51
|
Tan J, Li S, Sun C, Bao G, Liu M, Jing Z, Fu H, Sun Y, Yang Q, Zheng Y, Wang X, Yang H. A Dose-Dependent Spatiotemporal Response of Angiogenesis Elicited by Zn Biodegradation during the Initial Stage of Bone Regeneration. Adv Healthc Mater 2024; 13:e2302305. [PMID: 37843190 DOI: 10.1002/adhm.202302305] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Zinc (Zn) plays a crucial role in bone metabolism and imbues biodegradable Zn-based materials with the ability to promote bone regeneration in bone trauma. However, the impact of Zn biodegradation on bone repair, particularly its influence on angiogenesis, remains unexplored. This study reveals that Zn biodegradation induces a consistent dose-dependent spatiotemporal response in angiogenesis,both in vivo and in vitro. In a critical bone defect model, an increase in Zn release intensity from day 3 to 10 post-surgery is observed. By day 10, the CD31-positive area around the Zn implant significantly surpasses that of the Ti implant, indicating enhanced angiogenesis. Furthermore,angiogenesis exhibits a distance-dependent pattern closely mirroring the distribution of Zn signals from the implant. In vitro experiments demonstrate that Zn extraction fosters the proliferation and migration of human umbilical vein endothelial cells and upregulates the key genes associated with tube formation, such as HIF-1α and VEGF-A, peaking at a concentration of 22.5 µM. Additionally, Zn concentrations within the range of 11.25-45 µM promote the polarization of M0-type macrophages toward the M2-type, while inhibiting polarization toward the M1-type. These findings provide essential insights into the biological effects of Zn on bone repair, shedding light on its potential applications.
Collapse
Affiliation(s)
- Junlong Tan
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Shuang Li
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Chaoyang Sun
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Zehao Jing
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Hanwei Fu
- School of Materials Science and Engineering, Beihang University, 37 Xueyuan Rd, Beijing, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Yufeng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Hongtao Yang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
52
|
Wang R, Liu Z, Wang T, Zhang J, Liu J, Zhou Q. Landscape of adenosine pathway and immune checkpoint dual blockade in NSCLC: progress in basic research and clinical application. Front Immunol 2024; 15:1320244. [PMID: 38348050 PMCID: PMC10859755 DOI: 10.3389/fimmu.2024.1320244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Lung cancer poses a global threat to human health, while common cancer treatments (chemotherapy and targeted therapies) have limited efficacy. Immunotherapy offers hope of sustained remission for many patients with lung cancer, but a significant proportion of patients fail to respond to treatment owing to immune resistance. There is extensive evidence to suggest the immunosuppressive microenvironment as the cause of this treatment failure. Numerous studies have suggested that the adenosine (ADO) pathway plays an important role in the formation of an immunosuppressive microenvironment and may be a key factor in the development of immune resistance in EGFR-mutant cell lung cancer. Inhibition of this pathway may therefore be a potential target to achieve effective reversal of ADO pathway-mediated immune resistance. Recently, an increasing number of clinical trials have begun to address the broad prospects of using the ADO pathway as an immunotherapeutic strategy. However, few researchers have summarized the theoretical basis and clinical rationale of the ADO pathway and immune checkpoint dual blockade in a systematic and detailed manner, particularly in lung cancer. As such, a timely review of the potential value of the ADO pathway in combination with immunotherapy strategies for lung cancer is warranted. This comprehensive review first describes the role of ADO in the formation of a lung tumor-induced immunosuppressive microenvironment, discusses the key mechanisms of ADO inhibitors in reversing lung immunosuppression, and highlights recent evidence from preclinical and clinical studies of ADO inhibitors combined with immune checkpoint blockers to improve the lung cancer immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Rulan Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenkun Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
53
|
Han T, Wu J, Liu Y, Zhou J, Miao R, Guo J, Xu Z, Xing Y, Bai Y, Hu D. Integrating bulk-RNA sequencing and single-cell sequencing analyses to characterize adenosine-enriched tumor microenvironment landscape and develop an adenosine-related prognostic signature predicting immunotherapy in lung adenocarcinoma. Funct Integr Genomics 2024; 24:19. [PMID: 38265702 DOI: 10.1007/s10142-023-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
