51
|
Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci Rep 2019; 9:14185. [PMID: 31578378 PMCID: PMC6775149 DOI: 10.1038/s41598-019-50726-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) type 1 (CLN1) is a neurodegenerative storage disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients suffer from brain atrophy, mental and motor retardation, seizures, and retinal degeneration ultimately resulting in blindness. Here, we performed an in-depth analysis of the retinal phenotype of a PPT1-deficient mouse, an animal model of this condition. Reactive astrogliosis and microgliosis were evident in mutant retinas prior to the onset of retinal cell loss. Progressive accumulation of storage material, a pronounced dysregulation of various lysosomal proteins, and accumulation of sequestosome/p62-positive aggregates in the inner nuclear layer also preceded retinal degeneration. At advanced stages of the disease, the mutant retina was characterized by a significant loss of ganglion cells, rod and cone photoreceptor cells, and rod and cone bipolar cells. Results demonstrate that PPT1 dysfunction results in early-onset pathological alterations in the mutant retina, followed by a progressive degeneration of various retinal cell types at relatively late stages of the disease. Data will serve as a reference for future work aimed at developing therapeutic strategies for the treatment of retinal degeneration in CLN1 disease.
Collapse
|
52
|
Wang J, Zhang Q, Chen Y, Yu S, Wu X, Bao X. Rett and Rett-like syndrome: Expanding the genetic spectrum to KIF1A and GRIN1 gene. Mol Genet Genomic Med 2019; 7:e968. [PMID: 31512412 PMCID: PMC6825848 DOI: 10.1002/mgg3.968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/03/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background This study aimed to investigate the new genetic etiologies of Rett syndrome (RTT) or Rett‐like phenotypes. Methods Targeted next‐generation sequencing (NGS) was performed on 44 Chinese patients with RTT or Rett‐like phenotypes, in whom genetic analysis of MECP2, CDKL5, and FOXG1 was negative. Results The detection rate was 31.8% (14/44). A de novo pathogenic variant (c.275_276ins AA, p. Cys92*) of KIF1A was identified in a girl with all core features of typical RTT. A patient with atypical RTT was detected having de novo GRIN1 pathogenic variant (c.2337C > A, p. Val793Phe). Additionally, compound heterozygous pathogenic variants of PPT1 gene were detected in a girl, who initially displayed typical RTT features, but progressed into neuronal ceroid lipofuscinoses (NCL) afterwards. Pathogenic variants in KCNQ2, MEF2C, WDR45, TCF4, IQSEC2, and SDHA were also found in our cohort. Conclusions It is the first time that pathogenic variants of GRIN1 and KIF1A were linked to RTT and Rett‐like profiles. Our findings expanded the genetic heterogeneity of Chinese RTT or Rett‐like patients, and also suggest that some patients with genetic metabolic disease such as NCL, might displayed Rett features initially, and clinical follow‐up is essential for the diagnosis.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Shujie Yu
- Department of Neurology, Harbin Children's Hospital, Harbin, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
53
|
El-Sitt S, Soueid J, Maalouf K, Makhoul N, Al Ali J, Makoukji J, Asser B, Daou D, Harati H, Boustany RM. Exogenous Galactosylceramide as Potential Treatment for CLN3 Disease. Ann Neurol 2019; 86:729-742. [PMID: 31393621 DOI: 10.1002/ana.25573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CLN3 disease is the commonest of the neuronal ceroid lipofuscinoses, a group of pediatric neurodegenerative disorders. Functions of the CLN3 protein include antiapoptotic properties and facilitating anterograde transport of galactosylceramide from Golgi to lipid rafts. This study confirms the beneficial effects of long-term exogenous galactosylceramide supplementation on longevity, neurobehavioral parameters, neuronal cell counts, astrogliosis, and diminution in brain and serum ceramide levels in Cln3 Δex7/8 knock-in mice. Additionally, the impact of galactosylceramide on ceramide synthesis enzymes is documented. METHODS A group of 72 mice received galactosylceramide or vehicle for 40 weeks. The effect of galactosylceramide supplementation on Cln3 Δex7/8 mice was determined by performing behavioral tests, measuring ceramide in brains and serum, and assessing impact on longevity, subunit C storage, astrogliosis, and neuronal cell counts. RESULTS Galactosylceramide resulted in enhanced grip strength of forelimbs in male and female mice, better balance on the accelerating rotarod in females, and improved motor coordination during pole climbing in male mice. Brain and serum ceramide levels as well as apoptosis rates were lower in galactosylceramide-treated Cln3 Δex7/8 mice. Galactosylceramide also increased neuronal cell counts significantly in male and female mice and tended to decrease subunit C storage in specific brain regions. Astrogliosis dropped in females compared to a slight increase in males after galactosylceramide. Galactosylceramide increased the lifespan of affected mice. INTERPRETATION Galactosylceramide improved behavioral, neuropathological, and biochemical parameters in Cln3 Δex7/8 mice, paving the way for effective therapy for CLN3 disease and use of serum ceramide as a potential biomarker to track impact of therapies. ANN NEUROL 2019;86:729-742.
Collapse
Affiliation(s)
- Sally El-Sitt
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Jihane Soueid
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Katia Maalouf
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Nadine Makhoul
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Jamal Al Ali
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Joelle Makoukji
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Bilal Asser
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Daniel Daou
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| | - Hayat Harati
- Neuroscience Research Center, Medical School, Lebanese University, Hadath, Lebanon
| | - Rose-Mary Boustany
- Neurogenetics Program, AUBMC Special Kids Clinic and Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut
| |
Collapse
|
54
|
The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure 2019; 71:247-257. [PMID: 31476531 DOI: 10.1016/j.seizure.2019.08.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Progressive Myoclonus Epilepsies (PMEs) are a group of uncommon clinically and genetically heterogeneous disorders characterised by myoclonus, generalized epilepsy, and neurological deterioration, including dementia and ataxia. PMEs may have infancy, childhood, juvenile or adult onset, but usually present in late childhood or adolescence, at variance from epileptic encephalopathies, which start with polymorphic seizures in early infancy. Neurophysiologic recordings are suited to describe faithfully the time course of the shock-like muscle contractions which characterize myoclonus. A combination of positive and negative myoclonus is typical of PMEs. The gene defects for most PMEs (Unverricht-Lundborg disease, Lafora disease, several forms of neuronal ceroid lipofuscinoses, myoclonus epilepsy with ragged-red fibers [MERRF], and type 1 and 2 sialidoses) have been identified. PMEs are uncommon disorders, difficult to diagnose in the absence of extensive experience. Thus, aetiology is undetermined in many patients, despite the advance in molecular medicine. Treatment of PMEs remains essentially symptomaticof seizures and myoclonus, together with palliative, supportive, and rehabilitative measures. The response to therapy may initially be relatively favourable, afterwards however, seizures may become more frequent, and progressive neurologic decline occurs. The prognosis of a PME depends on the specific disease. The history of PMEs revealed that the international collaboration and sharing experience is the right way to proceed. This emerging picture and biological insights will allow us to find ways to provide the patients with meaningful treatment.
Collapse
|
55
|
Parvin S, Rezazadeh M, Hosseinzadeh H, Moradi M, Shiva S, Gharesouran J. The Neuronal Ceroid Lipofuscinoses-Linked Loss of Function CLN5 and CLN8 Variants Disrupt Normal Lysosomal Function. Neuromolecular Med 2019; 21:160-169. [PMID: 30919163 DOI: 10.1007/s12017-019-08529-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/16/2019] [Indexed: 12/16/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative disorders caused by mutations in fourteen distinct ceroid lipofuscinoses, neuronal (CLN) genes described with various severe symptoms such as seizures, visual failure, motor decline, and progressive cognitive deterioration. The current research represents novel CLN5 (c.741G > A) and CLN8 (c.565delT) mutations in two different Iranian families with late-infantile NCL (LINCL) and their relatives by using whole-exome sequencing (WES). The first family had a 10-year-old male with consanguineous parents and severe NCL symptoms, including motor clumsiness, telangiectasia, and cerebellar atrophy. The second family with a child who suffered from nystagmus rotation, motor difficulties, and seizure was a 5-year-old male with consanguineous parent. WES of probands 1 and 2 revealed homozygotic mutations in exon 4 of CLN5 (c.741G > A, p.W247X) and deletion in exon 3 (c.565delT, p.F189fs) of CLN8, respectively. Both patients' parents were heterozygous for these alterations. In concordance with previous studies, our results indicate that pathogenic mutations in CLN genes, especially CLN5 and 8, are a main cause of LINCL; these results also suggest that LINCL is not a regionally or nationally dependent disorder and can occur in any ethnic group despite the fact that some populations may be more at risk. Consequently, CLN gene screening for patients with typical signs of LINCL is recommended.
