51
|
Pap S, Stankovits GJ, Gyalai-Korpos M, Makó M, Erdélyi I, Turk Sekulic M. Biochar application in organics and ultra-violet quenching substances removal from sludge dewatering leachate for algae production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113446. [PMID: 34403921 DOI: 10.1016/j.jenvman.2021.113446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Algae production in nutrient rich sludge dewatering leachate after biogas production is a promising option for wastewater treatment plants. However, the ultra-violet (UV) absorbing characteristic of UV-quenching substances (UVQS) existing in these waters can notably reduce the light transmission within the liquid body. The present work demonstrates a comparative adsorptive removal of UVQS, and other organic substances (expressed as COD and TOC) onto the "acid catalyst" functionalised adsorbent (PPhA) and commercial activated carbon (CAC) from leachate originating from leftover sludge dewatering after biogas production. Laboratory scale column studies were performed to investigate the adsorption performance of selected parameters. The PPhA increased the UV transmittance of leachate more than 4 times and outperformed CAC. Bed Depth Service Time and Yan models were used on the experimental data in order to estimate the maximum adsorption capacity and evaluate the characteristics of the fixed-bed. The PPhA equilibrium uptake of COD and TOC amounted to 5.7 mg/g and 0.9 mg/g, respectively. The postulated removal mechanism in environmentally relevant conditions (e.g., pH neutral) suggested a complex interaction between the biochar and organic macromolecules. Diluted phosphoric acid solution (0.01 mol/L) was successfully used for the column regeneration. Beside the UVQS, PPhA showed affinity towards toxic heavy metals (e.g., Pb, Ni, Co) pointing out the rich surface chemistry of the PPhA. Based on the obtained results and successfully implemented scale-up methodology, the low-cost PPhA adsorbent might effectively compete with the CAC as a highly efficient platform in wastewaters leachate processing.
Collapse
Affiliation(s)
- Sabolc Pap
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Trg Dositeja Obradovića 6, Novi Sad, Serbia; Environmental Research Institute, University of the Highlands and Islands, Thurso, Caithness, Scotland, KW14 7JD, UK.
| | - Gergely József Stankovits
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111, Budapest, Hungary
| | | | - Magdolna Makó
- Budapest Sewage Works Ltd., Asztalos Sándor utca 4, H-1087, Budapest, Hungary
| | - István Erdélyi
- Budapest Sewage Works Ltd., Asztalos Sándor utca 4, H-1087, Budapest, Hungary
| | - Maja Turk Sekulic
- University of Novi Sad, Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, Trg Dositeja Obradovića 6, Novi Sad, Serbia
| |
Collapse
|
52
|
Nguyen KT, Ahmed MB, Mojiri A, Huang Y, Zhou JL, Li D. Advances in As contamination and adsorption in soil for effective management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113274. [PMID: 34271355 DOI: 10.1016/j.jenvman.2021.113274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a heavy metal that causes widespread contamination and toxicity in the soil environment. This article reviewed the levels of As contamination in soils worldwide, and evaluated how soil properties (pH, clay mineral, organic matter, texture) and environmental conditions (ionic strength, anions, bacteria) affected the adsorption of As species on soils. The application of the adsorption isotherm models for estimating the adsorption capacities of As(III) and As(V) on soils was assessed. The results indicated that As concentrations in contaminated soil varying significantly from 1 mg/kg to 116,000 mg/kg, with the highest concentrations being reported in Mexico with mining being the dominating source. Regarding the controlling factors of As adsorption, soil pH, clay mineral and texture had demonstrated the most significant impacts. Both Langmuir and Freundlich isotherm models can be well fitted with As(III) and As(V) adsorption on soils. The Langmuir adsorption capacity varied in the range of 22-42400 mg/kg for As(V), which is greater than 45-8901 mg/kg for As(III). The research findings have enhanced our knowledge of As contamination in soil and its underlying controls, which are critical for the effective management and remediation of As-contaminated soil.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| |
Collapse
|
53
|
Boussouga YA, Mohankumar MB, Gopalakrishnan A, Welle A, Schäfer AI. Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions. WATER RESEARCH 2021; 201:117315. [PMID: 34198199 DOI: 10.1016/j.watres.2021.117315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
The removal of arsenic(III) (As(III)) with nanofiltration (NF) was investigated with emphasis on the role of salinity, pH and organic matter on retention mechanisms. While no measurable impact of salinity on As(III) retention with NF membranes (NF270 and NF90) was observed, a significant increase in As(III) retention occurred from pH 9 to pH 12. This was explained by As(III) deprotonation at pH > 9 that enhanced Donnan (charge) exclusion. Of the five different organic matter types investigated at 10 mgC/L, only humic acid (HA) increased As(III) retention by up to 10%. Increasing HA concentration to 100 mgC/L enhanced As(III) retention by 40%, which was attributed to As(III)-HA complexation. Complexation was confirmed by field-flow fractionation inductively coupled plasma mass spectrometry (FFF-ICP-MS) measurements, which showed that the bound As(III) increased with HA concentration. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that NF90, which exhibited lower permeability reduction than NF270, has accumulated a lower amount of As(III) in the presence of HA, where As(III)-HA complex was formed in the feed solution. This finding implies that As(III) retention with NF technology can be enhanced by complexation, instead of using other methods such as oxidation or pH adjustement.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Malini Bangalore Mohankumar
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Akhil Gopalakrishnan
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Institute of Functional Interfaces (IFG), KIT, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Nano Micro Facility (KNMF), KIT, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
54
|
Kabir MM, Akter S, Ahmed FT, Mohinuzzaman M, Didar-Ul-Alam M, Mostofa KMG, Islam ARMT, Niloy NM. Salinity-induced fluorescent dissolved organic matter influence co-contamination, quality and risk to human health of tube well water, southeast coastal Bangladesh. CHEMOSPHERE 2021; 275:130053. [PMID: 33984905 DOI: 10.1016/j.chemosphere.2021.130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/20/2021] [Indexed: 05/24/2023]
Abstract
Salinity in the drinking water of coastal Bangladesh results from a severe socio-economic, environmental and human health safety crisis. In this paper, we analyzed 120 tube well water samples from southeast coastal Bangladesh for eight trace metals (TMs). Contamination, quality and risk of TMs to human health of tube well water influenced by salinity-induced fluorescent dissolved organic matter (FDOM) were assessed using multiple pollution indices, GW quality index (GWQI), traditional health risk, and PARAFAC models. The mean values of EC, Fe, Cd, Cr, and As surpassed the limit set by local and international standards with significant spatial variations. The results of the GWQI showed that 52.5% of the samples were within the moderate-poor quality range in the study region. PARAFAC modeling identified three groundwater FDOM constituents with a coupling of humic acid (HA), fulvic acid (FA), and degraded fulvic acid (DFA)-like substances. Moreover, the positive correlations among EC, TMs, HA, FA, and DFA proved that salinity-induced FDOM had significant contributions to the dissolution potential of contaminants in the aquifer, hence increased the mobilization of TMs. Health risk models suggested that children are more susceptible to the non-carcinogenic and carcinogenic risks than adults at the community level. The carcinogenic risks of Cd, As, Pb, and Cr via oral exposure pathway indicated the highest carcinogenic risks for both adults and children. The findings also indicated that the salinity-derived FDOM-TMs complex is the key driver to groundwater co-contaminations and elevated health impacts. Besides, high concentrations of Fe and As are the key causal issues for sustainable water safety. Thus, strict water management and monitoring plans require preventing these contaminants for sustainable community well-being in the coastal region.
Collapse
Affiliation(s)
- Mohammad Mahbub Kabir
- Department of Environmental Science & Disaster Management, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh; Research Cell, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh.
| | - Samia Akter
- Department of Environmental Science & Disaster Management, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh
| | - Farah Tasneem Ahmed
- Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, Dhaka, 1349, Bangladesh
| | - Mohammad Mohinuzzaman
- Department of Environmental Science & Disaster Management, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh
| | - Md Didar-Ul-Alam
- Research Cell, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | | | - Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
55
|
Zhang Y, Yan C, Liu H, Pu S, Chen H, Zhou B, Yuan R, Wang F. Bacterial response to soil property changes caused by wood ash from wildfire in forest soils around mining areas: Relevance of bacterial community composition, carbon and nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125264. [PMID: 33548782 DOI: 10.1016/j.jhazmat.2021.125264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The different physical-chemical properties of the black ash (200-500 °C) and white ash (>510 °C) generated by wildfire may result in varied impacts on soil biological and abiotic indicators. Many studies have highlighted the environmental impacts of wood ash application due to its complex mixture of beneficial and detrimental compounds. However, few studies have compared the effect of black ash and white ash on soil, especially for the heavy metal polluted soil. In this study, we used the comparative analysis of parallel microcosm experiments to study the impacts of white ash and black ash on bioavailable heavy metals and metabolic potentials of microbial community. The results indicated that both white ash and black ash increased the concentration of soil bioavailable As and Cr, while the increasing trend of bioavailable As could be limited by Ca in the treatment of white ash. The addition of black ash could enhance the abundance of genes related to the Calvin cycle (CBB). Different kinds of wood ash inputs into soils could cause the differences in the microbial taxa for carbon fixation, as indicated by the dominance of different taxa for carbon fixation in white ash versus black ash treatments. Additionally, both white ash and black ash impaired dissimilatory nitrate reduction to ammonium (DNRA), nitrate assimilation and nitrification, while white ash enhanced denitrification.
Collapse
Affiliation(s)
- Yiyue Zhang
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Changchun Yan
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, 1318 Jixian North Road, 246133 Anqing, Anhui, China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, 610059 Chengdu, Sichuan, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, and Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, 100083 Beijing, China.
| |
Collapse
|
56
|
Wang Y, Zhang G, Wang H, Cheng Y, Liu H, Jiang Z, Li P, Wang Y. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125146. [PMID: 33485230 DOI: 10.1016/j.jhazmat.2021.125146] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) play key roles in the biotransformation of arsenic in groundwater systems. However, the effects of different types of DOM on arsenic biogeochemistry remain poorly understood. In this study, four typical DOM compounds (acetate, lactate, AQS and humic acid) were amended to high As aquifer sediments to investigate their effects on arsenic/iron biotransformation and microbial community response. Results demonstrated that different DOM drove different microbial community shifts and then enhanced microbially-mediated arsenic release and iron reduction. With labile DOM (acetate and lactate) amendment, the abundance of putative dissimilatory iron and sulfate reducers Desulfomicrobium and Clostridium sensu stricto increased within the first week, and subsequently the anaerobic fermentative bacterial genus Acetobacterium and arsenate/sulfate-reducing bacterial genus Fusibacter became predominant. In contrast, recalcitrant DOM (AQS and humic acid) mainly stimulated the abundances of sulfur compounds respiratory genus Desulfomicrobium and fermentative bacterial genus Alkalibacter in the whole incubation. Accompanied with the microbial community structure and function shifts, dissolved organic carbon concentration and oxidation-reduction potential changed and the arsenic/iron reduction increased, which resulted in the enhanced arsenic mobilization. Collectively, the present study linked DOM type to microbial community structure and explored the potential roles of different DOM on arsenic biotransformation in aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Guanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
57
|
Gallego S, Esbrí JM, Campos JA, Peco JD, Martin-Laurent F, Higueras P. Microbial diversity and activity assessment in a 100-year-old lead mine. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124618. [PMID: 33250311 DOI: 10.1016/j.jhazmat.2020.124618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Mining activities frequently leave a legacy of residues that remain in the area for long periods causing the pollution of surroundings. We studied on a 100 year-old mine, the behavior of potentially toxic elements (PTEs) and their ecotoxicological impact on activity and diversity of microorganisms. The PTEs contamination assessment allowed the classification of the materials as highly (reference- and contaminated-samples) and very highly polluted (illegal spill of olive mill wastes (OMW), tailings, and dumps). OMW presented the lowest enzymatic activities while tailings and dumps had low dehydrogenase and arylsulfatase activities. All the α-diversity indices studied were negatively impacted in dumps. Tailings had lower Chao1 and PD whole tree values as compared to those of reference-samples. β-diversity analysis showed similar bacterial community composition for reference- and contaminated-samples, significantly differing from that of tailings and dumps. The relative abundance of Gemmatimonadetes, Bacteroidetes, and Verrucomicrobia was lower in OMW, tailings, and dumps as compared to reference-samples. Fifty-seven operational taxonomic units were selected as responsible for the changes observed between samples. This study highlights that assessing the relationship between physicochemical properties and microbial diversity and activity gives clues about ongoing regulating processes that can be helpful for stakeholders to define an appropriate management strategy.
