51
|
18F-FET PET for Diagnosis of Pseudoprogression of Brain Metastases in Patients With Non-Small Cell Lung Cancer. Clin Nucl Med 2020; 45:113-117. [PMID: 31876831 DOI: 10.1097/rlu.0000000000002890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate whether F-fluoroethyltyrosine (FET) PET can discriminate progression from pseudoprogression of brain metastases in patients with non-small cell lung cancer undergoing immunotherapy and radiotherapy to the brain. METHODS Retrospective analysis of F-FET PET scans in cases with documented progression of brain metastases on MRI in a cohort of 53 patients with non-small cell lung cancer receiving immune-checkpoint inhibitors and radiotherapy of brain metastases at the University Hospital of Zürich from June 2015 until January 2019. Response to radiotherapy was assessed by MRI. In case of equivocal findings and/or radiological progression in clinically asymptomatic patients, further assessment with F-FET PET was performed. RESULTS From the cohort of 53 patients, the restaging MRI showed in 30 patients (56.6%) progression of at least 1 treated metastasis. Thereof, F-FET PET was performed in 11 patients, based on the absence of neurological symptoms or presence of systemic response and physicians' decision. F-FET PET correctly identified pseudoprogression in 9 of 11 patients (81.8%). In patients who did not undergo F-FET PET, 5 of 19 (26.3%) were diagnosed with pseudoprogression. CONCLUSIONS Pseudoprogression of brain metastases occurred in 50% of patients diagnosed with progression on MRI. F-FET PET may help differentiate pseudoprogression from real progression in order to avoid discontinuation of effective therapy or unneeded interventions.
Collapse
|
52
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
53
|
Bauer EK, Stoffels G, Blau T, Reifenberger G, Felsberg J, Werner JM, Lohmann P, Rosen J, Ceccon G, Tscherpel C, Rapp M, Sabel M, Filss CP, Shah NJ, Neumaier B, Fink GR, Langen KJ, Galldiks N. Prediction of survival in patients with IDH-wildtype astrocytic gliomas using dynamic O-(2-[ 18F]-fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2020; 47:1486-1495. [PMID: 32034446 PMCID: PMC7188701 DOI: 10.1007/s00259-020-04695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Integrated histomolecular diagnostics of gliomas according to the World Health Organization (WHO) classification of 2016 has refined diagnostic accuracy and prediction of prognosis. This study aimed at exploring the prognostic value of dynamic O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in newly diagnosed, histomolecularly classified astrocytic gliomas of WHO grades III or IV. METHODS Before initiation of treatment, dynamic FET PET imaging was performed in patients with newly diagnosed glioblastoma (GBM) and anaplastic astrocytoma (AA). Static FET PET parameters such as maximum and mean tumour/brain ratios (TBRmax/mean), the metabolic tumour volume (MTV) as well as the dynamic FET PET parameters time-to-peak (TTP) and slope, were obtained. The predictive ability of FET PET parameters was evaluated concerning the progression-free and overall survival (PFS, OS). Using ROC analyses, threshold values for FET PET parameters were obtained. Subsequently, univariate Kaplan-Meier and multivariate Cox regression survival analyses were performed to assess the predictive power of these parameters for survival. RESULTS Sixty patients (45 GBM and 15 AA patients) of two university centres were retrospectively identified. Patients with isocitrate dehydrogenase (IDH)-mutant or O6-methylguanine-DNA-methyltransferase (MGMT) promoter-methylated tumours had a significantly longer PFS and OS (both P < 0.001). Furthermore, ROC analysis of IDH-wildtype glioma patients (n = 45) revealed that a TTP > 25 min (AUC, 0.90; sensitivity, 90%; specificity, 87%; P < 0.001) was highly prognostic for longer PFS (13 vs. 7 months; P = 0.005) and OS (29 vs. 12 months; P < 0.001). In contrast, at a lower level of significance, TBRmax, TBRmean, and MTV were only prognostic for longer OS (P = 0.004, P = 0.038, and P = 0.048, respectively). Besides complete resection and a methylated MGMT promoter, TTP remained significant in multivariate survival analysis (all P ≤ 0.02), indicating an independent predictor for OS. CONCLUSIONS Our data suggest that dynamic FET PET allows the identification of patients with longer OS among patients with newly diagnosed IDH-wildtype GBM and AA.
Collapse
Affiliation(s)
- Elena K Bauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Tobias Blau
- Department of Neuropathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Duesseldorf, Germany.,Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Duesseldorf, Germany.,Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany
| | - Jan M Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Jurij Rosen
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Caroline Tscherpel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Marion Rapp
- Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany.,Department of Neurosurgery, Heinrich Heine University, Duesseldorf, Germany
| | - Michael Sabel
- Center of Integrated Oncology (CIO), University of Duesseldorf, Duesseldorf, Germany.,Department of Neurosurgery, Heinrich Heine University, Duesseldorf, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany.,Center of Integrated Oncology (CIO), University of Aachen, Aachen, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany. .,Institute of Neuroscience and Medicine (INM-3, -4, -5), Research Centre Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany. .,Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany.
| |
Collapse
|
54
|
Drake LR, Hillmer AT, Cai Z. Approaches to PET Imaging of Glioblastoma. Molecules 2020; 25:E568. [PMID: 32012954 PMCID: PMC7037643 DOI: 10.3390/molecules25030568] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest type of brain tumor, affecting approximately three in 100,000 adults annually. Positron emission tomography (PET) imaging provides an important non-invasive method of measuring biochemically specific targets at GBM lesions. These powerful data can characterize tumors, predict treatment effectiveness, and monitor treatment. This review will discuss the PET imaging agents that have already been evaluated in GBM patients so far, and new imaging targets with promise for future use. Previously used PET imaging agents include the tracers for markers of proliferation ([11C]methionine; [18F]fluoro-ethyl-L-tyrosine, [18F]Fluorodopa,[18F]fluoro-thymidine, and [18F]clofarabine), hypoxia sensing ([18F]FMISO, [18F]FET-NIM, [18F]EF5, [18F]HX4, and [64Cu]ATSM), and ligands for inflammation. As cancer therapeutics evolve toward personalized medicine and therapies centered on tumor biomarkers, the development of complimentary selective PET agents can dramatically enhance these efforts. Newer biomarkers for GBM PET imaging are discussed, with some already in use for PET imaging other cancers and neurological disorders. These targets include Sigma 1, Sigma 2, programmed death ligand 1, poly-ADP-ribose polymerase, and isocitrate dehydrogenase. For GBM, these imaging agents come with additional considerations such as blood-brain barrier penetration, quantitative modeling approaches, and nonspecific binding.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ansel T. Hillmer
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06511, USA
| | - Zhengxin Cai
- Yale PET Center, Yale University School of Medicine, New Haven, CT 06511, USA; (A.T.H.); (Z.C.)
- Department of Radiology and Bioimaging Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
55
|
Cai L, Kirchleitner SV, Zhao D, Li M, Tonn JC, Glass R, Kälin RE. Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and LAT1 Expression in Neoplastic and Parenchymal Cells. Int J Mol Sci 2020; 21:ijms21020612. [PMID: 31963507 PMCID: PMC7013601 DOI: 10.3390/ijms21020612] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular imaging is essential for diagnosis and treatment planning for glioblastoma patients. Positron emission tomography (PET) with tracers for the detection of the solute carrier family 7 member 5 (SLC7A5; also known as the amino acid transporter light chain L system, LAT1) and for the mitochondrial translocator protein (TSPO) is successfully used to provide additional information on tumor volume and prognosis. The current approaches for TSPO-PET and the visualization of tracer ([18F] Fluoroethyltyrosine, FET) uptake by LAT1 (FET-PET) do not yet exploit the full diagnostic potential of these molecular imaging techniques. Therefore, we investigated the expression of TSPO and LAT1 in patient glioblastoma (GBM) samples, as well as in various GBM mouse models representing patient GBMs of different genetic subtypes. By immunohistochemistry, we found that TSPO and LAT1 are upregulated in human GBM samples compared to normal brain tissue. Next, we orthotopically implanted patient-derived GBM cells, as well as genetically engineered murine GBM cells, representing different genetic subtypes of the disease. To determine TSPO and LAT1 expression, we performed immunofluorescence staining. We found that both TSPO and LAT1 expression was increased in tumor regions of the implanted human or murine GBM cells when compared to the neighboring mouse brain tissue. While LAT1 was largely restricted to tumor cells, we found that TSPO was also expressed by microglia, tumor-associated macrophages, endothelial cells, and pericytes. The Cancer Genome Atlas (TCGA)-data analysis corroborates the upregulation of TSPO in a bigger cohort of GBM patient samples compared to tumor-free brain tissue. In addition, AIF1 (the gene encoding for the myeloid cell marker Iba1) was also upregulated in GBM compared to the control. Interestingly, TSPO, as well as AIF1, showed significantly different expression levels depending on the GBM genetic subtype, with the highest expression being exhibited in the mesenchymal subtype. High TSPO and AIF1 expression also correlated with a significant decrease in patient survival compared to low expression. In line with this finding, the expression levels for TSPO and AIF1 were also significantly higher in (isocitrate-dehydrogenase wild-type) IDHWT compared to IDH mutant (IDHMUT) GBM. LAT1 expression, on the other hand, was not different among the individual GBM subtypes. Therefore, we could conclude that FET- and TSPO-PET confer different information on pathological features based on different genetic GBM subtypes and may thus help in planning individualized strategies for brain tumor therapy in the future. A combination of TSPO-PET and FET-PET could be a promising way to visualize tumor-associated myeloid cells and select patients for treatment strategies targeting the myeloid compartment.
Collapse
Affiliation(s)
- Linzhi Cai
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
| | - Sabrina V. Kirchleitner
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Dongxu Zhao
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
| | - Min Li
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, LMU Munich, 81377 Munich, Germany (S.V.K.)