Collapse
Affiliation(s)
- Shaho Parvin
- Department of Molecular Genetics, Rabe Rashidi Institute, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Hosseinzadeh
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Mohsen Moradi
- Department of Molecular Genetics, Rabe Rashidi Institute, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Shiva
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, 2nd Floor, Golghasht St, Tabriz, Iran.
| |
Collapse
|
56
|
Turriff AE, Cukras CA, Brooks BP, Huryn LA. Considerations in multi-gene panel testing in pediatric ophthalmology. J AAPOS 2019; 23:163-165.e1. [PMID: 30769084 PMCID: PMC8356141 DOI: 10.1016/j.jaapos.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 11/19/2022]
Abstract
Multi-gene panel testing is used increasingly in ophthalmology practice as an efficient and cost-effective method for diagnosing inherited eye conditions. Panel testing is a powerful diagnostic tool, and it has the potential to reveal syndromic information in patients with seemingly isolated eye findings. This case series highlights our experience with 4 children in 3 families who were referred for evaluation of an isolated retinal degeneration and diagnosed with neuronal ceroid lipofuscinosis on panel testing. These cases are important reminders that several neurodegenerative conditions can present initially with isolated eye findings in childhood and pretest genetic counseling is critical.
Collapse
Affiliation(s)
- Amy E Turriff
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
57
|
Gavrilova SI. [The therapeutic potential of acetyl-L-carnitine in the treatment of cognitive and depressive disorders in the elderly]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:37-45. [PMID: 30346432 DOI: 10.17116/jnevro201811806237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The review is based on the assessment of the therapeutic potential of acetyl-L-carnitine (carnicetin) in the treatment of cognitive and depressive disorders in the elderly. The review describes the range of biochemical activity and mechanisms of action of acetyl-L-carnitine, assesses the efficacy and safety of acetyl-L-carnitine in gerontological practice. The results of preclinical and clinical studies of the use of acetyl-L-carnitine in world medical practice are analyzed.
Collapse
|
58
|
Sher M, Farooq M, Abdullah U, Ali Z, Faryal S, Zakaria M, Ullah F, Bukhari H, Møller RS, Tommerup N, Baig SM. A novel in-frame mutation in CLN3 leads to Juvenile neuronal ceroid lipofuscinosis in a large Pakistani family. Int J Neurosci 2019; 129:890-895. [PMID: 30892110 DOI: 10.1080/00207454.2019.1586686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim: Neuronal ceroid lipofuscinosis (NCLs) are the most common neurodegenerative disorders, with global incidence of 1 in 100,000 live births. NCLs affect central nervous system, primarily cerebellar and cerebral cortices. Juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease, is the most common form of NCLs. JNCL is primarily caused by pathogenic mutations in CLN3 gene, which encodes a transporter transmembrane protein of uncertain function. The 1.02 kb deletion is the most common mutation in CLN3 that results in frame shift and a premature termination leading to nonfunctional protein. Here, we invetigated a large consanguineous family consisting of four affected individuals with clincal symptoms suggestive of Juvenile neuronal ceroid lipofuscinosis. Materials and methods: We conducted clinial and radilogical investigation of the family and performed NGS based Gene Panel sequencing comprising of five hundred and forty five candidate genes to characterize it at genetic level. Results: We identified a novel homozygous c.181_183delGAC mutation in the CLN3 gene seggregating witht the disorder in the family. The mutation induces in-frame deletion, deleting one amino acid (p.Asp61del) in CLN3 protein. The deleted amino acid aspartic acid plays an important role as general acid in enzymes active centers as well as in maintaining the ionic character of proteins. Conclusion: Our finding adds to genetic variability of Juvenile neuronal ceroid lipofuscinosis associated with CLN3 gene and a predicted CLN3 protein interacting domain site.
Collapse
Affiliation(s)
- Muhammad Sher
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Muhammad Farooq
- b Department of Bioinformatics and Biotechnology , Government College University Faisalabad , Pakistan
| | - Uzma Abdullah
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Zafar Ali
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Sanam Faryal
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Mohammad Zakaria
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan.,c Department of Genetics , Hazara University , Mansehra , Pakistan
| | - Farid Ullah
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Hassan Bukhari
- d Radiology Department , Allied Hospital , Faisalabad , Pakistan
| | - Rikke S Møller
- e Danish Epilepsy Centre, Institute for Regional Health Services , University of Southern Denmark , Odense , Denmark
| | - Niels Tommerup
- f Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research , University of Copenhagen , Copenhagen , Denmark
| | - Shahid Mahmood Baig
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| |
Collapse
|
59
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
60
|
Nafi O, Ramadan B, Riess O, Buchert R, Froukh T. Two cases of variant late infantile ceroid lipofuscinosis in Jordan. World J Clin Cases 2019; 7:203-208. [PMID: 30705896 PMCID: PMC6354087 DOI: 10.12998/wjcc.v7.i2.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/26/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Late infantile ceroid lipofuscinosis is a rare neurodegenerative disorder that appears between the ages of 2 and 4 years and is difficult to diagnose. In this report we present two sisters with this condition, and the clinical course consisted of delayed developmental skills initially and later regression of previously acquired skills. The cases were initially considered as childhood disintegrative disorder (CDD); however, when whole exome sequencing (WES) genetic testing was done, they proved to be variant late infantile ceroid lipofuscinosis. This is the first report from Jordan.
CASE SUMMARY Clinical presentation included developmental delay and initially speech delay, followed by lose of sphincter control. Motor development was normal until 4 years of age, then they developed ataxia (fear of going downstairs) and weakness while walking. Atonic and myoclonic seizures become intractable, and this was followed by inability to stand or sit and loss of expressive language. In addition to complete blood count test, liver function test, kidney function test, serum electrolyte test, and blood sugar test, serum amino acid profile, B12 level test, thyroid function test, and a brain computed tomography scan were also normal. An electroencephalogram showed a generalized spike and wave pattern, and magnetic resonance imaging showed little to no abnormalities. After dealing with the cases as CDD, WES testing proved a final diagnosis of variant late infantile ceroid lipofuscinosis. Current treatment is anti-epileptic drugs and supportive care at home, and they are now in vegetative state.
CONCLUSION This report highlights the importance of WES for the identification of genetic diseases, especially neurodegenerative disorders.
Collapse
Affiliation(s)
- Omar Nafi
- Department of Pediatrics, Faculty of Medicine, Mutah University, Al Karak 61710, Jordan
| | - Bashar Ramadan
- Department of Pediatrics, Faculty of Medicine, Mutah University, Al Karak 61710, Jordan
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 11118, Jordan
| |
Collapse
|
61
|
Poppens MJ, Cain JT, Johnson TB, White KA, Davis SS, Laufmann R, Kloth AD, Weimer JM. Tracking sex-dependent differences in a mouse model of CLN6-Batten disease. Orphanet J Rare Dis 2019; 14:19. [PMID: 30665444 PMCID: PMC6341540 DOI: 10.1186/s13023-019-0994-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background CLN6-Batten disease is a rare neurodevelopmental disorder characterized pathologically by the accumulation of lysosomal storage material, glial activation and neurodegeneration, and phenotypically by loss of vision, motor coordination, and cognitive ability, with premature death occurring in the second decade of life. In this study, we investigate whether sex differences in a mouse model of CLN6-Batten disease impact disease onset and progression. Results A number of noteworthy differences were observed including elevated accumulation of mitochondrial ATP synthase subunit C in the thalamus and cortex of female Cln6 mutant mice at 2 months of age. Moreover, female mutant mice showed more severe behavioral deficits. Beginning at 9 months of age, female mice demonstrated learning and memory deficits and suffered a more severe decline in motor coordination. Further, compared to their male counterparts, female animals succumbed to the disease at a slightly younger age, indicating an accelerated disease progression. Conversely, males showed a marked increase in microglial activation at 6 months of age in the cortex relative to females. Conclusions Thus, as female Cln6 mutant mice exhibit cellular and behavioral deficits that precede similar pathologies in male mutant mice, our findings suggest the need for consideration of sex-based differences in CLN6 disease progression during development of preclinical and clinical studies. Electronic supplementary material The online version of this article (10.1186/s13023-019-0994-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- McKayla J Poppens
