteins and specifically their soluble α-cleaved ectodomains can protect against progressive neurodegeneration in vivo provides support for the hypothesis that a disruption of the physiological function of APP could play a role in the pathogenesis of Alzheimer's Disease.
Collapse
Affiliation(s)
- Jill S Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Sciences University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
66
|
Cowan CM, Sealey MA, Quraishe S, Targett MT, Marcellus K, Allan D, Mudher A. Modelling tauopathies in Drosophila: insights from the fruit fly. Int J Alzheimers Dis 2011; 2011:598157. [PMID: 22254145 PMCID: PMC3255107 DOI: 10.4061/2011/598157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/02/2011] [Indexed: 01/04/2023] Open
Abstract
Drosophila melanogaster is an experimentally tractable model organism that has been used successfully to model aspects of many human neurodegenerative diseases. Drosophila models of tauopathy have provided valuable insights into tau-mediated mechanisms of neuronal dysfunction and death. Here we review the findings from Drosophila models of tauopathy reported over the past ten years and discuss how they have furthered our understanding of the pathogenesis of tauopathies. We also discuss the multitude of technical advantages that Drosophila offers, which make it highly attractive as a model for such studies.
Collapse
Affiliation(s)
- Catherine M Cowan
- Centre for Biological Sciences, University of Southampton, University Road, Southampton SO17 3JD, UK
| | | | | | | | | | | | | |
Collapse
|
67
|
Tare M, Modi RM, Nainaparampil JJ, Puli OR, Bedi S, Fernandez-Funez P, Kango-Singh M, Singh A. Activation of JNK signaling mediates amyloid-ß-dependent cell death. PLoS One 2011; 6:e24361. [PMID: 21949710 PMCID: PMC3173392 DOI: 10.1371/journal.pone.0024361] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/07/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood. METHODOLOGY/PRINCIPAL FINDINGS We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that blocking caspase-dependent cell death initially blocked cell death but did not lead to a significant rescue in the adult eye. However, blocking the levels of c-Jun NH(2)-terminal kinase (JNK) signaling pathway significantly rescued the neurodegeneration phenotype of Aß42 misexpression both in eye imaginal disc as well as the adult eye. Misexpression of Aß42 induced transcriptional upregulation of puckered (puc), a downstream target and functional read out of JNK signaling. Moreover, a three-fold increase in phospho-Jun (activated Jun) protein levels was seen in Aß42 retina as compared to the wild-type retina. When we blocked both caspases and JNK signaling simultaneously in the fly retina, the rescue of the neurodegenerative phenotype is comparable to that caused by blocking JNK signaling pathway alone. CONCLUSIONS/SIGNIFICANCE Our data suggests that (i) accumulation of Aß42 plaques induces JNK signaling in neurons and (ii) induction of JNK contributes to Aß42 mediated cell death. Therefore, inappropriate JNK activation may indeed be relevant to the AD neuropathology, thus making JNK a key target for AD therapies.
Collapse
Affiliation(s)
- Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Rohan M. Modi
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | | | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Shimpi Bedi
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Pedro Fernandez-Funez
- Departments of Neurology and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Madhuri Kango-Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
68
|
Abstract
Influenza viruses impose a constant threat to vertebrates susceptible to this family of viruses. We have developed a new tool to study virus-host interactions that play key roles in viral replication and to help identify novel anti-influenza drug targets. Via the UAS/Gal4 system we ectopically expressed the influenza virus M2 gene in Drosophila melanogaster and generated dose-sensitive phenotypes in the eye and wing. We have confirmed that the M2 proton channel is properly targeted to cell membranes in Drosophila tissues and functions as a proton channel by altering intracellular pH. As part of the efficacy for potential anti-influenza drug screens, we have also demonstrated that the anti-influenza drug amantadine, which targets the M2 proton channel, suppressed the UAS-M2 mutant phenotype when fed to larvae. In a candidate gene screen we identified mutations in components of the vacuolar V1V0 ATPase that modify the UAS-M2 phenotype. Importantly, in this study we demonstrate that Drosophila genetic interactions translate directly to physiological requirements of the influenza A virus for these components in mammalian cells. Overexpressing specific V1 subunits altered the replication capacity of influenza virus in cell culture and suggests that drugs targeting the enzyme complex via these subunits may be useful in anti-influenza drug therapies. Moreover, this study adds credence to the idea of using the M2 "flu fly" to identify new and previously unconsidered cellular genes as potential drug targets and to provide insight into basic mechanisms of influenza virus biology.
