51
|
Yoo E. Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu. Biomol Ther (Seoul) 2014; 22:93-9. [PMID: 24753813 PMCID: PMC3975476 DOI: 10.4062/biomolther.2014.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022] Open
Abstract
The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(α2-3) or sialyl(α2-6) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classification based on the linkage type does not correlate with human infection and human-to-human transmission of these viruses. It is newly suggested that flu infection and transmission to humans require high affinity binding to the extended conformation with long length sialyl(α2-6)galactose containing oligosaccharides. On the other hand, the avian flu virus requires folded conformation with sialyl(α2-3) or short length sialyl(α2-6) containing trisaccharides. This suggests a potential future direction for the development of new species-specific antiviral drugs to prevent and treat pandemic flu.
Collapse
Affiliation(s)
- Eunsun Yoo
- College of Health Science, Honam University, Gwangju 506-714, Republic of Korea
| |
Collapse
|
52
|
Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci U S A 2014; 111:E2241-50. [PMID: 24843157 DOI: 10.1073/pnas.1323162111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.
Collapse
|
53
|
Romero-Tejeda A, Capua I. Virus-specific factors associated with zoonotic and pandemic potential. Influenza Other Respir Viruses 2014; 7 Suppl 2:4-14. [PMID: 24034478 DOI: 10.1111/irv.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Influenza A is a highly contagious respiratory virus in constant evolution and represents a threat to both veterinary and human public health. IA viruses (IAVs) originate in avian reservoirs but may adapt to humans, either directly or through the spillover to another mammalian species, to the point of becoming pandemic. IAVs must successfully be able to (i) transmit from animal to human, (ii) interact with host cells, and (iii) transmit from human to human. The mechanisms by which viruses evolve, cause zoonotic infections, and adapt to a new host species are indeed complex and appear to be a heterogeneous collection of viral evolutionary events rather than a single phenomenon. Progress has been made in identifying some of the genetic markers mainly associated with virulence and transmission; this achievement has improved our knowledge of how to manage a pandemic event and of how to identify IAVs with pandemic potential. Early evidence of emerging viruses and surveillance of animal IAVs is made possible only by strengthening the collaboration between the public and veterinary health sectors.
Collapse
Affiliation(s)
- Aurora Romero-Tejeda
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
54
|
Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 2014; 385:3-34. [PMID: 25031010 DOI: 10.1007/82_2014_384] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.
Collapse
|
55
|
Ni F, Mbawuike IN, Kondrashkina E, Wang Q. The roles of hemagglutinin Phe-95 in receptor binding and pathogenicity of influenza B virus. Virology 2013; 450-451:71-83. [PMID: 24503069 DOI: 10.1016/j.virol.2013.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Diverged ~4000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1-H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H1-15 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Innocent Nnadi Mbawuike
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
56
|
Abstract
Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.
Collapse
Affiliation(s)
- B H Janke
- DVM, PhD, Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
57
|
Matsuoka Y, Matsumae H, Katoh M, Eisfeld AJ, Neumann G, Hase T, Ghosh S, Shoemaker JE, Lopes TJS, Watanabe T, Watanabe S, Fukuyama S, Kitano H, Kawaoka Y. A comprehensive map of the influenza A virus replication cycle. BMC SYSTEMS BIOLOGY 2013; 7:97. [PMID: 24088197 PMCID: PMC3819658 DOI: 10.1186/1752-0509-7-97] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023]
Abstract
Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza-x.org/flumap/.