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
56
|
Langen KJ, Heinzel A, Lohmann P, Mottaghy FM, Galldiks N. Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Rev Neurother 2019; 20:137-146. [DOI: 10.1080/14737175.2020.1704256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany
- Section JARA-Brain, Juelich-Aachen Research Alliance (JARA), Juelich-Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Alexander Heinzel
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany
- Section JARA-Brain, Juelich-Aachen Research Alliance (JARA), Juelich-Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany
- Section JARA-Brain, Juelich-Aachen Research Alliance (JARA), Juelich-Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
- Centre of Integrated Oncology (CIO), Universities of Aachen, Düsseldorf, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Juelich, Juelich, Germany
- Department of Neurology1, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Centre of Integrated Oncology (CIO), Universities of Aachen, Düsseldorf, Germany
| |
Collapse
|
57
|
Liesche F, Lukas M, Preibisch C, Shi K, Schlegel J, Meyer B, Schwaiger M, Zimmer C, Förster S, Gempt J, Pyka T. 18F-Fluoroethyl-tyrosine uptake is correlated with amino acid transport and neovascularization in treatment-naive glioblastomas. Eur J Nucl Med Mol Imaging 2019; 46:2163-2168. [PMID: 31289907 DOI: 10.1007/s00259-019-04407-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE To investigate the in vivo correlation between 18F-fluoroethyl-tyrosine (18F-FET) uptake and amino acid transporter expression and vascularization in treatment-naive glioblastomas. METHODS A total of 43 stereotactic biopsies were obtained from 13 patients with suspected glioblastoma prior to therapy. All patients underwent a dynamic 18F-FET PET/MRI scan before biopsy. Immunohistochemistry was performed using antibodies against SLC7A5 (amino acid transporter), MIB-1 (Ki67, proliferation), CD31 (vascularization) and CA-IX (hypoxia). The intensity of staining was correlated with 18F-FET uptake and the dynamic 18F-FET uptake slope at the biopsy target point. RESULTS In all patients, the final diagnosis was IDH-wildtype glioblastoma, WHO grade IV. Static 18F-FET uptake was significantly correlated with SLC7A5 staining (r = 0.494, p = 0.001). While the dynamic 18F-FET uptake slope did not show a significant correlation with amino acid transporter expression, it was significantly correlated with the number of CD31-positive vessels (r = -0.350, p = 0.031), which is line with earlier results linking 18F-FET kinetics with vascularization and perfusion. Besides, static 18F-FET uptake also showed correlations with CA-IX staining (r = 0.394, p = 0.009) and CD31 positivity (r = 0.410, p = 0.006). While the correlation between static 18F-FET uptake and SLC7A5 staining was confirmed as significant in multivariate analysis, this was not the case for the correlation with CD31 positivity, most likely because of the lower effect size and the relatively low number of samples. No significant correlation between 18F-FET uptake and Ki67 proliferation index was observed in our cohort. CONCLUSION Our results support the findings of preclinical studies suggesting that specific 18F-FET uptake in glioblastomas is mediated by amino acid transporters. As proposed previously, dynamic 18F-FET parameters might be more influenced by perfusion and therefore related to properties of the tumour neovascularization.
Collapse
Affiliation(s)
- Friederike Liesche
- Department of Neuropathology, Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Mathias Lukas
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Siemens Healthcare GmbH, Berlin, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Kuangyu Shi
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Universität Bern, Hochschulstraße 6, 3012, Bern, Switzerland
| | - Jürgen Schlegel
- Department of Neuropathology, Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Pyka
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
58
|
Abstract
PURPOSE This pilot study aimed to evaluate the amino acid tracer F-FACBC with simultaneous PET/MRI in diagnostic assessment and neurosurgery of gliomas. MATERIALS AND METHODS Eleven patients with suspected primary or recurrent low- or high-grade glioma received an F-FACBC PET/MRI examination before surgery. PET and MRI were used for diagnostic assessment, and for guiding tumor resection and histopathological tissue sampling. PET uptake, tumor-to-background ratios (TBRs), time-activity curves, as well as PET and MRI tumor volumes were evaluated. The sensitivities of lesion detection and to detect glioma tissue were calculated for PET, MRI, and combined PET/MRI with histopathology (biopsies for final diagnosis and additional image-localized biopsies) as reference. RESULTS Overall sensitivity for lesion detection was 54.5% (95% confidence interval [CI], 23.4-83.3) for PET, 45.5% (95% CI, 16.7-76.6) for contrast-enhanced MRI (MRICE), and 100% (95% CI, 71.5-100.0) for combined PET/MRI, with a significant difference between MRICE and combined PET/MRI (P = 0.031). TBRs increased with tumor grade (P = 0.004) and were stable from 10 minutes post injection. PET tumor volumes enclosed most of the MRICE volumes (>98%) and were generally larger (1.5-2.8 times) than the MRICE volumes. Based on image-localized biopsies, combined PET/MRI demonstrated higher concurrence with malignant findings at histopathology (89.5%) than MRICE (26.3%). CONCLUSIONS Low- versus high-grade glioma differentiation may be possible with F-FACBC using TBR. F-FACBC PET/MRI outperformed MRICE in lesion detection and in detection of glioma tissue. More research is required to evaluate F-FACBC properties, especially in grade II and III tumors, and for different subtypes of gliomas.
Collapse
|
59
|
Verhoeven J, Hulpia F, Kersemans K, Bolcaen J, De Lombaerde S, Goeman J, Descamps B, Hallaert G, Van den Broecke C, Deblaere K, Vanhove C, Van der Eycken J, Van Calenbergh S, Goethals I, De Vos F. New fluoroethyl phenylalanine analogues as potential LAT1-targeting PET tracers for glioblastoma. Sci Rep 2019; 9:2878. [PMID: 30814660 PMCID: PMC6393465 DOI: 10.1038/s41598-019-40013-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
The use of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) as a positron emission tomography (PET) tracer for brain tumor imaging might have some limitations because of the relatively low affinity for the L-type amino acid transporter 1 (LAT1). To assess the stereospecificity and evaluate the influence of aromatic ring modification of phenylalanine LAT1 targeting tracers, six different fluoroalkylated phenylalanine analogues were synthesized. After in vitro Ki determination, the most promising compound, 2-[18F]-2-fluoroethyl-L-phenylalanine (2-[18F]FELP), was selected for further evaluation and in vitro comparison with [18F]FET. Subsequently, 2-[18F]FELP was assessed in vivo and compared with [18F]FET and [18F]FDG in a F98 glioblastoma rat model. 2-[18F]FELP showed improved in vitro characteristics over [18F]FET, especially when the affinity and specificity for system L is concerned. Based on our results, 2-[18F]FELP is a promising new PET tracer for brain tumor imaging.
Collapse
Affiliation(s)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Ghent University, Ghent, Belgium
| | - Ken Kersemans
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Julie Bolcaen
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | | | - Jan Goeman
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Giorgio Hallaert
- Ghent University Hospital, Department of Neurosurgery, Ghent, Belgium
| | | | - Karel Deblaere
- Ghent University Hospital, Department of Radiology and Medical Imaging, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP Ghent University, Department of Electronics and Information Systems, Ghent, Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-organic synthesis, Ghent University, Ghent, Belgium
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Filip De Vos
- Laboratory of Radiopharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW The aim of this study was to give an update on the emerging role of PET using radiolabelled amino acids in the diagnostic workup and management of patients with cerebral gliomas and brain metastases. RECENT FINDINGS Numerous studies have demonstrated the potential of PET using radiolabelled amino acids for differential diagnosis of brain tumours, delineation of tumour extent for treatment planning and biopsy guidance, differentiation between tumour progression and recurrence versus treatment-related changes, and for monitoring of therapy. The Response Assessment in Neuro-Oncology (RANO) working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recently recommended the use of amino acid PET imaging for brain tumour management in addition to MRI at every stage of disease. With the introduction of F-18 labelled amino acids, a broader clinical application has become possible, but is still hampered by the lack of regulatory approval and of reimbursement in many countries. SUMMARY PET using radiolabelled amino acids is a rapidly evolving method that can significantly enhance the diagnostic value of MRI in brain tumours. Current developments suggest that this imaging technique will become an indispensable tool in neuro-oncological centres in the near future.
Collapse
|
61
|
The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040104. [PMID: 30487391 PMCID: PMC6315339 DOI: 10.3390/bioengineering5040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.
Collapse
|
62
|
Neurosarcoidosis Mimics High-Grade Glioma in Dynamic 18F-FET PET Due to LAT Expression. Clin Nucl Med 2018; 43:840-841. [DOI: 10.1097/rlu.0000000000002266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Voxel-Wise Analysis of Fluoroethyltyrosine PET and MRI in the Assessment of Recurrent Glioblastoma During Antiangiogenic Therapy. AJR Am J Roentgenol 2018; 211:1342-1347. [PMID: 30332289 DOI: 10.2214/ajr.18.19988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In MRI of patients with recurrent glioblastoma, bevacizumab-induced normalization of tumor vascularity can be difficult to differentiate from antitumor effects. The aim of this study was to assess the utility of 18F-fluoroethyl-L-tyrosine (FET) PET in the evaluation of recurrent glioblastoma treated with bevacizumab. SUBJECTS AND METHODS MRI and FET PET were performed before and after administration of two doses of bevacizumab to 11 patients with recurrent glioblastoma. The ratio between normalized FET uptake at follow-up and baseline of the entire (volume of T2 FLAIR abnormality) and enhancing tumor were assessed for prediction of progression-free survival (PFS) and overall survival (OS). Voxel-wise Spearman correlation between normalized FET uptake and contrast-enhanced T1 signal intensity was assessed and tested as a predictor of PFS and OS. RESULTS Mean Spearman correlation between FET uptake and contrast-enhanced T1 signal intensity before therapy was 0.65 and after therapy was 0.61 (p = 0.256). The median PFS after initiation of bevacizumab therapy was 111 days, and the OS was 223 days. A post-treatment to pretreatment PET uptake ratio (mean and 90th percentile) greater than 0.7 for both entire and enhancing tumor was associated with lower PFS and OS (p < 0.001-0.049). The increase in correlation between PET uptake and contrast-enhanced T1 intensity after treatment was associated with lower PFS (p < 0.001) and OS (p = 0.049). CONCLUSION There is only a moderate correlation between FET PET uptake and contrast-enhanced T1 signal intensity. High posttreatment-to-pretreatment FET PET uptake ratio and increase in correlation between PET uptake and contrast-enhanced T1 signal intensity after bevacizumab treatment are associated with poor PFS and OS.