Collapse
Affiliation(s)
- Sara Gallego
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France.
| | - José María Esbrí
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| | - Juan Antonio Campos
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Jesús Daniel Peco
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Ronda de Calatrava, 7, 13071 Ciudad Real, Spain
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Agroécologie, Dijon, France
| | - Pablo Higueras
- Instituto de Geología Aplicada, IGeA, Universidad de Castilla-La Mancha, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain; Escuela de Ingeniería Minera e Industrial de Almadén, Plaza de Manuel Meca, 1, 13400 Almadén, Ciudad Real, Spain
| |
Collapse
|
58
|
Wang S, Zheng K, Li H, Feng X, Wang L, Liu Q. Arsenopyrite weathering in acidic water: Humic acid affection and arsenic transformation. WATER RESEARCH 2021; 194:116917. [PMID: 33609907 DOI: 10.1016/j.watres.2021.116917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Arsenopyrite is a common metal sulfide mineral and weathers readily in the open environment, releases As, and pollutes the surrounding environment. Humic acid (HA) is ubiquitous in soils, sediments and waters, and contains various functional groups and complex with arsenic, iron and other metal ions that affect the weathering behavior of arsenopyrite. Because As, iron, and HA are redox-active compounds, electrochemical techniques, including polarization curves, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), were used to fundamentally investigate the weathering process and mechanism of arsenopyrite over a wide range of environmental relevant conditions. Polarization curves showed higher HA concentrations (0-1000 mg•L-1), higher temperatures (5-35°C) or acidities (pH 1.0-7.0) promoted arsenopyrite weathering; there was a linear relationship between the corrosion current density (icorr), temperature (T) and acidity (pH): icorr = -3691.2/T + 13.942 and icorr = -0.2445pH + 2.2125, respectively. Arsenopyrite weathering readily occurred in the presence of HA as confirmed by its activation energy of 24.1 kJ•mol-1, and EIS measurements confirmed that the kinetics were controlled by surface reaction as confirmed by decreased double layer resistance. CV and surface characterization (FTIR and XPS) showed that arsenopyrite initially oxidized to S0, As(III) and Fe2+, then S0 and Fe2+ were ultimately converted into SO42- and Fe3+, while As(III) oxidized to As(V). Furthermore, the carboxyl (-COOH) and phenolic (-OH) of HA could bind with As(III)/(V) and Fe3+ via a ligand exchange mechanism forming As(III)/(V)-HA and As(III)/(V)-Fe-HA complexes that hinders the formation of FeAsO4 and decreases the bioavailability of As. Findings gained from this study are valuable for the understanding of the fate and transport of As in acidic conditions, and have powerful implications for the remediation and management of As-bearing sites affected by mining activities.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Kai Zheng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Heping Li
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaonan Feng
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Luying Wang
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingyou Liu
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
59
|
Jacob-Tatapu KJ, Albert S, Grinham A. Sediment arsenic hotspots in an abandoned tailings storage facility, Gold Ridge Mine, Solomon Islands. CHEMOSPHERE 2021; 269:128756. [PMID: 33153844 DOI: 10.1016/j.chemosphere.2020.128756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Gold mining of arsenopyrite ore bodies result in waste tailings that contain elevated levels of arsenic. Disposal of these wastes in a Tailings Storage Facility (TSF) represents a substantial environmental risk if not properly managed. The Gold Ridge mine on Guadalcanal, in the Solomon Islands was abandoned from 2014 to 2018, leaving the TSF with little ongoing environmental management. Surface water quality monitoring observed a threefold increase in surface water arsenic concentrations over a 6-month period when no mining operations were occurring. This study aimed to investigate bottom sediments as the source of elevated concentrations of arsenic in the surface waters of the TSF during mine closure. This was achieved by analysing arsenic concentrations in the surface water, sediment porewaters and by quantifying sediment arsenic flux as dissolved oxygen availability declined. It was evident that bottom sediments of the TSF were the potential source of arsenic, having an average arsenic concentration of 437.9 mg kg-1. In addition, average sediment porewater arsenic concentrations across the TSF were 1.07 mg L-1, with a large central zone of highly elevated concentrations peaking at over 17 mg L-1. Long term sediment core incubations demonstrated arsenic effluxes from all sites monitored under both oxic and hypoxic conditions, ranging from 0.72 mg m-2 day-1 to 7.01 mg m-2 day-1 respectively. These results suggest that arsenic hotspots within the TSF have the capability to contribute to increased arsenic concentrations in surface waters. Management of mine TSF's should consider these geochemical interactions that can occur in abandoned sites.
Collapse
Affiliation(s)
- Krista J Jacob-Tatapu
- Mines Division, Ministry of Mines, Energy and Rural Electrification, Solomon Islands Government, Solomon Islands
| | - Simon Albert
- School of Civil Engineering, The University of Queensland, St Lucia, Brisbane, 4072, Australia.
| | - Alistair Grinham
- School of Civil Engineering, The University of Queensland, St Lucia, Brisbane, 4072, Australia
| |
Collapse
|
60
|
Alshehri F, Almadani S, El-Sorogy AS, Alwaqdani E, Alfaifi HJ, Alharbi T. Influence of seawater intrusion and heavy metals contamination on groundwater quality, Red Sea coast, Saudi Arabia. MARINE POLLUTION BULLETIN 2021; 165:112094. [PMID: 33639335 DOI: 10.1016/j.marpolbul.2021.112094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Groundwater samples were collected from 115 boreholes and dugwells to document the influence of seawater intrusion and heavy metals contamination on groundwater quality of the Al Qunfudhah region along the Red Sea coast, Saudi Arabia. The groundwater quality index (GWQI), metal index (MI), and heavy metal pollution index (HPI) were calculated and multivariate analyses were conducted. pH, EC, TDS, Cl-, HCO3-, SO42-, NO3-, NO2-, PO43-, SiO2, F-, NH4+, Ca2+, Mg2+, Na+, K+, B, Ba, Cd, Cr, As, Ni, Pb, Se, Sb, Hg, Cu, and Zn were analyzed and interpreted. The average values for TDS, Ca2+, Mg2+, Na+, K+, Cl-, HCO3-, SO42-, B, and Se were greater than the permissible limit of WHO standards for drinking water. Piper plots indicated three types of groundwater facies, Na-K-SO4-Cl (72.50%), Ca-Mg-So4-Cl (25.50%), and Na-K-CO3-HCO3 (2%). Based on GWQI, MI, and HPI, approximately 37-70% of the groundwater samples fell under poor quality to unsuitable waters (strongly to severely affected), especially in the western part along the Red Sea coast. This proven the role of seawater intrusion through the NE-SW fault system, dissolution/precipitation of carbonates, silicates, fluorite, and gypsum, as well as anthropogenic factors in increasing the concentrations of heavy metals and controlling the chemistry and quality of the groundwater in the study area. These findings provide an important information on heavy metals pollution in coastal aquifer with seawater intrusion along the Red Sea.
Collapse
Affiliation(s)
- Fahad Alshehri
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Sattam Almadani
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia; Geology Department, Faculty of Science, Zagazig University, Egypt.
| | | | - Hussain J Alfaifi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
61
|
Zhang Y, Gan Y, Yu K, Han L. Fractionation of carbon isotopes of dissolved organic matter adsorbed to goethite in the presence of arsenic to study the origin of DOM in groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1225-1238. [PMID: 32651930 DOI: 10.1007/s10653-020-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Natural dissolved organic matter (DOM) in groundwater plays a crucial role in mobilizing arsenic (As). The complex contribution of DOM sources makes it hard to predict how the variation of environmental conditions would affect the distribution of As concentrations. Identifying the carbon isotope fractionation of DOM is the key to quantify DOM sources based on stable carbon isotopes. To understand the magnitude and variability in the carbon isotopic fractionation of DOM in competitive adsorption with As(V), this study investigated the δ13C values of fulvic acid (FA) and DOM during adsorption to goethite in the presence of As(V), at a specific pH and temperature. The carbon isotopic enrichment factor (ε) of FA in the adsorption to goethite was 0.65 ± 2.11‰ at pH 4.1, 25 °C, suggesting that FA molecules containing 13C were more easily adsorbed to goethite. An increasing temperature increased εFA from 0.32 ± 1.17‰ to 0.82 ± 5.39‰ at 15-35 °C. For dissolved sediment organic matter (DSOM) cases, molecules containing 13C were more easily adsorbed to goethite. However, enrichment factors were not detected due to a reduction in DSOM adsorption and the diversity of natural humic substances or groups. The findings provide basic data for accurately ascertaining DOM sources through carbon isotopes, which is significant for predicting As fluctuation in aquifers affected by monsoon climate and/or human activities.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, China
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yiqun Gan
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, China.
- State Key Laboratory of Biogeology and Environment Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Kai Yu
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, China
| | - Li Han
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
62
|
Majumder S, Banik P. Inhibition of arsenic transport from soil to rice grain with a sustained field-scale aerobic rice cultural practice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111620. [PMID: 33221047 DOI: 10.1016/j.jenvman.2020.111620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
A field-scale investigation has been carried out to assess the uptake of Arsenic (As) in rice under aerobic practice. Two consecutive field experiments have been designed considering the rice cultivation system's variation in the comparison between aerobic and flooded practices during monsoon and post-monsoon seasons using the cultivars of Swarna masuri and Satabdi, respectively. Notwithstanding the impact of the rice cultivation systems, the implications of amendments like iron, silicon, and organic matter were also taken into account on As uptake by rice. We hypothesized that the application of amendments in combination with sustained aerobic practice would reduce the subsequent accumulation of As in rice as compared to flooded practice (control). However, regardless of the cultivation systems, the grain productivity of rice delivered a non-significant impact. Results revealed that the plant available As content in soil under aerobic practice was averaged 22% and 26% lower than flooded, during monsoon and post-monsoon seasons, respectively. Aerobic treatment significantly reduced accumulation of As in root and straw as compared to flooded (p < 0.05), which in accordance corresponded to lower translocation efficiency of As from root to straw. For Swarna masuri, the bioaccumulation of As in polished rice, husk and bran was reduced by 33%, 48% and 47%, respectively, under aerobic practice. On the contrary, Satabdi exhibited a reduction in As accumulation with 54% in polished rice, followed by 31% and 38% in husk and bran, respectively. The inhibition of As uptake in rice was notably impacted by iron, silicon, and organic matter. Following the treatments of rice cultivation system and amendment, the bioaccumulation of As in rice plant parts was arranged in the order of root > straw > grain > husk > bran > polished rice in both the cultivars. The health risk assessment was also considered to estimate the potential human health risk measuring the estimated dietary intake and the health hazard quotient. The results highlighted that the consumption of rice grown in aerobic practice was ensured to provide non-carcinogenic health risk as compared to rice grown in flooded practice. In the overall attempt, the present investigation corroborates the insinuation of specific management practices in quantifying the reduction of As bioavailability in rice with subject to the concern of reducing human health risk.