The adenosine-signaling axis has been recognized as an important immunomodulatory pathway in tumor immunity. However, the biological role of the adenosine-signaling axis in the remodeling of the tumor microenvironment (TME) in lung adenocarcinoma (LUAD) remains unclear. Here, we quantified adenosine signaling (ado_sig) in LUAD samples using the GSVA method and assessed the prognostic value of adenosine in LUAD. Afterward, we explored the heterogeneity of the tumor-immune microenvironment at different adenosine levels. In addition, we analyzed the potential biological pathways engaged by adenosine. Next, we established single-cell transcriptional profiles of LUAD and analyzed cellular composition and cell-cell communication analysis under different adenosine microenvironments. Moreover, we established adenosine-related prognostic signatures (ARS) based on comprehensive bioinformatics analysis and evaluated the efficacy of ARS in predicting immunotherapy. The results demonstrated that adenosine signaling adversely impacted the survival of immune-enriched LUAD. The high-adenosine microenvironment exhibited elevated pro-tumor-immune infiltration, including M2 macrophages and displayed notably increased epithelial-mesenchymal transition (EMT) transformation. Furthermore, adenosine signaling displayed significant associations with the expression patterns and prognostic value of immunomodulators within the TME. Single-cell sequencing data revealed increased fibroblast occupancy and a prominent activation of the SPP1 signaling pathway in the high adenosine-signaling microenvironment. The ARS exhibited promising effectiveness in prognostication and predicting immunotherapy response in LUAD. In summary, overexpression of adenosine can cause a worsened prognosis in the LUAD with abundant immune infiltration. Moreover, increased adenosine levels are associated with pro-tumor-immune infiltration, active EMT transformation, pro-tumor angiogenesis, and other factors promoting cancer progression, which collectively contribute to the formation of an immunosuppressive microenvironment. Importantly, the ARS developed in this study demonstrate high efficacy in evaluating the response to immunotherapy.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, People's Republic of China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
| |
Collapse
|
54
|
Bui I, Bonavida B. Polarization of M2 Tumor-Associated Macrophages (TAMs) in Cancer Immunotherapy. Crit Rev Oncog 2024; 29:75-95. [PMID: 38989739 DOI: 10.1615/critrevoncog.2024053830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We have witnessed in the last decade new milestones in the treatment of various resistant cancers with new immunotherapeutic modalities. These advances have resulted in significant objective durable clinical responses in a subset of cancer patients. These findings strongly suggested that immunotherapy should be considered for the treatment of all subsets of cancer patients. Accordingly, the mechanisms underlying resistance to immunotherapy must be explored and develop new means to target these resistant factors. One of the pivotal resistance mechanisms in the tumor microenvironment (TME) is the high infiltration of tumor-associated macrophages (TAMs) that are highly immunosuppressive and responsible, in large part, of cancer immune evasion. Thus, various approaches have been investigated to target the TAMs to restore the anti-tumor immune response. One approach is to polarize the M2 TAMS to the M1 phenotype that participates in the activation of the anti-tumor response. In this review, we discuss the various and differential properties of the M1 and M2 phenotypes, the molecular signaling pathways that participate in the polarization, and various approaches used to target the polarization of the M2 TAMs into the M1 anti-tumor phenotype. These approaches include inhibitors of histone deacetylases, PI3K inhibitors, STAT3 inhibitors, TLR agonists, and metabolic reprogramming. Clearly, due to the distinct features of various cancers and their heterogeneities, a single approach outlined above might only be effective against some cancers and not others. In addition, targeting by itself may not be efficacious unless used in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Indy Bui
- University of California Los Angeles
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
55
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
56
|
McWhorter R, Bonavida B. The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy. Crit Rev Oncog 2024; 29:97-125. [PMID: 38989740 DOI: 10.1615/critrevoncog.2024053667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
57
|
Du EJ, Muench MO. A Monocytic Barrier to the Humanization of Immunodeficient Mice. Curr Stem Cell Res Ther 2024; 19:959-980. [PMID: 37859310 PMCID: PMC10997744 DOI: 10.2174/011574888x263597231001164351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Mice with severe immunodeficiencies have become very important tools for studying foreign cells in an in vivo environment. Xenotransplants can be used to model cells from many species, although most often, mice are humanized through the transplantation of human cells or tissues to meet the needs of medical research. The development of immunodeficient mice is reviewed leading up to the current state-of-the-art strains, such as the NOD-scid-gamma (NSG) mouse. NSG mice are excellent hosts for human hematopoietic stem cell transplants or immune reconstitution through transfusion of human peripheral blood mononuclear cells. However, barriers to full hematopoietic engraftment still remain; notably, the survival of human cells in the circulation is brief, which limits overall hematological and immune reconstitution. Reports have indicated a critical role for monocytic cells - monocytes, macrophages, and dendritic cells - in the clearance of xenogeneic cells from circulation. Various aspects of the NOD genetic background that affect monocytic cell growth, maturation, and function that are favorable to human cell transplantation are discussed. Important receptors, such as SIRPα, that form a part of the innate immune system and enable the recognition and phagocytosis of foreign cells by monocytic cells are reviewed. The development of humanized mouse models has taken decades of work in creating more immunodeficient mice, genetic modification of these mice to express human genes, and refinement of transplant techniques to optimize engraftment. Future advances may focus on the monocytic cells of the host to find ways for further engraftment and survival of xenogeneic cells.