Collapse
|
69
|
Papanikolopoulou K, Skoulakis EMC. The power and richness of modelling tauopathies in Drosophila. Mol Neurobiol 2011; 44:122-33. [PMID: 21681411 DOI: 10.1007/s12035-011-8193-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/06/2011] [Indexed: 02/07/2023]
Abstract
Tauopathies are a group of neurodegenerative disorders characterised by altered levels of phosphorylation or mutations in the neuronal microtubule protein Tau. The heterogeneous pathology of tauopathies suggests differential susceptibility of different neuronal types to wild-type and mutant Tau. The genetic power and facility of the Drosophila model has been instrumental in exploring the molecular aetiologies of tauopathies, identifying additional proteins likely contributing to neuronal dysfunction and toxicity and novel Tau phosphorylations mediating them. Importantly, recent results indicate tissue- and temporal-specific effects on dysfunction and toxicity coupled with differential effects of distinct Tau isoforms within them. Therefore, they reveal an unexpected richness of the Drosophila model that, coupled with its molecular genetic power, will likely play a significant role in our understanding of multiple tauopathies potentially leading to their differential treatment.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Institute of Cellular and Developmental Biology, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece.
| | | |
Collapse
|
70
|
Chakraborty R, Vepuri V, Mhatre SD, Paddock BE, Miller S, Michelson SJ, Delvadia R, Desai A, Vinokur M, Melicharek DJ, Utreja S, Khandelwal P, Ansaloni S, Goldstein LE, Moir RD, Lee JC, Tabb LP, Saunders AJ, Marenda DR. Characterization of a Drosophila Alzheimer's disease model: pharmacological rescue of cognitive defects. PLoS One 2011; 6:e20799. [PMID: 21673973 PMCID: PMC3108982 DOI: 10.1371/journal.pone.0020799] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/13/2011] [Indexed: 02/07/2023] Open
Abstract
Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ(40) and Aβ(42), the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions.
Collapse
Affiliation(s)
- Ranjita Chakraborty
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Vidya Vepuri
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Siddhita D. Mhatre
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Brie E. Paddock
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sean Miller
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sarah J. Michelson
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Radha Delvadia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Arkit Desai
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Marianna Vinokur
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - David J. Melicharek
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Suruchi Utreja
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Preeti Khandelwal
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lee E. Goldstein
- Department of Psychiatry, Boston University, Boston, Massachusetts, United States of America
| | - Robert D. Moir
- Genetics and Aging Research Unit, MIND, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jeremy C. Lee
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
71
|
Hong YK, Park SH, Lee S, Hwang S, Lee MJ, Kim D, Lee JH, Han SY, Kim ST, Kim YK, Jeon S, Koo BS, Cho KS. Neuroprotective effect of SuHeXiang Wan in Drosophila models of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:1028-1032. [PMID: 21333721 DOI: 10.1016/j.jep.2011.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/10/2011] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY SuHeXiang Wan (SHXW) is a Chinese traditional medicinal prescription that consists of 15 crude herbs. SHXW has been used to treat central nervous depression, seizures, infantile convulsion and stroke, and its essential oil has been shown to have anticonvulsant and antioxidative activity. The goal of this study was to investigate the beneficial effects of SHXW on the neurological phenotypes of Drosophila AD models. MATERIALS AND METHODS We evaluated the effects of a modified SHXW (called KSOP1009) intake on the AD-like phenotypes of Drosophila AD models, which express human Aβ42 in their developing eyes or neurons. RESULTS When the flies were kept on the media containing 5 μg/ml of KSOP1009 extract, Aβ42-induced eye degeneration, apoptosis, and the locomotive dysfunctions were strongly suppressed. However, Aβ42 fibril deposits in the Aβ42 overexpressing model were not affected by treatment with KSOP1009 extract. Conversely, KSOP1009 extract intake significantly suppressed the constitutive active form of hemipterous, a JNK activator, while it induced eye degeneration and JNK activation, which has been recognized as an important mediator of Aβ42-associated neuro-cytotoxicity. CONCLUSIONS In conclusion, the results of this study suggest that KSOP1009 confers a therapeutic potential to AD-like pathology of Aβ42 overexpressing Drosophila model via suppression of the hyperactivation of JNK activity and apoptosis.