Collapse
|
64
|
Comparison of 18F-GE-180 and dynamic 18F-FET PET in high grade glioma: a double-tracer pilot study. Eur J Nucl Med Mol Imaging 2018; 46:580-590. [DOI: 10.1007/s00259-018-4166-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
|
65
|
Heinzel A, Müller D, Yekta-Michael SS, Ceccon G, Langen KJ, Mottaghy FM, Wiesmann M, Kocher M, Hattingen E, Galldiks N. O-(2-18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost-effectiveness analysis. Neuro Oncol 2018; 19:1271-1278. [PMID: 28204572 DOI: 10.1093/neuonc/now310] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background Conventional MRI is the standard method to diagnose recurrence of brain metastases after radiation. However, following radiation therapy, reactive transient blood-brain barrier alterations with consecutive contrast enhancement can mimic brain metastasis recurrence. Recent studies have suggested that O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET improves the correct differentiation of brain metastasis recurrence from radiation injury. Based on published evidence and clinical expert opinion, we analyzed effectiveness and cost-effectiveness of the use of FET PET in addition to MRI compared with MRI alone for the diagnosis of recurrent brain metastases. Methods A decision-tree model was designed to compare the 2 diagnostic strategies from the perspective of the German Statutory Health Insurance (SHI) system. Effectiveness was defined as correct diagnosis of recurrent brain metastasis and was compared between FET PET with MRI and MRI alone. Costs were calculated for a baseline scenario and for a more expensive scenario. Robustness of the results was tested using sensitivity analyses. Results Compared with MRI alone, FET PET in combination with MRI increases the rate of correct diagnoses by 42% (number needed to diagnose of 3) with an incremental cost-effectiveness ratio of €2821 (baseline scenario) and €4014 (more expensive scenario) per correct diagnosis. The sensitivity analyses confirmed the robustness of the results. Conclusions The model suggests that the additional use of FET PET with conventional MRI for the diagnosis of recurrent brain metastases may be cost-effective. Integration of FET PET has the potential to avoid overtreatment with corresponding costs as well as unnecessary side effects.
Collapse
Affiliation(s)
- Alexander Heinzel
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Dirk Müller
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Sareh Said Yekta-Michael
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Garry Ceccon
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Karl-Josef Langen
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Martin Wiesmann
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Martin Kocher
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Elke Hattingen
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| | - Norbert Galldiks
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany; Institute for Health Economics and Clinical Epidemiology, University of Cologne, Cologne, Germany; Department of Conservative Dentistry, Periodontology and Preventive Dentistry, University of Aachen, Aachen, Germany; Department of Neurology, University of Cologne, Cologne, Germany; Institute for Neuroscience and Medicine, Research Center Juelich, Juelich, Germany; Department of Neuroradiology University of Aachen, Aachen, Germany; Department of Radiation Oncology, University of Cologne, Cologne, Germany; Department of Radiology, University of Bonn, Bonn, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Germany
| |
Collapse
|
66
|
Donabedian PL, Kossatz S, Engelbach JA, Jannetti SA, Carney B, Young RJ, Weber WA, Garbow JR, Reiner T. Discriminating radiation injury from recurrent tumor with [ 18F]PARPi and amino acid PET in mouse models. EJNMMI Res 2018; 8:59. [PMID: 29974335 PMCID: PMC6031550 DOI: 10.1186/s13550-018-0399-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023] Open
Abstract
Background Radiation injury can be indistinguishable from recurrent tumor on standard imaging. Current protocols for this differential diagnosis require one or more follow-up imaging studies, long dynamic acquisitions, or complex image post-processing; despite much research, the inability to confidently distinguish between these two entities continues to pose a significant dilemma for the treating clinician. Using mouse models of both glioblastoma and radiation necrosis, we tested the potential of poly(ADP-ribose) polymerase (PARP)-targeted PET imaging with [18F]PARPi to better discriminate radiation injury from tumor. Results In mice with experimental radiation necrosis, lesion uptake on [18F]PARPi-PET was similar to contralateral uptake (1.02 ± 0.26 lesion/contralateral %IA/ccmax ratio), while [18F]FET-PET clearly delineated the contrast-enhancing region on MR (2.12 ± 0.16 lesion/contralateral %IA/ccmax ratio). In mice with focal intracranial U251 xenografts, tumor visualization on PARPi-PET was superior to FET-PET, and lesion-to-contralateral activity ratios (max/max, p = 0.034) were higher on PARPi-PET than on FET-PET. Conclusions A murine model of radiation necrosis does not demonstrate [18F]PARPi avidity, and [18F]PARPi-PET is better than [18F]FET-PET in distinguishing radiation injury from brain tumor. [18F]PARPi-PET can be used for discrimination between recurrent tumor and radiation injury within a single, static imaging session, which may be of value to resolve a common dilemma in neuro-oncology. Electronic supplementary material The online version of this article (10.1186/s13550-018-0399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick L Donabedian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susanne Kossatz
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John A Engelbach
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Stephen A Jannetti
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.,Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Brandon Carney
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College of the City University of New York, New York, NY, USA.,Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Wolfgang A Weber
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Joel R Garbow
- Department of Radiology, Washington University, St. Louis, MO, USA.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, MO, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
67
|
Lewis DY, Mair R, Wright A, Allinson K, Lyons SK, Booth T, Jones J, Bielik R, Soloviev D, Brindle KM. [ 18F]fluoroethyltyrosine-induced Cerenkov Luminescence Improves Image-Guided Surgical Resection of Glioma. Theranostics 2018; 8:3991-4002. [PMID: 30083276 PMCID: PMC6071532 DOI: 10.7150/thno.23709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/26/2018] [Indexed: 01/27/2023] Open
Abstract
The extent of surgical resection is significantly correlated with outcome in glioma; however, current intraoperative navigational tools are useful only in a subset of patients. We show here that a new optical intraoperative technique, Cerenkov luminescence imaging (CLI) following intravenous injection of O‑(2-[18F]fluoroethyl)-L-tyrosine (FET), can be used to accurately delineate glioma margins, performing better than the current standard of fluorescence imaging with 5-aminolevulinic acid (5-ALA). Methods: Rats implanted orthotopically with U87, F98 and C6 glioblastoma cells were injected with FET and 5-aminolevulinic acid (5-ALA). Positive and negative tumor regions on histopathology were compared with CL and fluorescence images. The capability of FET CLI and 5-ALA fluorescence imaging to detect tumor was assessed using receptor operator characteristic curves and optimal thresholds (CLIOptROC and 5-ALAOptROC) separating tumor from healthy brain tissue were determined. These thresholds were used to guide prospective tumor resections, where the presence of tumor cells in the resected material and in the remaining brain were assessed by Ki-67 staining. Results: FET CLI signal was correlated with signal in preoperative PET images (y = 1.06x - 0.01; p < 0.0001) and with expression of the amino acid transporter SLC7A5 (LAT1). FET CLI (AUC = 97%) discriminated between glioblastoma and normal brain in human and rat orthografts more accurately than 5-ALA fluorescence (AUC = 91%), with a sensitivity >92% and specificity >91%, and resulted in a more complete tumor resection. Conclusion: FET CLI can be used to accurately delineate glioblastoma tumor margins, performing better than the current standard of fluorescence imaging following 5-ALA administration, and is therefore a promising technique for clinical translation.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Richard Mair
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alan Wright
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Scott K. Lyons
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Tom Booth
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Julia Jones
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Robert Bielik
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Current address: Cancer Research UK - Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
68
|
Braun M, Häseli S, Rösch F, Piel M, Münnemann K. NMR Hyperpolarization of Established PET Tracers. ChemistrySelect 2018. [DOI: 10.1002/slct.201800364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Braun
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Sascha Häseli
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Frank Rösch
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Markus Piel
- Inst. of Nuclear ChemistryJohannes Gutenberg-University Mainz Fritz-Strassmann-Weg 2 55128 Mainz Germany
| | - Kerstin Münnemann
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dept. of Mechanical and Process Engineering, Lab. of Engineering ThermodynamicsUniversity of Kaiserslautern Erwin-Schrödinger-Straße 44 67663 Kaiserslautern Germany
| |
Collapse
|
69
|
Unterrainer M, Winkelmann I, Suchorska B, Giese A, Wenter V, Kreth FW, Herms J, Bartenstein P, Tonn JC, Albert NL. Biological tumour volumes of gliomas in early and standard 20-40 min 18F-FET PET images differ according to IDH mutation status. Eur J Nucl Med Mol Imaging 2018; 45:1242-1249. [PMID: 29487977 DOI: 10.1007/s00259-018-3969-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE For the clinical evaluation of O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET images, the use of standard summation images obtained 20-40 min after injection is recommended. However, early summation images obtained 5-15 min after injection have been reported to allow better differentiation between low-grade glioma (LGG) and high-grade glioma (HGG) by capturing the early 18F-FET uptake peak specific for HGG. We compared early and standard summation images with regard to delineation of the PET-derived biological tumour volume (BTV) in correlation with the molecular genetic profile according the updated 2016 WHO classification. METHODS The analysis included 245 patients with newly diagnosed, histologically verified glioma and a positive 18F-FET PET scan prior to any further treatment. BTVs were delineated during the early 5-15 min and standard 20-40 min time frames using a threshold of 1.6 × background activity and were compared intraindividually. Volume differences between early and late summation images of >20% were considered significant and were correlated with WHO grade and the molecular genetic profile (IDH mutation and 1p/19q codeletion status). RESULTS In 52.2% of the patients (128/245), a significant difference in BTV of >20% between early and standard summation images was found. While 44.3% of WHO grade II gliomas (31 of 70) showed a significantly smaller BTV in the early summation images, 35.0% of WHO grade III gliomas (28/80) and 37.9% of WHO grade IV gliomas (36/95) had a significantly larger BTVs. Among IDH-wildtype gliomas, an even higher portion (44.4%, 67/151) showed significantly larger BTVs in the early summation images, which was observed in 5.3% (5/94) of IDH-mutant gliomas only: most of the latter had significantly smaller BTVs in the early summation images, i.e. 51.2% of IDH-mutant gliomas without 1p/19q codeletion (21/41) and 39.6% with 1p/19q codeletion (21/53). CONCLUSION BTVs delineated in early and standard summation images differed significantly in more than half of gliomas. While the standard summation images seem appropriate for delineation of LGG as well as IDH-mutant gliomas, a remarkably high percentage of HGG and, particularly, IDH-wildtype gliomas were depicted with significantly larger volumes in early summation images. This finding might be of interest for optimization of treatment planning (e.g. radiotherapy) in accordance with the individual IDH mutation status.