Collapse
Affiliation(s)
- Emily J. Du
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
| | - Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, San Francisco, CA, 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
58
|
Wu G, Wen X, Kuang R, Lui KW, He B, Li G, Zhu Z. Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury. Cell Mol Neurobiol 2023; 44:11. [PMID: 38150045 PMCID: PMC11407145 DOI: 10.1007/s10571-023-01442-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Abstract
The adult peripheral nervous system has a significant ability for regeneration compared to the central nervous system. This is related to the unique neuroimmunomodulation after peripheral nerve injury (PNI). Unlike the repair of other tissues after injury, Schwann cells (SCs) respond immediately to the trauma and send out signals to precisely recruit macrophages to the injured site. Then, macrophages promote the degradation of the damaged myelin sheath by phagocytosis of local debris. At the same time, macrophages and SCs jointly secrete various cytokines to reconstruct a microenvironment suitable for nerve regeneration. This unique pathophysiological process associated with macrophages provides important targets for the repair and treatment of PNI, as well as an important reference for guiding the repair of other nerve injuries. To understand these processes more systematically, this paper describes the characteristics of macrophage activation and metabolism in PNI, discusses the underlying molecular mechanism of interaction between macrophages and SCs, and reviews the latest research progress of crosstalk regulation between macrophages and SCs. These concepts and therapeutic strategies are summarized to provide a reference for the more effective use of macrophages in the repair of PNI.
Collapse
Affiliation(s)
- Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Xiaoyue Wen
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - KoonHei Winson Lui
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
- Department of Plastic and Cosmetic Surgery, Liwan's People Hospital of Guangzhou, Guangzhou, 510370, Guangdong, China
| | - Bo He
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Medical Research Center, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
59
|
Kozłowski HM, Sobocińska J, Jędrzejewski T, Maciejewski B, Dzialuk A, Wrotek S. Fever-Range Hyperthermia Promotes Macrophage Polarization towards Regulatory Phenotype M2b. Int J Mol Sci 2023; 24:17574. [PMID: 38139402 PMCID: PMC10744093 DOI: 10.3390/ijms242417574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Fever-range hyperthermia (FRH) is utilized in chronic disease treatment and serves as a model for fever's thermal component investigation. Macrophages, highly susceptible to heat, play a pivotal role in various functions determined by their polarization state. However, it is not well recognized whether this process can be modulated by FRH. To address this, we used two different macrophage cell lines that were treated with FRH. Next, to define macrophage phenotype, we examined their functional surface markers CD80 and CD163, intracellular markers such as inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), and the expression of interleukin-10 (IL-10) and tumor necrosis factor α (TNF-α). Additionally, in FRH-treated cells, we analyzed an expression of Toll-like receptor 4 (TLR-4) and its role in macrophage polarization. We also checked whether FRH can switch the polarization of macrophages in pro-inflammatory condition triggered by lipopolysaccharide (LPS). FRH induced M2-like polarization, evident in increased CD163, IL-10, and Arg-1 expression. Notably, elevated COX-2, TNF-α, and TLR-4 indicated potential pro-inflammatory properties, suggesting polarization towards the M2b phenotype. Additionally, FRH shifted lipopolysaccharide (LPS)-induced M1 polarization to an M2-like phenotype, reducing antimicrobial molecules (ROS and NO). In summary, FRH emerged as a modulator favoring M2-like macrophage polarization, even under pro-inflammatory conditions, showcasing its potential therapeutic relevance.