Collapse
Affiliation(s)
- Supriya Majumder
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India
| | - Pabitra Banik
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
| |
Collapse
|
63
|
Li W, Gu K, Yu Q, Sun Y, Wang Y, Xin M, Bian R, Wang H, Wang YN, Zhang D. Leaching behavior and environmental risk assessment of toxic metals in municipal solid waste incineration fly ash exposed to mature landfill leachate environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:68-75. [PMID: 33285375 DOI: 10.1016/j.wasman.2020.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Solidification/stabilization pretreatment + landfill disposal in municipal solid waste (MSW) landfill sites is a widely accepted MSW incineration (MSWI) fly ash (FA) management strategy in China. However, in reality, the stability of FA disposed in MSW landfill sites may be affected by the organic landfill leachate environment. The purpose of this study was to explore the mobility and environmental risks of six toxic metals (Mn+, Pb/Zn/Cu/Cd/Cr/Ni), from raw and solidified/stabilized FA, by simulating a leaching environment with mature landfill leachate (MLL). The leaching of Mn+ mainly occurred in the early leaching stage, and their leaching behavior was controlled by the diffusion of surface Mn+ in the FA matrix. The destructive effect of dissolved organic matter (DOM) on the local precipitation-dissolution equilibrium of FA-leachate interface, the formation of non-adsorptive DOM-Mn+ complex (easy to migrate), and the competitive effect of DOM on the binding sites of Mn+ on the surface of the FA matrix may play an important role in increasing the leaching level of most Mn+. By contrast, the potential of solidified FA in reducing the environmental risk level of leached Mn+ was better than that of stabilized FA. However, the immobilization capability of solidification/stabilization pretreatment on various types of Mn+ in FA should be judged according to their practical disposal environment. Compared to MLL leaching tests, Acetic Acid Buffer Solution Method (HJ/T300-2007) can effectively strengthen the exposure environment and provide a reliable reference level of environmental risk for MSWI FA disposed in MSW landfill sites.
Collapse
Affiliation(s)
- Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Kai Gu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Qianwen Yu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China.
| | - Yan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Mingxue Xin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Huawei Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Ya-Nan Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao University of Technology, School of Environmental and Municipal Engineering, Qingdao 266033, China
| |
Collapse
|
64
|
Sorptive and Redox Interactions of Humic Substances and Metal(loid)s in the Presence of Microorganisms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
65
|
Su Y, Kwong RWM, Tang W, Yang Y, Zhong H. Straw return enhances the risks of metals in soil? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111201. [PMID: 32905933 DOI: 10.1016/j.ecoenv.2020.111201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Interactions between organic matter (OM) and metals in soils are important natural mechanisms that can mitigate metal bioaccumulation in terrestrial environments. A primary source of OM in soils is straw return, accounting for more than 65% of OM input. Straw-OM has long been believed to reduce metal bioaccumulation, e.g., by immobilizing metals in soils. However, there is growing evidence that straw return could possibly enhance bioavailability and thus risks (i.e., food safety) of some metals in crops, including Cd, Hg, and As. Poor understanding of straw return-induced increases in metal bioavailability would add uncertainty in assessing or mitigating risks of metals in contaminated farming soils. Here, 863 pieces of literature (2000-2019) that reported the effects of straw return on metal bioavailability and bioaccumulation were reviewed. Mechanisms responsible for the increased metal mobility and bioavailability under straw return are summarized, including the effects of dissolution, complexation, and methylation. Effects of straw return on the physiology and the absorption of metals in plants is also discussed (i.e., physiological effect). These mechanisms are then used to explain the observed increases in the mobility, bioavailability, and bioaccumulation of Cd, Hg, and As under straw amendment. Information summarized in this study highlights the importance to re-consider the current straw return policy, particularly in metal-contaminated farmlands.
Collapse
Affiliation(s)
- Yao Su
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
66
|
Ngatia LW, De Oliveira LM, Betiku OC, Fu R, Moriasi DN, Steiner JL, Verser JA, Taylor RW. Relationship of arsenic and chromium availability with carbon functional groups, aluminum and iron in Little Washita River Experimental Watershed Reservoirs, Oklahoma, USA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111468. [PMID: 33254384 DOI: 10.1016/j.ecoenv.2020.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Sediment from three reservoirs located in the Little Washita River Experimental Watershed (LWREW) in Oklahoma, USA with contrasting dominant land uses were analyzed for total and extractable concentrations of arsenic (As) and chromium (Cr), and the potential ecologic risk to benthic organisms. Extractable As ranged from 0.24 to 1.21 mg kg-1, in the order grazing>cropland>forest and 0.13-0.58 mg kg-1 for extractable Cr, in the order of forest>grazing>cropland. However, only approximately < 1.5% of total As and < 4% of total Cr were extractable. Total As ranged from 16.2 to 141 mg kg-1 and total Cr ranged from 5.06 to 40.1 mg kg-1 both in the order of cropland>grazing>forest. The sediment exhibited an alkaline pH (8.0-8.7). As sorption exhibited a positive relationship with Al (r = 0.9995; P = 0.0001), Fe (r = 0.9829; P = 0.0001), and C (r = 0.4090; P = 0.0017) and Cr correlated positively with Al (r = 0.9676 P = 0.0001), Fe (r = 0.9818; P = 0.0001), and C (r = 0.3368; P = 0.0111). In addition, both As and Cr exhibited positive relationships with carbon (C) functional groups in the order of O-alkyl C> methoxyl C> alkyl C> aromatic C> carboxyl C> phenolic C. The sediment concentration analysis results illustrated that As in all reservoirs exceeded their respective Threshold Effect Level (TEL) and/or Probable Effect Level (PEL) indicating that existing concentrations of metals in these sediments were sufficiently high to cause adverse effects. However, Cr concentrations in all reservoirs evaluated was lower compared to the TEL and PEL.
Collapse
Affiliation(s)
- L W Ngatia
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - L M De Oliveira
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - O C Betiku
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - R Fu
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - D N Moriasi
- USDA-ARS Grazinglands Research Laboratory, 7207 W. Cheyenne Street, El Reno, OK 73036, USA
| | - J L Steiner
- Agronomy Department, Kansas State University, Manhattan, KS 66506, USA
| | - J A Verser
- USDA-ARS Grazinglands Research Laboratory, 7207 W. Cheyenne Street, El Reno, OK 73036, USA
| | - R W Taylor
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
67
|
Naveed S, Li C, Zhang J, Zhang C, Ge Y. Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111200. [PMID: 32889308 DOI: 10.1016/j.ecoenv.2020.111200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria widely distribute in the aqueous ecosystem and produce abundant extracellular polymeric substances (EPS), yet little is known about how the quantity and composition of cyanobacterial EPS change upon As exposure, and what are functions of these complex biopolymers in the As sorption and transformation processes. Here we extracted the EPS from Synechocystis sp. PCC6803, characterized their properties, quantified their components upon exposure to arsenite (As(III))/arsenate (As(V)) treatments, and investigated As binding and speciation as affected by the levels of EPS and solution pH. The total binding sites, zeta potential and reducing power of EPS were 17.47 mmol g-1, -19.72 mV and 1.71. The amounts of EPS increased by 22-65.3% and 13.8-39% when the cells were treated with 10-500 μM As(III) and As(V) respectively. The As removal was influenced by the EPS doses and solution pH, with 52.8% at pH 8.5 for As(III) and 49.5% at pH 4.5 for As(V) at 300 mg L-1 EPS. In addition, As speciation was transformed with the addition of EPS. As(V) and As(III) respectively accounted for 4.9-20.3% and 6.5-26.7% of the total dissolved As after the EPS were added (100-300 mg L-1) to the As(III) and As(V) solutions. Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation-emission fluorescence spectra (3D-EEM) revealed that As was bound to functional groups such as C═O, ─NH, and ─OH in the EPS via surface complexation/hydrophobic interactions. Taken together, this study demonstrated that the EPS extracted from Synechocystis were capable to bind and transform As and could be potentially applied to remove or detoxify As in solutions.
Collapse
Affiliation(s)
- Sadiq Naveed
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chonghua Li
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu Zhang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhang
- Demonstration Laboratory of Element and Life Science Research, Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Ge
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
68
|
Nguyen TH, Hoang HNT, Bien NQ, Tuyen LH, Kim KW. Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4141-4158. [PMID: 32506174 DOI: 10.1007/s10653-020-00611-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/27/2020] [Indexed: 05/28/2023]
Abstract
Nui Phao mine in Thai Nguyen Province, Vietnam, is the second-largest tungsten (W) open-pit mine in the world, but the level of environmental impacts is not well known. In order to examine the heavy metal contamination in the ecosystem of this mining area, we analyzed six trace elements (As, Cd, Cr, Cu, Pb and Zn) in the collected soil samples. The analytical results showed that all the soil samples were contaminated by Cd and As. Most of the soil samples were contaminated by As (mean value 50.93 ± 55.44 mg/kg) and Cd (mean value 15.22 ± 9.51 mg/kg), which figures are up to 16 and 23 times higher, respectively, compared with the Vietnamese soil quality standard for agriculture (QCVN 03-MT:2015/BTNMT) of 15 mg/kg for As and 1.5 mg/kg for Cd. Contamination factor (CF), enrichment factor (EF), geo-accumulation index (Igeo), principal component analysis (PCA) and hierarchical clustering analysis (HCA) were used to identify the influence of mining activity in the contamination. The CF, EF, pollution index (PI) and Igeo indicated that this area was extremely polluted by Cd, severely to moderately-heavily polluted by As and slightly to moderately polluted by other elements such as Cr, Cu, Pb and Zn. The PCA and HCA results also attribute the source of As, Pb and Zn contamination and enrichment of Cd, Cr and Cu in the study area to Nui Phao mining activities. The PI and contamination degree (Cd) values of soil quality indicate that the study area was contaminated with particular reference to Cd and As and the level of contamination was decreased in the order of Pb > Cr > Cu > Zn. The study area had high potential ecological risk, and the carcinogenic risk value was higher than the acceptable value (1 × 10-6 to 1 × 10-4). This means that the local resident health is strongly affected by Nui Phao mining activities both directly and indirectly via food consumption, when rice plant grown in the paddy field is the dominant crop in the study area.