Collapse
Affiliation(s)
- Yukiko Matsuoka
- JST ERATO Kawaoka infection-induced host responses project, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Yang G, Li S, Blackmon S, Ye J, Bradley KC, Cooley J, Smith D, Hanson L, Cardona C, Steinhauer DA, Webby R, Liao M, Wan XF. Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs. J Gen Virol 2013; 94:2599-2608. [PMID: 23994833 DOI: 10.1099/vir.0.054692-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV. Compared with rH3N2-222W, rH3N2-222L grew more rapidly in MDCK cells and had significantly higher infectivity in primary canine tracheal epithelial cells. Tissue-binding assays demonstrated that rH3N2-222L had a preference for canine tracheal tissues rather avian tracheal tissues, whereas rH3N2-222W favoured slightly avian rather canine tracheal tissues. Glycan microarray analysis suggested both rH3N2-222L and rH3N2-222W bound preferentially to α2,3-linked sialic acids. However, the rH3N2-222W had more than twofold less binding affinity than rH3N2-222L to a set of glycans with Neu5Aca2-3Galb1-4(Fuca-)-like or Neu5Aca2-3Galb1-3(Fuca-)-like structures. These data suggest the W to L mutation at position 222 of the HA could facilitate infection of H3N2 IAV in dogs, possibly by increasing the binding affinities of the HA to specific receptors with Neu5Aca2-3Galb1-4(Fuca-) or Neu5Aca2-3Galb1-3(Fuca-)-like structures that are present in dogs.
Collapse
Affiliation(s)
- Guohua Yang
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Sherry Blackmon
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jianqiang Ye
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Konrad C Bradley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Jim Cooley
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dave Smith
- Department of Biochemistry and the Glycomics Center, School of Medicine, Emory University, Atlanta, GA 30307, USA
| | - Larry Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Carol Cardona
- College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | - David A Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Richard Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xiu-Feng Wan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
59
|
Bardelli M, Alleri L, Angiolini F, Buricchi F, Tavarini S, Sammicheli C, Nuti S, Degl'Innocenti E, Isnardi I, Fragapane E, Del Giudice G, Castellino F, Galli G. Ex vivo analysis of human memory B lymphocytes specific for A and B influenza hemagglutinin by polychromatic flow-cytometry. PLoS One 2013; 8:e70620. [PMID: 23976947 PMCID: PMC3744578 DOI: 10.1371/journal.pone.0070620] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/19/2013] [Indexed: 11/18/2022] Open
Abstract
Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA+ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.
Collapse
MESH Headings
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Separation/methods
- Cross Reactions
- Flow Cytometry/methods
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza B virus/chemistry
- Influenza B virus/immunology
- Influenza Vaccines/chemistry
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Protein Binding
- Single-Domain Antibodies/biosynthesis
- Single-Domain Antibodies/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Nuti
- Novartis Vaccines and Diagnostics srl, Siena, Italy
| | | | | | | | | | | | - Grazia Galli
- Novartis Vaccines and Diagnostics srl, Siena, Italy
- * E-mail:
| |
Collapse
|
60
|
Guarnaccia T, Carolan LA, Maurer-Stroh S, Lee RTC, Job E, Reading PC, Petrie S, McCaw JM, McVernon J, Hurt AC, Kelso A, Mosse J, Barr IG, Laurie KL. Antigenic drift of the pandemic 2009 A(H1N1) influenza virus in A ferret model. PLoS Pathog 2013; 9:e1003354. [PMID: 23671418 PMCID: PMC3649996 DOI: 10.1371/journal.ppat.1003354] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/27/2013] [Indexed: 12/21/2022] Open
Abstract
Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.
Collapse
Affiliation(s)
- Teagan Guarnaccia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - Louise A. Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
- National Public Health Laboratory, Communicable Diseases Division Ministry of Health, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Raphael T. C. Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Emma Job
- The University of Melbourne, Department Microbiology & Immunology, Melbourne, Victoria, Australia
| | - Patrick C. Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
- The University of Melbourne, Department Microbiology & Immunology, Melbourne, Victoria, Australia
| | - Stephen Petrie
- The University of Melbourne, Melbourne School of Population Health, Melbourne, Victoria, Australia
| | - James M. McCaw
- The University of Melbourne, Melbourne School of Population Health, Melbourne, Victoria, Australia
- Royal Children's Hospital, Murdoch Childrens Research Institute, Vaccine and Immunisation Research Group, Melbourne, Victoria, Australia
| | - Jodie McVernon
- The University of Melbourne, Melbourne School of Population Health, Melbourne, Victoria, Australia
- Royal Children's Hospital, Murdoch Childrens Research Institute, Vaccine and Immunisation Research Group, Melbourne, Victoria, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Jennifer Mosse
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Karen L. Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
- The University of Melbourne, Department Microbiology & Immunology, Melbourne, Victoria, Australia
| |
Collapse
|
61
|
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. INFECTION GENETICS AND EVOLUTION 2013; 17:162-87. [PMID: 23541413 DOI: 10.1016/j.meegid.2013.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4-5years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.