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Samantha S Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Rachel Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
62
|
Berkovic SF, Oliver KL, Canafoglia L, Krieger P, Damiano JA, Hildebrand MS, Morbin M, Vears DF, Sofia V, Giuliano L, Garavaglia B, Simonati A, Santorelli FM, Gambardella A, Labate A, Belcastro V, Castellotti B, Ozkara C, Zeman A, Rankin J, Mole SE, Aguglia U, Farrell M, Rajagopalan S, McDougall A, Brammah S, Andermann F, Andermann E, Dahl HHM, Franceschetti S, Carpenter S. Kufs disease due to mutation ofCLN6: clinical, pathological and molecular genetic features. Brain 2018; 142:59-69. [DOI: 10.1093/brain/awy297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Karen L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Laura Canafoglia
- Department of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Penina Krieger
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Michela Morbin
- Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Danya F Vears
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Vito Sofia
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Loretta Giuliano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Bicocca Laboratories, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Alessandro Simonati
- Department of Neuroscience, Biomedicine, Movement-Neurology and Neuropathology, Policlinico GB Rossi, P.le LA Scuro, Verona, Italy
| | | | - Antonio Gambardella
- Institute of Neurology, University Magna Græcia Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR) Germaneto, CZ, Italy
| | - Angelo Labate
- Institute of Neurology, University Magna Græcia Catanzaro, Italy; Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR) Germaneto, CZ, Italy
| | | | - Barbara Castellotti
- Unit Genetics of Neurodegenerative and Metabolic Diseases, IRCCS Foundation C. Besta Neurological Institute, Milan, Italy
| | - Cigdem Ozkara
- Istanbul University-Cerrahpaşa, Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Adam Zeman
- University of Exeter Medical School, St Luke’s Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter Hospital, Gladstone Road, Exeter, UK
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology and UCL GOS Institute of Child Health, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Græcia Catanzaro, Italy
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR) Germaneto, CZ, Italy
| | - Michael Farrell
- Department of Neuropathology, Beaumont Hospital, Dublin 9, Ireland
| | - Sulekha Rajagopalan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, New South Wales Australia
| | - Alan McDougall
- Department of Neurology, Liverpool Hospital, Liverpool, New South Wales Australia
| | - Susan Brammah
- Central Sydney Electron Microscope Unit, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Frederick Andermann
- Epilepsy Research Group, Montreal Neurological Hospital and Institute, Montreal, Quebec, Canada
- Departments of Neurology and Neurosurgery and Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Eva Andermann
- Epilepsy Research Group, Montreal Neurological Hospital and Institute, Montreal, Quebec, Canada
- Departments of Neurology and Neurosurgery and Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Hans-Henrik M Dahl
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Silvana Franceschetti
- Department of Neurophysiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stirling Carpenter
- Consultant in Neuropathology, Centro Hospitalar São João, Porto, Portugal
| |
Collapse
|
63
|
di Ronza A, Bajaj L, Sharma J, Sanagasetti D, Lotfi P, Adamski CJ, Collette J, Palmieri M, Amawi A, Popp L, Chang KT, Meschini MC, Leung HCE, Segatori L, Simonati A, Sifers RN, Santorelli FM, Sardiello M. CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis. Nat Cell Biol 2018; 20:1370-1377. [PMID: 30397314 PMCID: PMC6277210 DOI: 10.1038/s41556-018-0228-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
Organelle biogenesis requires proper transport of proteins from their site of synthesis to their target subcellular compartment1-3. Lysosomal enzymes are synthesized in the endoplasmic reticulum (ER) and traffic through the Golgi complex before being transferred to the endolysosomal system4-6, but how they are transferred from the ER to the Golgi is unknown. Here, we show that ER-to-Golgi transfer of lysosomal enzymes requires CLN8, an ER-associated membrane protein whose loss of function leads to the lysosomal storage disorder, neuronal ceroid lipofuscinosis 8 (a type of Batten disease)7. ER-to-Golgi trafficking of CLN8 requires interaction with the COPII and COPI machineries via specific export and retrieval signals localized in the cytosolic carboxy terminus of CLN8. CLN8 deficiency leads to depletion of soluble enzymes in the lysosome, thus impairing lysosome biogenesis. Binding to lysosomal enzymes requires the second luminal loop of CLN8 and is abolished by some disease-causing mutations within this region. Our data establish an unanticipated example of an ER receptor serving the biogenesis of an organelle and indicate that impaired transport of lysosomal enzymes underlies Batten disease caused by mutations in CLN8.
Collapse
Affiliation(s)
- Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Deepthi Sanagasetti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Carolyn Joy Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - John Collette
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Abdallah Amawi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Lauren Popp
- Departments of Bioengineering, Chemical and Biomolecular Engineering, and Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Kevin Tommy Chang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Maria Chiara Meschini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Segatori
- Departments of Bioengineering, Chemical and Biomolecular Engineering, and Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Richard Norman Sifers
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
64
|
Parzych KR, Klionsky DJ. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions. Autophagy 2018; 15:212-227. [PMID: 30422029 DOI: 10.1080/15548627.2018.1545821] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hydrolysis within the vacuole in yeast and the lysosome in mammals is required for the degradation and recycling of a multitude of substrates, many of which are delivered to the vacuole/lysosome by autophagy. In humans, defects in lysosomal hydrolysis and efflux can have devastating consequences, and contribute to a class of diseases referred to as lysosomal storage disorders. Despite the importance of these processes, many of the proteins and regulatory mechanisms involved in hydrolysis and efflux are poorly understood. In this review, we describe our current knowledge of the vacuolar/lysosomal degradation and efflux of a vast array of substrates, focusing primarily on what is known in the yeast Saccharomyces cerevisiae. We also highlight many unanswered questions, the answers to which may lead to new advances in the treatment of lysosomal storage disorders. Abbreviations: Ams1: α-mannosidase; Ape1: aminopeptidase I; Ape3: aminopeptidase Y; Ape4: aspartyl aminopeptidase; Atg: autophagy related; Cps1: carboxypeptidase S; CTNS: cystinosin, lysosomal cystine transporter; CTSA: cathepsin A; CTSD: cathepsin D; Cvt: cytoplasm-to-vacuole targeting; Dap2: dipeptidyl aminopeptidase B; GS-bimane: glutathione-S-bimane; GSH: glutathione; LDs: lipid droplets; MVB: multivesicular body; PAS: phagophore assembly site; Pep4: proteinase A; PolyP: polyphosphate; Prb1: proteinase B; Prc1: carboxypeptidase Y; V-ATPase: vacuolar-type proton-translocating ATPase; VTC: vacuolar transporter chaperone.
Collapse
Affiliation(s)
- Katherine R Parzych
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Daniel J Klionsky
- a Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
65
|
Abstract
Lysosomal storage disorders are a heterogeneous group of genetic diseases characterized by defective function in one of the lysosomal enzymes. In this review paper, we describe neuroradiological findings and clinical characteristics of neuronopathic lysosomal disorders with a focus on differential diagnosis. New insights regarding pathogenesis and therapeutic perspectives are also briefly discussed.
Collapse
|
66
|
Ge L, Li HY, Hai Y, Min L, Xing L, Min J, Shu HX, Mei OY, Hua L. Novel Mutations in CLN5 of Chinese Patients With Neuronal Ceroid Lipofuscinosis. J Child Neurol 2018; 33:837-850. [PMID: 30264640 DOI: 10.1177/0883073818789024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal ceroid lipofuscinosis is a hereditary disease, and ceroid-lipofuscinosis neuronal protein 5 (CLN5) has been proved to be associated with neuronal ceroid lipofuscinosis. Here we report 3 patients from 2 families diagnosed with CLN5 neuronal ceroid lipofuscinosis. Whole genome sequencing of DNAs from 3 patients and their families revealed 3 novel homozygous mutations, including 1 deletion CLN5.c718 719delAT and 2 missense mutations c.1082T>C and c.623G>A. We reviewed 278 papers about neuronal ceroid lipofuscinosis resulting from CLN5 mutations and compared Chinese cases with 27 European and American cases. The overall age of onset of European and American patients occur mainly at 3 to 6 years (66%, 18/27), 100% (27/27) of patients had psychomotor regression, 99% (26/27) patients presented vision decline, and 70% (19/27) of patients suffered seizures. In China, the age of onset in 3 patients was 5 years, but for 1 patient it was at 17 months. Four Chinese patients presented psychomotor deterioration and seizures; only 1 had visual problems.