Collapse
Affiliation(s)
- Thi Ha Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Ha Nguyen Thi Hoang
- VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam
| | - Nguyen Quoc Bien
- VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam
| | - Le Huu Tuyen
- VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, Vietnam
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
- International Environmental Research Institute (IERI), Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
69
|
Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite. SOIL SYSTEMS 2020; 4:1-16. [PMID: 33629038 PMCID: PMC7898115 DOI: 10.3390/soilsystems4040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phases that could form and the related transformation of arsenic species during coprecipitation. We conducted batch tests to precipitate ferrous (133 mM) and ferric (133 mM) ions in sulfate (533 mM) solutions spiked with As (0–100 mM As(V) or As(III)) and titrated with solid NaOH (400 mM). Goethite and lepidocrocite were formed at 0.5–5 mM As(V) or As(III). Only lepidocrocite formed at 10 mM As(III). Only goethite formed in the absence of added As(V) or As(III). Iron (II, III) hydroxysulfate green rust (sulfate green rust or SGR) was formed at 50 mM As(III) at an equilibrium pH of 6.34. X-ray analysis indicated that amorphous solid products were formed at 10–100 mM As(V) or 100 mM As(III). The batch tests showed that As removal ranged from 98.65–100%. Total arsenic concentrations in the formed solid phases increased with the initial solution arsenic concentrations ranging from 1.85–20.7 g kg−1. Substantial oxidation of initially added As(III) to As(V) occurred, whereas As(V) reduction did not occur. This study demonstrates that concentrations and species of arsenic in the parent solution influence the mineralogy of coprecipitated solid phases, which in turn affects As redox transformations.
Collapse
|
70
|
Abdullah MIC, Sah ASRM, Haris H. Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Trop Life Sci Res 2020; 31:109-125. [PMID: 33214859 PMCID: PMC7652249 DOI: 10.21315/tlsr2020.31.3.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An investigation study was conducted in Bukit Merah Reservoir (BMR) for the assessment of arsenic concentration in the surface sediment in 23 sampling stations. The sediment samples were digested and analysed for arsenic using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Sediment parameters such as pH (4.42 ± 0.71), redox potential (121.77 ± 42.45 mV), conductivity (205.7 ± 64.07 μS cm−1) and organic matter (25.35 ± 9.34%) were also examined. The main objectives of this study are to determine the arsenic distribution and concentration and at the same time to assess the enrichment of arsenic using the geoaccumulation index (Igeo) and enrichment factor (EF). This study shows the total arsenic concentration in the surface sediment of BMR is 4.302 ± 2.43 mg kg−1 and found to be below the threshold value of Canadian Interim Sediment Quality Guidelines (ISQG). High arsenic concentration is recorded near the southern part of the lake where anthropogenic activities are prevalent. Based on Igeo, 13% of sampling stations are categorised as moderately polluted, 52.2% as unpolluted to moderately polluted and the rest is categorised as unpolluted. EF shows 78.3% stations are classified as extremely high enrichment and the rest as very high enrichment. This finding provides important information on the status of arsenic contamination in BMR and creating awareness concerning the conservation and management of the reservoir in the future.
Collapse
Affiliation(s)
| | | | - Hazzeman Haris
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
71
|
Xu Y, Wang K, Zhou Q, Zhang L, Qian G. Effects of humus on the mobility of arsenic in tailing soil and the thiol-modification of humus. CHEMOSPHERE 2020; 259:127403. [PMID: 32603963 DOI: 10.1016/j.chemosphere.2020.127403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The ability of thiol-modified humic acids (HAs) to release arsenic in tailings soil after being modified with different sulfur-containing reagents were significantly improved. The structure and physicochemical properties of humic acid (HA) before and after thiol-modification were characterized. The 3-MPTS-HA treated with 3-mercaptopropyltrimethoxysilane (3-MPTS) effectively improved the mobility of arsenic, and its reducing ability was increased from 2 mmol g-1 to 3.54 mmol g-1. The S content of humic acids were also significantly increased after treatment with sulfur-containing reagents, in which the oxygen-containing functional group (e.g., C = O, C-O) on the surface of HA may be the active sites for binding with sulfur-containing reagents. It was found in the XPS spectrum that because the thiol group is easily oxidized, there are many S forms in thiol-modified HA. The -SH content in Na2S·9H2O-HA, l (+)-Cysteine-HA (Cys-HA), thioglycolic acid (TGA-HA) and 3-MPTS-HA was determined by fluorescence method to be 13.9, 78.45, 90.34, and 192.29 μmol g-1, respectively. The study demonstrated that surface thiol modification can increase the abundance of thiol in HA and enhance reactivity, which will further promote the application of HA in the treatment of heavy metal contaminated tailing soil.
Collapse
Affiliation(s)
- Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kaili Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qinghao Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Liting Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
72
|
Redox Dependent Arsenic Occurrence and Partitioning in an Industrial Coastal Aquifer: Evidence from High Spatial Resolution Characterization of Groundwater and Sediments. WATER 2020. [DOI: 10.3390/w12102932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Superlative levels of arsenic (As) in groundwater and sediment often result from industrial pollution, as is the case for a coastal aquifer in Southern Italy, with a fertilizer plant atop. Understanding conditions under which As is mobilized from the sediments, the source of that As, is necessary for developing effective remediation plans. Here, we examine hydrogeological and geochemical factors that affect groundwater As concentrations in a contaminated coastal aquifer. Groundwater has been subject to pump-and-treat at a massive scale for more than 15 years and is still ongoing. Nevertheless, As concentrations (0.01 to 100 mg/L) that are four orders of magnitude more than Italian drinking water standard of 10 μg/L are still present in groundwater collected from about 50 monitoring wells over three years (2011, 2016, and 2018). As was quantified in three different locations by sequential extractions of 29 sediment cores in 2018 (depth 2.5 m to −16.5 m b.g.l.), combined with groundwater As composition, the aqueous and solid partitioning of As were evaluated by partition coefficient (Kd) in order to infer the evolution of the contaminant plumes. Most sediment As is found in easily extractable and/or adsorbed on amorphous iron oxides/hydroxides fractions based on sequential extractions. The study shows that As contamination persists, even after many years of active remediation due to the partitioning to sediment solids. This implies that the choice of remediation techniques requires an improved understanding of the biogeochemical As-cycling and high spatial resolution characterization of both aqueous and solid phases for sites of interest.
Collapse
|
73
|
Emenike PC, Tenebe IT, Neris JB, Omole DO, Afolayan O, Okeke CU, Emenike IK. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114795. [PMID: 32531623 DOI: 10.1016/j.envpol.2020.114795] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
River sediments contain environmental fingerprints that provide useful ecological information. However, the geochemistry of River Atuwara sediments has received less attention over the years. One hundred and twenty-six sediments from 21 locations were collected over a two-season period from River Atuwara, and a detailed investigation of the land use and land cover (LULC) change between 1990 and 2019, analysis of selected toxic and potentially toxic metal(oid)s (TPTM) (Cu, As, Cd, Pb, Ni, Cr, Zn, Fe, Co and Al) using ICP-OES, pollution index assessment, potential source identification (using center log-transformation approach), potential ecological, and human health risk assessment were conducted. The results of the LULC change revealed that the built-up area increased by 95.58 km2, at an average rate of 3.186 km2/year over the past 30 years. The mean concentration of metal(oid)s increased in the order of Cd < As < Cr < Pb < Co < Ni < Cu < Zn < Fe < Al, and Cd < As < Cr < Co < Pb < Ni < Cu < Zn < Fe < Al during the dry and wet seasons, respectively. Meanwhile, the statistical analysis of the data spectrum inferred possible contamination from lithological and anthropogenic sources. According to the pollution load index, 90.48% of the sediment samples are polluted by the metal(oid)s. Potential ecological risk assessment identified Ni, As, and Cd as problematic to the ecological community of River Atuwara. Regarding the metal-specific hazard quotient via ingestion route, the risks are in order of Co ≫ As ≫ Pb > Cr > Cd > Al > Ni > Cu > Zn > Fe for both seasons and the carcinogenic risk for children via ingestion route presented a value higher than the safe limits for As, Cd, Cr, and Ni during both seasons. This outcome highlights the need for prompt action towards the restoration of environmental quality for communities surrounding River Atuwara.
Collapse
Affiliation(s)
- PraiseGod Chidozie Emenike
- Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria; Cranfield Water Science Institute, School of Water, Energy and Environment, Cranfield University, MK43 0AL, Bedford, United Kingdom.
| | | | - Jordan Brizi Neris
- Department of Chemistry, Federal University of São Carlos, Highway Washington Luis Km 235, CEP 13565-905, São Carlos, São Paulo, Brazil.
| | | | - Olaniyi Afolayan
- Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria.
| | | | | |
Collapse
|
74
|
Ecotoxicity of Pore Water in Meadow Soils Affected by Historical Spills of Arsenic-Rich Tailings. MINERALS 2020. [DOI: 10.3390/min10090751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was carried out in Złoty Stok, a historical centre of gold and arsenic mining. Two kinds of soil material, containing 5020 and 8000 mg/kg As, represented a floodplain meadow flooded in the past by tailings spills and a dry meadow developed on the plateau built of pure tailings, respectively. The effects of soil treatment with a cattle manure and mineral fertilizers were examined in an incubation experiment. Soil pore water was collected after 2, 7, 21, 90, and 270 days, using MacroRhizon samplers and analyzed on As concentrations and toxicity, and assessed in three bioassays: Microtox, the Microbial Assay for Risk Assessment (MARA), and Phytotox, with Sinapis alba as a test plant. In all samples, As concentrations were above 4.5 mg/L. Fertilization with manure caused an intensive release of As, and its concentration in pore water of floodplain soil reached 81.8 mg/L. Mineral fertilization caused a release of As only from the pure tailings soil. The results of bioassays, particularly of Phytotox and MARA, correlated well with As concentrations, while Microtox indices depended additionally on other factors. Very high toxicity was associated with As > 20 mg/L. Despite an effect of “aging”, pore water As remained at the level of several mg/L, causing a potential environmental risk.
Collapse
|
75
|
Luo C, Routh J, Dario M, Sarkar S, Wei L, Luo D, Liu Y. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138122. [PMID: 32408435 DOI: 10.1016/j.scitotenv.2020.138122] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.
Collapse
Affiliation(s)
- Chen Luo
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Joyanto Routh
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden; Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China.
| | - Mårten Dario
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping SE-58183, Sweden
| | - Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Lezhang Wei
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Dinggui Luo
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| | - Yu Liu
- Linköping University - Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou CN-510006, China
| |
Collapse
|
76
|
Loredo-Portales R, Bustamante-Arce J, González-Villa HN, Moreno-Rodríguez V, Del Rio-Salas R, Molina-Freaner F, González-Méndez B, Archundia-Peralta D. Mobility and accessibility of Zn, Pb, and As in abandoned mine tailings of northwestern Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26605-26620. [PMID: 32372357 DOI: 10.1007/s11356-020-09051-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Generation, storage, and management of waste coming from industrial processes are a growing worldwide problem. One of the main contributors is the mining industry, in particular tailings generated by historical mining, which are barely maintained, especially in developing countries. Assessing the impact of a mining site to surrounding soils and ecosystems can be complex, especially when determining mobility and accessibility of the contaminants is required to perform ecological and human health risk assessment. As an effort to obtain information regarding mobility and accessibility of some potentially toxic elements (Zn, Pb, and As) from an historical mining site of northwestern Mexico, the abandoned mine tailings of San Felipe de Jesús in central Sonora and adjacent agricultural soils were investigated. Mobility and accessibility were assessed by means of sequential extraction procedures and using simulated physiological media. Additionally, an assessment of accidental oral intake was calculated considering the bioaccessible fractions. Results show that higher concentrations of contaminants were found in sulfide-rich tailings (Zn = 92,540; Pb = 21,288; As = 19,740 mg kg-1) compared with oxide-rich tailings (Zn = 43,240; Pb = 14,763; As = 13,401 mg kg-1). Concentrations in agricultural soils were on average Zn = 4755, Pb = 2840, and As = 103 mg kg-1. Zinc was mainly recovered from labile fractions in oxide-rich tailings (~ 60%) and in a lower amount from sulfide-rich tailings (~ 30%). Pb and As were mainly associated with residual fractions (80-95%) in both types of tailings. The percentage of mobile fractions (sum of water-soluble, exchangeable, and bound to carbonate fractions) in agricultural soils was as follows: Zn ~ 60%, Pb ~ 15%, and As ~ 70%. Regarding the phytoaccessible fraction, the studied elements in mine tailings and agricultural soil samples exceeded the threshold limits, except for As in agricultural soils. According to data obtained, toxic effects were also calculated. As for daily oral intake for non-carcinogenic effects in adults and children, only Pb and As exceeded reference dose values, especially in children exposed to sulfide-rich tailings and agricultural soils. Regarding carcinogenic effects of Pb and As, most of the samples were above acceptable risk values.