Collapse
|
62
|
Abstract
Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
63
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
64
|
Kasai T, Nakane D, Ishida H, Ando H, Kiso M, Miyata M. Role of binding in Mycoplasma mobile and Mycoplasma pneumoniae gliding analyzed through inhibition by synthesized sialylated compounds. J Bacteriol 2013; 195:429-35. [PMID: 23123913 PMCID: PMC3554017 DOI: 10.1128/jb.01141-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022] Open
Abstract
Mycoplasmas, which have been shown to be the causative pathogens in recent human pneumonia epidemics, bind to solid surfaces and glide in the direction of the membrane protrusion at a pole. During gliding, the legs of the mycoplasma catch, pull, and release sialylated oligosaccharides fixed on a solid surface. Sialylated oligosaccharides are major structures on animal cell surfaces and are sometimes targeted by pathogens, such as influenza virus. In the present study, we analyzed the inhibitory effects of 16 chemically synthesized sialylated compounds on the gliding and binding of Mycoplasma mobile and Mycoplasma pneumoniae and concluded the following. (i) The recognition of sialylated oligosaccharide by mycoplasma legs proceeds in a "lock-and-key" fashion, with the binding affinity dependent on structural differences among the sialylated compounds examined. (ii) The binding of the leg and the sialylated oligosaccharide is cooperative, with Hill constants ranging from 2 to 3. (iii) Mycoplasma legs may generate a drag force after a stroke, because the gliding speed decreased and pivoting motion occurred more frequently when the number of working legs was reduced by the addition of free sialylated compounds.
Collapse
Affiliation(s)
- Taishi Kasai
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Daisuke Nakane
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu-shi, Gifu, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu-shi, Gifu, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu-shi, Gifu, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
65
|
Sidestream smoke exposure increases the susceptibility of airway epithelia to adenoviral infection. PLoS One 2012; 7:e49930. [PMID: 23166798 PMCID: PMC3499494 DOI: 10.1371/journal.pone.0049930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/17/2012] [Indexed: 12/24/2022] Open
Abstract
Background Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR. Methodology and Findings Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection. Conclusions This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant therapeutics and increase the understanding of potential side effects.
Collapse
|
66
|
Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic Acid receptors. J Virol 2012; 86:13371-83. [PMID: 23015718 DOI: 10.1128/jvi.01426-12] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza virus neuraminidase (NA) cleaves off sialic acid from cellular receptors of hemagglutinin (HA) to enable progeny escape from infected cells. However, NA variants (D151G) of recent human H3N2 viruses have also been reported to bind receptors on red blood cells, but the nature of these receptors and the effect of the mutation on NA activity were not established. Here, we compare the functional and structural properties of a human H3N2 NA from A/Tanzania/205/2010 and its D151G mutant, which supports HA-independent receptor binding. While the wild-type NA efficiently cleaves sialic acid from both α2-6- and α2-3-linked glycans, the mutant exhibits much reduced enzymatic activity toward both types of sialosides. Conversely, while wild-type NA shows no detectable binding to sialosides, the D151G NA exhibits avid binding with broad specificity toward α2-3 sialosides. D151G NA binds the 3' sialyllactosamine (3'-SLN) and 6'-SLN sialosides with equilibrium dissociation constant (K(D)) values of 30.0 μM and 645 μM, respectively, which correspond to much higher affinities than the corresponding affinities (low mM) of HA to these glycans. Crystal structures of wild-type and mutant NAs reveal the structural basis for glycan binding in the active site by exclusively impairing the glycosidic bond hydrolysis step. The general significance of D151 among influenza virus NAs was further explored by introducing the D151G mutation into three N1 NAs and one N2 NA, which all exhibited reduced enzymatic activity and preferential binding to α2-3 sialosides. Since the enzymatic and binding activities of NAs are not routinely assessed, the potential for NA receptor binding to contribute to influenza virus biology may be underappreciated.