Collapse
Affiliation(s)
- Lv Ge
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Han Yun Li
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Yuan Hai
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Liu Min
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Li Xing
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Jiang Min
- 1 Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Hu Xiang Shu
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| | - Ou Yang Mei
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| | - Li Hua
- 2 Department of Neurology, GuangDong 999 Brain Hospital, Guangzhou 510000, Guangdong, People's Republic of China
| |
Collapse
|
67
|
von Eisenhart-Rothe P, Grubman A, Greferath U, Fothergill LJ, Jobling AI, Phipps JA, White AR, Fletcher EL, Vessey KA. Failure of Autophagy–Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed inCln6nclfMice. ACTA ACUST UNITED AC 2018; 59:5082-5097. [DOI: 10.1167/iovs.18-24757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Linda J. Fothergill
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew I. Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joanna A. Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony R. White
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
68
|
Sun G, Yao F, Tian Z, Ma T, Yang Z. A first CLN6 variant case of late infantile neuronal ceroid lipofuscinosis caused by a homozygous mutation in a boy from China: a case report. BMC MEDICAL GENETICS 2018; 19:177. [PMID: 30285654 PMCID: PMC6167792 DOI: 10.1186/s12881-018-0690-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/20/2018] [Indexed: 01/14/2023]
Abstract
Background Neuronal ceroid lipofuscinosis (NCLs) are lysosomal storage disorders characterized by seizures, motor impairment, and loss of vision. Ceroid lipofuscinosis (CLN) gene mutations are the cause, but NCL cases arising from CLN6 mutations have not been described in China to date. The CLN6 protein, which plays a role in lysosomal function, is an endoplasmic reticulum (ER) membrane protein with seven transmembrane (TM) domains. It has a cytosolic-facing amino terminal domain and a luminal-facing carboxyl terminal domain, with six loops between the TM domains. Case presentation Here we report a case involving a Chinese boy whose suspected diagnosis was a hereditary leukoencephalopathy, based on brain MRI imaging and epilepsy symptoms, language articulation disorders, ataxia, and unstable gait. The electroencephalogram showed epileptic discharges, and the brain MRI scan showed high signal intensity adjacent to the bilateral posterior horns of the lateral ventricles on T2-weighted images, along with cerebellar atrophy. Using next-generation sequencing for the genes in a panel for hereditary leukoencephalopathies, we detected a homozygous missense point mutation c.892G > A(p.Glu298Lys) in CLN6, and the variant was interpreted as pathogenic on in silico analysis. Absence of this mutation was confirmed in 259 controls. Late infantile NCL and secondary epilepsy were diagnosed, and oral sodium valproate was prescribed. The epilepsy was not well controlled, however, and the other signs had not improved at the 6-month follow-up. We also analyzed the loci of 31 CLN6 missense mutations, including those previously reported and the current one. We found that 22.6% (7/31) of the mutations are in the cytoplasmic domains, about 32.2% (10/31) are in the TM domains, and about 45.2% (14/31) are in the luminal domains. These mutations were mostly located in the TM3-TM4 loop (6/31), TM1-TM2 loop (4/31), and C-terminus (4/31), with none found in the TM4-TM5 loop, TM5-TM6 loop, or TM7. Conclusions We report the first case in China of NCL caused by a CLN6 mutation, expanding the genotype options for NCLs. In practice, NCLs generally are not the initial suspected diagnosis for such cases. Use of a gene sequencing panel for investigating unexplained seizures or leukoencephalopathies can help confirm the diagnosis. Electronic supplementary material The online version of this article (10.1186/s12881-018-0690-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilian Sun
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Fang Yao
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhuoling Tian
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Tianjiao Ma
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhiliang Yang
- Department of Pediatrics, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
69
|
Novel in-frame deletion in MFSD8 gene revealed by trio whole exome sequencing in an Iranian affected with neuronal ceroid lipofuscinosis type 7: a case report. J Med Case Rep 2018; 12:281. [PMID: 30249282 PMCID: PMC6154911 DOI: 10.1186/s13256-018-1788-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/30/2018] [Indexed: 11/28/2022] Open
Abstract
Background The neuronal ceroid lipofuscinoses are a group of neurodegenerative, lysosomal storage disorders. They are inherited as an autosomal recessive pattern with the exception of adult neuronal ceroid lipofuscinosis, which can be inherited in either an autosomal recessive or an autosomal dominant manner. The neuronal ceroid lipofuscinoses are characterized by accumulation of autofluorescent lipopigments in the cells and one of the most important pathological manifestations is ceroid accumulation in the lysosomes. Various types of neuronal ceroid lipofuscinoses are categorized based on the clinical manifestations and the genes involved. Accumulatively, 15 different genes have been found so far to be implicated in the pathogenesis of at least nine different types of neuronal ceroid lipofuscinoses, which result in similar pathological and clinical manifestations. Case presentation A 5-year-old Iranian boy affected by a neurodegenerative disorder with speech problems, lack of concentration, walking disability at age of 4 years leading to quadriplegia, spontaneous laughing, hidden seizure, clumsiness, psychomotor delay, and vision deterioration at age of 5 years, which could be the consequence of macular dystrophy, was referred to us for genetic testing. Trio whole exome sequencing, Sanger validation, and segregation analysis discovered a novel in-frame small deletion c.325_339del (p.Val109_Ile113del) in MFSD8 gene associated with neuronal ceroid lipofuscinosis type 7. Conclusions The deletion found in this patient affects the exon 5 of this gene which is the region encoding transmembrane domain. Sequencing analysis in this family has shown that the index is homozygous for 15 base pairs in-frame deletion, his uncle has normal homozygous, and his parents are heterozygous. This pattern of mutation inheritance and the signs and symptoms observed in the affected male of this family are compatible with what is described in the literature for neuronal ceroid lipofuscinosis type 7 and, therefore, suggest that the MFSD8 gene deletion found in this study is most probably the cause of disease in this family.
Collapse
|
70
|
Chen ZR, Liu DT, Meng H, Liu L, Bian WJ, Liu XR, Zhu WW, He Y, Wang J, Tang B, Su T, Yi YH. Homozygous missense TPP1 mutation associated with mild late infantile neuronal ceroid lipofuscinosis and the genotype-phenotype correlation. Seizure 2018; 69:180-185. [PMID: 31059981 DOI: 10.1016/j.seizure.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
PURPOSE TPP1 mutations have been identified in patients with variable phenotypes such as late infantile neuronal ceroid lipofuscinosis (LINCL), juvenile neuronal ceroid lipofuscinosis (JNCL), and spinocerebellar ataxia 7. However, the mechanism underlying phenotype variation is unknown. We screened TPP1 mutations in patients with epilepsies and analyzed the genotype-phenotype correlation to explain the phenotypic variations. METHODS We performed targeted next-generation sequencing in a cohort of 330 patients with epilepsies. All previously reported TPP1 mutations were systematically retrieved from the PubMed and NCL Mutation Database. RESULTS The homozygous missense TPP1 mutation c.646 G > A/ p.Val216Met was identified in a family with two affected siblings. The proband presented with seizures from three years of age, while no ataxia, cognitive regression, or visual abnormalities were observed. Further analysis of all reported TPP1 mutations revealed that the LINCL group had a significantly higher frequency of truncating and invariant splice-site mutations than the JNCL group. In contrast, the JNCL group had a higher frequency of variant splice-site mutations than LINCL. There was a significant correlation between phenotype severity and the frequency of destructive mutation. CONCLUSION This study suggested that the phenotype of mainly epilepsy can be included in the phenotypic spectrum of TPP1 mutations, which are candidate targets for genetic screening in patients with epilepsy. With the development of therapy techniques, early genetic diagnosis may enable the improvement of etiology-targeted treatments. The relationship between phenotype severity and the genotype of TPP1 mutations may help explain the phenotypic variations.
Collapse
Affiliation(s)
- Zi-Rong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China; Department of Neurology of the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - De-Tian Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Heng Meng
- Department of Neurology of the First Affiliated Hospital of Jinan University and Clinical Neuroscience Institute of Jinan University, Guangzhou, Guangdong, China
| | - Liu Liu
- Department of Neurology, Xiaoshan First People's Hospital, Hangzhou, Zhejiang, China
| | - Wen-Jun Bian
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Wei-Wen Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Yong He
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Jie Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, Guangdong, China.
| |
Collapse
|
71
|
Russell KN, Mitchell NL, Anderson NG, Bunt CR, Wellby MP, Melzer TR, Barrell GK, Palmer DN. Computed tomography provides enhanced techniques for longitudinal monitoring of progressive intracranial volume loss associated with regional neurodegeneration in ovine neuronal ceroid lipofuscinoses. Brain Behav 2018; 8:e01096. [PMID: 30136763 PMCID: PMC6160654 DOI: 10.1002/brb3.1096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION The neuronal ceroid lipofuscinoses (NCLs; Batten disease) are a group of fatal neurodegenerative lysosomal storage diseases of children caused by various mutations in a range of genes. Forms associated with mutations in two of these, CLN5 and CLN6, are being investigated in well-established sheep models. Brain atrophy leading to psychomotor degeneration is among the defining features, as is regional progressive ossification of the inner cranium. Ongoing viral-mediated gene therapy trials in these sheep are yielding encouraging results. In vivo assessment of brain atrophy is integral to the longitudinal monitoring of individual animals and provides robust data for translation to treatments for humans. METHODS Computed tomography (CT)-based three-dimensional reconstruction of the intracranial volume (ICV) over time reflects the progression of cortical brain atrophy, verifying the use of ICV measurements as a surrogate measure for brain size in ovine NCL. RESULTS ICVs of NCL-affected sheep increase for the first few months, but then decline progressively between 5 and 13 months in CLN5-/- sheep and 11-15 months in CLN6-/- sheep. Cerebral ventricular volumes are also increased in affected animals. To facilitate ICV measures, the radiodensities of ovine brain tissue and cerebrospinal fluid were identified. Ovine brain tissue exhibited a Hounsfield unit (HU) range of (24; 56) and cerebrospinal fluid a HU range of (-12; 23). CONCLUSIONS Computed tomography scanning and reconstruction verify that brain atrophy ovine CLN5 NCL originates in the occipital lobes with subsequent propagation throughout the whole cortex and these regional differences are reflected in the ICV loss.
