51
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
52
|
Changazi SH, Ahmed Q, Bhatti S, Siddique S, Abdul Raffay E, Farooka MW, Ayyaz M. Whipple Procedure: A Five-Year Clinical Experience in Tertiary Care Center. Cureus 2020; 12:e11466. [PMID: 33329963 PMCID: PMC7733773 DOI: 10.7759/cureus.11466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Whipple procedure is one of the major surgeries performed in tertiary care centers. Once considered a high mortality procedure is now being practicing with mortality declining to less than 5%. This study describes our five-year experience of the Whipple procedure in terms of preoperative, operative, and postoperative parameters of patients undergoing surgery in a local tertiary care setting. Material and Methods: This was a non-randomized interventional study that was conducted at the Surgical Department of Services Hospital Lahore from January 2014 to December 2018. A total of 57 Whipple procedures were performed during this period. Demographic data, presenting symptoms, physical signs, past medical history, preoperative stenting details, intra-operative duration of surgery, postoperative course and complications, pathology, and causes of postoperative death were collected on a pre-designed questionnaire. Data were entered and analyzed by using SPSS 22 (IBM Corp., Armonk, USA). Results: Out of 57 patients, 19 were females and 38 were males. The mean age of patients was 53±05 years. The most common presenting symptom was jaundice 39 (68.4%), followed by abdominal pain 32 (56.1%). The mean size of the tumor on CT-scan was 2.8±1.4 cm, the mean operation time was 315±38.3 min, mean blood loss during surgery was 500±130 ml, and mean hospital stay was 10±6 days. The major postoperative complication was the pancreatic fistula (12%). Twenty-one out of 39 patients presented with jaundice had undergone preoperative biliary stenting by endoscopic retrograde biliary stenting. The most common histological diagnosis was adenocarcinoma of pancreas 19 (33.3%). Out of 57 patients, nine (15.8%) patients expired in the first 30 days and the most frequent cause of mortality was septic shock. Conclusion: In this study, the most common presentation of patients undergoing Whipple procedure was obstructive jaundice, the most frequent operative complication was pancreatic fistula, and the most prevalent histopathology was carcinoma of the pancreas. Perioperative parameters such as mean operative time, mean blood loss during surgery, and mean length of hospital stay were comparable with other studies. However, mortality in this study was slightly higher. It can be concluded that with meticulous surgical technique, securing hemostasis strictly and standard critical care postoperatively can decrease morbidity and mortality after the Whipple procedure.
Collapse
Affiliation(s)
| | - Qamar Ahmed
- General Surgery, Services Institute of Medical Services, Lahore, PAK
| | | | | | | | | | - Mahmood Ayyaz
- General Surgery, Services Hospital Lahore, Lahore, PAK
| |
Collapse
|
53
|
Mallya K, Haridas D, Seshacharyulu P, Pothuraju R, Junker WM, Krishn SR, Muniyan S, Vengoji R, Batra SK, Rachagani S. Acinar transformed ductal cells exhibit differential mucin expression in a tamoxifen-induced pancreatic ductal adenocarcinoma mouse model. Biol Open 2020; 9:bio052878. [PMID: 32709695 PMCID: PMC7502593 DOI: 10.1242/bio.052878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
Pancreatic cancer (PC) is acquired postnatally; to mimic this scenario, we developed an inducible KrasG12D; Ptf1a-CreER™ (iKC) mouse model, in which Kras is activated postnatally at week 16 upon tamoxifen (TAM) administration. Upon TAM treatment, iKC mice develop pancreatic intraepithelial neoplasia (PanIN) lesions and PC with metastasis at the fourth and fortieth weeks, respectively, and exhibited acinar-to-ductal metaplasia (ADM) and transdifferentiation. Kras activation upregulated the transcription factors Ncoa3, p-cJun and FoxM1, which in turn upregulated expression of transmembrane mucins (Muc1, Muc4 and Muc16) and secretory mucin (Muc5Ac). Interestingly, knockdown of KrasG12D in multiple PC cell lines resulted in downregulation of MUC1, MUC4, MUC5AC and MUC16. In addition, iKC mice exhibited ADM and transdifferentiation. Our results show that the iKC mouse more closely mimics human PC development and can be used to investigate pancreatic ductal adenocarcinoma (PDAC) biomarkers, early onset of PDAC, and ADM. The iKC model can also be used for preclinical strategies such as targeting mucin axis alone or in combination with neo-adjuvant, immunotherapeutic approaches and to monitor chemotherapy response.
Collapse
Affiliation(s)
- Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Sanguine Diagnostics and Therapeutics, Inc., Omaha, NE 68106-1423, USA
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
54
|
Medikamentöse Therapie des Pankreaskarzinoms. Internist (Berl) 2020; 61:226-232. [DOI: 10.1007/s00108-020-00750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
55
|
Cheng Q, Ouyang X, Zhang R, Zhu L, Song X. Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression. RNA Biol 2020; 17:1693-1706. [PMID: 31997706 DOI: 10.1080/15476286.2020.1719752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Pancreatic cancer is a major cause of mortality with a poor diagnosis and prognosis that most often occurs in elderly patients. Few studies, however, focus on the interplay of age and pancreatic cancer at the transcriptional level. Here we evaluated the possible roles of age-dependent, differentially expressed genes (DEGs) in pancreatic cancer. These DEGs were used to construct a correlation network and clustered in six gene modules, among which two modules were highly correlated with patients' survival time. Integrating different datasets, including ATAC-Seq and ChIP-Seq, we performed multi-parallel analyses and identified eight age-dependent protein coding genes and two non-coding RNAs as potential candidates. These candidates, together with KLF5, a potent functional transcription factor in pancreatic cancer, are likely to be key elements linking cellular senescence and pancreatic cancer, providing insights on the balance between them, as well as on diagnosis and subsequent prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qingyu Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xuan Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Ran Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Lianbang Zhu
- The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
56
|
Abstract
Recently, investigators have shown that only a few driver gene mutational events appear to be needed for cancer to occur. However, the reason that some mutational events precede others in the same cancer and the explanation for tissue-specific differences in this timing, remain mysterious. We here combine mathematical modeling with epidemiologic studies and sequencing data to address these questions. We suggest that the first driver event in cancers generally occurred at early ages and provide estimates for the fitness of different types of drivers during tumor evolution, showing how they vary with the tissue of origin. Cancer is driven by the sequential accumulation of genetic and epigenetic changes in oncogenes and tumor suppressor genes. The timing of these events is not well understood. Moreover, it is currently unknown why the same driver gene change appears as an early event in some cancer types and as a later event, or not at all, in others. These questions have become even more topical with the recent progress brought by genome-wide sequencing studies of cancer. Focusing on mutational events, we provide a mathematical model of the full process of tumor evolution that includes different types of fitness advantages for driver genes and carrying-capacity considerations. The model is able to recapitulate a substantial proportion of the observed cancer incidence in several cancer types (colorectal, pancreatic, and leukemia) and inherited conditions (Lynch and familial adenomatous polyposis), by changing only 2 tissue-specific parameters: the number of stem cells in a tissue and its cell division frequency. The model sheds light on the evolutionary dynamics of cancer by suggesting a generalized early onset of tumorigenesis followed by slow mutational waves, in contrast to previous conclusions. Formulas and estimates are provided for the fitness increases induced by driver mutations, often much larger than previously described, and highly tissue dependent. Our results suggest a mechanistic explanation for why the selective fitness advantage introduced by specific driver genes is tissue dependent.