Collapse
Affiliation(s)
- Henryk Mikołaj Kozłowski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, 10 Powstańców Wielkopolskich Ave., 85-090 Bydgoszcz, Poland;
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Justyna Sobocińska
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Bartosz Maciejewski
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| | - Artur Dzialuk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, 10 Powstańców Wielkopolskich Ave., 85-090 Bydgoszcz, Poland;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Veterinary and Biological Sciences, Nicolaus Copernicus University, 1 Lwowska Str., 87-100 Torun, Poland; (J.S.); (T.J.)
| |
Collapse
|
60
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
61
|
Lampiasi N. Macrophage Polarization: Learning to Manage It 2.0. Int J Mol Sci 2023; 24:17409. [PMID: 38139238 PMCID: PMC10743686 DOI: 10.3390/ijms242417409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this Special Issue is to investigate macrophages' high plasticity and ability to differentiate/polarize in response to numerous stimuli in the context of diseases, infections, and biomolecules exposition (immunomodulators) [...].
Collapse
Affiliation(s)
- Nadia Lampiasi
- Istituto per la Ricerca e l'Innovazione Biomedica IRIB, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
62
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
63
|
Zhu X, Chen S, Zhang P, Ma Y, Liu X, Fei H, Qian J, Hao Y, Jiang L, Lin X. Granulocyte-macrophage colony-stimulating factor promotes endometrial repair after injury by regulating macrophages in mice. J Reprod Immunol 2023; 160:104156. [PMID: 37801891 DOI: 10.1016/j.jri.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Intrauterine adhesion (IUA) caused by endometrial injury is a common cause of female infertility and is challenging to treat. Macrophages play a critical role in tissue repair and cyclical endometrial regeneration. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has significant reparative and anti-fibrotic effects in various tissues. However, there is limited research on the role of GM-CSF in the repair of endometrial injury and the involvement of macrophages in GM-CSF-mediated endometrial repair. In this study, using a mouse model of endometrial scratching injury, we found that GM-CSF treatment accelerated the repair of endometrial injury and improved fertility. At the molecular level, we observed that GM-CSF can downregulate the transcript levels of tumor necrosis factor (TNF) in mouse bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) and upregulate the expression of Arginase-1 (Arg-1) and mannose receptor C-type 1 (MRC1). Importantly, during the early and middle stages of injury, GM-CSF increased the proportion of M1-like, M2-like, and M1/M2 mixed macrophages, while in the late stage of injury, GM-CSF facilitated a decline in the number of M2-like macrophages. These findings suggest that GM-CSF may promote endometrial repair by recruiting macrophages and modulating the LPS-induced M1-like macrophages into a less inflammatory phenotype. These insights have the potential to contribute to the development of novel therapeutic approaches for the treatment of intrauterine adhesion and related infertility.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University (Zhejiang Xiaoshan Hospital), 311201 Hangzhou, China
| | - Sijia Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Peipei Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Tiantai People's Hospital of Zhejiang Province, 317200 Taizhou, China
| | - Yana Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Xiu Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Haiyi Fei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China
| | - Jingjing Qian
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Department of Obstetrics and Gynecology, Yuyao People's Hospital, 315400 Ningbo, China
| | - Yanqing Hao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou 310016, China; Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, 310016 Hangzhou, China.
| |
Collapse
|
64
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
65
|
Zhang W, Zhou R, Liu X, You L, Chen C, Ye X, Liu J, Liang Y. Key role of exosomes derived from M2 macrophages in maintaining cancer cell stemness (Review). Int J Oncol 2023; 63:126. [PMID: 37711063 PMCID: PMC10609468 DOI: 10.3892/ijo.2023.5574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Cancer stem cells (CSCs) constitute a specific subset of cells found within tumors that are responsible for initiating, advancing and resisting traditional cancer treatments. M2 macrophages, also known as alternatively activated macrophages, contribute to the development and progression of cancer through their involvement in promoting angiogenesis, suppressing the immune system, supporting tumor growth and facilitating metastasis. Exosomes, tiny vesicles released by cells, play a crucial role in intercellular communications and have been shown to be associated with cancer development and progression by influencing the immune response; thus, they may serve as markers for diagnosis and prognosis. Currently, investigating the impact of exosomes derived from M2 macrophages on the maintenance of CSCs is a crucial area of research with the aim of developing novel therapeutic strategies to target this process and improve outcomes for individuals with cancer. Understanding the biological functions of exosomes derived from M2 macrophages and their involvement in cancer may lead to the formulation of novel diagnostic tools and treatments for this disease. By targeting M2 macrophages and the exosomes they secrete, promising prospects emerge for cancer treatment, given their substantial contribution to cancer development and progression. Further research is required to fully grasp the intricate interactions between CSCs, M2 macrophages and exosomes in cancer, and to identify fresh targets for cancer therapy. The present review explores the pivotal roles played by exosomes derived from M2 cells in maintaining the stem‑like properties of cancer cells.