Collapse
Affiliation(s)
- M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - I Winkelmann
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - B Suchorska
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Giese
- Department of Neuropathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V Wenter
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - F W Kreth
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - J Herms
- Department of Neuropathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
70
|
Carideo L, Minniti G, Mamede M, Scaringi C, Russo I, Scopinaro F, Cicone F. 18F-DOPA uptake parameters in glioma: effects of patients' characteristics and prior treatment history. Br J Radiol 2018; 91:20170847. [PMID: 29271230 DOI: 10.1259/bjr.20170847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE In amino acid positron emission tomography brain tumour imaging, tumour-to-background uptake parameters are often used for treatment monitoring. We studied the effects of patients' characteristics and anticancer treatments on 18F-fluoro-l-phenylalanine uptake of normal brain and tumour lesions, with particular emphasis on temozolomide (TMZ) chemotherapy. METHODS 155 studies from 120 patients with glioma were analysed. Average uptake of normal background (standardized uptake value, SUVbckgr) and basal ganglia (SUVbg), as well as tumour-to-brain ratios (TBR) were compared between positron emission tomography/CT studies acquired before (Group A, n = 48), after (Group B, n = 50) or during (Group C, n = 57) TMZ treatment, using analysis of variance. RESULTS Overall, mean SUVbckgr and mean SUVbg were 1.06 ± 0.26 and 2.12 ± 0.47, respectively. Female had significantly higher SUVbckgr (p = 0.002) and SUVbg (p = 0.012) than male patients. Age showed a positive correlation with SUVbg (p = 0.001). In the overall cohort, there were significant effects of TMZ on SUVbckgr (p = 0.0237) and TBR (p = 0.0138). In particular, SUVbckgr was lower in Group C than in Group B (1.00 ± 0.25 vs 1.14 ± 0.31, p = 0.0173). Significant variations of SUVbckr could be observed in female only. TBR was significantly higher in Group C than in Group B (2.37 ± 0.54 vs 2.06 ± 0.38, p = 0.010). Variations of SUVbg between groups slightly missed significance (p = 0.0504). CONCLUSION Temozolomide chemotherapy and patients' characteristics, including gender and age, affect physiological [18F]-fluoro-l-phenylalanine uptake and, consequently, the calculation of TBRs. Advances in knowledge: For the first time, the effects of past or concurrent temozolomide chemotherapy on brain physiological amino acid uptake have been investigated. Such effects are relevant and should be taken into account when evaluating tumour-to-background ratios.
Collapse
Affiliation(s)
- Luciano Carideo
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Giuseppe Minniti
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy.,3 IRCCS Neuromed , Pozzilli (IS) , Italy
| | - Marcelo Mamede
- 4 Department of Anatomy and Imaging, Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Claudia Scaringi
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Ivana Russo
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Francesco Scopinaro
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Francesco Cicone
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
71
|
Achmad A, Bhattarai A, Yudistiro R, Heryanto YD, Higuchi T, Tsushima Y. The diagnostic performance of 18F-FAMT PET and 18F-FDG PET for malignancy detection: a meta-analysis. BMC Med Imaging 2017; 17:66. [PMID: 29281996 PMCID: PMC5745915 DOI: 10.1186/s12880-017-0237-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Arifudin Achmad
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Department of Nuclear Medicine and Molecular Imaging, Faculty of Medicine, Padjadjaran University, Jl. Professor Eyckman No.38, Bandung, West Java, 40161, Indonesia.
| | - Anu Bhattarai
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ryan Yudistiro
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.,Department of Nuclear Medicine, Mochtar Riady Comprehensive Cancer Center, Jl. Garnisun Dalam No. 2-3, Semanggi, Jakarta, 12930, Indonesia
| | - Yusri Dwi Heryanto
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
72
|
Zlatopolskiy BD, Zischler J, Schäfer D, Urusova EA, Guliyev M, Bannykh O, Endepols H, Neumaier B. Discovery of 7-[18F]Fluorotryptophan as a Novel Positron Emission Tomography (PET) Probe for the Visualization of Tryptophan Metabolism in Vivo. J Med Chem 2017; 61:189-206. [DOI: 10.1021/acs.jmedchem.7b01245] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Boris D. Zlatopolskiy
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Johannes Zischler
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
| | - Dominique Schäfer
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Elizaveta A. Urusova
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| | - Mehrab Guliyev
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
| | - Olesia Bannykh
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
| | - Heike Endepols
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
- Department
of Nuclear Medicine, University Clinic Cologne, Cologne 50937, Germany
| | - Bernd Neumaier
- Institute
of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
- Institute
of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne 50937, Germany
- Max Planck Institute for Metabolism Research, Cologne 50931, Germany
| |
Collapse
|
73
|
Uptake of 18F-FET and 18F-FCH in Human Glioblastoma T98G Cell Line after Irradiation with Photons or Carbon Ions. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6491674. [PMID: 29097931 PMCID: PMC5612615 DOI: 10.1155/2017/6491674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 12/26/2016] [Indexed: 12/02/2022]
Abstract
The differential diagnosis between recurrence of gliomas or brain metastases and this phenomenon is important in order to choose the best therapy and predict the prognosis but is still a big problem for physicians. The new emerging MRI, CT, and PET diagnostic modalities still lack sufficient accuracy. Radiolabeled choline and amino acids have been reported to show great tumor specificity. We studied the uptake kinetics of [18F]fluoromethyl-choline (FCH) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) by the T98G human glioblastoma cells from 20 to 120 min after irradiation either with photons at 2-10-20 Gy or with carbon ions at 2 Gy (at the National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy). We also evaluated the cell death and morphology changes induced by radiation treatment. Both FET and FCH are able to trace tumor behavior in terms of higher uptake for increased doses of radiation treatment, due to the upregulation of cells attempts to repair nonlethal damage. Our data suggest that both FCH and FET could be useful to analyze the metabolic pathways of glioblastoma cells before and after radiotherapy. Physicians will have to consider the different kinetics pathways of uptake concerning the two radiopharmaceuticals.
Collapse
|
74
|
Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[ 18 F]fluoroethyl)- L -tyrosine (FET). Methods 2017; 130:124-134. [DOI: 10.1016/j.ymeth.2017.05.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/08/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023] Open
|
75
|
Jaymanne DT, Kaushal S, Chan D, Schembri G, Brazier D, Bailey D, Wheeler H, Back M. Utilizing 18F-fluoroethyl-l
-tyrosine positron emission tomography in high grade glioma for radiation treatment planning in patients with contraindications to MRI. J Med Imaging Radiat Oncol 2017; 62:122-127. [DOI: 10.1111/1754-9485.12676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Dasantha T Jaymanne
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - Sneha Kaushal
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - David Chan
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Geoff Schembri
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - David Brazier
- Department of Medical Imaging; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Dale Bailey
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Helen Wheeler
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| | - Michael Back
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
76
|
Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 2017; 44:2257-2265. [PMID: 28831534 DOI: 10.1007/s00259-017-3812-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Both perfusion-weighted MR imaging (PWI) and O-(2-18F-fluoroethyl)-L-tyrosine PET (18F-FET) provide grading information in cerebral gliomas. The aim of this study was to compare the diagnostic value of 18F-FET PET and PWI for tumor grading in a series of patients with newly diagnosed, untreated gliomas using an integrated PET/MR scanner. METHODS Seventy-two patients with untreated gliomas [22 low-grade gliomas (LGG), and 50 high-grade gliomas (HGG)] were investigated with 18F-FET PET and PWI using a hybrid PET/MR scanner. After visual inspection of PET and PWI maps (rCBV, rCBF, MTT), volumes of interest (VOIs) with a diameter of 16 mm were centered upon the maximum of abnormality in the tumor area in each modality and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios (TBRmean, TBRmax) were calculated. In addition, Time-to-Peak (TTP) and slopes of time-activity curves were calculated for 18F-FET PET. Diagnostic accuracies of 18F-FET PET and PWI for differentiating low-grade glioma (LGG) from high-grade glioma (HGG) were evaluated by receiver operating characteristic analyses (area under the curve; AUC). RESULTS The diagnostic accuracy of 18F-FET PET and PWI to discriminate LGG from HGG was similar with highest AUC values for TBRmean and TBRmax of 18F-FET PET uptake (0.80, 0.83) and for TBRmean and TBRmax of rCBV (0.80, 0.81). In case of increased signal in the tumor area with both methods (n = 32), local hot-spots were incongruent in 25 patients (78%) with a mean distance of 10.6 ± 9.5 mm. Dynamic FET PET and combination of different parameters did not further improve diagnostic accuracy. CONCLUSIONS Both 18F-FET PET and PWI discriminate LGG from HGG with similar diagnostic performance. Regional abnormalities in the tumor area are usually not congruent indicating that tumor grading by 18F-FET PET and PWI is based on different pathophysiological phenomena.