Collapse
|
57
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second leading cause of death of patients with malignant cancers by 2030. Current options of PDAC treatment are limited and the five-year survival rate is less than 8%, leading to an urgent need to explore innovatively therapeutic strategies. PDAC cells exhibit extensively reprogrammed metabolism to meet their energetic and biomass demands under extremely harsh conditions. The metabolic changes are closely linked to signaling triggered by activation of oncogenes like KRAS as well as inactivation of tumor suppressors. Furthermore, tumor microenvironmental factors including extensive desmoplastic stroma reaction result in series of metabolism remodeling to facilitate PDAC development. In this review, we focus on the dysregulation of metabolism in PDAC and its surrounding microenvironment to explore potential metabolic targets in PDAC therapy.
Collapse
Affiliation(s)
- Jin-Tao Li
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Yi-Ping Wang
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Miao Yin
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China.,Lead Contact
| |
Collapse
|
58
|
Affiliation(s)
- Ashley Krepline
- Department of Surgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226-3596, USA
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226-3596, USA.
| |
Collapse
|
59
|
Gómez-Peñaloza C, Serrano-Arévalo ML, Villegas-González LF, Flores-Hernández L, Lino-Silva LS, Ruiz-García EB, Diaz-Chávez J. Addition of analysis of KRAS mutation or immunohistochemistry with MUC1 and carcinoembryonic antigen improves the diagnostic performance of fine needle aspiration cytology for the diagnosis of pancreatic carcinoma. Cytopathology 2019; 30:485-491. [PMID: 30929285 DOI: 10.1111/cyt.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 02/17/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAC) is a health problem because of high lethality, increasing incidence and the absence of an early diagnosis. Biopsy by fine needle aspiration guided by endoscopic ultrasound has allowed obtaining tissue for cytopathological analysis, but there are several problems with their interpretation. We aimed to compare the diagnostic performance of the cytopathological analysis with the addition of either an immunohistochemical (IHC) panel or the KRAS mutation for the diagnosis of PAC. METHODS We evaluated 62 pancreatic lesions by fine needle aspiration guided by endoscopic ultrasound, applying an IHC panel with mucin (MUC)-1, MUC4, carcinoembryonic antigen (CEA) and p53. All cases also had a KRAS mutation determination. Three cytopathologists blinded to clinical data and the KRAS status reviewed the cytology independently. We calculated diagnostic performances for the cytology alone, cytology+IHC and cytology+KRAS to show the best method to diagnose PAC. RESULTS From 62 samples, 50 (80.6%) were PAC and 12 benign lesions. The cytopathological analysis correctly interpreted 26 malignant and 12 non-neoplastic cases (sensitivity 52%, specificity 100% and diagnostic accuracy 61.3%). The KRAS mutation was present in 88% of PAC. The cytology+ KRAS mutation increased the sensitivity by 10% and the diagnostic accuracy by 8%. The sensitivity increased by 2% adding either MUC1 or CEA to the cytology, and the diagnostic accuracy by 10 or 18%, respectively. CONCLUSION The addition of IHC either with CEA or MUC1 improved the diagnostic performance of the cytology alone to diagnose PAC. The cytology + IHC evaluation was superior to the cytology + KRAS mutation to diagnose PAC.
Collapse
Affiliation(s)
| | | | | | | | - Leonardo S Lino-Silva
- Department of Surgical Pathology, Instituto Nacional de Cancerología, México City, México
| | - Erika B Ruiz-García
- Translational Medicine Laboratory, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - José Diaz-Chávez
- Unit of Biomedical Research in Cancer, Institute of Biomedical Research, National Autonomous University of Mexico
- Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
60
|
Haeberle L, Esposito I. Pathology of pancreatic cancer. Transl Gastroenterol Hepatol 2019; 4:50. [PMID: 31304427 DOI: 10.21037/tgh.2019.06.02] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy and estimated to become the second leading cause of cancer-related deaths by 2030. Although overall 5-year survival rates have constantly remained below 10% for the last decades, several key points important for accurate patient stratification have emerged during recent years. These key points include a highly standardized gross examination of PDAC resection specimens, using an axial slicing technique and inking of the circumferential resection margin (CRM), as well as a meticulous microscopic examination, taking into account the prognostic relevance of factors such as the exact resection status (R0 vs. R1 1-mm vs. R1 resection), histopathological tumor grading and the so-called lymph node ratio (LNR). With increasing use of neoadjuvant therapy in PDAC, tumor regression grading (TRG) for PDAC is currently rising in relevance in order to stratify and manage pre-operatively treated PDAC patients. As all current TRG systems for PDAC are unsatisfactory, new standardized international protocols are urgently needed. Several morphological subtypes of PDAC exist, some of which share the same molecular background with classical PDAC, while others are characterized by a distinct molecular pathogenesis. While some show a prognosis similar to classical PDAC, other subtypes stand out due to a better or even worse prognosis than classical PDAC. Prognostic relevant molecular subtypes of PDAC have been proposed as well, however, limitations of used cohorts and the lacking correlation of molecular subtypes with histomorphological subtypes limit the translation of these findings into valuable clinical applications. Lastly, several macroscopic and microscopic precursor lesions of PDAC have been described in genetically engineered mouse models (GEMM) and humans in recent times, providing further insight into PDAC carcinogenesis. In addition, improved diagnosis of PDAC precursors represents a chance to select patients for resection before invasive PDAC is present.
Collapse
Affiliation(s)
- Lena Haeberle
- Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University and University Hospital of Duesseldorf, Germany
| |
Collapse
|
61
|
CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? JOURNAL OF ONCOLOGY 2019; 2019:9681698. [PMID: 31275385 PMCID: PMC6582792 DOI: 10.1155/2019/9681698] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
CXCL12 is a chemokine that acts through CXCR4 and ACKR3 receptors and plays a physiological role in embryogenesis and haematopoiesis. It has an important role also in tumor development, since it is released by stromal cells of tumor microenvironment and alters the behavior of cancer cells. Many studies investigated the roles of CXCL12 in order to understand if it has an anti- or protumor role. In particular, it seems to promote tumor invasion, proliferation, angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in pancreatic cancer. Nevertheless, some evidence shows opposite functions; therefore research on CXCL12 is still ongoing. These discrepancies could be due to the presence of at least six CXCL12 splicing isoforms, each with different roles. Interestingly, three out of six variants have the highest levels of expression in the pancreas. Here, we report the current knowledge about the functions of this chemokine and then focus on pancreatic cancer. Moreover, we discuss the methods applied in recent studies in order to understand if they took into account the existence of the CXCL12 isoforms.