Collapse
Affiliation(s)
- René Loredo-Portales
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico.
| | - Jesús Bustamante-Arce
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Héctor Ney González-Villa
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Verónica Moreno-Rodríguez
- Ingeniería en Geociencias, Universidad Estatal de Sonora, Av. Ley Federal del Trabajo s/n, Col. Apolo, 83100, Hermosillo, Sonora, Mexico
| | - Rafael Del Rio-Salas
- Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
- Laboratorio Nacional de Geoquímica y Mineralogía-LANGEM, Mexico City, Mexico
| | - Francisco Molina-Freaner
- Instituto de Ecología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| | - Blanca González-Méndez
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| | - Denisse Archundia-Peralta
- CONACYT-Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Colosio y Madrid s/n, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
77
|
Barreto MSC, Elzinga EJ, Alleoni LRF. Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114196. [PMID: 32163805 DOI: 10.1016/j.envpol.2020.114196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a toxic element that leads the list of human health threats and is one of the priority contaminants in soil and water. In order to remove As(V) and/or reduce its mobility, filters and amendments with high affinity for As(V) adsorption are used in drinking water treatment or directly applied to the soil, thereby promoting its immobilization. Hausmannite and hematite were compared by in-situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy and batch experiments for evaluating As(V) adsorption and sequential desorption by citrate. The pH and contact time were used as variables. Hausmanite adsorbed more As(V) than hematite. As(V) was adsorbed on the mineral surface of simultaneously inner- and outer-sphere species. Inner-sphere bidentate complex form preferentially at high pH, early adsorption time and low surface loading, while the monodentate species should be responsible to increase total As(V) adsorption at low pH, later adsorption kinetics and higher As(V) surface loading. Citrate was effective in causing As(V) desorption at higher citric acid concentrations and higher pH values. After a long time of incubation, the neogenesis of a manganite by hausmnannite oxidation was observed. Concomitantly, less As(V) was desorbed by citrate desorption, even in the presence of high citric acid concentrations. Hausmannite was an efficient mineral for As(V) removal and immobilization.
Collapse
Affiliation(s)
- Matheus Sampaio C Barreto
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil; Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, USA.
| | - Evert J Elzinga
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Luís Reynaldo F Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
78
|
Kaur J, Anand V, Srivastava S, Bist V, Tripathi P, Naseem M, Nand S, Khare P, Srivastava PK, Bisht S, Srivastava S. Yeast strain Debaryomyces hansenii for amelioration of arsenic stress in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110480. [PMID: 32203774 DOI: 10.1016/j.ecoenv.2020.110480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a serious threat for environment and human health. Rice, the main staple crop is more prone to As uptake. Bioremediation strategies with heavy metal tolerant rhizobacteria are well known. The main objective of the study was to characterize arsenic-resistant yeast strains, capable of mitigating arsenic stress in rice. Three yeast strains identified as Debaryomyces hansenii (NBRI-Sh2.11), Candida tropicalis (NBRI-B3.4) and Candida dubliniensis (NBRI-3.5) were found to have As reductase activity. D. hansenii with higher As tolerance has As expulsion ability as compared to other two strains. Inoculation of D. hansenii showed improved detoxification through scavenging of reactive oxygen species (ROS) by the modulation of SOD and APX activity under As stress condition in rice. Modulation of defense responsive gene (NADPH, GST, GR) along with arsR and metal cation transporter are the probable mechanism of As detoxification as evident with improved membrane (electrolyte leakage) stability. Reduced grain As (~40% reduction) due to interaction with D. hansenii (NBRI-Sh2.11) further validated it's As mitigation property in rice. To the best of our knowledge D. hansenii has been reported for the first time for arsenic stress mitigation in rice with improved growth and nutrient status of the plant.
Collapse
Affiliation(s)
- Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | - Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India; Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India
| | | | - Mariya Naseem
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Sampurna Nand
- Environmental Technology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Puja Khare
- Chemistry Division, CSIR-CIMAP, Lucknow, India
| | | | - Saraswati Bisht
- Department of Botany, Kumaun University, Nainital, 263002, India
| | - Suchi Srivastava
- Academy of Scientific and Innovative Research, AcSIR, Ghaziabad, 201002, India.
| |
Collapse
|
79
|
Cao LTT, Bourquin LD. Relationship of Arsenic and Lead in Soil with Fruit and Leaves of Apple Trees at Selected Orchards in Michigan. J Food Prot 2020; 83:935-942. [PMID: 32428933 DOI: 10.4315/0362-028x.jfp-19-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/16/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Historically, lead arsenate pesticides were commonly used in fruit orchards. Residues of metals from this historical use can persist in soil for decades, which can result in potential risk for humans if they consume fruits grown on contaminated soil. This research was conducted to assess lead and arsenic levels in apples, leaves, and orchard soil where the apples were grown to determine the relationship between metal levels in fruits and fruit products with those in orchard soil. Soil and tree tissue samples were collected from several Michigan farms, and metal concentrations were quantified by using microwave extraction and inductively coupled plasma mass spectrometry. Soil samples were collected at depths of 0 to 20 cm and 20 to 40 cm at a distance of 1 m from the tree trunk. Fruit samples also were processed into juice and pomace fractions to assess the partitioning of arsenic and lead during juice processing. The lead concentration was significantly higher in topsoil (9.4 μg/kg) compared with subsoil (6.9 μg/kg), but the arsenic content did not differ between the two soil layers (P > 0.05). Lead concentrations in apple leaves were correlated with lead in topsoil (0 to 20 cm; P = 0.03). Concentrations of total arsenic in all juice samples were less than 1 μg/kg and showed less potential than lead for uptake and translocation to fruits. There was no significant relationship between soil arsenic content and total arsenic concentrations in juice, pomace, and leaf samples (P > 0.05). Results of this research indicate that lead and total arsenic concentrations in apples and apple products from these selected orchards in Michigan are unlikely to be impacted by the contamination of these metals in orchard soil. HIGHLIGHTS
Collapse
Affiliation(s)
- Loan Thi Thanh Cao
- Department of Food Science and Human Nutrition, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Leslie D Bourquin
- Department of Food Science and Human Nutrition, and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
80
|
Ma X, Li C, Yang L, Ding S, Zhang M, Zhang Y, Zhao T. Evaluating the mobility and labile of As and Sb using diffusive gradients in thin-films (DGT) in the sediments of Nansi Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136569. [PMID: 31955086 DOI: 10.1016/j.scitotenv.2020.136569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) and antimony (Sb) contamination in the aquatic environment have received significant attention recently due to the potential risks they pose. However, there have been few studies about the simultaneous behaviors of As and Sb, resulting in a poor understanding of their occurrence at the sediment-water interface (SWI), especially at the millimeter scale. In this study, soluble and labile concentrations of As and Sb were investigated using high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films technique (DGT) in Nansi Lake, China, respectively. Results showed mean soluble concentrations of As and Sb were 5.00 μg/L and 2.05 μg/L, respectively. DGT-labile concentrations of As and Sb ranged from 0 to 0.80 μg/L and from 0.50 to 0.67 μg/L, respectively. In the vertical profile, different tends for DGT-labile concentration As and Sb were observed. The reductive dissolution of Fe/Mn (hydr)oxides was considered as a crucial driver for As release and mobility, which was supported by its significant correlation (r = 0.348, p < .05) with Fe. While DGT-labile Sb concentration was negatively correlated with DGT-labile Fe (r = -0.24, p < .05) and Mn (r = -0.324, p < .05), this may be attributed to the absorption of the Sb(III) by the green rusts in sub-oxic and mildly alkaline environments. The significant differences between DGT-labile concentration and community Bureau of Reference (BCR) sequential extraction were shown using a linear regression relationship, indicating that BCR chemical fractions cannot reflect the mobility of As and Sb in the sediment. Furthermore, the net diffusive fluxes of As and Sb based on DGT-labile concentration were 0.24 and - 0.56 μg∙m-2∙day-1, respectively. There was a potential risk of toxicity to the overlying water from As.
Collapse
Affiliation(s)
- Xin Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cai Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liyuan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - You Zhang
- SHUIFA planning & design CO., LTD, Jinan 250100, China
| | - Tingting Zhao
- Shandong lake basin management & informationize engineering technology research center, Jinan 250000, China
| |
Collapse
|
81
|
Abstract
The molecular structure of a commercial sample of humic acids (HA) was investigated by membrane dialysis experiments (MD) and low-pressure size-exclusion chromatography (LP-SEC). MD showed that HA molecules were retained by dialysis membrane with a cut-off of 6–8 kDa, independently from HA concentration (15 or 150 mg L−1), NaHCO3 concentration (0.005–2.0 mol L−1), and from propan 2-ol (0–5 v/v %). SEC experiments at low pressure gave chromatograms with a broad peak, with an elution volume between those of the globular proteins bovine serum albumin (molecular weight = 66.5 kDa) and lysozyme from egg (molecular weight = 14.4 kDa). The pattern of the chromatogram did not vary with HA concentration, and second-run chromatograms of single eluted fractions showed relatively sharp peaks. From these data, we reveal that the commercial HA sample analysed has a macromolecular structure rather than being a supramolecular aggregate of relatively small molecules, as recently proposed for some samples of HA obtained from different sources.
Collapse
|
82
|
Glodowska M, Stopelli E, Schneider M, Lightfoot A, Rathi B, Straub D, Patzner M, Duyen VT, Berg M, Kleindienst S, Kappler A. Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of Fe III-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4149-4159. [PMID: 32157881 DOI: 10.1021/acs.est.9b07183] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural organic matter (NOM) can contribute to arsenic (As) mobilization as an electron donor for microbially-mediated reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides. However, to investigate this process, instead of using NOM, most laboratory studies used simple fatty acids or sugars, often at relatively high concentrations. To investigate the role of relevant C sources, we therefore extracted in situ NOM from the upper aquitard (clayey silt) and lower sandy aquifer sediments in Van Phuc (Hanoi area, Vietnam), characterized its composition, and used 100-day microcosm experiments to determine the effect of in situ OM on Fe(III) mineral reduction, As mobilization, and microbial community composition. We found that OM extracted from the clayey silt (OMC) aquitard resembles young, not fully degraded plant-related material, while OM from the sandy sediments (OMS) is more bioavailable and related to microbial biomass. Although all microcosms were amended with the same amount of C (12 mg C/L), the extent of Fe(III) reduction after 100 days was the highest with acetate/lactate (43 ± 3.5% of total Fe present in the sediments) followed by OMS (28 ± 0.3%) and OMC (19 ± 0.8%). Initial Fe(III) reduction rates were also higher with acetate/lactate (0.53 mg Fe(II) in 6 days) than with OMS and OMC (0.18 and 0.08 mg Fe(II) in 6 days, respectively). Although initially more dissolved As was detected in the acetate/lactate setups, after 100 days, higher concentrations of As (8.3 ± 0.3 and 8.8 ± 0.8 μg As/L) were reached in OMC and OMS, respectively, compared to acetate/lactate-amended setups (6.3 ± 0.7 μg As/L). 16S rRNA amplicon sequence analyses revealed that acetate/lactate mainly enriched Geobacter, while in situ OM supported growth and activity of a more diverse microbial community. Our results suggest that although the in situ NOM is less efficient in stimulating microbial Fe(III) reduction than highly bioavailable acetate/lactate, it ultimately has the potential to mobilize the same amount or even more As.