Collapse
|
77
|
Expression of large neutral amino acid transporters LAT1 and LAT2 in medulloblastoma. Brain Tumor Pathol 2017; 34:179-181. [DOI: 10.1007/s10014-017-0296-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
|
78
|
Imperiale A, Boisson F, Kreutter G, Goichot B, Namer IJ, Bachellier P, Laquerriere P, Kessler L, Marchand P, Brasse D. O-(2- 18F-fluoroethyl)-l-tyrosine ( 18F-FET) uptake in insulinoma: first results from a xenograft mouse model and from human. Nucl Med Biol 2017; 53:21-28. [PMID: 28793277 DOI: 10.1016/j.nucmedbio.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Herein we have evaluated the uptake of O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) in insulinoma in comparison with those of 6-18F-fluoro-3,4-dihydroxy-l-phenylalanine (18F-FDOPA) providing first data from both murine xenograft model and one patient with proved endogenous hyperinsulinemic hypoglycemia. METHODS Dynamic 18F-FET and carbidopa-assisted 18F-FDOPA PET were performed on tumor-bearing nude mice after subcutaneous injection of RIN-m5F murine beta cells and on a 30-year-old man with type-1 multiple endocrine neoplasia and hyperinsulinemic hypoglycemia defined by a positive fasting test. RESULTS Seven and three nude mice bearing a RIN-m5F insulinoma xenograft were respectively studied by 18F-FET and 18F-FDOPA μPET. Insulinoma xenograft was detected in all the imaged animals. Xenograft was characterized by an early but moderate increase of 18F-FET uptake followed by a slight decline of uptake intensity during the 20 min dynamic acquisition. Tumoral radiotracer peak intensity and the highest tumor-to-background contrast were reached about 5 minutes after 18F-FET iv. injection (mean SUV: 1.21 ± 0.10). The biodistribution of 18F-FET and 18F-FDOPA and their dynamic tumoral uptake profile and intensity were similar. In the examined patient, 18F-FDOPA and 18F-FET PET/CT showed one concordant focal area of well-defined increased uptake in the pancreatic tail corresponding to 11 mm histologically proved insulinoma. The SUVmax tumor to liver ratio was 1.5, 1.1 for 18F-FDOPA, 1.1, 1 for 18F-FET at early (0-5 min post injection) and delayed (5-20 min post injection) PET/CT acquisition, respectively. Despite the relatively low tumoral uptake intensity, insulinoma was clearly identified due to the low background in the pancreas. At the contrary, no 18F-FDOPA or 18F-FET tumoral uptake was revealed on whole-body PET/CT images performed about 30 min after radiotracer administration. Note of worth, the dynamic uptake pattern of 18F-FET and 18F-FDOPA were similar between human insulinoma and mice xenograft tumor. CONCLUSION 18F-FET PET compared equally to 18F-FDOPA PET in a preclinical RIN-m5F murine model of insulinoma and in one patient with insulinoma-related hypoglycemia. However, in both cases, the tumoral uptake intensity was moderate and the tumor was only visible until 20 min after radiotracer injection. Hence, caution should be taken before asserting the translational relevance of our results in the clinical practices. However, the structural analogies between 18F-FET and 18F-FDOPA as well as the limited pancreatic uptake of 18F-FET in human, encourage evaluating 18F-FET as diagnostic radiotracer for insulinoma detection in further prospective studies involving large cohorts of patients.
Collapse
Affiliation(s)
- Alessio Imperiale
- Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France; ICube, CNRS/UMR 7357, Strasbourg University, Strasbourg, France; Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France.
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - Guillaume Kreutter
- Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France
| | - Bernard Goichot
- Internal Medicine, Strasbourg University Hospitals, Strasbourg, France
| | - Izzie Jacques Namer
- Biophysics and Nuclear Medicine, Strasbourg University Hospitals, Strasbourg, France; ICube, CNRS/UMR 7357, Strasbourg University, Strasbourg, France; Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France
| | - Philippe Bachellier
- Visceral Surgery and Transplantation, Strasbourg University Hospitals, Strasbourg, France
| | | | - Laurence Kessler
- Federation of Translational Medicine of Strasbourg (FMTS), Faculty of Medicine, Strasbourg University, Strasbourg, France; EA7293, Vascular and Tissular Stress in Transplantation, Illkirch, France; Diabetology, Strasbourg University Hospitals, Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| | - David Brasse
- Université de Strasbourg, CNRS, IPHC, UMR 7178, F-67000, Strasbourg, France
| |
Collapse
|
79
|
Werner A, Koschke M, Leuchtner N, Luckner-Minden C, Habermeier A, Rupp J, Heinrich C, Conradi R, Closs EI, Munder M. Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. Front Immunol 2017; 8:864. [PMID: 28791021 PMCID: PMC5523021 DOI: 10.3389/fimmu.2017.00864] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
In the tumor microenvironment, arginine is metabolized by arginase-expressing myeloid cells. This arginine depletion profoundly inhibits T cell functions and is crucially involved in tumor-induced immunosuppression. Reconstitution of adaptive immune functions in the context of arginase-mediated tumor immune escape is a promising therapeutic strategy to boost the immunological antitumor response. Arginine can be recycled in certain mammalian tissues from citrulline via argininosuccinate (ASA) in a two-step enzymatic process involving the enzymes argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Here, we demonstrate that anti-CD3/anti-CD28-activated human primary CD4+ and CD8+ T cells upregulate ASS expression in response to low extracellular arginine concentrations, while ASL is expressed constitutively. ASS expression peaked under moderate arginine restriction (20 µM), but no relevant induction was detectable in the complete absence of extracellular arginine. The upregulated ASS correlated with a reconstitution of T cell proliferation upon supplementation of citrulline, while the suppressed production of IFN-γ was refractory to citrulline substitution. In contrast, ASA reconstituted proliferation and cytokine synthesis even in the complete absence of arginine. By direct quantification of intracellular metabolites we show that activated primary human T cells import citrulline but only metabolize it further to ASA and arginine when ASS is expressed in the context of low amounts of extracellular arginine. We then clarify that citrulline transport is largely mediated by the L-type amino acid transporter 1 (LAT1), induced upon human T cell activation. Upon siRNA-mediated knockdown of LAT1, activated T cells lost the ability to import citrulline. These data underline the potential of citrulline substitution as a promising pharmacological way to treat immunosuppression in settings of arginine deprivation.
Collapse
Affiliation(s)
- Anke Werner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Miriam Koschke
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadine Leuchtner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Luckner-Minden
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alice Habermeier
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christin Heinrich
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Roland Conradi
- Transfusion Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
80
|
Horiguchi K, Tosaka M, Higuchi T, Arisaka Y, Sugawara K, Hirato J, Yokoo H, Tsushima Y, Yoshimoto Y. Clinical value of fluorine-18α-methyltyrosine PET in patients with gliomas: comparison with fluorine-18 fluorodeoxyglucose PET. EJNMMI Res 2017; 7:50. [PMID: 28567708 PMCID: PMC5451375 DOI: 10.1186/s13550-017-0298-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 11/16/2022] Open
Abstract
Background We investigated the relationship between metabolic activity and histological features of gliomas using fluorine-18α-methyltyrosine (18F-FAMT) positron emission tomography (PET) compared with fluorine-18 fluorodeoxyglucose (18F-FDG) PET in 38 consecutive glioma patients. The tumor to normal brain ratios (T/N ratios) were calculated, and the relationships between T/N ratio and World Health Organization tumor grade or MIB-1 labeling index were evaluated. The diagnostic values of T/N ratios were assessed using receiver operating characteristic (ROC) curve analyses to differentiate between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Results Median T/N ratio of 18F-FAMT PET was 2.85, 4.65, and 4.09 for grade II, III, and IV gliomas, respectively, with significant differences between HGGs and LGGs (p = 0.006). Both T/N ratio (p = 0.016) and maximum standardized uptake value (p = 0.033) of 18F-FDG PET showed significant differences between HGGs and LGGs. ROC analysis yielded an optimal cut-off of 3.37 for the T/N ratio of 18F-FAMT PET to differentiate between HGGs and LGGs (sensitivity 81%, specificity 67%, accuracy 76%, area under the ROC curve 0.776). Positive predictive value was 84%, and negative predictive value was 62%. T/N ratio of 18F-FAMT PET was not correlated with MIB-1 labeling index in all gliomas, whereas T/N ratio of 18F-FDG PET was positively correlated (rs = 0.400, p = 0.013). Significant positive correlation was observed between T/N ratios of 18F-FDG and 18F-FAMT (rs = 0.454, p = 0.004), but median T/N ratio of 18F-FAMT PET was significantly higher than that of 18F-FDG PET in all grades of glioma. Conclusions The T/N ratio of 18F-FAMT uptake has high positive predictive value for detection of HGGs. 18F-FAMT PET had higher T/N ratio, with better tumor-normal brain contrast, compared to 18F-FDG PET in both LGGs and HGGs. Therefore, 18F-FAMT is a useful radiotracer for the preoperative visualization of gliomas.
Collapse
Affiliation(s)
- Keishi Horiguchi
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Masahiko Tosaka
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yukiko Arisaka
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenichi Sugawara
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Junko Hirato
- Department of Pathology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuhei Yoshimoto
- Department of Neurosurgery, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
81
|
Abstract
Despite the fact that MRI has evolved to become the standard method for diagnosis and monitoring of patients with brain tumours, conventional MRI sequences have two key limitations: the inability to show the full extent of the tumour and the inability to differentiate neoplastic tissue from nonspecific, treatment-related changes after surgery, radiotherapy, chemotherapy or immunotherapy. In the past decade, PET involving the use of radiolabelled amino acids has developed into an important diagnostic tool to overcome some of the shortcomings of conventional MRI. The Response Assessment in Neuro-Oncology working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recommended the additional use of amino acid PET imaging for brain tumour management. Concurrently, a number of advanced MRI techniques such as magnetic resonance spectroscopic imaging and perfusion weighted imaging are under clinical evaluation to target the same diagnostic problems. This Review summarizes the clinical role of amino acid PET in relation to advanced MRI techniques for differential diagnosis of brain tumours; delineation of tumour extent for treatment planning and biopsy guidance; post-treatment differentiation between tumour progression or recurrence versus treatment-related changes; and monitoring response to therapy. An outlook for future developments in PET and MRI techniques is also presented.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Department of Neurology, University of Cologne, Kerpener Strasse 62, D-50937 Cologne, Germany.,Center for Integrated Oncology, Josef-Stelzmann-Strasse 9, D-50937 Cologne, Germany
| | - Elke Hattingen
- Department of Neuroradiology and Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany.,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton Campus, Wellington Road, Melbourne, Victoria 3800, Australia
| |
Collapse
|
82
|
Richard MA, Fouquet JP, Lebel R, Lepage M. Determination of an Optimal Pharmacokinetic Model of 18F-FET for Quantitative Applications in Rat Brain Tumors. J Nucl Med 2017; 58:1278-1284. [PMID: 28765227 DOI: 10.2967/jnumed.116.180612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/16/2017] [Indexed: 02/03/2023] Open
Abstract
O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) is a radiolabeled artificial amino acid used in PET for tumor delineation and grading. The present study compares different kinetic models to determine which are more appropriate for 18F-FET in rats. Methods: Rats were implanted with F98 glioblastoma cells in the right hemisphere and scanned 9-15 d later. PET data were acquired during 50 min after a 1-min bolus of 18F-FET. Arterial blood samples were drawn for arterial input function determination. Two compartmental pharmacokinetic models were tested: the 2-tissue model and the 1-tissue model. Their performance at fitting concentration curves from regions of interest was evaluated using the Akaike information criterion, F test, and residual plots. Graphical models were assessed qualitatively. Results: Metrics indicated that the 2-tissue model was superior to the 1-tissue model for the current dataset. The 2-tissue model allowed adequate decoupling of 18F-FET perfusion and internalization by cells in the different regions of interest. Of the 2 graphical models tested, the Patlak plot provided adequate results for the tumor and brain, whereas the Logan plot was appropriate for muscles. Conclusion: The 2-tissue-compartment model is appropriate to quantify the perfusion and internalization of 18F-FET by cells in various tissues of the rat, whereas graphical models provide a global measure of uptake.