Collapse
|
62
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
63
|
Bisht S, Feldmann G. Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opin Drug Discov 2019; 14:127-142. [DOI: 10.1080/17460441.2019.1566319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Savita Bisht
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| | - Georg Feldmann
- Department of Internal Medicine 3, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
64
|
Pothuraju R, Rachagani S, Junker WM, Chaudhary S, Saraswathi V, Kaur S, Batra SK. Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:319. [PMID: 30567565 PMCID: PMC6299603 DOI: 10.1186/s13046-018-0963-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is among foremost causes of cancer related deaths worldwide due to generic symptoms, lack of effective screening strategies and resistance to chemo- and radiotherapies. The risk factors associated with PC include several metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (T2DM). Studies have shown that obesity and T2DM are associated with PC pathogenesis; however, their role in PC initiation and development remains obscure. MAIN BODY Several biochemical and physiological factors associated with obesity and/or T2DM including adipokines, inflammatory mediators, and altered microbiome are involved in PC progression and metastasis albeit by different molecular mechanisms. Deep understanding of these factors and causal relationship between factors and altered signaling pathways will facilitate deconvolution of disease complexity as well as lead to development of novel therapies. In the present review, we focuses on the interplay between adipocytokines, gut microbiota, adrenomedullin, hyaluronan, vanin and matrix metalloproteinase affected by metabolic alteration and pancreatic tumor progression. CONCLUSIONS Metabolic diseases, such as obesity and T2DM, contribute PC development through altered metabolic pathways. Delineating key players in oncogenic development in pancreas due to metabolic disorder could be a beneficial strategy to combat cancers associated with metabolic diseases in particular, PC.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Sanguine Diagnostics and Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Viswanathan Saraswathi
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA. .,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
65
|
Swayden M, Iovanna J, Soubeyran P. Pancreatic cancer chemo-resistance is driven by tumor phenotype rather than tumor genotype. Heliyon 2018; 4:e01055. [PMID: 30582059 PMCID: PMC6299038 DOI: 10.1016/j.heliyon.2018.e01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is one of the deadliest forms of cancer. A major reason for this situation is the fact that these tumors are already resistant or become rapidly resistant to all conventional therapies. Like any transformation process, initiation and development of PDCA are driven by a well known panel of genetic alterations, few of them are shared with most cancers, but many mutations are specific to PDAC and are partially responsible for the great inter-tumor heterogeneity. Importantly, this knowledge has been inefficient in predicting response to anticancer therapy, or in establishing diagnosis and prognosis. Hence, the pre-existing or rapidly acquired resistance of pancreatic cancer cells to therapeutic drugs rely on other parameters and features developed by the cells and/or the micro-environment, that are independent of their genetic profiles. This review sheds light on all major phenotypic, non genetic, alterations known to play important roles in PDAC cells resistance to treatments and therapeutic escape.
Collapse
Affiliation(s)
| | | | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
66
|
McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG, McCain RS. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 2018; 24:4846-4861. [PMID: 30487695 PMCID: PMC6250924 DOI: 10.3748/wjg.v24.i43.4846] [Citation(s) in RCA: 1217] [Impact Index Per Article: 173.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
This review aims to outline the most up-to-date knowledge of pancreatic adenocarcinoma risk, diagnostics, treatment and outcomes, while identifying gaps that aim to stimulate further research in this understudied malignancy. Pancreatic adenocarcinoma is a lethal condition with a rising incidence, predicted to become the second leading cause of cancer death in some regions. It often presents at an advanced stage, which contributes to poor five-year survival rates of 2%-9%, ranking firmly last amongst all cancer sites in terms of prognostic outcomes for patients. Better understanding of the risk factors and symptoms associated with this disease is essential to inform both health professionals and the general population of potential preventive and/or early detection measures. The identification of high-risk patients who could benefit from screening to detect pre-malignant conditions such as pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasms and mucinous cystic neoplasms is urgently required, however an acceptable screening test has yet to be identified. The management of pancreatic adenocarcinoma is evolving, with the introduction of new surgical techniques and medical therapies such as laparoscopic techniques and neo-adjuvant chemoradiotherapy, however this has only led to modest improvements in outcomes. The identification of novel biomarkers is desirable to move towards a precision medicine era, where pancreatic cancer therapy can be tailored to the individual patient, while unnecessary treatments that have negative consequences on quality of life could be prevented for others. Research efforts must also focus on the development of new agents and delivery systems. Overall, considerable progress is required to reduce the burden associated with pancreatic cancer. Recent, renewed efforts to fund large consortia and research into pancreatic adenocarcinoma are welcomed, but further streams will be necessary to facilitate the momentum needed to bring breakthroughs seen for other cancer sites.
Collapse
Affiliation(s)
- Andrew McGuigan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Paul Kelly
- Department of Pathology, Royal Victoria Hospital, Belfast BT12 6BA, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7AE, United Kingdom
| | - Claire Jones
- Department of Hepatobiliary Surgery, Mater Hospital, Belfast BT14 6AB, United Kingdom
| | - Helen G Coleman
- Centre for Public Health, Queen’s University Belfast, Belfast BT12 6BJ, United Kingdom
| | - R Stephen McCain
- Department of Hepatobiliary Surgery, Mater Hospital, Belfast BT14 6AB, United Kingdom
- Centre for Public Health, Queen’s University Belfast, Belfast BT12 6BJ, United Kingdom
| |
Collapse
|
67
|
Gronroos E, López-García C. Tolerance of Chromosomal Instability in Cancer: Mechanisms and Therapeutic Opportunities. Cancer Res 2018; 78:6529-6535. [PMID: 30420473 DOI: 10.1158/0008-5472.can-18-1958] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is the result of ongoing changes in the number (aneuploidy) and structure of chromosomes. CIN is induced by chromosome missegregation in mitosis and leads to karyotypic diversity within the cancer cell population, thereby adding to intratumor heterogeneity. Regardless of the overall pro-oncogenic function of CIN, its onset is typically detrimental for cell fitness and thus tumors must develop CIN-tolerance mechanisms in order to propagate. There is overwhelming genetic and functional evidence linking mutations in the tumor suppressor TP53 with CIN-tolerance. However, the pathways leading to p53 activation following chromosome missegregation remain controversial. Recently, additional mechanisms have been identified in CIN-surveillance, resulting in a more complex network of pathways acting independently or in cooperation with p53. Tolerance might also be achieved by modifying aspects of the cancer cell physiology in order to attenuate CIN or by adaptation to the consequences of aneuploid karyotypes. In this review, we summarize the current knowledge about p53-dependent and -independent mechanisms of CIN-tolerance in cancer, the adaptations observed in CIN cells buffering CIN levels, its consequences for cellular homeostasis, and the potential of exploiting these adaptations in order to design new cancer therapies.
Collapse
Affiliation(s)
- Eva Gronroos
- Translational Cancer Therapeutics Laboratory, Francis Crick Institute, London, United Kingdom
| | - Carlos López-García
- Translational Cancer Therapeutics Laboratory, Francis Crick Institute, London, United Kingdom. .,National Heart and Lung Institute, Airway Disease Group, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
68
|
Bisht S, Feldmann G. Novel Targets in Pancreatic Cancer Therapy - Current Status and Ongoing Translational Efforts. Oncol Res Treat 2018; 41:596-602. [PMID: 30269126 DOI: 10.1159/000493437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC, pancreatic cancer) carries one of the poorest overall prognoses of all human malignancies known to date. Despite the introduction of novel therapeutic regimens, the outcome has not markedly improved over the past decades, the incidence rates are almost identical to the mortality rates, and PDAC is projected to soon become the second most common cause of cancer-related mortality in Western countries. Despite this clear medical need to develop novel therapeutic strategies against this dire malady, this need has so far not been addressed with sufficient institutional attention and support in terms of research funding and strategical programs. Given the still growing life expectancy and projected demographic changes with a growing proportion of senior citizens in many European societies, this discrepancy is likely to become even more pressing in the future. This article provides a brief overview of ongoing preclinical efforts to identify novel targets and, based on this, to develop novel strategies to treat advanced pancreatic cancer and improve survival and the quality of life of patients suffering from this malignancy.