Collapse
|
67
|
Abstract
Envelope virus replication begins with receptor binding, followed by fusion of the viral envelope with the cell membrane. The binding and fusion steps are usually mediated by envelope proteins. The ability of envelope proteins of a particular virus to bind and fuse with target cells defines the host range of the virus, known as 'viral tropism'. The mechanism(s) of fusion by the viral envelope is largely categorized as either pH-dependent or pH-independent. By redirecting the binding specificities of envelope proteins to desired target molecules while maintaining fusion activity, it is possible to redirect the tropisms of virus and viral vectors, enabling specific killing and/or transduction of desired cells in vivo. Recently, a lipid, phosphatidylserine, was also shown to mediate binding of virus, which affects the tropisms of viruses and viral vectors.
Collapse
Affiliation(s)
- Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
68
|
α2-3- and α2-6- N-linked sialic acids allow efficient interaction of Newcastle Disease Virus with target cells. Glycoconj J 2012; 29:539-49. [PMID: 22869099 PMCID: PMC7088266 DOI: 10.1007/s10719-012-9431-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 11/10/2022]
Abstract
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.
Collapse
|
69
|
Glycan binding avidity determines the systemic fate of adeno-associated virus type 9. J Virol 2012; 86:10408-17. [PMID: 22787229 DOI: 10.1128/jvi.01155-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glycans are key determinants of host range and transmissibility in several pathogens. In the case of adeno-associated viruses (AAV), different carbohydrates serve as cellular receptors in vitro; however, their contributions in vivo are less clear. A particularly interesting example is adeno-associated virus serotype 9 (AAV9), which displays systemic tropism in mice despite low endogenous levels of its primary receptor (galactose) in murine tissues. To understand this further, we studied the effect of modulating glycan binding avidity on the systemic fate of AAV9 in mice. Intravenous administration of recombinant sialidase increased tissue levels of terminally galactosylated glycans in several murine tissues. These conditions altered the systemic tropism of AAV9 into a hepatotropic phenotype, characterized by markedly increased sequestration within the liver sinusoidal endothelium and Kupffer cells. In contrast, an AAV9 mutant with decreased glycan binding avidity displayed a liver-detargeted phenotype. Altering glycan binding avidity also profoundly affected AAV9 persistence in blood circulation. Our results support the notion that high glycan receptor binding avidity appears to impart increased liver tropism, while decreased avidity favors systemic spread of AAV vectors. These findings may not only help predict species-specific differences in tropism for AAV9 on the basis of tissue glycosylation profiles, but also provide a general approach to tailor AAV vectors for systemic or hepatic gene transfer by reengineering capsid-glycan interactions.
Collapse
|
70
|
Patil SA, Chandrasekaran EV, Matta KL, Parikh A, Tzanakakis ES, Neelamegham S. Scaling down the size and increasing the throughput of glycosyltransferase assays: activity changes on stem cell differentiation. Anal Biochem 2012; 425:135-44. [PMID: 22449497 PMCID: PMC3371656 DOI: 10.1016/j.ab.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/04/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022]
Abstract
Glycosyltransferases (glycoTs) catalyze the transfer of monosaccharides from nucleotide-sugars to carbohydrate-, lipid-, and protein-based acceptors. We examined strategies to scale down and increase the throughput of glycoT enzymatic assays because traditional methods require large reaction volumes and complex chromatography. Approaches tested used (i) microarray pin printing, an appropriate method when glycoT activity was high; (ii) microwells and microcentrifuge tubes, a suitable method for studies with cell lysates when enzyme activity was moderate; and (iii) C(18) pipette tips and solvent extraction, a method that enriched reaction product when the extent of reaction was low. In all cases, reverse-phase thin layer chromatography (RP-TLC) coupled with phosphorimaging quantified the reaction rate. Studies with mouse embryonic stem cells (mESCs) demonstrated an increase in overall β(1,3)galactosyltransferase and α(2,3)sialyltransferase activity and a decrease in α(1,3)fucosyltransferases when these cells differentiate toward cardiomyocytes. Enzymatic and lectin binding data suggest a transition from Lewis(x)-type structures in mESCs to sialylated Galβ1,3GalNAc-type glycans on differentiation, with more prominent changes in enzyme activity occurring at later stages when embryoid bodies differentiated toward cardiomyocytes. Overall, simple, rapid, quantitative, and scalable glycoT activity analysis methods are presented. These use a range of natural and synthetic acceptors for the analysis of complex biological specimens that have limited availability.