Collapse
Affiliation(s)
- Weiqiong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Ruiping Zhou
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xin Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Lin You
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Chang Chen
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Xiaoling Ye
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Jie Liu
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
| | - Youde Liang
- Department of Stomatology, Yantian District People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518081, P.R. China
- Department of Stomatology, The People's Hospital of Baoan Shenzhen, Shenzhen, Guangdong 518081, P.R. China
| |
Collapse
|
66
|
Schlicher L, Green LG, Romagnani A, Renner F. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Front Immunol 2023; 14:1297175. [PMID: 38022587 PMCID: PMC10644399 DOI: 10.3389/fimmu.2023.1297175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Following the success of cancer immunotherapy using large molecules against immune checkpoint inhibitors, the concept of using small molecules to interfere with intracellular negative regulators of anti-tumor immune responses has emerged in recent years. The main targets for small molecule drugs currently include enzymes of negative feedback loops in signaling pathways of immune cells and proteins that promote immunosuppressive signals within the tumor microenvironment. In the adaptive immune system, negative regulators of T cell receptor signaling (MAP4K1, DGKα/ζ, CBL-B, PTPN2, PTPN22, SHP1), co-receptor signaling (CBL-B) and cytokine signaling (PTPN2) have been preclinically validated as promising targets and initial clinical trials with small molecule inhibitors are underway. To enhance innate anti-tumor immune responses, inhibitory immunomodulation of cGAS/STING has been in the focus, and inhibitors of ENPP1 and TREX1 have reached the clinic. In addition, immunosuppressive signals via adenosine can be counteracted by CD39 and CD73 inhibition, while suppression via intratumoral immunosuppressive prostaglandin E can be targeted by EP2/EP4 antagonists. Here, we present the status of the most promising small molecule drug candidates for cancer immunotherapy, all residing relatively early in development, and the potential of relevant biomarkers.
Collapse
Affiliation(s)
- Lisa Schlicher
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Luke G. Green
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Andrea Romagnani
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Florian Renner
- Cancer Cell Targeted Therapy, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche AG, Basel, Switzerland
| |
Collapse
|
67
|
Larrea A, Elexpe A, Díez-Martín E, Torrecilla M, Astigarraga E, Barreda-Gómez G. Neuroinflammation in the Evolution of Motor Function in Stroke and Trauma Patients: Treatment and Potential Biomarkers. Curr Issues Mol Biol 2023; 45:8552-8585. [PMID: 37998716 PMCID: PMC10670324 DOI: 10.3390/cimb45110539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Neuroinflammation has a significant impact on different pathologies, such as stroke or spinal cord injury, intervening in their pathophysiology: expansion, progression, and resolution. Neuroinflammation involves oxidative stress, damage, and cell death, playing an important role in neuroplasticity and motor dysfunction by affecting the neuronal connection responsible for motor control. The diagnosis of this pathology is performed using neuroimaging techniques and molecular diagnostics based on identifying and measuring signaling molecules or specific markers. In parallel, new therapeutic targets are being investigated via the use of bionanomaterials and electrostimulation to modulate the neuroinflammatory response. These novel diagnostic and therapeutic strategies have the potential to facilitate the development of anticipatory patterns and deliver the most beneficial treatment to improve patients' quality of life and directly impact their motor skills. However, important challenges remain to be solved. Hence, the goal of this study was to review the implication of neuroinflammation in the evolution of motor function in stroke and trauma patients, with a particular focus on novel methods and potential biomarkers to aid clinicians in diagnosis, treatment, and therapy. A specific analysis of the strengths, weaknesses, threats, and opportunities was conducted, highlighting the key challenges to be faced in the coming years.
Collapse
Affiliation(s)
- Ane Larrea
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Ane Elexpe
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Eguzkiñe Díez-Martín
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Egoitz Astigarraga
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| | - Gabriel Barreda-Gómez
- Research and Development Division, IMG Pharma Biotech, 48170 Zamudio, Spain; (A.L.); (A.E.); (E.D.-M.); (E.A.)