Collapse
|
69
|
Kim JY, Hong SM. Precursor Lesions of Pancreatic Cancer. Oncol Res Treat 2018; 41:603-610. [DOI: 10.1159/000493554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022]
|
70
|
Ancillary tests in the diagnosis of liver and pancreatic neoplasms. Cancer Cytopathol 2018; 126 Suppl 8:672-690. [DOI: 10.1002/cncy.22009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
|
71
|
Gong Y, Zhang L, Zhang A, Chen X, Gao P, Zeng Q. GATA4 inhibits cell differentiation and proliferation in pancreatic cancer. PLoS One 2018; 13:e0202449. [PMID: 30142155 PMCID: PMC6108473 DOI: 10.1371/journal.pone.0202449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is a common malignant tumor of the digestive system. GATA4 is one of the transcriptional regulatory factors, which regulates the development of endoderm-derived organs, including heart and gut. GATA4 may act as a putative tumor suppressor gene. However, the role of GATA4 in pancreatic carcinogenesis is not yet clarified. This study showed that GATA4 was highly expressed in pancreatic cancer tissues, and its expression level was positively related to the grade of pathological differentiation, suggesting that it may contribute to the progression of pancreatic neoplasia. Ectopic expression of GATA4 gene reduced cell viability and interference of GATA4 expression significantly increased the colony formation ability of pancreatic cancer cells. Furthermore, GATA4 inhibited tumor growth in xenograft mice. Agilent expression microarray profiling analysis indicated that the genes with significant levels of differential expression in GATA4 over-expressing cells were enriched in the cell differentiation process. Analysis of KEGG signaling pathway demonstrated that the regulated genes were partially enriched in MAPK and JAK-STAT signaling pathways. Re-expression of GATA4 up-regulated P53 gene expression. Our data indicate that GATA4 gene might play a role in cell proliferation and differentiation during the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Yan Gong
- Health Management Institute, Chinese PLA General ospital, Beijing, China
| | - Liang Zhang
- Department of Surgery, Chinese PLA General Hospital, Beijing, China
| | - Aiqun Zhang
- Department of Surgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Chen
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Zeng
- Health Management Institute, Chinese PLA General ospital, Beijing, China
- * E-mail:
| |
Collapse
|
72
|
Pancreatic cancer stem cells: A state or an entity? Semin Cancer Biol 2018; 53:223-231. [PMID: 30130664 DOI: 10.1016/j.semcancer.2018.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, has a median overall survival of 6-12 months and a 5-year survival of less than 7%. While PDAC currently represents the 4th most frequent cause of death due to cancer worldwide, it is expected to become the second leading cause of cancer-related death by 2030. These alarming statistics are primarily due to both the inherent chemoresistant and metastatic nature of this tumor, and the existence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). Since their discovery in PDAC in 2007, we have come to realize that pancreatic CSCs have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. More importantly, the concept of the CSC as a fixed entity within the tumor has also evolved, and current data suggest that CSCs are states rather than defined entities. Consequently, current treatments for the majority of PDAC patients are not effective, and do not significantly impact overall patient survival, as they do not adequately target the plastic CSC sub-population nor the transient/hybrid cells that can replenish the CSC pool. Thus, it is necessary that we improve our understanding of the characteristics and signals that maintain and drive the pancreatic CSC population in order to develop new therapies to target these cells. Herein, we will provide the latest updates and knowledge on the inherent characteristics of pancreatic CSCs and the CSC niche, specifically the cross-talk that exists between CSCs and niche resident cells. Lastly, we will address the question of whether a CSC is a state or an entity and discuss how the answer to this question can impact treatment approaches.
Collapse
|
73
|
Lin R, Wang Y, Chen Q, Liu Z, Xiao S, Wang B, Shi B. TRPM2 promotes the proliferation and invasion of pancreatic ductal adenocarcinoma. Mol Med Rep 2018; 17:7537-7544. [PMID: 29620272 PMCID: PMC5983953 DOI: 10.3892/mmr.2018.8816] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/29/2018] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate transient receptor potential cation channel subfamily M member 2 (TRPM2), a promising therapeutic target and biomarker for pancreatic ductal adenocarcinoma (PDAC) prognosis, in addition to determining its effects regarding tumor progression and invasion. PDAC is a fatal disease with a poor prognosis, and its associated pathogenic molecular mechanisms remain to be determined. In the present study, combined analysis using genomic and transcriptomic data from two PDAC studies was performed to discover a survival‑associated biomarker of PDAC. Survival analysis for genes mutated in ≥10 patients was performed using a Kaplan‑Meier curve and tested for significance using a log‑rank test. Furthermore, gene‑expression correlation analysis was performed to determine the genes with the strongest correlations to TRPM2. In addition, a Cell Counting Kit‑8 assay, a scratch wound‑healing assay and a Transwell assay were performed in the present study to investigate the proliferative, invasive and metastatic ability of PANC‑1 cells in TRPM2‑overexpressing and downregulated groups. The mutated TRPM2 gene had a strong negative correlation with patient survival probability compared with the normal control group (P=1.06x10‑4). Expression of TRPM2 was strongly correlated with expression of probable phospholipid‑transporting ATPase IM, γ‑parvin, tudor domain containing 9, Toll‑like receptor 7 and Scm‑like with four MBT domains protein 2 according to the criterion of a correlation coefficient >0.5. Furthermore, the results of the present study demonstrated that the TRPM2 overexpression in a PDAC cell line (PANC‑1) promoted cell proliferation, invasion and metastatic ability. TRPM2 represents a potential therapeutic target and prognostic marker for patients with PDAC. TRPM2 regulates cell proliferation, invasion and migration; however, the underlying mechanism requires further investigation in future studies.