Collapse
Affiliation(s)
- Katharina N Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Nigel G Anderson
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Craig R Bunt
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Tracy R Melzer
- Department of Medicine, University of Otago, Christchurch, New Zealand.,New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand.,Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
72
|
Nickel M, Simonati A, Jacoby D, Lezius S, Kilian D, Van de Graaf B, Pagovich OE, Kosofsky B, Yohay K, Downs M, Slasor P, Ajayi T, Crystal RG, Kohlschütter A, Sondhi D, Schulz A. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. THE LANCET. CHILD & ADOLESCENT HEALTH 2018; 2:582-590. [PMID: 30119717 PMCID: PMC7516285 DOI: 10.1016/s2352-4642(18)30179-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease, characterised by rapid psychomotor decline and epilepsy, is caused by deficiency of the lysosomal enzyme tripeptidyl peptidase 1. We aimed to analyse the characteristics and rate of progression of CLN2 disease in an international cohort of patients. METHODS We did an observational cohort study using data from two independent, international datasets of patients with untreated genotypically confirmed CLN2 disease: the DEM-CHILD dataset (n=74) and the Weill Cornell Medical College (WCMC) dataset (n=66). Both datasets included quantitative rating assessments with disease-specific clinical domain scores, and disease course was measured longitudinally in 67 patients in the DEM-CHILD cohort. We analysed these data to determine age of disease onset and diagnosis, as well as disease progression-measured by the rate of decline in motor and language summary scores (on a scale of 0-6 points)-and time from first symptom to death. FINDINGS In the combined DEM-CHILD and WCMC dataset, median age was 35·0 months (IQR 24·0-38·5) at first clinical symptom, 37·0 months (IQR 35·0 -42·0) at first seizure, and 54·0 months (IQR 47·5-60·0) at diagnosis. Of 74 patients in the DEM-CHILD dataset, the most common first symptoms of disease were seizures (52 [70%]), language difficulty (42 [57%]), motor difficulty (30 [41%]), behavioural abnormality (12 [16%]), and dementia (seven [9%]). Among the 41 patients in the DEM-CHILD dataset for whom longitudinal assessments spanning the entire disease course were available, a rapid annual decline of 1·81 score units (95% CI 1·50-2·12) was seen in motor-language summary scores from normal (score of 6) to no function (score of 0), which occurred over approximately 30 months. Among 53 patients in the DEM-CHILD cohort with available data, the median time between onset of first disease symptom and death was 7·8 years (SE 0·9) years. INTERPRETATION In view of its natural history, late-infantile CLN2 disease should be considered in young children with delayed language acquisition and new onset of seizures. CLN2 disease has a largely predictable time course with regard to the loss of language and motor function, and these data might serve as historical controls for the assessment of current and future therapies. FUNDING EU Seventh Framework Program, German Ministry of Education and Research, EU Horizon2020 Program, National Institutes of Health, Nathan's Battle Foundation, Cures Within Reach Foundation, Noah's Hope Foundation, Hope4Bridget Foundation.
Collapse
Affiliation(s)
- Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Simonati
- Department of Neuroscience, Biomedicine, Movement-Neurology (Child Neurology and Psychiatry, and Neuropathology), University of Verona, Verona, Italy
| | | | - Susanne Lezius
- Department of Biometrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Kilian
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Odelya E Pagovich
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Barry Kosofsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kaleb Yohay
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Neurology, New York University, Langone Medical Center, New York, NY, USA
| | | | | | | | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
73
|
Beltrán L, Valenzuela GR, Loos M, Vargas R, Lizama R, Spinsanti P, Caraballo R. Late-onset childhood neuronal ceroid lipofuscinosis: Early clinical and electroencephalographic markers. Epilepsy Res 2018; 144:49-52. [DOI: 10.1016/j.eplepsyres.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 11/25/2022]
|
74
|
Underdiagnoses resulting from variant misinterpretation: Time for systematic reanalysis of whole exome data? Eur J Med Genet 2018; 62:39-43. [PMID: 29709712 DOI: 10.1016/j.ejmg.2018.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Clinical whole exome sequencing (WES) yields a diagnosis in approximately 30% of patients evaluated for presumed genetic disorders. For unsolved cases, periodic reanalysis is usually predicated on the availability of improved bioinformatics tools or new gene discoveries. METHODS Exome data reanalysis was independently performed on unsolved cases that had underwent trio analysis by an external service provider. The retrieved exome data was reannotated using wANNOVAR and reanalysed following standard filtering criteria. RESULTS Independent reanalysis led to the identification of a disease-causing variation in two families segregating predominantly a neurological phenotype. As the causative genes were relatively well established at the time the WES referral was made, misinterpretation of the functional impact of the variant and/or underappreciation of the gene's associated phenotype are the most probable causes of the discrepancy in reporting. CONCLUSION Non-diagnostic clinical exome resulting from variant misinterpretation is probably under appreciated. These results emphasise the relevance of implement a policy for the reanalysis of high-throughput sequencing data, especially in a clinical context given the implications.
Collapse
|
75
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
76
|
White C, Mortier J, Verin R, Maddox T, Goncalves R, Sanchez-Masian D. MRI findings of neuronal ceroid lipofuscinosis in a cat. JFMS Open Rep 2018. [PMID: 29531776 PMCID: PMC5843104 DOI: 10.1177/2055116918757330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Case summary A 2-year-old male domestic shorthair cat presented to the University of Liverpool Small Animal Teaching Hospital with a 2 week history of altered mentation, blindness and focal epileptic seizures. MRI examination revealed generalised cerebral and cerebellar atrophy, diffuse T2-weighted hyperintensity of the white matter and meningeal thickening. Neuronal ceroid lipofuscinosis was confirmed on post-mortem examination. Relevance and novel information This is the first report of the MRI findings of neuronal ceroid lipofuscinosis in a cat.
Collapse
Affiliation(s)
- Crystal White
- Leahurst Small Animal Teaching Hospital, University of Liverpool, Merseyside, UK
| | - Jeremy Mortier
- Leahurst Small Animal Teaching Hospital, University of Liverpool, Merseyside, UK
| | - Ranieri Verin
- Leahurst Small Animal Teaching Hospital, University of Liverpool, Merseyside, UK
| | - Thomas Maddox
- Leahurst Small Animal Teaching Hospital, University of Liverpool, Merseyside, UK
| | - Rita Goncalves
- Leahurst Small Animal Teaching Hospital, University of Liverpool, Merseyside, UK
| | | |
Collapse
|
77
|
Gene Therapy Approaches to Treat the Neurodegeneration and Visual Failure in Neuronal Ceroid Lipofuscinoses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:91-99. [PMID: 29721932 DOI: 10.1007/978-3-319-75402-4_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are a group of fatal, inherited lysosomal storage disorders mostly affecting the central nervous system of children. Symptoms include vision loss, seizures, motor deterioration and cognitive decline ultimately resulting in premature death. Studies in animal models showed that the diseases are amenable to gene supplementation therapies, and over the last decade, major advances have been made in the (pre)clinical development of these therapies. This mini-review summarises and discusses current gene therapy approaches for NCL targeting the brain and the eye.
Collapse
|
78
|
Abstract
Discovery of nearly 200 genes implicated in epilepsy and insights into the molecular and cellular pathways involved are transforming our knowledge of the causes, classifications, diagnosis, and in some cases, treatments for individuals with chronic seizure disorders. Numerous disorders once considered "idiopathic" are now recognized as genetic conditions. Despite these remarkable advances, the cause of epilepsy for most individuals is unknown. We present a clinical approach to patients with epilepsy, presenting an algorithm for clinical and genetic testing, and review genes implicated in epilepsy and their associated syndromes.
Collapse
Affiliation(s)
- Danielle Nolan
- Departments of Pediatrics and Pediatric Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John Fink
- Department of Neurology, University of Michigan and the Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
79
|
Llavero Hurtado M, Fuller HR, Wong AMS, Eaton SL, Gillingwater TH, Pennetta G, Cooper JD, Wishart TM. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep 2017; 7:12412. [PMID: 28963550 PMCID: PMC5622084 DOI: 10.1038/s41598-017-12603-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3−/− mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3−/− mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.
Collapse
Affiliation(s)
- Maica Llavero Hurtado
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heidi R Fuller
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, Keele, ST5 5BG, UK
| | - Andrew M S Wong
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Samantha L Eaton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK.,Los Angeles Biomedical Research Institute, and David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, 90502, USA
| | - Thomas M Wishart
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
80
|
Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. MICROBIAL CELL 2017; 4:278-293. [PMID: 28913343 PMCID: PMC5597791 DOI: 10.15698/mic2017.09.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand 6012.,Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand 6012
| | - Stephen L Sturley
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
81
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
82
|
Jules F, Sauvageau E, Dumaresq-Doiron K, Mazzaferri J, Haug-Kröper M, Fluhrer R, Costantino S, Lefrancois S. CLN5 is cleaved by members of the SPP/SPPL family to produce a mature soluble protein. Exp Cell Res 2017; 357:40-50. [PMID: 28442266 DOI: 10.1016/j.yexcr.2017.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
Abstract
The Neuronal ceroid lipofuscinoses (NCLs) are a group of recessive disorders of childhood with overlapping symptoms including vision loss, ataxia, cognitive regression and premature death. 14 different genes have been linked to NCLs (CLN1-CLN14), but the functions of the proteins encoded by the majority of these genes have not been fully elucidated. Mutations in the CLN5 gene are responsible for the Finnish variant late-infantile form of NCL (Finnish vLINCL). CLN5 is translated as a 407 amino acid transmembrane domain containing protein that is heavily glycosylated, and subsequently cleaved into a mature soluble protein. Functionally, CLN5 is implicated in the recruitment of the retromer complex to endosomes, which is required to sort the lysosomal sorting receptors from endosomes to the trans-Golgi network. The mechanism that processes CLN5 into a mature soluble protein is currently not known. Herein, we demonstrate that CLN5 is initially translated as a type II transmembrane protein and subsequently cleaved by SPPL3, a member of the SPP/SPPL intramembrane protease family, into a mature soluble protein consisting of residues 93-407. The remaining N-terminal fragment is then cleaved by SPPL3 and SPPL2b and degraded in the proteasome. This work further characterizes the biology of CLN5 in the hopes of identifying a novel therapeutic strategy for affected children.