Collapse
Affiliation(s)
- Shilpa A. Patil
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
| | | | - Khushi L. Matta
- Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Abhirath Parikh
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
| | - Emmanuel S. Tzanakakis
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
- NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14260
- Western New York Stem Cell Culture and Analysis Center, State University of New York, Buffalo, NY 14260
| | - Sriram Neelamegham
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
- NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14260
| |
Collapse
|
71
|
Baker HM, Baker EN. A structural perspective on lactoferrin function1This article is part of a Special Issue entitled Lactoferrin and has undergone the Journal's usual peer review process. Biochem Cell Biol 2012; 90:320-8. [PMID: 22292559 DOI: 10.1139/o11-071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 3-D structure of human lactoferrin was first solved in atomic detail in 1987. Since that time, a variety of proven and postulated activities have been added to the original annotation of lactoferrin as an iron-binding protein. Structural studies have also expanded to include iron-bound and iron-free (apo) forms, mutants, and the lactoferrins of different species. In this review, we take the current information on both structure and function and show that the 3-D structure provides a useful framework for understanding some activities and also points to productive research directions that could help elucidate other reported functions. Some functions relate to iron binding where the role of lactoferrin is to scavenge and retain iron across a wide pH range. We specifically focus on functions that depend on the surface structure of the molecule, identifying features that may determine the many other protective properties of this multifunctional protein.
Collapse
Affiliation(s)
- Heather M. Baker
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Edward N. Baker
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
72
|
Nycholat CM, McBride R, Ekiert DC, Xu R, Rangarajan J, Peng W, Razi N, Gilbert M, Wakarchuk W, Wilson IA, Paulson JC. Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins. Angew Chem Int Ed Engl 2012; 51:4860-3. [PMID: 22505324 PMCID: PMC3517101 DOI: 10.1002/anie.201200596] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Indexed: 11/11/2022]
Abstract
Human influenza viruses are proposed to recognize sialic acids (pink diamonds) on glycans extended with poly-LacNAc chains (LacNAc=(yellow circle+blue square)). N- and O-linked glycans were extended with different poly-LacNAc chains with α2-3- and α2-6-linked sialic acids recognized by human and avian influenza viruses, respectively. The specificity of recombinant hemagglutinins (receptors in green) was investigated by using glycan microarray technology.
Collapse
Affiliation(s)
- Corwin M. Nycholat
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Ryan McBride
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Damian C. Ekiert
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Rui Xu
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Janani Rangarajan
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Wenjie Peng
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Nahid Razi
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Michel Gilbert
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6 (Canada)
| | - Warren Wakarchuk
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6 (Canada)
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - James C. Paulson
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
73
|
Nycholat CM, McBride R, Ekiert DC, Xu R, Rangarajan J, Peng W, Razi N, Gilbert M, Wakarchuk W, Wilson IA, Paulson JC. Recognition of Sialylated Poly-N-acetyllactosamine Chains on N- and O-Linked Glycans by Human and Avian Influenza A Virus Hemagglutinins. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
74
|
The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to α2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology 2012; 22:1055-76. [DOI: 10.1093/glycob/cws077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
75
|
Frequency of D222G and Q223R hemagglutinin mutants of pandemic (H1N1) 2009 influenza virus in Japan between 2009 and 2010. PLoS One 2012; 7:e30946. [PMID: 22363521 PMCID: PMC3281909 DOI: 10.1371/journal.pone.0030946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/27/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In April 2009, a novel swine-derived influenza A virus (H1N1pdm) emerged and rapidly spread around the world, including Japan. It has been suggested that the virus can bind to both 2,3- and 2,6-linked sialic acid receptors in infected mammals, in contrast to contemporary seasonal H1N1 viruses, which have a predilection for 2,6-linked sialic acid. METHODS/RESULTS To elucidate the existence and transmissibility of α2,3 sialic acid-specific viruses in H1N1pdm, amino acid substitutions within viral hemagglutinin molecules were investigated, especially D187E, D222G, and Q223R, which are related to a shift from human to avian receptor specificity. Samples from individuals infected during the first and second waves of the outbreak in Japan were examined using a high-throughput sequencing approach. In May 2009, three specimens from mild cases showed D222G and/or Q223R substitutions in a minor subpopulation of viruses infecting these individuals. However, the substitutions almost disappeared in the samples from five mild cases in December 2010. The D187E substitution was not widespread in specimens, even in May 2009. CONCLUSIONS These results suggest that α2,3 sialic acid-specific viruses, including G222 and R223, existed in humans as a minor population in the early phase of the pandemic, and that D222 and Q223 became more dominant through human-to-human transmission during the first and second waves of the epidemic. These results are consistent with the low substitution rates identified in seasonal H1N1 viruses in 2008.