Collapse
Affiliation(s)
- Rui Lin
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yufeng Wang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Quanning Chen
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhongyan Liu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Shuai Xiao
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Bingyi Wang
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Baomin Shi
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
74
|
Waldmann J, Fendrich V, Reichert M, Hecker A, Bartsch DK, Padberg W, Holler JP. Expression of neuropeptide Y and its receptors Y1 and Y2 in pancreatic intraepithelial neoplasia and invasive pancreatic cancer in a transgenic mouse model and human samples of pancreatic cancer. J Surg Res 2018; 223:230-236. [DOI: 10.1016/j.jss.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
|
75
|
Fendrich V, Jendryschek F, Beeck S, Albers M, Lauth M, Esni F, Heeger K, Dengler J, Slater EP, Holler JPN, Baier A, Bartsch DK, Waldmann J. Genetic and pharmacologic abrogation of Snail1 inhibits acinar-to-ductal metaplasia in precursor lesions of pancreatic ductal adenocarcinoma and pancreatic injury. Oncogene 2018; 37:1845-1856. [PMID: 29367759 DOI: 10.1038/s41388-017-0100-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/25/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer (PDAC) is one of the most dismal of human malignancies. Inhibiting or delaying the progression of precursor lesions of PDAC, pancreatic intraepthial neoplasia (PanINs), to invasive cancer, would be a major step. In the present study, we used a transgenic murine model of pancreatic cancer to evaluate the impact of a conditional knockout of the transcription factor Snail1, a major factor in epithelial-to-mesenchymal transition, on acinar-to-ductal formation and on PanIN progression. By interbreeding conditional LsL-Snail floxf/wt ; LsL-Kras G12D and Pdx1-Cre strains, we obtained LsL-Kras G12D ;Pdx1-Cre(KP) mice, Snail1 heterozygous knockout LsL-Kras G12D ; LsL-Snail flox/- ;Pdx1-Cre(KPShet) mice or Snail1 homozygous knockout LsL-Kras G12D ;LsL-Snail flox/flox ;Pdx1-Cre(KPS) mice. Mice were then followed in a longitudinal study for 2, 4, 6, 8, 10, and 12 months. Furthermore, in mice with a genetic or pharmacological inhibition of Snail1, using the Snail1 inhibitor GN25, a model of pancreatic injury by administration of cerulein was introduced to evaluate ADM formation in this setting. A translational approach with a tissue microarray (TMA) of human PanINs and an in vivo nude mouse platform to test GN25 in human pancreatic adenocarcinoma was then adopted. Quantification of PanINs showed delayed initiation and progression of PanIN lesions at all ages in both homozygous and heterozygous Snaildel1;Pdx-1-Cre;LSL-KrasG12D/+-Mice. PanINs at TMA revealed snail expression in the majority of cases. GN25 showed growth inhibition in 2/2 human pancreatic adenocarcinomas using a nude mice in vivo platform. Genetic and pharmacologic abrogation of Snail1 signaling in exocrine pancreas impairs development of acinar-to-ductal metaplasia following cerulein-mediated pancreatic injury. The present study suggests a fundamental new approach to delay the progression of PDAC.
Collapse
Affiliation(s)
- Volker Fendrich
- Department of Surgery, University of Marburg, Marburg, Germany.
| | | | - Saskia Beeck
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Max Albers
- Department of Surgery, University of Marburg, Marburg, Germany
| | | | - Farzad Esni
- Department of Surgery, John G. Rangos Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristin Heeger
- Department of Internal Medicine, Division of Gastroenterology University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Janina Dengler
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Emily P Slater
- Department of Surgery, University of Marburg, Marburg, Germany
| | - Julia P N Holler
- Department of Surgery, University Hospital Giessen and Marburg, Campus Giessen, Giessen, Germany
| | - Aninja Baier
- Department of Surgery, University of Marburg, Marburg, Germany
| | | | - Jens Waldmann
- Department of Surgery, University of Marburg, Marburg, Germany
| |
Collapse
|
76
|
Pittman ME, Rao R, Hruban RH. Classification, Morphology, Molecular Pathogenesis, and Outcome of Premalignant Lesions of the Pancreas. Arch Pathol Lab Med 2017; 141:1606-1614. [PMID: 29189063 DOI: 10.5858/arpa.2016-0426-ra] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - Invasive pancreatic ductal adenocarcinoma has a greater than 90% mortality rate at 5 years. Understanding noninvasive, curable precursor lesions gives us the best hope for reducing mortality from pancreatic ductal adenocarcinoma. The 3 pancreatic precursor lesions that have been well studied include intraductal papillary mucinous neoplasm, mucinous cystic neoplasm, and pancreatic intraepithelial neoplasia. OBJECTIVE - To give an update on the latest clinical, molecular, and pathologic advances in intraductal papillary mucinous neoplasm, mucinous cystic neoplasm, and pancreatic intraepithelial neoplasia for the general surgical pathologist. DATA SOURCES - The current literature was analyzed and the authors' experiences with institutional and consult material were incorporated. CONCLUSIONS - Our understanding of the molecular alterations that lead from pancreatic precursor lesion to invasive carcinoma continues to evolve. These advances aid clinicians in their treatment decisions and researchers in their search for actionable, druggable targets.
Collapse
|
77
|
Brychta N, Drosch M, Driemel C, Fischer JC, Neves RP, Esposito I, Knoefel W, Möhlendick B, Hille C, Stresemann A, Krahn T, Kassack MU, Stoecklein NH, von Ahsen O. Isolation of circulating tumor cells from pancreatic cancer by automated filtration. Oncotarget 2017; 8:86143-86156. [PMID: 29156783 PMCID: PMC5689673 DOI: 10.18632/oncotarget.21026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.
Collapse
Affiliation(s)
- Nora Brychta
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Michael Drosch
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: JPT Peptide Technologies GmbH, 12489 Berlin, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes C Fischer
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Rui P Neves
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Wolfram Knoefel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Birte Möhlendick
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Claudia Hille
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, 20246 Hamburg, Germany
| | | | - Thomas Krahn
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical & Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | | |
Collapse
|
78
|
Ruess DA, Görgülü K, Wörmann SM, Algül H. Pharmacotherapeutic Management of Pancreatic Ductal Adenocarcinoma: Current and Emerging Concepts. Drugs Aging 2017; 34:331-357. [PMID: 28349415 DOI: 10.1007/s40266-017-0453-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating malignancy, which is the result of late diagnosis, aggressive disease, and a lack of effective treatment options. Thus, pancreatic ductal adenocarcinoma is projected to become the second leading cause of cancer-related death by 2030. This review summarizes recent developments of oncological therapy in the palliative setting of metastatic pancreatic ductal adenocarcinoma. It further compiles novel targets and therapeutic approaches as well as promising treatment combinations, which are presently in preclinical evaluation, covering several aspects of the hallmarks of cancer. Finally, challenges to the implementation of an individualized therapy approach in the context of precision medicine are discussed.
Collapse
Affiliation(s)
- Dietrich A Ruess
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Kivanc Görgülü
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sonja M Wörmann
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
79
|
TGF-β in pancreatic cancer initiation and progression: two sides of the same coin. Cell Biosci 2017; 7:39. [PMID: 28794854 PMCID: PMC5545849 DOI: 10.1186/s13578-017-0168-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is highly lethal malignant tumor with characterised rapid progression, invasiveness and resistance to radiochemotherapy. Transforming growth factor-β (TGF-β) signaling plays a dual role in both pro-tumorigenic and tumor suppressive of pancreatic cancer, depending on tumor stage and microenvironment. TGF-β signaling components alteration are common in pancreatic cancer, and its leading role in tumor formation and metastases has received increased attention. Many therapies have investigated to target TGF-β signaling in the preclinical and clinical setting. In this review, we highlight the dual roles of TGF-β and touch upon the perspectives on therapeutic target of TGF-β signaling in pancreatic cancer.