Collapse
Affiliation(s)
- M Glodowska
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| | - E Stopelli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - M Schneider
- Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - A Lightfoot
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - B Rathi
- Hydrogeology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| | - D Straub
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen 72074, Germany
| | - M Patzner
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| | - V T Duyen
- Vietnam National University, Hanoi - Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), Hanoi 10000, Vietnam
| | - M Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - S Kleindienst
- Microbial Ecology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| | - A Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| |
Collapse
|
83
|
Shen B, Wang X, Zhang Y, Zhang M, Wang K, Xie P, Ji H. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135229. [PMID: 32000353 DOI: 10.1016/j.scitotenv.2019.135229] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) and arsenic (As) are usually found in contaminated soils. Their bioavailabilities are often related to pH and Eh, which indicate a generally contrasting or antagonistic effect. In this paper, the pH and Eh of soil samples were altered by adding organic fertilizer, and Tessier sequential extraction procedures were used to extract heavy metal speciation. With increasing pH and decreasing Eh, the content of the exchangeable, carbonate-bound, Fe-Mn oxide-bound, and organic-bound forms of the Cd decreased. The content of the residual form of Cd increased. The content of water-soluble Cd also increased. In terms of As, the content of the water-soluble, exchangeable, carbonate-bound, and organic-bound forms increased, and the content of the residual form decreased. Bioavailable forms contained water-soluble and exchangeable forms. With increasing pH or decreasing Eh, bioavailable Cd content linearly decreased, whereas bioavailable As content exponentially increased. The fitting curve showed that compared with 200 mV, the bioavailable Cd content decreased by 52.4%, and the bioavailable As content increased by 3.2 times at -400 mV. Finally, using the indicator of trade-off value, optimum pH = 7.31, and Eh = -130 mV, the bioavailable Cd and As contents were simultaneously maintained at a relatively low level. The novelty of this paper is studying the effects of different soil pH and Eh values changed by organic fertilizer on the speciation of Cd and As rather than the direct quantitative effects between organic fertilizer and the speciation of Cd and As, which can better explain the mechanism underlying the effect of organic fertilizer on the speciation of Cd and As.
Collapse
Affiliation(s)
- Biaobiao Shen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuemei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Meng Zhang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Xie
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Municipal Key Laboratory of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
84
|
Fei J, Ma J, Yang J, Liang Y, Ke Y, Yao L, Li Y, Liu D, Min X. Effect of simulated acid rain on stability of arsenic calcium residue in residue field. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:769-780. [PMID: 30852732 DOI: 10.1007/s10653-019-00273-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
In recent years, acid rain had a serious negative impact on the leaching behavior of industrial waste residue. Researches were mainly focused on the environmental hazards of heavy metal in the leachate, but ignored the effects of heavy metal speciation on the stability of waste residue in the subsequent stabilization process. In this study, the unstable calcium-arsenic compounds in the arsenic calcium residue were firstly removed by leaching process; subsequently, the crystallization agent was added to treat the remaining calcium-arsenic mixture. The results of the leaching process demonstrated that the decrease in particle size and pH value directly affected the increase in the cumulative leaching amount of arsenic, and the cumulative leaching ratio reached 1.55%. In addition, the concentration of arsenic decreased from 3583 to 49.1 mg L-1. After the crystallization process, the arsenic concentration was lower than the limit value of Identification Standards for Hazardous Wastes (GB 5085.3-2007). The SEM analysis showed the bulk structures, and XRD pattern confirmed that they were the stable compounds. Moreover, the result of XRD and SEM illustrated that acid concentration, chloride ions and sulfate ions were contributed to the transformation and growth of stable calcium arsenate compounds. Therefore, effective control of the acidity of acid rain, the type of anions in acid rain, and the particle size of residues would contribute to adjusting the arsenic speciation to be more stable. The leaching-crystallization process was of great significance to improve the stability of the arsenic-containing residue.
Collapse
Affiliation(s)
- Jiangchi Fei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jingjing Ma
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jinqin Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yanjie Liang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Yong Ke
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Liwei Yao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Yuancheng Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Degang Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, China.
| |
Collapse
|
85
|
Shi H, Wang S, Li J, Zhang L. Modeling the impacts of policy measures on resident's PM2.5 reduction behavior: an agent-based simulation analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:895-913. [PMID: 31552522 DOI: 10.1007/s10653-019-00397-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
With the rapid economic growth of China, the increasingly serious environmental problems of haze pollution have become a large concern. Urban resident's PM2.5 reduction behavior contributes significantly to Chinese haze pollution control. Resident-level policy measures are beneficial for encouraging residents to engage in PM2.5 reduction behaviors. The current research aims to explore the long-term intervention effects of three types of policies (i.e., command and control policies, economic incentive policies and education-guided policies) on resident's PM2.5 reduction intention and actual behavior. Based on the agent-based modeling and simulation approach, a resident's PM2.5 reduction behavioral simulation model is developed, and data adopted from a questionnaire survey are analyzed. The simulation results show that resident's PM2.5 reduction intention is motivated by the interactions among resident agents, and it eventually stabilizes at a higher level (from 4.11 to 4.48). Moreover, the effects of the three types of policy measures on PM2.5 reduction behavior vary depending on the specific scenarios. With respect to single-policy scenarios, these policies all enhance the actual resident's PM2.5 reduction behavior over the long term. The effects of command and control policies (M = 3.42) and education-guided policies (M = 3.44) are much better than those of the economic incentive policies (M = 3.15). Regarding policy combination scenarios, a combination of economic incentive policies and education-guided policies (MII = 4.15) has a remarkable promotional effect over others for encouraging residents to conduct PM2.5 reduction behaviors. Based on the results, implications and suggestions for improving current resident-level PM2.5 reduction policies and encouraging resident's PM2.5 reduction behavior are provided.
Collapse
Affiliation(s)
- Haixia Shi
- School of Economics and Management, Southwest University of Science and Technology, Mianyang, 621010, Sichuan Province, People's Republic of China
| | - Shanyong Wang
- School of Public Affairs, University of Science and Technology of China, Hefei, 230026, Anhui Province, People's Republic of China.
| | - Jun Li
- School of Management, University of Science and Technology of China, Hefei, 230026, Anhui Province, People's Republic of China
| | - Li Zhang
- School of Economics and Management, Southwest University of Science and Technology, Mianyang, 621010, Sichuan Province, People's Republic of China
- School of Management, University of Science and Technology of China, Hefei, 230026, Anhui Province, People's Republic of China
| |
Collapse
|
86
|
Lu W, Chen N, Feng C, Deng Y, Zhang J, Chen F. Treatment of polluted river sediment by electrochemical oxidation: Changes of hydrophilicity and acute cytotoxicity of dissolved organic matter. CHEMOSPHERE 2020; 243:125283. [PMID: 31760292 DOI: 10.1016/j.chemosphere.2019.125283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
River sediment is the main internal pollution source of water body. This study evaluated the feasibility of electrochemical oxidation (EO) for polluted river sediment treatment. The hydrophilic and acute cytotoxicity (ACT) of dissolved organic matter (DOM) during electrolysis were mainly investigated. Meanwhile, the behavior of sediment evolution was also characterized. The results showed that the EO process was feasible for the treatment of polluted river sediment. The COD removal efficiency of polluted river sediment can achieve to 40.1% when the current density was 50 mA cm-2 with the chloride ion of 3000 mg L-1 and the initial pH of 8.5. The hydrophilicity of sediment DOM decreased with the decreasing molecule weight of humic-like substances, polar groups and the formation of aromatic aldehydes such as benzaldehyde. In this process, The ACT of sediment DOM can be reduced by the removal of aromatic compounds. In the process of electrolysis, the sediment particles were smaller than before, the dehydration was enhanced, and the crystal type tended to be stable, which was conducive to the utilization of resources. Therefore, EO method is a feasible alternative for the treatment of polluted river sediment.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jing Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Fangxin Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
87
|
Belhadri M, Sassi M, Bengueddach A. Preparation of Economical and Environmentaly Friendly Modified Clay and Its Application for Copper Removal. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x19060031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134330. [PMID: 31522043 DOI: 10.1016/j.scitotenv.2019.134330] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/04/2023]
Abstract
Rice is one of the principal staple foods, essential for safeguarding the global food and nutritional security, but due to different natural and anthropogenic sources, it also acts as one of the biggest reservoirs of potentially toxic metal(loids) like As, Hg, Se, Pb and Cd. This review summarizes mobilization, translocation and speciation mechanism of these metal(loids) in soil-plant continuum as well as available cost-effective remediation measures and future research needs to eliminate the long-term risk to human health. High concentrations of these elements not only cause toxicity problems in plants, but also in animals that consume them and gradual deposition of these elements leads to the risk of bioaccumulation. The extensive occurrence of contaminated rice grains globally poses substantial public health risk and merits immediate action. People living in hotspots of contamination are exposed to higher health risks, however, rice import/export among different countries make the problem of global concern. Accumulation of As, Hg, Se, Pb and Cd in rice grains can be reduced by reducing their bioavailability, and controlling their uptake by rice plants. The contaminated soils can be reclaimed by phytoremediation, bioremediation, chemical amendments and mechanical measures; however these methods are either too expensive and/or too slow. Integration of innovative agronomic practices like crop establishment methods and improved irrigation and nutrient management practices are important steps to help mitigate the accumulation in soil as well as plant parts. Adoption of transgenic techniques for development of rice cultivars with low accumulation in edible plant parts could be a realistic option that would permit rice cultivation in soils with high bioavailability of these metal(loid)s.