Collapse
Affiliation(s)
- Felix Jules
- Centre INRS-Institut Armand-Frappier, INRS, Laval, Canada H7V 1B7
| | | | | | - Javier Mazzaferri
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4
| | - Martina Haug-Kröper
- Biomedical Center (BMC), Institute for Metabolic Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Regina Fluhrer
- Biomedical Center (BMC), Institute for Metabolic Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Santiago Costantino
- Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4; Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, INRS, Laval, Canada H7V 1B7; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada H3A 2B2.
| |
Collapse
|
83
|
Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A 2017; 114:E5920-E5929. [PMID: 28673981 DOI: 10.1073/pnas.1701832114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease) is an inherited neurodegenerative storage disorder caused by a deficiency of the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). It was widely believed that the pathology associated with INCL was limited to the brain, but we have now found unexpectedly profound pathology in the human INCL spinal cord. Similar pathological changes also occur at every level of the spinal cord of PPT1-deficient (Ppt1-/- ) mice before the onset of neuropathology in the brain. Various forebrain-directed gene therapy approaches have only had limited success in Ppt1-/- mice. Targeting the spinal cord via intrathecal administration of an adeno-associated virus (AAV) gene transfer vector significantly prevented pathology and produced significant improvements in life span and motor function in Ppt1-/- mice. Surprisingly, forebrain-directed gene therapy resulted in essentially no PPT1 activity in the spinal cord, and vice versa. This leads to a reciprocal pattern of histological correction in the respective tissues when comparing intracranial with intrathecal injections. However, the characteristic pathological features of INCL were almost completely absent in both the brain and spinal cord when intracranial and intrathecal injections of the same AAV vector were combined. Targeting both the brain and spinal cord also produced dramatic and synergistic improvements in motor function with an unprecedented increase in life span. These data show that spinal cord pathology significantly contributes to the clinical progression of INCL and can be effectively targeted therapeutically. This has important implications for the delivery of therapies in INCL, and potentially in other similar disorders.
Collapse
|
84
|
Geraets RD, Langin LM, Cain JT, Parker CM, Beraldi R, Kovacs AD, Weimer JM, Pearce DA. A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies. PLoS One 2017; 12:e0176526. [PMID: 28464005 PMCID: PMC5413059 DOI: 10.1371/journal.pone.0176526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs), also known as Batten disease, result from mutations in over a dozen genes. Although, adults are susceptible, the NCLs are frequently classified as pediatric neurodegenerative diseases due to their greater pediatric prevalence. Initial clinical presentation usually consists of either seizures or retinopathy but develops to encompass both in conjunction with declining motor and cognitive function. The NCLs result in premature death due to the absence of curative therapies. Nevertheless, preclinical and clinical trials exist for various therapies. However, the genotypes of NCL animal models determine which therapeutic approaches can be assessed. Mutations of the CLN2 gene encoding a soluble lysosomal enzyme, tripeptidyl peptidase 1 (TPP1), cause late infantile NCL/CLN2 disease. The genotype of the original mouse model of CLN2 disease, Cln2-/-, excludes mutation guided therapies like antisense oligonucleotides and nonsense suppression. Therefore, the purpose of this study was to develop a model of CLN2 disease that allows for the assessment of all therapeutic approaches. Nonsense mutations in CLN2 disease are frequent, the most common being CLN2R208X. Thus, we created a mouse model that carries a mutation equivalent to the human p.R208X mutation. Molecular assessment of Cln2R207X/R207X tissues determined significant reduction in Cln2 transcript abundance and TPP1 enzyme activity. This reduction leads to the development of neurological impairment (e.g. tremors) and neuropathology (e.g. astrocytosis). Collectively, these assessments indicate that the Cln2R207X/R207X mouse is a valid CLN2 disease model which can be used for the preclinical evaluation of all therapeutic approaches including mutation guided therapies.
Collapse
Affiliation(s)
- Ryan D. Geraets
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Logan M. Langin
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Jacob T. Cain
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Camille M. Parker
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Rosanna Beraldi
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Attila D. Kovacs
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - Jill M. Weimer
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, United States of America
| | - David A. Pearce
- Children’s Health Research Center, Sanford Research, Sioux Falls, South Dakota, United States of America
- Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, United States of America
| |
Collapse
|
85
|
Abstract
PURPOSE To report a case of Batten disease due to a previously unreported mutation in PPT1. METHODS A 9-year-old girl presented with classic clinical findings of Batten Disease. RESULTS Genetic testing for the mutations in the most common Batten disease gene, CLN3, was negative. Evaluation of a panel of genes known to be implicated in neuronal ceroid lipofuscinoses revealed disease causing mutations in PPT1, one of which was novel. CONCLUSION Mutations in PPT1 typically cause the infantile form of neuronal ceroid lipofuscinosis. Clinical diagnosis of the juvenile form of neuronal ceroid lipofuscinosis, Batten disease, should still be considered in cases with negative CLN3 genetic testing. Batten disease can occur due to genetic heterogeneity. Testing of other members of the neuronal ceroid lipofuscinosis gene family can lead to confirmation of the correct diagnosis.
Collapse
|
86
|
Hirz M, Drögemüller M, Schänzer A, Jagannathan V, Dietschi E, Goebel HH, Hecht W, Laubner S, Schmidt MJ, Steffen F, Hilbe M, Köhler K, Drögemüller C, Herden C. Neuronal ceroid lipofuscinosis (NCL) is caused by the entire deletion of CLN8 in the Alpenländische Dachsbracke dog. Mol Genet Metab 2017; 120:269-277. [PMID: 28024876 DOI: 10.1016/j.ymgme.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage diseases that have been described in a variety of dog breeds, where they are caused by different mutations in different genes. However, the causative gene defect in the breed Alpenländische Dachsbracke remained unknown so far. Here we present two confirmed cases of NCL in Alpenländische Dachsbracke dogs from different litters of the same sire with a different dam harboring the same underlying novel mutation in the CLN8 gene. Case 1, a 2-year-old male Alpenländische Dachsbracke was presented with neurological signs including disorientation, character changes including anxiety states and aggressiveness, sudden blindness and reduction of food intake. Magnetic resonance imaging (MRI) scans showed cerebral atrophy with dilation of all cerebral ventricles, thinning of the intermediate mass of the thalamus and widening of the cerebral sulci. Postmortem examination of the central nervous system (CNS) showed neuronal loss in the cerebral cortex, cerebellum and spinal cord with massive intracellular deposits of ceroid pigment. Additional ceroid-lipofuscin deposits were observed in the enteric nervous system and in macrophages within spleen, lymph nodes and lung. Ultrastructural analyses confirmed NCL with the presence of osmiophilic membrane bounded lamellar-like structures. Case 2, a 1,5-year old female Alpenländische Dachsbracke was presented with progressive generalized forebrain disease including mental changes such as fearful reactions to various kinds of external stimuli and disorientation. The dog also displayed seizures, absence of menace reactions and negative cotton-ball test with normal pupillary light reactions. The clinical and post mortem examination yielded similar results in the brain as in Case 1. Whole genome sequencing of Case 1 and PCR results of both cases revealed a homozygous deletion encompassing the entire CLN8 gene as the most likely causative mutation for the NCL form observed in both cases. The deletion follows recessive inheritance since the dam and a healthy male littermate of Case 1 were tested as heterozygous carriers. This is the first detailed description of CLN8 gene associated NCL in Alpenländische Dachsbracke dogs and thus provides a novel canine CLN8 model for this lysosomal storage disease. The presence of ceroid lipofuscin in extracerebral tissues may help to confirm the diagnosis of NCL in vivo, especially in new dog breeds where the underlying mutation is not known.