Collapse
|
76
|
Jayaraman A, Chandrasekaran A, Viswanathan K, Raman R, Fox JG, Sasisekharan R. Decoding the distribution of glycan receptors for human-adapted influenza A viruses in ferret respiratory tract. PLoS One 2012; 7:e27517. [PMID: 22359533 PMCID: PMC3281014 DOI: 10.1371/journal.pone.0027517] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022] Open
Abstract
Ferrets are widely used as animal models for studying influenza A viral pathogenesis and transmissibility. Human-adapted influenza A viruses primarily target the upper respiratory tract in humans (infection of the lower respiratory tract is observed less frequently), while in ferrets, upon intranasal inoculation both upper and lower respiratory tract are targeted. Viral tropism is governed by distribution of complex sialylated glycan receptors in various cells/tissues of the host that are specifically recognized by influenza A virus hemagglutinin (HA), a glycoprotein on viral surface. It is generally known that upper respiratory tract of humans and ferrets predominantly express α2→6 sialylated glycan receptors. However much less is known about the fine structure of these glycan receptors and their distribution in different regions of the ferret respiratory tract. In this study, we characterize distribution of glycan receptors going beyond terminal sialic acid linkage in the cranial and caudal regions of the ferret trachea (upper respiratory tract) and lung hilar region (lower respiratory tract) by multiplexing use of various plant lectins and human-adapted HAs to stain these tissue sections. Our findings show that the sialylated glycan receptors recognized by human-adapted HAs are predominantly distributed in submucosal gland of lung hilar region as a part of O-linked glycans. Our study has implications in understanding influenza A viral pathogenesis in ferrets and also in employing ferrets as animal models for developing therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Akila Jayaraman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Aarthi Chandrasekaran
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Karthik Viswanathan
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - Rahul Raman
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United State of America
| | - Ram Sasisekharan
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Department of Biological Engineering, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
77
|
Heimburg-Molinaro J, Tappert M, Song X, Lasanajak Y, Air G, Smith DF, Cummings RD. Probing virus-glycan interactions using glycan microarrays. Methods Mol Biol 2012; 808:251-67. [PMID: 22057531 DOI: 10.1007/978-1-61779-373-8_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycan microarrays are surfaces that contain immobilized oligosaccharides or glycoconjugates and have proven useful in probing the interactions between glycan-binding proteins (GBPs) and individual glycans. Such glycan microarrays have been especially important in studying virus-glycan interactions, as most viruses express one or more GBPs important for pathogenesis. For studying interactions of influenza viruses with glycans, we describe protocols for fluorescent labeling of virus, addition of virus to a glycan microarray, analysis of a glycan microarray slide experiment, and interpretation of data.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 2011; 7:3162-3180. [PMID: 22125473 PMCID: PMC3224046 DOI: 10.1021/ct200328p] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Elizabeth Hatcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Theresa J. Foster
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Francis W. Jamison
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| |
Collapse
|
79
|
Viruses and sialic acids: rules of engagement. Curr Opin Struct Biol 2011; 21:610-8. [PMID: 21917445 PMCID: PMC3189341 DOI: 10.1016/j.sbi.2011.08.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 08/08/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Viral infections are initiated by specific attachment of a virus particle to receptors at the surface of the host cell. For many viruses, these receptors are glycans that are linked to either a protein or a lipid. Glycans terminating in sialic acid and its derivatives serve as receptors for a large number of viruses, including several human pathogens. In combination with glycan array analyses, structural analyses of complexes of viruses with sialylated oligosaccharides have provided insights into the parameters that underlie each interaction. Here, we compare the currently available structural data on viral attachment proteins in complex with sialic acid and its variants. The objective is to define common parameters of recognition and to provide a platform for understanding the determinants of specificity. This information could be of use for the prediction of the location of sialic acid binding sites in viruses for which structural information is still lacking. An improved understanding of the principles that govern the recognition of sialic acid and sialylated oligosaccharides would also advance efforts to develop efficient antiviral agents.