Collapse
Affiliation(s)
- Rubina Khanam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - A K Nayak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India.
| | - Md Shahid
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Rahul Tripathi
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - S Vijayakumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - Upendra Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - Sangita Mohanty
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - P Panneerselvam
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | | | - B S Satapathy
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| | - H Pathak
- ICAR - National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
89
|
Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S. An assessment of arsenic hazard in groundwater-soil-rice system in two villages of Nadia district, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2381-2395. [PMID: 30963366 DOI: 10.1007/s10653-019-00289-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The present study measured arsenic (As) concentrations in soil, groundwater and rice grain samples in two villages, Sarapur and Chinili, under Chakdaha block, Nadia district, West Bengal, India. This study also included a survey of the two villages to understand the knowledge among villagers about the As problem. Soil and groundwater samples were collected from fields in two villages while rice grain samples were collected from villagers' houses. The results revealed the presence of As in higher concentrations than the maximum permissible limit of As in drinking water (10 µg L-1 and 50 µg L-1 by WHO and Indian standard, respectively) in groundwater [124.50 ± 1.11 µg L-1 (Sarapur) and 138.20 ± 1.34 µg L-1 (Chinili)]. The level of As in soil was found to range from 47.7 ± 0.14 to 49.3 ± 0.19 mg Kg-1 in Sarapur and from 57.5 ± 0.25 to 62.5 ± 0.44 mg Kg-1 in Chinili which are also higher than European Union maximum acceptable limit in agricultural soil (i.e. 20 mg Kg-1). The analysis of As in rice grains of five varieties, collected from residents of two villages, showed the presence of higher than recommended safe level of As in rice by FAO/WHO (0.2 mg Kg-1). The As concentration order was Gosai (0.95 ± 0.044 mg kg-1), Satabdi (0.79 ± 0.038 mg kg-1), Banskathi (0.60 ± 0.026 mg kg-1), Kunti (0.47 ± 0.018 mg kg-1) and Ranjit (0.29 ± 0.021 mg kg-1). Importantly, Gosai and Satabdi were the most popular varieties being consumed by local people. The data of consumption of rice per day in the survey was used for the measurement of average daily dose and hazard quotient. It was seen that the As hazard was negatively correlated to the age of residents. Therefore, children and toddlers were at higher risk of As exposure than elderly people. In addition, people with skin related As toxicity symptoms were also cited in the two villages. The study emphasized the severity of As problem in remote areas of West Bengal, India where people consume As tainted rice due to lack of awareness about the As problem and associated health issues.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Arnab Majumdar
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India.
| |
Collapse
|
90
|
Dradrach A, Szopka K, Karczewska A. Ecotoxicity of pore water in soils developed on historical arsenic mine dumps: The effects of forest litter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:202-213. [PMID: 31195229 DOI: 10.1016/j.ecoenv.2019.05.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Arsenic release from dump soils in historical mining sites poses the environmental risk. Decomposing forest litter can affect mobilization of As and other toxic elements, change their speciation in pore water and influence the toxicity to biota. This study examined the chemistry and ecotoxicity of pore water acquired from four soils that developed on the dumps in former As mining sites, in the presence and absence of forest litter collected from beech and spruce stands. Soils contained 1540-19600 mg/kg of As. Pore water was collected after 2, 7, 21 and 90 days of incubation, using MacroRhizon suction samplers. Its chemical analysis involved determination of pH, the concentrations of As, Cu and Pb (the elements with high enrichment factor Igeo>3), as well as metals considered most mobile: Cd, Zn and Mn. Ecotoxicity of pore water was examined in three bioassays: Microtox, MARA and Phytotox with Sinapis alba as test plant. The release of As, unlike heavy metals, was particularly intensive from the soils with neutral and alkaline pH. The concentrations of toxic elements in pore water were in broad ranges, up to dozens mg/L. The results of Phytotox had a poor precision, but their means correlated well with As concentrations in pore water, which indicates that As made a crucial factor of phytotoxicity. The outcomes of Microtox bioassay indicated poorer relationships between As concentrations and toxicity, and other factors contributed to ecotoxicity at very low and very high As concentrations. The highest toxicity was recorded from the soils treated with forest litter. MARA turned out to be not sensitive enough to give reproducible results in experimental conditions. The PCA analysis confirmed that the growth of microbes in MARA bioassay was poorly dependent on As and metals in pore water except for a yeast Pichia anomala (No 11). The results let us conclude that the bioassays Phytotox and Microtox can provide useful information on ecotoxicity of pore water in soils that develop on As-rich dumps whereas applicability of MARA in those conditions proved limited.
Collapse
Affiliation(s)
- Agnieszka Dradrach
- Wroclaw University of Environmental and Life Sciences, Institute of Agroecology and Plant Production, pl. Grunwaldzki 24a, 50-350, Wrocław, Poland
| | - Katarzyna Szopka
- Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Anna Karczewska
- Wroclaw University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| |
Collapse
|
91
|
Biswas A, Besold J, Sjöstedt C, Gustafsson JP, Scheinost AC, Planer-Friedrich B. Complexation of Arsenite, Arsenate, and Monothioarsenate with Oxygen-Containing Functional Groups of Natural Organic Matter: An XAS Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10723-10731. [PMID: 31436974 DOI: 10.1021/acs.est.9b03020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is reported to be effectively sorbed onto natural organic matter (NOM) via thiol coordination and polyvalent metal cation-bridged ternary complexation. However, the extent of sorption via complexation with oxygen-containing functional groups of NOM is poorly understood. By equilibrating arsenite, arsenate, and monothioarsenate with purified model-peat, followed by As K-edge X-ray absorption spectroscopic analysis, this study shows that complexation with oxygen-containing functional groups can be an additional or alternative mode of As sorption to NOM. The extent of complexation was highest for arsenite, followed by monothioarsenate and arsenate. Complexation was higher at pH 7.0 compared to 4.5 for arsenite and arsenate and vice versa for monothioarsenate because of partial transformation to arsenite at pH 4.5. Modeling of the As K-edge extended X-ray absorption fine structure data revealed that As···C interatomic distances were relatively longer in arsenate- (2.83 ± 0.01 Å) and monothioarsenate-treated peat (2.80 ± 0.02 Å) compared to arsenite treatments (2.73 ± 0.01 Å). This study suggests that arsenite was predominantly complexed with carboxylic groups, whereas arsenate and monothioarsenate were complexed with alcoholic groups of the peat. This study further implies that in systems, where NOM is the major sorbent, arsenate and monothioarsenate can have higher mobility than arsenite.
Collapse
Affiliation(s)
- Ashis Biswas
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
- Department of Earth and Environmental Sciences , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal Bypass Road , 462066 Bhauri , Madhya Pradesh , India
| | - Johannes Besold
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| | - Carin Sjöstedt
- Department of Soil and Environment , Swedish University of Agricultural Sciences , Box 7014, 750 07 Uppsala , Sweden
| | - Jon Petter Gustafsson
- Department of Soil and Environment , Swedish University of Agricultural Sciences , Box 7014, 750 07 Uppsala , Sweden
| | - Andreas C Scheinost
- The Rossendorf Beamline (ROBL) at ESRF , 38043 Grenoble , France
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER) , Bayreuth University , 95440 Bayreuth , Germany
| |
Collapse
|
92
|
Gillio Meina E, Raes K, Liber K. Models for the acute and chronic aqueous toxicity of vanadium to Daphnia pulex under a range of surface water chemistry conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:301-309. [PMID: 31075562 DOI: 10.1016/j.ecoenv.2019.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/07/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Alberta's oil sands petroleum coke (PC) generation has in recent years surpassed 10 million tonnes. Petroleum coke has been proposed as an industrial-scale sorbent to reduce concentrations of organic chemicals in oil sands process-affected water (OSPW). However, PC contains up to 1000 mg of vanadium (V) per kg of PC, and during the treatment it leaches from coke reaching levels of up to 7 mg/L in "treated" OSPW. Little information is available on how common water quality variables affect the toxicity of V to aquatic organisms. Here descriptive relationships are presented to describe how site-specific surface water characteristics representative of the Alberta oil sands region influence the toxicity of V to Daphnia pulex. Results revealed that when D. pulex was exposed to an increase in pH, a threshold relationship was found where acute V toxicity increased from a lethal median concentration (LC50) of 1.7 to 1.2 mg V/L between pH 6 and 7 and then levelled off at around 1 mg V/L. When alkalinity (from 75 to 541 mg/L as CaCO3) and sulphate (from 54 to 394 mg/L) increased, the acute toxicity of V decreased slightly with LC50s changing from 0.6 to 1.6, and from 0.9 to 1.4, respectively. When the length of V exposure was extended (from 2 to 21 d), only an increase of sulphate from 135 to 480 mg/L caused a slight increase in V toxicity from a LC50 of 0.6 to 0.4 mg V/L, the opposite trend seen in the acute exposures. In addition, the influence of two OSPW representative mixtures of increasing sodium and sulphate, and increasing alkalinity and sulphate on V acute toxicity to D. pulex were evaluated; only the mixture of increasing sodium (from 18 to 536 mg/L) and sulphate (from 55 to 242 mg/L) caused a slight decrease in V acute toxicity (LC50 1.0-2.1 mg V/L). Evidence is presented that variations in surface water chemistry can affect V toxicity to daphnids, although only to a small degree (i.e. within a maximum factor of 2 in all cases evaluated here). These relationships should be considered when creating new water quality guidelines or local benchmarks for V.
Collapse
Affiliation(s)
- Esteban Gillio Meina
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Karsten Liber
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
93
|
Karimian N, Burton ED, Johnston SG, Hockmann K, Choppala G. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:399-410. [PMID: 31141743 DOI: 10.1016/j.scitotenv.2019.05.305] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The Fe(II)-induced transformation of ferrihydrite, a potent scavenger for antimony (Sb), can considerably influence Sb mobility in reducing soils, sediments and groundwater systems. In these environments, humic acids (HA) are prevalent, yet their influence on Sb behaviour during ferrihydrite transformation is poorly understood. In this study, we investigated the effect of HA on (1) Sb partitioning between solid, colloidal and dissolved phases and (2) Sb redox speciation during the Fe(II)-induced transformation of Sb(V)-bearing ferrihydrite at pH 6.0 and 8.0 and Fe(II) concentrations of 0, 1 and 10 mM. The results show that, at pH 8.0 and in the presence of 10 mM Fe(II), ferrihydrite was replaced by goethite, lepidocrocite and magnetite across a wide range of HA concentrations. At pH 6.0 in the 10 mM Fe(II) treatments, ferrihydrite transformed to mainly lepidocrocite and goethite in both HA-free and low HA treatments. In contrast, high HA concentrations retarded the rate and extent of ferrihydrite transformation at both pH 6.0 and 8.0 in the 1 mM Fe(II) treatments. Antimony K-edge XANES spectroscopy revealed up to 60% reduction of solid-phase Sb(V) to Sb(III), which corresponded with an increase in the PO43--extractable fraction of solid-phase Sb in HA- and Fe(II)-rich conditions at pH 8.0. In contrast to the observations at pH 8.0, minimal reduction of solid-phase Sb(V) was observed in the pH 6.0 treatments with the highest HA content, yet some reduction of Sb(V) occurred (~30-40%) at intermediate HA concentrations. Humic acid-rich conditions were also found to promote the formation of substantial amounts of colloidal Sb in the <0.45 μm to 3 kDa size range at both pH 6.0 and 8.0. Our results demonstrate that HA can exert an important control on the partitioning, mobility and speciation of Sb during Fe(II)-induced transformation of ferrihydrite in sub-surface environments.
Collapse
Affiliation(s)
- Niloofar Karimian
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia.
| | - Edward D Burton
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Scott G Johnston
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| | - Kerstin Hockmann
- University of Bayreuth Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Girish Choppala
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
94
|
Asta MP, Wang Y, Frutschi M, Viacava K, Loreggian L, Le Pape P, Le Vo P, Fernández AM, Morin G, Bernier-Latmani R. Microbially Mediated Release of As from Mekong Delta Peat Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10208-10217. [PMID: 31390183 DOI: 10.1021/acs.est.9b02887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Peat layers within alluvial sediments are considered effective arsenic (As) sinks under reducing conditions due to the binding of As(III) to thiol groups in natural organic matter (NOM) and the formation of As-bearing sulfide phases. However, their possible role as sources of As for anoxic groundwaters remains unexplored. Here, we perform laboratory experiments to provide evidence for the role of a sediment peat layer in releasing As. Our results show that the peat layer, deposited about 8,000 years ago in a paleomangrove environment in the nascent Mekong Delta, could be a source of As to porewater under reducing conditions. X-ray absorption spectroscopy (XAS) analysis of the peat confirmed that As was bound to NOM thiol groups and incorporated into pyrite. Nitrate was detected in peat layer porewater, and flow-through and batch experiments evidenced the release of As from NOM and pyrite in the presence of nitrate. Based on poisoning experiments, we propose that the microbially mediated oxidation of arsenic-rich pyrite and organic matter coupled to nitrate reduction releases arsenic from this peat. Although peat layers have been proposed as As sinks in earlier studies, we show here their potential to release depositional- and/or diagenetically-accumulated As.