Collapse
Affiliation(s)
- M Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany.
| | - M Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - A Schänzer
- Institute of Neuropathology, Justus-Liebig-University Giessen, Germany
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - E Dietschi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - H H Goebel
- Institute of Neuropathology Charité, University Berlin, Germany
| | - W Hecht
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| | - S Laubner
- Clinic for Small Animals - Surgery, Justus-Liebig-University Giessen, Germany
| | - M J Schmidt
- Clinic for Small Animals - Surgery, Justus-Liebig-University Giessen, Germany
| | - F Steffen
- Clinic for Small Animals - Neurology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - M Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - K Köhler
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Switzerland
| | - C Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
87
|
Sato S, Koike M, Funayama M, Ezaki J, Fukuda T, Ueno T, Uchiyama Y, Hattori N. Lysosomal Storage of Subunit c of Mitochondrial ATP Synthase in Brain-Specific Atp13a2-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3074-3082. [PMID: 27770614 DOI: 10.1016/j.ajpath.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023]
Abstract
Kufor-Rakeb syndrome (KRS) is an autosomal recessive form of early-onset parkinsonism linked to the PARK9 locus. The causative gene for KRS is Atp13a2, which encodes a lysosomal type 5 P-type ATPase. We recently showed that KRS/PARK9-linked mutations lead to several lysosomal alterations, including reduced proteolytic processing of cathepsin D in vitro. However, it remains unknown how deficiency of Atp13a2 is connected to lysosomal impairments. To address this issue, we analyzed brain tissues of Atp13a2 conditional-knockout mice, which exhibited characteristic features of neuronal ceroid lipofuscinosis, including accumulation of lipofuscin positive for subunit c of mitochondrial ATP synthase, suggesting that a common pathogenic mechanism underlies both neuronal ceroid lipofuscinosis and Parkinson disease.
Collapse
Affiliation(s)
- Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Manabu Funayama
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Ezaki
- Translational Research Center, Fukushima Medical University, Fukushima, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Neuropathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
88
|
Sato R, Inui T, Endo W, Okubo Y, Takezawa Y, Anzai M, Morita H, Saitsu H, Matsumoto N, Haginoya K. First Japanese variant of late infantile neuronal ceroid lipofuscinosis caused by novel CLN6 mutations. Brain Dev 2016; 38:852-6. [PMID: 27165443 DOI: 10.1016/j.braindev.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023]
Abstract
The clinical phenotypes of neuronal ceroid lipofuscinoses (NCLs) have been determined based on the age of onset and clinical symptoms. NCLs with onset between age 2 and 4years are known as late infantile neuronal ceroid lipofuscinoses (LINCLs). The clinical features of LINCLs include visual loss and progressive myoclonus epilepsy (PME) characterized by myoclonus, seizures, ataxia, and both mental and motor deterioration. There have been reports of several genes associated with LINCLs, with mutations in the CLN6 gene reported to cause variant forms of LINCLs (vLINCLs). Here, we report the first Japanese vLINCL caused by novel CLN6 mutations, found in a patient diagnosed by whole-exome sequencing. Visual acuity in our patient was preserved until the early teens. It remains to be elucidated if preserved visual function is related to the novel mutations of CLN6. Our case reveals the efficacy of whole-exome sequencing for examination of PMEs and highlights the existence of the CLN6 mutation in the Japanese population.
Collapse
Affiliation(s)
- Ryo Sato
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan; Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.
| | - Takehiko Inui
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan; Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Yusuke Takezawa
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan; Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Mai Anzai
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| | - Hiroyuki Morita
- Departmetn of Pediatrics, Fukushima Rehabilitation Center for Children, Koriyama, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| |
Collapse
|
89
|
Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors. Sci Rep 2016; 6:33578. [PMID: 27645106 PMCID: PMC5028738 DOI: 10.1038/srep33578] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 01/06/2023] Open
Abstract
Owls (Strigiformes) represent a fascinating group of birds that are the ecological night-time counterparts to diurnal raptors (Accipitriformes). The nocturnality of owls, unusual within birds, has favored an exceptional visual system that is highly tuned for hunting at night, yet the molecular basis for this adaptation is lacking. Here, using a comparative evolutionary analysis of 120 vision genes obtained by retinal transcriptome sequencing, we found strong positive selection for low-light vision genes in owls, which contributes to their remarkable nocturnal vision. Not surprisingly, we detected gene loss of the violet/ultraviolet-sensitive opsin (SWS1) in all owls we studied, but two other color vision genes, the red-sensitive LWS and the blue-sensitive SWS2, were found to be under strong positive selection, which may be linked to the spectral tunings of these genes toward maximizing photon absorption in crepuscular conditions. We also detected the only other positively selected genes associated with motion detection in falcons and positively selected genes associated with bright-light vision and eye protection in other diurnal raptors (Accipitriformes). Our results suggest the adaptive evolution of vision genes reflect differentiated activity time and distinct hunting behaviors.
Collapse
|
90
|
Chevaleyre V, Piskorowski RA. Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target. Trends Mol Med 2016; 22:645-655. [DOI: 10.1016/j.molmed.2016.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
91
|
Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity. Acta Histochem 2016; 118:496-504. [PMID: 27263093 DOI: 10.1016/j.acthis.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/21/2022]
Abstract
Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress.
Collapse
|
92
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
93
|
Labonne JDJ, Shen Y, Kong IK, Diamond MP, Layman LC, Kim HG. Comparative deletion mapping at 1p31.3-p32.2 implies NFIA responsible for intellectual disability coupled with macrocephaly and the presence of several other genes for syndromic intellectual disability. Mol Cytogenet 2016; 9:24. [PMID: 26997977 PMCID: PMC4797196 DOI: 10.1186/s13039-016-0234-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/09/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND While chromosome 1 is the largest chromosome in the human genome, less than two dozen cases of interstitial microdeletions in the short arm have been documented. More than half of the 1p microdeletion cases were reported in the pre-microarray era and as a result, the proximal and distal boundaries containing the exact number of genes involved in the microdeletions have not been clearly defined. RESULTS We revisited a previous case of a 10-year old female patient with a 1p32.1p32.3 microdeletion displaying syndromic intellectual disability. We performed microarray analysis as well as qPCR to define the proximal and distal deletion breakpoints and revised the karyotype from 1p32.1p32.3 to 1p31.3p32.2. The deleted chromosomal region contains at least 35 genes including NFIA. Comparative deletion mapping shows that this region can be dissected into five chromosomal segments containing at least six candidate genes (DAB1, HOOK1, NFIA, DOCK7, DNAJC6, and PDE4B) most likely responsible for syndromic intellectual disability, which was corroborated by their reduced transcript levels in RT-qPCR. Importantly, one patient with an intragenic microdeletion within NFIA and an additional patient with a balanced translocation disrupting NFIA display intellectual disability coupled with macrocephaly. CONCLUSION We propose NFIA is responsible for intellectual disability coupled with macrocephaly, and microdeletions at 1p31.3p32.2 constitute a contiguous gene syndrome with several genes contributing to syndromic intellectual disability.
Collapse
Affiliation(s)
- Jonathan D. J. Labonne
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Yiping Shen
- />Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Il-Keun Kong
- />Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongsangnam-do Korea
| | - Michael P. Diamond
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| | - Lawrence C. Layman
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Neuroscience Program, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hyung-Goo Kim
- />Department of Obstetrics & Gynecology, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
- />Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912 USA
| |
Collapse
|
94
|
Sondhi D, Crystal RG, Kaminsky SM. Gene Therapy for Inborn Errors of Metabolism: Batten Disease. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
95
|
Åkesson E, Sundström E. Human neural progenitor cells in central nervous system lesions. Best Pract Res Clin Obstet Gynaecol 2015; 31:69-81. [PMID: 26803559 DOI: 10.1016/j.bpobgyn.2015.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
Various immature cells can be isolated from human embryonic and fetal central nervous system (CNS) residual tissue and potentially be used in cell therapy for a number of neurological diseases and CNS insults. Transplantation of neural stem and progenitor cells is essential for replacing lost cells, particularly in the CNS with very limited endogenous regenerative capacity. However, while dopamine released from transplanted cells can substitute the lost dopamine neurons in the experimental models of Parkinson's disease, stem and progenitor cells primarily have a neuroprotective effect, probably through the release of trophic factors. Understanding the therapeutic effects of transplanted cells is crucial to determine the design of clinical trials. During the last few years, a number of clinical trials for CNS diseases and insults such as amyotrophic lateral sclerosis (ALS), stroke, and spinal cord trauma using neural progenitor cells have been initiated. Data from these early studies will provide vital information on the safety of transplanting these cells, which still is a major concern. That the beneficial results observed in experimental models also can be repeated in the clinical setting is highly hoped for.