Collapse
|
80
|
Lin X, Zhan B, Wen S, Li Z, Huang H, Feng J. Metabonomic alterations from pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma facilitate the identification of biomarkers in serum for early diagnosis of pancreatic cancer. MOLECULAR BIOSYSTEMS 2017; 12:2883-92. [PMID: 27400832 DOI: 10.1039/c6mb00381h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is a highly malignant disease with a poor prognosis and it is essential to diagnose and treat the disease at an early stage. The aim of this study was to understand the underlying biochemical mechanisms of pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) and to identify potential serum biomarkers for early detection of pancreatic cancer. 7,12-Dimethylbenz(a)anthracene (DMBA)-induced PanIN and PDAC rat models were established and the serum samples were collected. The serum samples were measured using (1)H nuclear magnetic resonance (NMR) spectroscopy and analyzed by chemometric methods including principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis ((O)PLS-DA). The related biochemical pathways were derived from KEGG analysis of the significantly different metabolites. As results, some serum metabolites demonstrated alarming metabolic changes in the precursor lesion of pancreatic cancer (PanIN-2 in this study). These changes involved elevated levels of ketone compounds including 3-hydroxybutyrate, acetoacetate, and acetone, some amino acids including asparagine, glutamate, threonine, and phenylalanine, glycoproteins and lipoproteins including N-acetylglycoprotein, LDL and VLDL, and some metabolites that have been shown to contribute to mutagenicity and cancer promotion such as deoxyguanosine and cytidine. More metabolites were shown to be significantly different between PanIN and PDAC, suggesting that a more complex set of changes occurs from noninvasive precursor lesion to invasive cancer. The serum metabonomic changes of rats with PanIN and PDAC may extend our understanding of pancreatic molecular pathogenesis, and the metabolic variations from PanIN to PDAC will be helpful to understand evolution processes of the pancreatic disease. NMR-based metabonomic analysis of animal models will be beneficial for the human study and will be helpful for the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Xianchao Lin
- General Surgery Department, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Bohan Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Shi Wen
- General Surgery Department, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Zhishui Li
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Heguang Huang
- General Surgery Department, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
81
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
82
|
Li H, Li J, Shi B, Chen F. MicroRNA‑296 targets AKT2 in pancreatic cancer and functions as a potential tumor suppressor. Mol Med Rep 2017; 16:466-472. [PMID: 28534950 DOI: 10.3892/mmr.2017.6602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Although microRNA-296 (miR-296) has been studied in various types of human cancer, its expression, biological role and mechanism of action in pancreatic cancer remains to be elucidated. The aim of the current study was to investigate the expression level, possible roles and underlying molecular mechanisms of miR‑296 in pancreatic cancer. The present study revealed that miR‑296 is significantly downregulated in tissue from patients with pancreatic cancer and in human pancreatic carcinoma cell lines, when compared with matched healthy tissue and normal human pancreatic cell lines, respectively. In addition, restoration of miR‑296 expression was revealed to inhibit the proliferation, migration and invasive activity of pancreatic cancer cells. Furthermore, bioinformatics analysis and a luciferase reporter assay validated the AKT2 gene as a direct target of miR‑296 in pancreatic cancer. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis revealed that miR‑296 was able to decrease AKT2 expression at the post‑transcriptional level. Notably, the effects of AKT2 knockdown were similar to miR‑296 overexpression in pancreatic cancer. In conclusion, the present findings indicate a role for miR‑296 as a tumor suppressor in pancreatic cancer through directly targeting AKT2, thus suggesting that miR‑296 may serve as a potential therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Hailing Li
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Jilin Li
- Department of Medical Laboratory Medicine, Family Planning Guidance Center of Weifang, Weifang, Shandong 261061, P.R. China
| | - Baolin Shi
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Feng Chen
- Department of Endocrine, Weifang Municipal Official Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
83
|
Bezak B, Lehrke H, Elvin J, Gay L, Schembri-Wismayer D, Viozzi C. Comprehensive Genomic Profiling of Central Giant Cell Lesions Identifies Clinically Relevant Genomic Alterations. J Oral Maxillofac Surg 2017; 75:955-961. [DOI: 10.1016/j.joms.2016.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/13/2016] [Accepted: 10/21/2016] [Indexed: 12/27/2022]
|
84
|
Zhu T, Gao YF, Chen YX, Wang ZB, Yin JY, Mao XY, Li X, Zhang W, Zhou HH, Liu ZQ. Genome-scale analysis identifies GJB2 and ERO1LB as prognosis markers in patients with pancreatic cancer. Oncotarget 2017; 8:21281-21289. [PMID: 28177904 PMCID: PMC5400583 DOI: 10.18632/oncotarget.15068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is a complex and heterogeneous disease with the etiology largely unknown. The deadly nature of pancreatic cancer, with an extremely low 5-year survival rate, renders urgent a better understanding of the molecular events underlying it. The aim of this study is to investigate the gene expression module of pancreatic adenocarcinoma and to identify differentially expressed genes (DEGs) with prognostic potentials. Transcriptome microarray data of five GEO datasets (GSE15471, GSE16515, GSE18670, GSE32676, GSE71989), including 117 primary tumor samples and 73 normal pancreatic tissue samples, were utilized to identify DEGs. The five sets of DEGs had an overlapping subset consisting of 98 genes (90 up-regulated and 8 down-regulated), which were probably common to pancreatic cancer. Gene ontology (GO) analysis of the 98 DEGs showed that cell cycle and cell adhesion were the major enriched processes, and extracellular matrix (ECM)-receptor interaction and p53 signaling pathway were the most enriched pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Elevated expression of gap junction protein beta 2 (GJB2) and reduced endoplasmic reticulum oxidoreductase 1-like beta (ERO1LB) expression were validated in an independent cohort. Kaplan-Meier survival analysis revealed that GJB2 and ERO1LB levels were significantly associated with the overall survival of pancreatic cancer patients. GJB2 and ERO1LB are implicated in pancreatic cancer progression and can be used to predict patient survival. Therapeutic strategies targeting GJB2 and facilitating ERO1LB expression may deserve evaluation to improve prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
85
|
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer. J Surg Oncol 2017; 116:63-74. [PMID: 28346697 DOI: 10.1002/jso.24627] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy utilizes genetic engineering to redirect a patient's own T cells to target cancer cells. The remarkable results in hematological malignancies prompted investigating this approach in solid tumors such as pancreatic cancer. The complex tumor microenvironment, stromal hindrance in limiting immune response, and expression of checkpoint blockade on T cells pose hurdles. Herein, we summarize the opportunities, challenges, and state of knowledge in targeting pancreatic cancer with CAR T-cell therapy.
Collapse
Affiliation(s)
- Carl J DeSelm
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary E Tano
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M Varghese
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
86
|
Sansregret L, Patterson JO, Dewhurst S, López-García C, Koch A, McGranahan N, Chao WCH, Barry DJ, Rowan A, Instrell R, Horswell S, Way M, Howell M, Singleton MR, Medema RH, Nurse P, Petronczki M, Swanton C. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability. Cancer Discov 2017; 7:218-233. [PMID: 28069571 PMCID: PMC5300100 DOI: 10.1158/2159-8290.cd-16-0645] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023]
Abstract
Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. SIGNIFICANCE We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115.