Collapse
Affiliation(s)
- Maria P Asta
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| | - Yuheng Wang
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| | - Karen Viacava
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| | - Luca Loreggian
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| | - Pierre Le Pape
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC, CNRS-UPMC-IRD-MNHN UMR 7590) , Centre National de la Recherche Scientifique (CNRS) - Université Pierre et Marie Curie (UPMC Paris 6) , Campus Jussieu, 4 place Jussieu , 75005 Paris , France
| | - Phu Le Vo
- Faculty of Environment & Natural Resources , Ho Chi Minh City University of Technology - VNU HCM , 268 Ly Thuong Kiet st., Dist. 10 , Ho Chi Minh City 70000 , Vietnam
| | - Ana María Fernández
- Departamento de Medio Ambiente , Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , Madrid 28040 , Spain
| | - Guillaume Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC, CNRS-UPMC-IRD-MNHN UMR 7590) , Centre National de la Recherche Scientifique (CNRS) - Université Pierre et Marie Curie (UPMC Paris 6) , Campus Jussieu, 4 place Jussieu , 75005 Paris , France
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory (EML) , École Polytechnique Fédérale de Lausanne (EPFL) , Station 6 , CH-1015 Lausanne , Switzerland
| |
Collapse
|
95
|
Mollahosseini A, Abdelrasoul A. Recent advances in thin film composites membranes for brackish groundwater treatment with critical focus on Saskatchewan water sources. J Environ Sci (China) 2019; 81:181-194. [PMID: 30975321 DOI: 10.1016/j.jes.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Drinking water scarcity is an ever-increasing global concern. This issue appears as a greater threat to the countries with no access to sea water resources or rivers, since their potential water resources are only limited to ground waters only. There are serious concerns with the treatment of ground water resources, including landfill leachates, agricultural contaminations (pesticides, herbicides, and fertilizers), and rural contaminations. Membrane separation has been proved to be the governing technology in water and wastewater treatment plants, as these methods are responsible for more than half of the market share of the world's desalination capacity. This study intends to offer a holistic view of the groundwater contamination with specific focus on Saskatchewan province in Canada, and the recent efforts in the groundwater treatment using thin film composite membrane technology. This study begins with an introduction of the general aspects of ground water and membrane separation, polluting agents, and their sources. It is followed by a discussion of Saskatchewan's groundwater status and various issues. Furthermore, the recent research that became available since 2010 is reviewed in details and the results are summarized with respect to purification efficiency. Different affecting parameters in a groundwater-thin film composite system are synthesized and an in-depth overview is presented.
Collapse
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; Global Institute of Water Security, 11 Innovation Blvd, Saskatoon, Saskatchewan, S7N 3H5 Canada.
| |
Collapse
|
96
|
Release of Heavy Metals and Metalloids from Two Contaminated Soils to Surface Runoff in Southern China: A Simulated-Rainfall Experiment. WATER 2019. [DOI: 10.3390/w11071339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The release of heavy metals and metalloids (HMs), including Pb, Zn, Cd, As, and Cu, from two typical contaminated soils with different properties, namely red soil and limestone-dominated soil, was characterized through simulated-rainfall experiments in order to investigate the effects of soil properties on HM release. Significant differences in the HM concentrations between the two soils resulted in various concentrations of dissolved and particulate HMs in the runoff. Differences in the dissolved HM concentrations in the runoff were inconsistent with the HM concentrations in the soils, which is attributed to the variable solubilities of HMs in the two soils. However, the HM enrichment ratios were not significantly different. The strong correlation between dissolved organic carbon and dissolved HMs in the runoff, and between the total organic carbon and particulate HMs in sediments, were observed, especially in the limestone-dominated soil. The specific surface area and HM concentrations in sediments were weakly correlated. Acid-rainfall experiments showed that only the limestone-dominated soil buffered the effects of acid rain on the runoff; the concentrations of dissolved Pb, Zn, Cd, and Cu increased in the red soil under acid rainfall and were 60, 29, 25, and 19 times higher, respectively, than under the neutral conditions. The results contribute to the understanding of HM behavior in the two typical soils in southern China, exposed to frequent storms that are often dominated by acid rainfall.
Collapse
|
97
|
A Simple and Label-Free Detection of As 3+ using 3-nitro-L-tyrosine as an As 3+-chelating Ligand. SENSORS 2019; 19:s19132857. [PMID: 31252602 PMCID: PMC6651597 DOI: 10.3390/s19132857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
A simple and rapid As3+ detection method using 3-nitro-L-tyrosine (N-Tyr) is reported. We discovered the specific property of N-Tyr, which specifically chelates As3+. The reaction between As3+ and N-Tyr induces a prompt color change to vivid yellow, concomitantly increasing the absorbance at 430 nm. The selectivity for As3+ is confirmed by competitive binding experiments with various metal ions (Hg2+, Pb2+, Cd2+, Cr3+, Mg2+, Ni2+, Cu2+, Fe2+, Ca2+, Zn2+, and Mn2+). Also, the N-Tyr binding site, binding affinity, and As3+/N-Tyr reaction stoichiometry are investigated. The specific reaction is utilized to design a sensor that enables the quantitative detection of As3+ in the 0.1-100 μM range with good linearity (R2 = 0.995). Furthermore, the method's applicability for the analysis of real samples, e.g., tap and river water, is successfully confirmed, with good recoveries (94.32-109.15%) using As3+-spiked real water samples. We believe that our discovering and its application for As3+ analysis can be effectively utilized in environmental analyses such as those conducted in water management facilities, with simplicity, rapidity, and ease.
Collapse
|
98
|
Kim M, Lee M, Kim Y, Lee YS, Son J, Hyun S, Cho K. Transfer and biological effects of arsenate from soil through a plant-aphid system to the parasitoid wasp, Aphidius colemani. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:305-313. [PMID: 30784793 DOI: 10.1016/j.ecoenv.2019.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The accumulation of metalloid elements during transfer from contaminated soil to higher trophic levels may potentially result in the exposure of parasitic arthropods to toxic concentrations of these elements. This study examined the transfer of arsenate (As(V)) to aphids (Myzus persicae) from pepper plants cultivated in As(V) contaminated soils of two concentrations (2 and 6 mg As(V)/kg dry soil), and the subsequent biological effects on the aphid parasitoid, Aphidius colemani. Results showed that considerable quantities of As(V) were transferred to the plant in a concentration-dependent manner and were partitioned in the plant parts in the order of roots > stems > leaves. The accumulation of As(V) in the aphids increased with the concentrations in the plants; however, the transfer coefficient of As(V) from leaf to aphid was relatively similar and constant (0.07-0.08) at both soil As(V) concentration levels. Increased levels of As(V) significantly affected fecundity and honeydew production in aphids, but survival and developmental time were unaffected. Fecundity (mummification rate) of the parasitoid was not impaired by host As(V) contamination; however, vitality (eclosion rate) was significantly affected. Results are discussed in relation to possible ecological risks posed by the transfer of soil As(V) via the plant-arthropod system to parasitoid arthropods in agroecosystems.
Collapse
Affiliation(s)
- Myeongseob Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minyoung Lee
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yongeun Kim
- Institute of Environment and Ecology, Korea University, Seoul 02841, Republic of Korea; Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Yun-Sik Lee
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Jino Son
- Ojeong Eco-Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
99
|
Sun X, Mo H, Hatano KI, Itabashi H, Mori M. Simultaneous suppression of magnetic nanoscale powder and fermented bark amendment for arsenic and cadmium uptake by radish sprouts grown in agar medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14483-14493. [PMID: 30877534 DOI: 10.1007/s11356-019-04756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, we effectively suppressed arsenic and cadmium uptake into a plant using magnetic nanoparticle powder (MNP) and fermented bark amendment (FBA) in agar medium. The MNP (which consists of FeO·Fe2O3) quantitatively adsorbed arsenite (As(III)) and the FBA (which mainly consists of bark waste) adsorbed cadmium, regardless of the pH. The properties of MNP and FBA in agar medium were compared based on the amounts of arsenic and cadmium in cultivated radish sprouts. While adding FBA selectively suppressed cadmium uptake by radishes, adding MNP suppressed the uptake of both arsenic and cadmium. Considering that the uptake of analytes was slightly reduced even in agar without any additives, the agar itself might also have contributed to the suppression of analyte uptake into plants. In addition, even when radish sprouts were cultivated in agar containing arsenic and cadmium (100 μg/L each) mixed with 25 g MNP and 1.25 g FBA per 25 mL agar, arsenic and cadmium absorption decreased by 90% and 82%, respectively, versus agar without additives. Furthermore, adding the mixed amendment to agar accelerated the growth of radishes, whereas MNP significantly inhibited radish growth even though it reduced analyte uptake. Our results indicated that mixing inorganic and organic adsorbents could simultaneously inhibit cadmium and arsenic uptake by plants and accelerate plant growth in the cadmium and arsenic-contaminated agar medium.
Collapse
Affiliation(s)
- Xiaotong Sun
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho,, Kiryu, Gunma, 376-8515, Japan
| | - Huijiao Mo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho,, Kiryu, Gunma, 376-8515, Japan
| | - Ken-Ichi Hatano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho,, Kiryu, Gunma, 376-8515, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho,, Kiryu, Gunma, 376-8515, Japan
| | - Masanobu Mori
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi, 780-8520, Japan.
| |
Collapse
|
100
|
Jin J, Chen Z, Song X, Wu B, Zhang G, Zhang S. Effects of acetylacetone on the thermal and photochemical conversion of benzoquinone in aqueous solution. CHEMOSPHERE 2019; 223:628-635. [PMID: 30798058 DOI: 10.1016/j.chemosphere.2019.02.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Quinones are components of electron transport chains in photosynthesis and respiration. Acetylacetone (AA), structurally similar to benzoquinone (BQ) for the presence of two identical carbonyl groups, has been reported as a quinone-like electron shuttle. Both BQ and AA are important chemicals in the aquatic environment. However, little information is known about their interactions if co-existed. We found here that AA significantly enhanced the conversion of BQ. By analyzing the evolution of chemical concentration, solution pH, dissolved oxygen, and the final products, the interactions between AA and BQ were elucidated. The reactions between BQ and AA generated oxygen but ultimately led to the reduction of solution pH and dissolved oxygen. The reactions proceeded faster under indoor lighting condition than in the dark. The formation of semiquinone radicals is believed as the primary step. The secondary AA-derived radicals might be strongly oxidative or reductive, depending on the concentration of dissolved oxygen. Insoluble humus was generated in the mixture of BQ and AA. These results suggest that the presence of AA might interfere with photosynthesis and respiration through the interactions with quinones.
Collapse
Affiliation(s)
- Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaojie Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|