Collapse
Affiliation(s)
- Marie Anne Richard
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jérémie P Fouquet
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Réjean Lebel
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Lepage
- Centre d'imagerie moléculaire de Sherbrooke, Département de médecine nucléaire et radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
83
|
Filss CP, Cicone F, Shah NJ, Galldiks N, Langen KJ. Amino acid PET and MR perfusion imaging in brain tumours. Clin Transl Imaging 2017; 5:209-223. [PMID: 28680873 PMCID: PMC5487907 DOI: 10.1007/s40336-017-0225-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
Purpose Despite the excellent capacity of the conventional MRI to image brain tumours, problems remain in answering a number of critical diagnostic questions. To overcome these diagnostic shortcomings, PET using radiolabeled amino acids and perfusion-weighted imaging (PWI) are currently under clinical evaluation. The role of amino acid PET and PWI in different diagnostic challenges in brain tumours is controversial. Methods Based on the literature and experience of our centres in correlative imaging with PWI and PET using O-(2-[18F]fluoroethyl)-l-tyrosine or 3,4-dihydroxy-6-[18F]-fluoro-l-phenylalanine, the current role and shortcomings of amino acid PET and PWI in different diagnostic challenges in brain tumours are reviewed. Literature searches were performed on PubMed, and additional literature was retrieved from the reference lists of identified articles. In particular, all studies in which amino acid PET was directly compared with PWI were included. Results PWI is more readily available, but requires substantial expertise and is more sensitive to artifacts than amino acid PET. At initial diagnosis, PWI and amino acid PET can help to define a site for biopsy but amino acid PET appears to be more powerful to define the tumor extent. Both methods are helpful to differentiate progression or recurrence from unspecific posttherapeutic changes. Assessment of therapeutic efficacy can be achieved especially with amino acid PET, while the data with PWI are sparse. Conclusion Both PWI and amino acid PET add valuable diagnostic information to the conventional MRI in the assessment of patients with brain tumours, but further studies are necessary to explore the complementary nature of these two methods.
Collapse
Affiliation(s)
- Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany
| | - Francesco Cicone
- Unit of Nuclear Medicine, Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy.,Nuclear Medicine and Molecular Medicine Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Jülich Aachen Research Alliance, Jülich, Germany.,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, VIC Australia
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), University of Cologne and Bonn, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Forschungszentrum Jülich, Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Aachen, Germany.,JARA-Jülich Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
84
|
Uehara T, Watanabe M, Suzuki H, Furusawa Y, Arano Y. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy. PLoS One 2017; 12:e0173096. [PMID: 28245294 PMCID: PMC5330493 DOI: 10.1371/journal.pone.0173096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 11/19/2022] Open
Abstract
L-[methyl-11C]Methionine (11C-Met) is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB). Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG) tumor cells (3-Gy) or in vivo in murine xenografts of HSG tumors (6- or 25-Gy) before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to evaluate the effects of particle radiotherapy on tumors at early stage of the treatment.
Collapse
Affiliation(s)
- Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
- * E-mail:
| | - Mariko Watanabe
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Yoshiya Furusawa
- National Institutes for Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
85
|
Stegmayr C, Oliveira D, Niemietz N, Willuweit A, Lohmann P, Galldiks N, Shah NJ, Ermert J, Langen KJ. Influence of Bevacizumab on Blood-Brain Barrier Permeability and O-(2- 18F-Fluoroethyl)-l-Tyrosine Uptake in Rat Gliomas. J Nucl Med 2017; 58:700-705. [PMID: 28153956 DOI: 10.2967/jnumed.116.187047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/26/2016] [Indexed: 01/20/2023] Open
Abstract
Restoration of the blood-brain barrier (BBB) after antiangiogenic therapy of gliomas with bevacizumab may result in a decrease in contrast enhancement on MRI despite tumor progression. This so-called pseudoresponse is difficult to differentiate from a true tumor response with conventional MRI. Initial patient studies have indicated that PET using O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) may be helpful for solving this diagnostic problem. This study was performed to investigate the effects of bevacizumab on BBB permeability and 18F-FET uptake in a human xenograft model. Methods: Human U87 glioblastoma cells were implanted into the striatum of immunodeficient RNU rats. 18F-FET PET scans and ex vivo autoradiography were performed in animals receiving a single high dose of bevacizumab (45 mg/kg 2 d before PET; n = 9) or in animals receiving 2 lower doses (10 mg/kg 9 and 2 d before PET; n = 10) to evaluate short-term and long-term effects on the BBB, respectively, and in control animals without bevacizumab treatment (n = 8). Time-activity curves, slope, and tumor-to-brain ratios of 18F-FET uptake (18-61 min after injection) were evaluated using a volume-of-interest analysis. After PET scanning, Evans blue dye (EBD) was injected into animals, and cryosections of the brains were evaluated by autoradiography, by histology, and for EBD fluorescence to assess BBB permeability. Results: Compared with the control, short-term bevacizumab therapy resulted in a trend toward BBB restoration (P = 0.055) and long-term therapy resulted in a significant decrease (P = 0.004) in BBB permeability, as assessed by EBD fluorescence. In contrast, no significant differences in tumor-to-brain ratios or slope of 18F-FET uptake were observed in PET and autoradiography (P > 0.05). Conclusion:8F-FET uptake in glioblastomas seems to be largely independent of BBB permeability and reflects the viability of tumor tissue during antiangiogenic therapy more reliably than contrast-enhanced MRI.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Oliveira
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, RWTH Aachen University, Aachen, Germany; and
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5, INM-11), Forschungszentrum Jülich, Jülich, Germany .,Department of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| |
Collapse
|
86
|
Pyka T, Gempt J, Bette S, Ringel F, Förster S. Positron emission tomography and magnetic resonance spectroscopy in cerebral gliomas. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0222-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
87
|
Abualhaj B, Weng G, Ong M, Attarwala AA, Molina F, Büsing K, Glatting G. Comparison of five cluster validity indices performance in brain [ 18 F]FET-PET image segmentation using k-means. Med Phys 2017; 44:209-220. [PMID: 28102943 DOI: 10.1002/mp.12025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Dynamic [18 F]fluoro-ethyl-L-tyrosine positron emission tomography ([18 F]FET-PET) is used to identify tumor lesions for radiotherapy treatment planning, to differentiate glioma recurrence from radiation necrosis and to classify gliomas grading. To segment different regions in the brain k-means cluster analysis can be used. The main disadvantage of k-means is that the number of clusters must be pre-defined. In this study, we therefore compared different cluster validity indices for automated and reproducible determination of the optimal number of clusters based on the dynamic PET data. METHODS The k-means algorithm was applied to dynamic [18 F]FET-PET images of 8 patients. Akaike information criterion (AIC), WB, I, modified Dunn's and Silhouette indices were compared on their ability to determine the optimal number of clusters based on requirements for an adequate cluster validity index. To check the reproducibility of k-means, the coefficients of variation CVs of the objective function values OFVs (sum of squared Euclidean distances within each cluster) were calculated using 100 random centroid initialization replications RCI100 for 2 to 50 clusters. k-means was performed independently on three neighboring slices containing tumor for each patient to investigate the stability of the optimal number of clusters within them. To check the independence of the validity indices on the number of voxels, cluster analysis was applied after duplication of a slice selected from each patient. CVs of index values were calculated at the optimal number of clusters using RCI100 to investigate the reproducibility of the validity indices. To check if the indices have a single extremum, visual inspection was performed on the replication with minimum OFV from RCI100 . RESULTS The maximum CV of OFVs was 2.7 × 10-2 from all patients. The optimal number of clusters given by modified Dunn's and Silhouette indices was 2 or 3 leading to a very poor segmentation. WB and I indices suggested in median 5, [range 4-6] and 4, [range 3-6] clusters, respectively. For WB, I, modified Dunn's and Silhouette validity indices the suggested optimal number of clusters was not affected by the number of the voxels. The maximum coefficient of variation of WB, I, modified Dunn's, and Silhouette validity indices were 3 × 10-2 , 1, 2 × 10-1 and 3 × 10-3 , respectively. WB-index showed a single global maximum, whereas the other indices showed also local extrema. CONCLUSION From the investigated cluster validity indices, the WB-index is best suited for automated determination of the optimal number of clusters for [18 F]FET-PET brain images for the investigated image reconstruction algorithm and the used scanner: it yields meaningful results allowing better differentiation of tissues with higher number of clusters, it is simple, reproducible and has an unique global minimum.
Collapse
Affiliation(s)
- Bedor Abualhaj
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Guoyang Weng
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Melissa Ong
- Institute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ali Asgar Attarwala
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Flavia Molina
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Büsing
- Institute of Clinical Radiology and Nuclear Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
88
|
Göttler J, Lukas M, Kluge A, Kaczmarz S, Gempt J, Ringel F, Mustafa M, Meyer B, Zimmer C, Schwaiger M, Förster S, Preibisch C, Pyka T. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma. Eur J Nucl Med Mol Imaging 2016; 44:392-397. [PMID: 27913827 DOI: 10.1007/s00259-016-3585-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/22/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE 18F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. METHODS Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. RESULTS While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. CONCLUSIONS Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.