Collapse
Affiliation(s)
| | | | | | | | - André Koch
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nicholas McGranahan
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| | | | | | - Andrew Rowan
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Michael Way
- The Francis Crick Institute, London, United Kingdom
| | | | | | - René H. Medema
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Nurse
- The Francis Crick Institute, London, United Kingdom
| | - Mark Petronczki
- The Francis Crick Institute, London, United Kingdom
- Boehringer Ingelheim, Vienna, Austria
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| |
Collapse
|
87
|
Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2017; 41:404-418. [PMID: 28450804 PMCID: PMC5382886 DOI: 10.5114/ceji.2016.65140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
|
88
|
Abstract
Chromosomal aberrations during cell division represent one of the first recognized features of human cancer cells, and modern detection methods have revealed the pervasiveness of aneuploidy in cancer. The ongoing karyotypic changes brought about by chromosomal instability (CIN) contribute to tumor heterogeneity, drug resistance, and treatment failure. Whole-chromosome and segmental aneuploidies resulting from CIN have been proposed to allow "macroevolutionary" leaps that may contribute to profound phenotypic change. In this review, we will outline evidence indicating that aneuploidy and CIN contribute to cancer evolution.
Collapse
Affiliation(s)
- Laurent Sansregret
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
- CRUK Lung Cancer Centre of Excellence/UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
89
|
Li Q, Wang H, Zogopoulos G, Shao Q, Dong K, Lv F, Nwilati K, Gui XY, Cuggia A, Liu JL, Gao ZH. Reg proteins promote acinar-to-ductal metaplasia and act as novel diagnostic and prognostic markers in pancreatic ductal adenocarcinoma. Oncotarget 2016; 7:77838-77853. [PMID: 27788482 PMCID: PMC5363625 DOI: 10.18632/oncotarget.12834] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor. Acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial neoplasia (PanIN) are both precursor lesions that lead to the development of PDAC. Reg family proteins (Reg1A, 1B, 3A/G, 4) are a group of calcium-dependent lectins that promote islet growth in response to inflammation and/or injuries. The aim of this study was to establish a role for Reg proteins in the development of PDAC and their clinical value as biomarkers. We found that Reg1A and Reg3A/G were highly expressed in the ADM tissues by immunohistochemistry. In the 3-dimensional culture of mouse acinar cells, Reg3A promoted ADM formation with concurrent activation of mitogen-acitvated protein kinase. Upregulation of Reg1A and Reg1B levels was observed as benign ductal epithelium progresses from PanIN to invasive PDAC. Patients with PDAC showed significantly higher serum levels of Reg1A and Reg1B than matching healthy subjects. These results were further validated by the quantification of Reg 1A and 1B mRNA levels in the microdissected tissues (22- and 6-fold increases vs. non-tumor tissues). Interestingly, patients with higher levels of Reg1A and 1B exhibited improved survival rate than those with lower levels. Furthermore, tissue expressions of Reg1A, Reg1B, and Reg4 could differentiate metastatic PDAC in the liver from intrahepatic cholangiocarcinoma with 92% sensitivity and 95% specificity. Overall, our results demonstrate the upregulation of Reg proteins during PDAC development. If validated in larger scale, Reg1A and Reg1B could become clinical markers for detecting early stages of PDAC, monitoring therapeutic response, and/or predicting patient's prognosis.
Collapse
Affiliation(s)
- Qing Li
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Hao Wang
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - George Zogopoulos
- Department of Surgery, McGill University Health Centre, Montreal, QC, Canada
- Quebec Pancreas Cancer Study, McGill University Health Centre, Montreal, QC, Canada
| | - Qin Shao
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Kun Dong
- Department of Pathology, You An Hospital, Capital Medical University, Beijing, China
| | - Fudong Lv
- Department of Pathology, You An Hospital, Capital Medical University, Beijing, China
| | - Karam Nwilati
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Xian-yong Gui
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - Adeline Cuggia
- Quebec Pancreas Cancer Study, McGill University Health Centre, Montreal, QC, Canada
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Zu-hua Gao
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
90
|
Abstract
Pancreatic neoplasms have a wide range of histologic types with distinct clinical outcomes. Recent advances in high-throughput sequencing technologies have greatly deepened our understanding of pancreatic neoplasms. Now, the exomes of major histologic types of pancreatic neoplasms have been sequenced, and their genetic landscapes have been revealed. This article reviews the molecular changes underlying pancreatic neoplasms, with a special focus on the genetic changes that characterize the histologic types of pancreatic neoplasms. Emphasis is also made on the molecular features of key genes that have the potential for therapeutic targets.
Collapse
|
91
|
Midha S, Chawla S, Garg PK. Modifiable and non-modifiable risk factors for pancreatic cancer: A review. Cancer Lett 2016; 381:269-277. [PMID: 27461582 DOI: 10.1016/j.canlet.2016.07.022] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/10/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is associated with a poor prognosis and a high case-fatality rate. The reasons for poor prognosis are low rates of curative resection due to local infiltration and distant metastasis. To increase survival rates of patients with pancreatic cancer, early detection through surveillance and screening is important. However, screening could only be cost-effective in high-risk populations. Identification of significant risk factors therefore assumes significance. Risk factors could be non-modifiable or modifiable. Non-modifiable risk factors include increasing age, familial cancer syndromes, Afro-American race, hereditary and other forms of chronic pancreatitis, diabetes, and non-O blood group. Important modifiable risk factors include smoking, obesity, dietary factors such as non-vegetarian diet, and toxins. Preventive strategies at the population level and an effective screening program targeted at high-risk people may help in prevention and early detection of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Shallu Midha
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Chawla
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
92
|
RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget 2016; 6:24560-70. [PMID: 26009994 PMCID: PMC4695206 DOI: 10.18632/oncotarget.4183] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/02/2015] [Indexed: 12/12/2022] Open
Abstract
Purpose The miniature biodegradable implant siG12D-LODER™ was inserted into a tumor and released a siRNA drug against KRAS(G12D) along four months. This novel siRNA based drug was studied, in combination with chemotherapy, as targeted therapy for Locally Advanced Pancreatic Cancer (LAPC). Methods An open-label Phase 1/2a study in the first-line setting of patients with non-operable LAPC was initiated. In this study patients were assigned to receive a single dose of siG12D-LODERs, in three escalating dose cohorts (0.025mg, 0.75mg and 3.0mg). Gemcitabine was given on a weekly basis, following the siG12D-LODERTM insertion, until disease progression. The recommended dose was further examined with modified FOLFIRINOX. The follow up period was eight weeks and survival until death. Results Fifteen patients with LAPC were enrolled. Among the 15 treated patients, the most frequent adverse events observed were grade 1or 2 in severity (89%); five patients experienced serious adverse events (SAEs). In 12 patients analyzed by CT scans, none showed tumor progression, the majority (10/12) demonstrated stable disease and two showed partial response. Decrease in tumor marker CA19-9 was observed in 70% (7/10) of patients. Median overall survival was 15.12 months; 18 month survival was 38.5%. Conclusions The combination of siG12D-LODER™ and chemotherapy is well tolerated, safe and demonstrated a potential efficacy in patients with LAPC. NCT01188785
Collapse
|
93
|
Porciuncula A, Hajdu C, David G. The Dual Role of Senescence in Pancreatic Ductal Adenocarcinoma. Adv Cancer Res 2016; 131:1-20. [PMID: 27451122 DOI: 10.1016/bs.acr.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of senescence as a tumor suppressor is well established; however, recent evidence has revealed novel paracrine functions for senescent cells in relation to their microenvironment, most notably protumorigenic roles in certain contexts. Senescent cells are capable of altering the inflammatory microenvironment through the senescence-associated secretory phenotype, which could have important consequences for tumorigenesis. The role of senescent cells in a highly inflammatory cancer like pancreatic cancer is still largely undefined, apart from the fact that senescence abrogation increases tumorigenesis in vivo. This review will summarize our current knowledge of the phenomenon of cellular senescence in pancreatic ductal adenocarcinoma, its overlapping link with inflammation, and some urgent unanswered questions in the field.