Collapse
Affiliation(s)
- Yoon Ki Hong
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol 2011; 31:1812-21. [PMID: 21343338 DOI: 10.1128/mcb.01149-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.
Collapse
|
73
|
Phosphorylation differentiates tau-dependent neuronal toxicity and dysfunction. Biochem Soc Trans 2010; 38:981-7. [PMID: 20658989 DOI: 10.1042/bst0380981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The heterogeneous pathology of tauopathies and the differential susceptibility of different neuronal types to WT (wild-type) and mutant tau suggest that phosphorylation at particular sites rather than hyperphosphorylation mediates toxicity or dysfunction in a cell-type-specific manner. Pan-neuronal accumulation of tau in the Drosophila CNS (central nervous system) specifically affected the MBs (mushroom body neurons), consistent with neuronal type-specific effects. The MB aberrations depended, at least in part, on occupation of two novel phosphorylation sites: Ser(238) and Thr(245). The degree of isoform-specific MB aberrations was paralleled by defects in associative learning, as blocking putative Ser(238) and Thr(245) phosphorylation yielded structurally normal, but profoundly dysfunctional, MBs, as animals accumulating the mutant protein exhibited strongly impaired associative learning. Similarly dysfunctional MBs were obtained by temporally restricting tau accumulation to the adult CNS, which also altered the tau phosphorylation pattern. Our data clearly distinguish tau-dependent neuronal degeneration and dysfunction and suggest that temporal differences in occupation of the same phosphorylation sites are likely to mediate these distinct effects of tau.
Collapse
|
74
|
Iijima K, Gatt A, Iijima-Ando K. Tau Ser262 phosphorylation is critical for Abeta42-induced tau toxicity in a transgenic Drosophila model of Alzheimer's disease. Hum Mol Genet 2010; 19:2947-57. [PMID: 20466736 PMCID: PMC2901137 DOI: 10.1093/hmg/ddq200] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/16/2010] [Accepted: 05/07/2010] [Indexed: 02/06/2023] Open
Abstract
The amyloid-beta 42 (Abeta42) peptide has been suggested to promote tau phosphorylation and toxicity in Alzheimer's disease (AD) pathogenesis; however, the underlying mechanisms are not fully understood. Using transgenic Drosophila expressing both human Abeta42 and tau, we show here that tau phosphorylation at Ser262 plays a critical role in Abeta42-induced tau toxicity. Co-expression of Abeta42 increased tau phosphorylation at AD-related sites including Ser262, and enhanced tau-induced neurodegeneration. In contrast, formation of either sarkosyl-insoluble tau or paired helical filaments was not induced by Abeta42. Co-expression of Abeta42 and tau carrying the non-phosphorylatable Ser262Ala mutation did not cause neurodegeneration, suggesting that the Ser262 phosphorylation site is required for the pathogenic interaction between Abeta42 and tau. We have recently reported that the DNA damage-activated Checkpoint kinase 2 (Chk2) phosphorylates tau at Ser262 and enhances tau toxicity in a transgenic Drosophila model. We detected that expression of Chk2, as well as a number of genes involved in DNA repair pathways, was increased in the Abeta42 fly brains. The induction of a DNA repair response is protective against Abeta42 toxicity, since blocking the function of the tumor suppressor p53, a key transcription factor for the induction of DNA repair genes, in neurons exacerbated Abeta42-induced neuronal dysfunction. Our results demonstrate that tau phosphorylation at Ser262 is crucial for Abeta42-induced tau toxicity in vivo, and suggest a new model of AD progression in which activation of DNA repair pathways is protective against Abeta42 toxicity but may trigger tau phosphorylation and toxicity in AD pathogenesis.
Collapse
Affiliation(s)
- Koichi Iijima
- Laboratory of Genetics and Neurobiology
- Department of Neuroscience
- Farber Institute for Neurosciences and
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anthony Gatt
- Laboratory of Genetics and Neurobiology
- Department of Neuroscience
- Farber Institute for Neurosciences and
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kanae Iijima-Ando
- Laboratory of Neurogenetics and Pathobiology
- Department of Neuroscience
- Farber Institute for Neurosciences and
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|