Collapse
|
80
|
Shen CI, Wang CH, Shen SC, Lee HC, Liao JW, Su HL. The infection of chicken tracheal epithelial cells with a H6N1 avian influenza virus. PLoS One 2011; 6:e18894. [PMID: 21573102 PMCID: PMC3089607 DOI: 10.1371/journal.pone.0018894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/24/2011] [Indexed: 01/11/2023] Open
Abstract
Sialic acids (SAs) linked to galactose (Gal) in α2,3- and α2,6-configurations are the receptors for avian and human influenza viruses, respectively. We demonstrate that chicken tracheal ciliated cells express α2,3-linked SA, while goblet cells mainly express α2,6-linked SA. In addition, the plant lectin MAL-II, but not MAA/MAL-I, is bound to the surface of goblet cells, suggesting that SA2,3-linked oligosaccharides with Galβ1–3GalNAc subterminal residues are specifically present on the goblet cells. Moreover, both α2,3- and α2,6-linked SAs are detected on single tracheal basal cells. At a low multiplicity of infection (MOI) avian influenza virus H6N1 is exclusively detected in the ciliated cells, suggesting that the ciliated cell is the major target cell of the H6N1 virus. At a MOI of 1, ciliated, goblet and basal cells are all permissive to the AIV infection. This result clearly elucidates the receptor distribution for the avian influenza virus among chicken tracheal epithelial cells and illustrates a primary cell model for evaluating the cell tropisms of respiratory viruses in poultry.
Collapse
Affiliation(s)
- Ching-I Shen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Ching-Ho Wang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Cheng Shen
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Hsiu-Chin Lee
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University, Taichung, Taiwan
- * E-mail: (H-LS); (J-WL)
| | - Hong-Lin Su
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
- * E-mail: (H-LS); (J-WL)
| |
Collapse
|
81
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|
82
|
Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011; 286:13532-40. [PMID: 21330365 DOI: 10.1074/jbc.m110.210922] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sialylated glycans serve as cell surface attachment factors for a broad range of pathogens. We report an atypical example, where desialylation increases cell surface binding and infectivity of adeno-associated virus (AAV) serotype 9, a human parvovirus isolate. Enzymatic removal of sialic acid, but not heparan sulfate or chondroitin sulfate, increased AAV9 transduction regardless of cell type. Viral binding and transduction assays on mutant Chinese hamster ovary (CHO) cell lines defective in various stages of glycan chain synthesis revealed a potential role for core glycan residues under sialic acid in AAV9 transduction. Treatment with chemical inhibitors of glycosylation and competitive inhibition studies with different lectins suggest that N-linked glycans with terminal galactosyl residues facilitate cell surface binding and transduction by AAV9. In corollary, resialylation of galactosylated glycans on the sialic acid-deficient CHO Lec2 cell line with different sialyltransferases partially blocked AAV9 transduction. Quantitative analysis of AAV9 binding to parental, sialidase-treated or sialic acid-deficient mutant CHO cells revealed a 3-15-fold increase in relative binding potential of AAV9 particles upon desialylation. Finally, pretreatment of well differentiated human airway epithelial cultures and intranasal instillation of recombinant sialidase in murine airways enhanced transduction efficiency of AAV9 by >1 order of magnitude. Taken together, the studies described herein provide a molecular basis for low infectivity of AAV9 in vitro and a biochemical strategy to enhance gene transfer by AAV9 vectors in general.
Collapse
Affiliation(s)
- Shen Shen
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|