Collapse
Affiliation(s)
- A Porciuncula
- NYU Cancer Institute, New York University School of Medicine, New York, NY, United States
| | - C Hajdu
- New York University School of Medicine, New York, NY, United States
| | - G David
- NYU Cancer Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
94
|
Liu J, Ji S, Liang C, Qin Y, Jin K, Liang D, Xu W, Shi S, Zhang B, Liu L, Liu C, Xu J, Ni Q, Yu X. Critical role of oncogenic KRAS in pancreatic cancer (Review). Mol Med Rep 2016; 13:4943-4949. [PMID: 27121414 DOI: 10.3892/mmr.2016.5196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a human malignancy with one of the highest mortality rates and little progress has been achieved in its treatment in recent decades. Further improvement to the understanding of the biological and molecular mechanisms underlying the initiation and development of pancreatic ductal adenocarcinoma (PDAC) is required. Previous studies using genetically engineered mouse models have demonstrated that oncogenic GTPase KRas (KRAS) mutation is involved in the formation of pancreatic intraepithelial neoplasia and promotes the progression of PDAC. However, attempts to target KRAS directly by pharmacological inhibition have been unsuccessful. This has resulted in increased efforts to identify pharmacological targets and nodes associated with the mutated KRAS. The present review discusses the recent progress and prospects of KRAS signaling in pancreatic cancer.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Chen Liang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Yi Qin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Dingkon Liang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Si Shi
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Bo Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Liang Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Chen Liu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Jin Xu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
95
|
Narayanan V, Weekes CD. Molecular therapeutics in pancreas cancer. World J Gastrointest Oncol 2016; 8:366-79. [PMID: 27096032 PMCID: PMC4824715 DOI: 10.4251/wjgo.v8.i4.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease.
Collapse
|
96
|
Sancho P, Alcala S, Usachov V, Hermann PC, Sainz B. The ever-changing landscape of pancreatic cancer stem cells. Pancreatology 2016; 16:489-96. [PMID: 27161173 DOI: 10.1016/j.pan.2016.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Over the past decade, the cancer stem cell (CSC) concept in solid tumors has gained enormous momentum as an attractive model to explain tumor heterogeneity. The model proposes that tumors contain a subpopulation of rare cancer cells with stem-like properties that maintain the hierarchy of the tumor and drive tumor initiation, progression, metastasis, and chemoresistance. The identification and subsequent isolation of CSCs in pancreatic ductal adenocarcinoma (PDAC) in 2007 provided enormous insight into this extremely metastatic and chemoresistant tumor and renewed hope for developing more specific therapies against this disease. Unfortunately, we have made only marginal advances in applying the knowledge learned to the development of new and more effective treatments for pancreatic cancer. The latter has been partly due to the lack of adequate in vitro and in vivo systems compounded by the use of markers that do not reproducibly nor exclusively select for an enriched CSC population. Thus, attempts to define a pancreatic CSC-specific genetic, epigenetic or proteomic signature has been challenging. Fortunately recent advances in the CSC field have overcome many of these challenges and have opened up new opportunities for developing therapies that target the CSC population. In this review, we discuss these current advances, specifically new methods for the identification and isolation of pancreatic CSCs, new insights into the metabolic profile of CSCs at the level of mitochondrial respiration, and the utility of genetically engineered mouse models as surrogate systems to both study CSC biology and evaluate CSC-specific targeted therapies in vivo.
Collapse
Affiliation(s)
- Patricia Sancho
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, UK
| | - Sonia Alcala
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
97
|
Caso R, Miller G. Role of tumor associated macrophages in regulating pancreatic cancer progression. World J Immunol 2016; 6:9-18. [DOI: 10.5411/wji.v6.i1.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/24/2015] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer has an overall 5-year survival rate of less than 5%. Unfortunately, patient survival has not substantially improved in the last couple of decades despite advances in treatment modalities that have been successful in other cancer types. The poor response of pancreatic cancer to therapy is a major obstacle faced by clinicians. Increasing attention is being paid to how tumor cells and non-tumor cells influence each other in the pancreatic tumor microenvironment. Tumor-associated macrophages (TAMs) are a highlight in this field because of their vast presence in the tumor microenvironment. TAMs promote angiogenesis, metastasis, and suppress the anti-tumor immune response. Here we review the current understanding of the role of TAMs in regulating the progression of pancreatic cancer.
Collapse
|
98
|
Hijiya N, Tsukamoto Y, Nakada C, Tung Nguyen L, Kai T, Matsuura K, Shibata K, Inomata M, Uchida T, Tokunaga A, Amada K, Shirao K, Yamada Y, Mori H, Takeuchi I, Seto M, Aoki M, Takekawa M, Moriyama M. Genomic Loss of DUSP4 Contributes to the Progression of Intraepithelial Neoplasm of Pancreas to Invasive Carcinoma. Cancer Res 2016; 76:2612-25. [DOI: 10.1158/0008-5472.can-15-1846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/14/2016] [Indexed: 11/16/2022]
|
99
|
Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. K-Ras4B/calmodulin/PI3Kα: A promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 2016; 20:831-42. [DOI: 10.1517/14728222.2016.1135131] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
100
|
Guo J, Xie K, Zheng S. Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int J Biol Sci 2016; 12:292-301. [PMID: 26929736 PMCID: PMC4753158 DOI: 10.7150/ijbs.14995] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lack of early detection and effective interventions is a major reason for the poor prognosis and dismal survival rates for pancreatic cancer. Pancreatic intraepithelial neoplasia (PanIN) is the most common precursor of invasive pancreatic ductal adenocarcinoma (PDAC). Each stage in the progression from PanIN to PDAC is well characterized by multiple significant genetic alterations affecting signaling pathways. Understanding the biological behavior and molecular alterations in the progression from PanIN to PDAC is crucial to the identification of noninvasive biomarkers for early detection and diagnosis and the development of preventive and therapeutic strategies for control of pancreatic cancer progression. This review focuses on molecular biomarkers of PanIN and their important roles in early detection and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Junli Guo
- 1. Department of Pathology, Affiliated Hospital of Hainan Medical College, Hainan Cancer Hospital, Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Haikou 571199, People's Republic of China; 2. Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keping Xie
- 2. Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaojiang Zheng
- 1. Department of Pathology, Affiliated Hospital of Hainan Medical College, Hainan Cancer Hospital, Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Haikou 571199, People's Republic of China; 2. Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|