Collapse
Affiliation(s)
- Jens Göttler
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Mathias Lukas
- Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Anne Kluge
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stephan Kaczmarz
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Mona Mustafa
- Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Stefan Förster
- TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Christine Preibisch
- Department of Neuroradiology, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Thomas Pyka
- Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
89
|
Wang J, Fei X, Wu W, Chen X, Su L, Zhu Z, Zhou Y. SLC7A5 Functions as a Downstream Target Modulated by CRKL in Metastasis Process of Gastric Cancer SGC-7901 Cells. PLoS One 2016; 11:e0166147. [PMID: 27846244 PMCID: PMC5112787 DOI: 10.1371/journal.pone.0166147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/24/2016] [Indexed: 11/24/2022] Open
Abstract
SLC7A5, who is also named LAT-1, has been validated as a promoter regulated by miRNA-126 in our previous research for gastric cancer cells. However, the mechanisms driving SLC7A5 to affect the bio-function of gastric cancer cells are unclear, remaining us lots of to elucidate. The aim of this study is to investigate the regulating effect of CRKL, one of the critical genes involving with gastric cancer progression, on SLC7A5 expression. By studying the gastric cancer cell lines and clinical pathological specimens, we found that the expression of SLC7A5 was significantly correlated to CRKL. By depleting CRKL in gastric cancer SGC-7901 cells, the SLC7A5 expression was impaired, and the invasion and migration of SGC-7901 cells were suppressed. Ectopic expression of SLC7A5 could drastically rescue the phenotypes induced by CRKL depletion in this study. Accordingly, we conclude that SLC7A5 functions as a promoter in gastric cancer metastasis, and CRKL could be one of its regulators modulating the expression of SLC7A5 and consequentially affect the metastatic feature of SGC-7901 cells. The findings in this study indicate a regulation relationship between CRKL and SLC7A5, and provide useful evidence for gastric cancer therapeutic strategies.
Collapse
Affiliation(s)
- Junqing Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- * E-mail: (JW); (YZ)
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Weize Wu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuehua Chen
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhenggang Zhu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail: (JW); (YZ)
| |
Collapse
|
90
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
91
|
Stegmayr C, Bandelow U, Oliveira D, Lohmann P, Willuweit A, Filss C, Galldiks N, Lübke JHR, Shah NJ, Ermert J, Langen KJ. Influence of blood-brain barrier permeability on O-(2- 18F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging 2016; 44:408-416. [PMID: 27613541 DOI: 10.1007/s00259-016-3508-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on 18F-FET uptake in two rat glioma models and one human xenograft model. METHODS F98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent 18F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of 18F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs. RESULTS In Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of 18F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010). CONCLUSION Despite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of 18F-FET uptake were noted in this experimental study. Thus, 18F-FET uptake in gliomas appears to be widely independent of the permeability of the BBB.
Collapse
Affiliation(s)
- Carina Stegmayr
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany.
| | - Ulrike Bandelow
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - Dennis Oliveira
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - Philipp Lohmann
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - Antje Willuweit
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - Christian Filss
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany.,Department of Nuclear Medicine and Neurology, RWTH/University Hospital Aachen, Aachen, Germany
| | - Norbert Galldiks
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - Joachim H R Lübke
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany
| | - N Jon Shah
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany.,Department of Nuclear Medicine and Neurology, RWTH/University Hospital Aachen, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen, Germany
| | - Johannes Ermert
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany.,Department of Nuclear Medicine and Neurology, RWTH/University Hospital Aachen, Aachen, Germany
| | - Karl-Josef Langen
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, D-52425, Jülich, Germany. .,Department of Nuclear Medicine and Neurology, RWTH/University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
92
|
Bolcaen J, Lybaert K, Moerman L, Descamps B, Deblaere K, Boterberg T, Kalala JP, Van den Broecke C, De Vos F, Vanhove C, Goethals I. Kinetic Modeling and Graphical Analysis of 18F-Fluoromethylcholine (FCho), 18F-Fluoroethyltyrosine (FET) and 18F-Fluorodeoxyglucose (FDG) PET for the Fiscrimination between High-Grade Glioma and Radiation Necrosis in Rats. PLoS One 2016; 11:e0161845. [PMID: 27559736 PMCID: PMC4999092 DOI: 10.1371/journal.pone.0161845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Discrimination between glioblastoma (GB) and radiation necrosis (RN) post-irradiation remains challenging but has a large impact on further treatment and prognosis. In this study, the uptake mechanisms of 18F-fluorodeoxyglucose (18F-FDG), 18F-fluoroethyltyrosine (18F-FET) and 18F-fluoromethylcholine (18F-FCho) positron emission tomography (PET) tracers were investigated in a F98 GB and RN rat model applying kinetic modeling (KM) and graphical analysis (GA) to clarify our previous results. Methods Dynamic 18F-FDG (GB n = 6 and RN n = 5), 18F-FET (GB n = 5 and RN n = 5) and 18F-FCho PET (GB n = 5 and RN n = 5) were acquired with continuous arterial blood sampling. Arterial input function (AIF) corrections, KM and GA were performed. Results The influx rate (Ki) of 18F-FDG uptake described by a 2-compartmental model (CM) or using Patlak GA, showed more trapping (k3) in GB (0.07 min-1) compared to RN (0.04 min-1) (p = 0.017). K1 of 18F-FET was significantly higher in GB (0.06 ml/ccm/min) compared to RN (0.02 ml/ccm/min), quantified using a 1-CM and Logan GA (p = 0.036). 18F-FCho was rapidly oxidized complicating data interpretation. Using a 1-CM and Logan GA no clear differences were found to discriminate GB from RN. Conclusions Based on our results we concluded that using KM and GA both 18F-FDG and 18F-FET were able to discriminate GB from RN. Using a 2-CM model more trapping of 18F-FDG was found in GB compared to RN. Secondly, the influx of 18F-FET was higher in GB compared to RN using a 1-CM model. Important correlations were found between SUV and kinetic or graphical measures for 18F-FDG and 18F-FET. 18F-FCho PET did not allow discrimination between GB and RN.
Collapse
Affiliation(s)
- Julie Bolcaen
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| | - Kelly Lybaert
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lieselotte Moerman
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- iMinds-IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | | | | | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- iMinds-IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
93
|
Hutterer M, Ebner Y, Riemenschneider MJ, Willuweit A, McCoy M, Egger B, Schröder M, Wendl C, Hellwig D, Grosse J, Menhart K, Proescholdt M, Fritsch B, Urbach H, Stockhammer G, Roelcke U, Galldiks N, Meyer PT, Langen KJ, Hau P, Trinka E. Epileptic Activity Increases Cerebral Amino Acid Transport Assessed by 18F-Fluoroethyl-l-Tyrosine Amino Acid PET: A Potential Brain Tumor Mimic. J Nucl Med 2016; 58:129-137. [PMID: 27469356 DOI: 10.2967/jnumed.116.176610] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 11/16/2022] Open
Abstract
O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET is a well-established method increasingly used for diagnosis, treatment planning, and monitoring in gliomas. Epileptic activity, frequently occurring in glioma patients, can influence MRI findings. Whether seizures also affect 18F-FET PET imaging is currently unknown. The aim of this retrospective analysis was to investigate the brain amino acid metabolism during epileptic seizures by 18F-FET PET and to elucidate the pathophysiologic background. METHODS Ten patients with 11 episodes of serial seizures or status epilepticus, who underwent MRI and 18F-FET PET, were studied. The main diagnosis was glioma World Health Organization grade II-IV (n = 8); 2 patients suffered from nonneoplastic diseases. Immunohistochemical assessment of LAT1/LAT2/CD98 amino acid transporters was performed in seizure-affected cortex (n = 2) and compared with glioma tissues (n = 3). RESULTS All patients exhibited increased seizure-associated strict gyral 18F-FET uptake, which was reversible in follow-up studies or negative shortly before and without any histologic or clinical signs of tumor recurrence. 18F-FET uptake corresponded to structural MRI changes, compatible with cortical vasogenic and cytotoxic edema, partial contrast enhancement, and hyperperfusion. Patients with prolonged postictal symptoms lasting up to 8 wk displayed intensive and widespread (≥ 1 lobe) cortical 18F-FET uptake. LAT1/LAT2/CD98 was strongly expressed in neurons and endothelium of seizure-affected brains and less in reactive astrocytosis. CONCLUSION Seizure activity, in particular status epilepticus, increases cerebral amino acid transport with a strict gyral 18F-FET uptake pattern. Such periictal pseudoprogression represents a potential pitfall of 18F-FET PET and may mimic brain tumor. Our data also indicate a seizure-induced upregulation of neuronal, endothelial, and less astroglial LAT1/LAT2/CD98 amino acid transporter expression.
Collapse
Affiliation(s)
- Markus Hutterer
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany .,Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Yvonne Ebner
- Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Markus J Riemenschneider
- Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neuropathology, University of Regensburg Medical School, Regensburg, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
| | - Mark McCoy
- Department of Radiology and Division of Neuroradiology, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Barbara Egger
- Department of Nuclear Medicine, Landeskrankenhaus Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Schröder
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany
| | - Christina Wendl
- Department of Radiology and Division of Neuroradiology, University of Regensburg Medical School, Regensburg, Germany
| | - Dirk Hellwig
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Jirka Grosse
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Karin Menhart
- Department of Nuclear Medicine, University of Regensburg Medical School, Regensburg, Germany
| | - Martin Proescholdt
- Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany.,Department of Neurosurgery, University of Regensburg Medical School, Regensburg, Germany
| | - Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany
| | | | - Ulrich Roelcke
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany; and
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany
| | - Peter Hau
- Department of Neurology, University of Regensburg Medical School, Regensburg, Germany.,Wilhelm Sander-Neurooncology Unit, University of Regensburg Medical School, Regensburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian-Doppler Klinik, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
94
|
Persico MG, Buroni FE, Pasi F, Lodola L, Aprile C, Nano R, Hodolic M. (18)F-FET and (18)F-FCH uptake in human glioblastoma T98G cell lines. Radiol Oncol 2016; 50:153-8. [PMID: 27247547 PMCID: PMC4852969 DOI: 10.1515/raon-2016-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/18/2016] [Indexed: 11/15/2022] Open
Abstract
Background Despite complex treatment of surgery, radiotherapy and chemotherapy, high grade gliomas often recur. Differentiation between post-treatment changes and recurrence is difficult. 18F-methyl-choline (18F-FCH) is frequently used in staging and detection of recurrent prostate cancer disease as well as some brain tumours; however accumulation in inflammatory tissue limits its specificity. The 18F-ethyl-tyrosine (18F-FET) shows a specific uptake in malignant cells, resulting from increased expression of amino acid transporters or diffusing through the disrupted blood-brain barrier. 18F-FET exhibits lower uptake in machrophages and other inflammatory cells. Aim of this study was to evaluate 18F-FCH and 18F-FET uptake by human glioblastoma T98G cells. Material and methods Human glioblastoma T98G or human dermal fibroblasts cells, seeded at a density to obtain 2 × 105 cells per flask when radioactive tracers were administered, grew adherent to the plastic surface at 37°C in 5% CO2 in complete medium. Equimolar amounts of radiopharmaceuticals were added to cells for different incubation times (20 to 120 minutes) for 18F-FCH and 18F-FET respectively. The cellular radiotracer uptake was determined with a gamma counter. All experiments were carried out in duplicate and repeated three times. The uptake measurements are expressed as the percentage of the administered dose of tracer per 2 × 105 cells. Data (expressed as mean values of % uptake of radiopharmaceuticals) were compared using parametric or non-parametric tests as appropriate. Differences were regarded as statistically significant when p<0.05. Results A significant uptake of 18F-FCH was seen in T98G cells at 60, 90 and 120 minutes. The percentage uptake of 18F-FET in comparison to 18F-FCH was lower by a factor of more than 3, with different kinetic curves.18F-FET showed a more rapid initial uptake up to 40 minutes and 18F-FCH showed a progressive rise reaching a maximum after 90 minutes. Conclusions 18F-FCH and 18F-FET are candidates for neuro-oncological PET imaging. 18F-FET could be the most useful oncological PET marker in the presence of reparative changes after therapy, where the higher affinity of 18F-FCH to inflammatory cells makes it more difficult to discriminate between tumour persistence and non-neoplastic changes. Additional studies on the influence of inflammatory tissue and radionecrotic cellular components on radiopharmaceutical uptake are necessary.