Collapse
Affiliation(s)
- Elisabet Åkesson
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum 5th Floor, S-14157, Huddinge, and Stockholm Sjukhem Foundation, Box 12230, S-10226 Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum 5th Floor, S-14157, Huddinge, and Stockholm Sjukhem Foundation, Box 12230, S-10226 Stockholm, Sweden.
| |
Collapse
|
96
|
Bosch ME, Kielian T. Neuroinflammatory paradigms in lysosomal storage diseases. Front Neurosci 2015; 9:417. [PMID: 26578874 PMCID: PMC4627351 DOI: 10.3389/fnins.2015.00417] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Lysosomal storage diseases (LSDs) include approximately 70 distinct disorders that collectively account for 14% of all inherited metabolic diseases. LSDs are caused by mutations in various enzymes/proteins that disrupt lysosomal function, which impairs macromolecule degradation following endosome-lysosome and phagosome-lysosome fusion and autophagy, ultimately disrupting cellular homeostasis. LSDs are pathologically typified by lysosomal inclusions composed of a heterogeneous mixture of various proteins and lipids that can be found throughout the body. However, in many cases the CNS is dramatically affected, which may result from heightened neuronal vulnerability based on their post-mitotic state. Besides intrinsic neuronal defects, another emerging factor common to many LSDs is neuroinflammation, which may negatively impact neuronal survival and contribute to neurodegeneration. Microglial and astrocyte activation is a hallmark of many LSDs that affect the CNS, which often precedes and predicts regions where eventual neuron loss will occur. However, the timing, intensity, and duration of neuroinflammation may ultimately dictate the impact on CNS homeostasis. For example, a transient inflammatory response following CNS insult/injury can be neuroprotective, as glial cells attempt to remove the insult and provide trophic support to neurons. However, chronic inflammation, as seen in several LSDs, can promote neurodegeneration by creating a neurotoxic environment due to elevated levels of cytokines, chemokines, and pro-apoptotic molecules. Although neuroinflammation has been reported in several LSDs, the cellular basis and mechanisms responsible for eliciting neuroinflammatory pathways are just beginning to be defined. This review highlights the role of neuroinflammation in select LSDs and its potential contribution to neuron loss.
Collapse
Affiliation(s)
- Megan E. Bosch
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, USA
| | - Tammy Kielian
- Pathology and Microbiology, University of Nebraska Medical CenterOmaha, NE, USA
| |
Collapse
|
97
|
Licchetta L, Bisulli F, Fietz M, Valentino ML, Morbin M, Mostacci B, Oliver KL, Berkovic SF, Tinuper P. A novel mutation af Cln3 associated with delayed-classic juvenile ceroid lipofuscinois and autophagic vacuolar myopathy. Eur J Med Genet 2015; 58:540-4. [PMID: 26360874 DOI: 10.1016/j.ejmg.2015.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
Abstract
Juvenile neuronal-ceroid-lipofuscinosis (JNCL) is a lysosomal storage disease caused by mutations in CLN3. The most frequent mutation is a 1.02-kb deletion that, when homozygous, causes the classical clinical presentation. Patients harboring mutations different than the major deletion show a marked clinical heterogeneity, including protracted disease course with possible involvement of extraneuronal tissues. Cardiac involvement is relatively rare in JNCL and it is usually due to myocardial storage of ceroid-lipofuscinin. Only recently, histopathological findings of autophagic vacuolar myopathy (AVM) were detected in JNCL patients with severe cardiomyopathy. We describe a 35-year-old male showing a delayed-classic JNCL with visual loss in childhood and neurological manifestations only appearing in adult life. He had an unusual CLN3 genotype with an unreported deletion (p.Ala349_Leu350del) and the known p.His315Glnfs*67 mutation. Autophagic vacuolar myopathy was shown by muscle biopsy. At clinical follow-up, moderately increased CPK levels were detected whereas periodic cardiac assessments have been normal to date. Adult neurologists should be aware of protracted JNCL as cause of progressive neurological decline in adults. The occurrence of autophagic vacuolar myopathy necessitates periodic cardiac surveillance, which is not usually an issue in classic JNCL due to early neurological death.
Collapse
Affiliation(s)
- L Licchetta
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - F Bisulli
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Fietz
- Department of Biochemical Genetics, SA Pathology, Adelaide, South Australia, Australia
| | - M L Valentino
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Morbin
- Neuropathology & Neurology V - IRCCS Foundation "Istituto Neurologico Carlo Besta", Milan, Italy
| | - B Mostacci
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy
| | - K L Oliver
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - S F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - P Tinuper
- IRCCS Istituto delle Scienze Neurologiche of Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
98
|
Sawiak SJ, Perumal SR, Rudiger SR, Matthews L, Mitchell NL, McLaughlan CJ, Bawden CS, Palmer DN, Kuchel T, Morton AJ. Rapid and Progressive Regional Brain Atrophy in CLN6 Batten Disease Affected Sheep Measured with Longitudinal Magnetic Resonance Imaging. PLoS One 2015; 10:e0132331. [PMID: 26161747 PMCID: PMC4498759 DOI: 10.1371/journal.pone.0132331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022] Open
Abstract
Variant late-infantile Batten disease is a neuronal ceroid lipofuscinosis caused by mutations in CLN6. It is a recessive genetic lysosomal storage disease characterised by progressive neurodegeneration. It starts insidiously and leads to blindness, epilepsy and dementia in affected children. Sheep that are homozygous for a natural mutation in CLN6 have an ovine form of Batten disease Here, we used in vivo magnetic resonance imaging to track brain changes in 4 unaffected carriers and 6 affected Batten disease sheep. We scanned each sheep 4 times, between 17 and 22 months of age. Cortical atrophy in all sheep was pronounced at the baseline scan in all affected Batten disease sheep. Significant atrophy was also present in other brain regions (caudate, putamen and amygdala). Atrophy continued measurably in all of these regions during the study. Longitudinal MRI in sheep was sensitive enough to measure significant volume changes over the relatively short study period, even in the cortex, where nearly 40% of volume was already lost at the start of the study. Thus longitudinal MRI could be used to study the dynamics of progression of neurodegenerative changes in sheep models of Batten disease, as well as to assess therapeutic efficacy.
Collapse
Affiliation(s)
- Stephen J. Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Box 65 Addenbrooke’s Hospital, Hills Road, Cambridge, United Kingdom
| | | | - Skye R. Rudiger
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, South Australia
| | - Loren Matthews
- South Australian Research and Development Institute, Roseworthy, South Australia
| | - Nadia L. Mitchell
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences and Batten Animal Research Network, Lincoln University, Lincoln, New Zealand
| | - Clive J. McLaughlan
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, South Australia
| | - C. Simon Bawden
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Gilles Plains, South Australia
| | - David N. Palmer
- Department of Molecular Biosciences, Faculty of Agriculture and Life Sciences and Batten Animal Research Network, Lincoln University, Lincoln, New Zealand
| | - Timothy Kuchel
- South Australian Research and Development Institute, Roseworthy, South Australia
| | - A. Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
99
|
A novel CLN2/TPP1 mutation in a patient with late infantile neuronal ceroid lipofuscinosis. Neurol Sci 2015; 36:1917-9. [PMID: 26032578 DOI: 10.1007/s10072-015-2272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
100
|
Di Giacopo R, Cianetti L, Caputo V, La Torraca I, Piemonte F, Ciolfi A, Petrucci S, Carta C, Mariotti P, Leuzzi V, Valente EM, D'Amico A, Bentivoglio A, Bertini E, Tartaglia M, Zampino G. Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. J Neurol Sci 2015; 356:65-71. [PMID: 26143525 DOI: 10.1016/j.jns.2015.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This work investigated the molecular cause responsible for a late-onset parkinsonism-dystonia phenotype in three Italian siblings, and clinically characterize this condition. METHODS Extensive neurophysiological and neuroradiological exams were performed on the three sibs. Most frequent late-onset metabolic diseases were ruled out through laboratory and biochemical analyses. A whole exome sequencing (WES) approach was used to identify the molecular cause underlying this condition. RESULTS AND CONCLUSIONS Peculiar neurologic phenotype was characterized by dystonia-parkinsonism, cognitive impairment, gait ataxia and apraxia, pyramidal signs. WES analysis allowed the identification of a compound heterozygosity for two nucleotide substitutions (c.1340G>A, p.R447H; c.790C>T, p.Q264X) affecting the TPP1 gene in the three affected siblings. Biochemical analyses demonstrated abrogated TPP1 catalytic activity in primary skin fibroblasts, but revealed residual activity in leukocytes. Our findings document that late infantile neuronal ceroid lipofuscinosis (CLN2), which is caused by TPP1 gene mutations, should be considered in the differential diagnosis of autosomal recessive dystonia-parkinsonism syndromes. The availability of enzyme replacement therapy and other therapeutic approaches for ceroid lipofuscinoses emphasizes the value of reaching an early diagnosis in patients with atypical and milder presentation of these disorders.
Collapse
Affiliation(s)
- Raffaella Di Giacopo
- Center for Neurocognitive Rehabilitation (CERiN), Mind/Brain Sciences (CIMEC), University of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy; Centro per i Disturbi del Movimento, Università Cattolica del sacro Cuore, Rome, Italy.
| | - Luciano Cianetti
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- Dipartimento di Medicina Sperimentale, Università La Sapienza, Rome, Italy
| | - Ilaria La Torraca
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Andrea Ciolfi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Petrucci
- Dipartimento di Medicina Sperimentale, Università La Sapienza, Rome, Italy; Laboratorio Mendel, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claudio Carta
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Mariotti
- Istituto di Neuropsichiatria Infantile, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Leuzzi
- Dipartimento di Pediatria e Neuropsichiatria Infantile, Università La Sapienza, Rome, Italy
| | - Enza Maria Valente
- Laboratorio Mendel, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Dipartimento di Medicina e Chirurgia, Università di Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Annarita Bentivoglio
- Centro per i Disturbi del Movimento, Università Cattolica del sacro Cuore, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|