Collapse
Affiliation(s)
- Marco Giovanni Persico
- Department of Oncohaematology, Nuclear Medicine Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Federica Eleonora Buroni
- Department of Oncohaematology, Nuclear Medicine Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesca Pasi
- Department of Oncohaematology, Radiotherapy Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Lorenzo Lodola
- Department of Oncohaematology, Nuclear Medicine Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Aprile
- Department of Oncohaematology, Nuclear Medicine Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Rosanna Nano
- Department of Biology and Biotecnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Marina Hodolic
- Nuclear medicine research department, Iason, Graz, Austria
| |
Collapse
|
95
|
Chiotellis A, Müller Herde A, Rössler SL, Brekalo A, Gedeonova E, Mu L, Keller C, Schibli R, Krämer SD, Ametamey SM. Synthesis, Radiolabeling, and Biological Evaluation of 5-Hydroxy-2-[18F]fluoroalkyl-tryptophan Analogues as Potential PET Radiotracers for Tumor Imaging. J Med Chem 2016; 59:5324-40. [DOI: 10.1021/acs.jmedchem.6b00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Aristeidis Chiotellis
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Adrienne Müller Herde
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon L. Rössler
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Ante Brekalo
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Erika Gedeonova
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Linjing Mu
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Department of Nuclear
Medicine, University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Keller
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Roger Schibli
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Stefanie D. Krämer
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| | - Simon M. Ametamey
- Center
for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 1-5/10, Zurich 8093, Switzerland
| |
Collapse
|
96
|
Vasconcelos SNS, Drewes CC, de Vinci Kanda Kupa L, Farsky SHP, Stefani HA. Evaluation of toxicity on epithelial and tumor cells of biaryl dipeptide tyrosines. Eur J Med Chem 2016; 114:1-7. [PMID: 26974369 DOI: 10.1016/j.ejmech.2016.02.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
We report a method to obtain biaryl dipeptide tyrosine via Suzuki-Miyaura and alkynyl dipeptide tyrosine by Sonogashira cross-coupling reactions. Analysis of the biological action of biaryl dipeptide tyrosine 4d compound showed its ability to impair the metabolism and proliferation of SK-Mel-28 human melanoma lineage cells, independently of mitochondrial membrane depolarization, apoptosis and necrosis. Moreover, 4d compound did not cause toxicity to human umbilical vein endothelial cells (HUVEC), suggesting its toxic specificity to cancer cells.
Collapse
Affiliation(s)
- Stanley N S Vasconcelos
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carine C Drewes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leonard de Vinci Kanda Kupa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sandra H P Farsky
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
97
|
Unterrainer M, Schweisthal F, Suchorska B, Wenter V, Schmid-Tannwald C, Fendler WP, Schüller U, Bartenstein P, Tonn JC, Albert NL. Serial 18F-FET PET Imaging of Primarily 18F-FET-Negative Glioma: Does It Make Sense? J Nucl Med 2016; 57:1177-82. [PMID: 27033893 DOI: 10.2967/jnumed.115.171033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED PET with O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) has gained increasing importance for glioma management. With regard to the occurrence of (18)F-FET-negative glioma, we investigated the value of (18)F-FET PET monitoring of primarily (18)F-FET-negative gliomas concerning the detection of progression and malignant transformation. METHODS We included 31 patients (26 World Health Organization [WHO] grade II, 5 WHO grade III) with primarily (18)F-FET-negative glioma and available (18)F-FET PET follow-up. (18)F-FET PET analysis comprised maximal tumor-to-background ratio (TBRmax) and dynamic analysis of tumoral (18)F-FET uptake over time (increasing vs. decreasing) including minimal time to peak (TTPmin). PET findings were correlated with MRI and clinical findings of progression as well as histology of recurrent tumors. RESULTS Twenty-three of 31 patients experienced tumor progression (median progression-free survival, 41.7 mo). Fourteen of 23 patients showed tumoral (18)F-FET uptake concurrent to and 4 of 23 before MRI-derived or clinical signs of tumor progression; 2 of 23 patients presented signs of progression in MRI when no concomitant (18)F-FET PET was available, but subsequent follow-up PET was positive. In 3 of 23 patients, no (18)F-FET uptake was detected at tumor progression. Overall, 20 of 31 primarily (18)F-FET-negative glioma turned (18)F-FET-positive during the follow-up. At first occurrence of tumoral (18)F-FET uptake, TBRmax was significantly higher in patients with malignant transformation (11/20) than in those without malignant progression (3.2 ± 0.9 vs. 1.9 ± 0.5; P = 0.001), resulting in a high detection rate for malignant transformation (for TBRmax > 2.46: sensitivity, 82%; specificity, 89%; negative predictive value, 80%; positive predictive value, 90%; and accuracy, 85%). Although static evaluation was superior to dynamic analysis for the detection of malignant transformation (for TTPmin ≤ 17.5 min: sensitivity, 73%; specificity, 67%; negative predictive value, 67%; positive predictive value, 73%; and accuracy, 70%), short TTPmin was associated with an early malignant transformation in the further disease course. Overall, 18 of 31 patients experienced malignant transformation; of these, 16 of 17 (94%) evaluable patients showed (18)F-FET uptake at the time of malignant transformation. CONCLUSION (18)F-FET PET monitoring with static and dynamic evaluation is useful even in primarily (18)F-FET-negative glioma, providing a high detection rate of both tumor progression and malignant transformation, partly before further signs of progression in MRI. Hence, (18)F-FET uptake indicating malignant transformation might influence the patient management.
Collapse
Affiliation(s)
- Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Schweisthal
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Wolfgang P Fendler
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrich Schüller
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
98
|
Suchorska B, Albert NL, Tonn JC. Usefulness of PET Imaging to Guide Treatment Options in Gliomas. Curr Treat Options Neurol 2016; 18:4. [PMID: 26815310 DOI: 10.1007/s11940-015-0384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OPINION STATEMENT Magnetic resonance imaging (MRI) is the gold standard guiding diagnostic and therapeutic management in glioma with its high resolution and possibility to depict blood-brain-barrier disruption when contrast medium is applied. In light of the shifting paradigms revealing distinct tumor subtypes based on the molecular and genetic characterization and increasing knowledge about the variability of glioma biology, additional imaging modalities such as positron emission tomography (PET) depicting metabolic processes gain further importance in the management of glioma.
Collapse
Affiliation(s)
- Bogdana Suchorska
- Department of Neurosurgery, University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | | | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
99
|
Stegmayr C, Schöneck M, Oliveira D, Willuweit A, Filss C, Galldiks N, Shah NJ, Coenen HH, Langen KJ. Reproducibility of O-(2-18F-fluoroethyl)-L-tyrosine uptake kinetics in brain tumors and influence of corticoid therapy: an experimental study in rat gliomas. Eur J Nucl Med Mol Imaging 2015; 43:1115-23. [DOI: 10.1007/s00259-015-3274-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
|
100
|
Malkowski B, Harat M, Zyromska A, Wisniewski T, Harat A, Lopatto R, Furtak J. The Sum of Tumour-to-Brain Ratios Improves the Accuracy of Diagnosing Gliomas Using 18F-FET PET. PLoS One 2015; 10:e0140917. [PMID: 26468649 PMCID: PMC4607373 DOI: 10.1371/journal.pone.0140917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Gliomas are common brain tumours, but obtaining tissue for definitive diagnosis can be difficult. There is, therefore, interest in the use of non-invasive methods to diagnose and grade the disease. Although positron emission tomography (PET) with 18F-fluorethyltyrosine (18F-FET) can be used to differentiate between low-grade (LGG) and high-grade (HGG) gliomas, the optimal parameters to measure and their cut-points have yet to be established. We therefore assessed the value of single and dual time-point acquisition of 18F-FET PET parameters to differentiate between primary LGGs (n = 22) and HGGs (n = 24). PET examination was considered positive for glioma if the metabolic activity was 1.6-times higher than that of background (contralateral) brain, and maximum tissue-brain ratios (TBRmax) were calculated 10 and 60 min after isotope administration with their sums and differences calculated from individual time-point values. Using a threshold-based method, the overall sensitivity of PET was 97%. Several analysed parameters were significantly different between LGGs and HGGs. However, in a receiver operating characteristics analysis, TBR sum had the best diagnostic accuracy of 87% and sensitivity, specificity, and positive and negative predictive values of 100%, 72.7%, 80%, and 100%, respectively. 18F-FET PET is valuable for the non-invasive determination of glioma grade, especially when dual time-point metrics are used. TBR sum shows the greatest accuracy, sensitivity, and negative predictive value for tumour grade differentiation and is a simple method to implement. However, the cut-off may differ between institutions and calibration strategies would be useful.
Collapse
Affiliation(s)
- Bogdan Malkowski
- Department of Positron Emission Tomography and Molecular Imaging, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Maciej Harat
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
- * E-mail:
| | - Agnieszka Zyromska
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Tomasz Wisniewski
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
- Department of Oncology and Brachytherapy, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Aleksandra Harat
- Department of Public Health, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Rita Lopatto
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Centre, Bydgoszcz, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
| |
Collapse
|