| |
Collapse
|
68
|
Mok MY, Luo CY, Huang FP, Kong WY, Chan GCF. IL-33 Orchestrated the Interaction and Immunoregulatory Functions of Alternatively Activated Macrophages and Regulatory T Cells In Vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1134-1143. [PMID: 37566486 DOI: 10.4049/jimmunol.2300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Our group has previously demonstrated elevated serum-soluble ST2 in patients with active systemic lupus erythematosus, suggesting a role of IL-33 in the underlying pathogenesis. However, inconsistent results have been reported on the effect of exogenous IL-33 on murine lupus activity, which may be mediated by concerted actions of various immune cells in vivo. This study aimed to examine the function of IL-33 on macrophage polarization and regulatory T cells (Treg) and their interactive effects in the lupus setting by in vitro coculture experiments of macrophages and T cells that were performed in the presence or absence of IL-33-containing medium. Compared to IL-4-polarized bone marrow-derived macrophages (BMDM) from MRL/MpJ mice, adding IL-33 enhanced mRNA expression of markers of alternatively activated macrophages, including CD206 and Arg1. IL-33 and IL-4 copolarized BMDM produced higher TGF-β but not IL-6 upon inflammatory challenge. These BMDM induced an increase in the Foxp3+CD25+ Treg population in cocultured allogeneic T cells from MRL/MpJ and predisease MRL/lpr mice. These copolarized BMDM also showed an enhanced suppressive effect on T cell proliferation with reduced IFN-γ and IL-17 release but increased TGF-β production. In the presence of TGF-β and IL-2, IL-33 also directly promoted inducible Treg that expressed a high level of CD25 and more sustained Foxp3. Unpolarized BMDM cocultured with these Treg displayed higher phagocytosis. In conclusion, TGF-β was identified as a key cytokine produced by IL-4 and IL-33 copolarized alternatively activated macrophages and the induced Treg, which may contribute to a positive feedback loop potentiating the immunoregulatory functions of IL-33.
Collapse
Affiliation(s)
- Mo Yin Mok
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Cai Yun Luo
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Fang Ping Huang
- Department of Pathology, University of Hong Kong, Hong Kong SAR, China
| | - Wing Yin Kong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Godfrey Chi Fung Chan
- Department of Pediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
69
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
70
|
Kiseleva V, Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol 2023; 122:110583. [PMID: 37423155 DOI: 10.1016/j.intimp.2023.110583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Macrophages as innate immune cells with great plasticity are of great interest for cell therapy. There are two main macrophage populations - pro- and anti-inflammatory cells also known as M1 and M2. High potential in cancer research contributed to the in-depth study of the molecular processes leading to the polarization of macrophages into the M1 phenotype, and much less attention has been paid to anti-inflammatory M2 macrophages, which can be successfully used in cell therapy of inflammatory diseases. This review describes ontogenesis of macrophages, main functions of pro- and and-inflammatory cells and four M2 subpopulations characterized by different functionalities. Data on agents (cytokines, microRNAs, drugs, plant extracts) that may induce M2 polarization through the changes in microenvironment, metabolism, and efferocytosis are summarized. Finally, recent attempts at stable macrophage polarization using genetic modifications are described. This review may be helpful for researchers concerned with the problem of M2 macrophage polarization and potential use of these anti-inflammatory cells for the purposes of regenerative medicine.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia.
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, Moscow, Russia; Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
71
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
72
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
73
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
74
|
Czajka-Francuz P, Prendes MJ, Mankan A, Quintana Á, Pabla S, Ramkissoon S, Jensen TJ, Peiró S, Severson EA, Achyut BR, Vidal L, Poelman M, Saini KS. Mechanisms of immune modulation in the tumor microenvironment and implications for targeted therapy. Front Oncol 2023; 13:1200646. [PMID: 37427115 PMCID: PMC10325690 DOI: 10.3389/fonc.2023.1200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
The efficacy of cancer therapies is limited to a great extent by immunosuppressive mechanisms within the tumor microenvironment (TME). Numerous immune escape mechanisms have been identified. These include not only processes associated with tumor, immune or stromal cells, but also humoral, metabolic, genetic and epigenetic factors within the TME. The identification of immune escape mechanisms has enabled the development of small molecules, nanomedicines, immune checkpoint inhibitors, adoptive cell and epigenetic therapies that can reprogram the TME and shift the host immune response towards promoting an antitumor effect. These approaches have translated into series of breakthroughs in cancer therapies, some of which have already been implemented in clinical practice. In the present article the authors provide an overview of some of the most important mechanisms of immunosuppression within the TME and the implications for targeted therapies against different cancers.
Collapse
Affiliation(s)
| | | | | | - Ángela Quintana
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | - Sandra Peiró
- Breast Cancer Unit, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | | | | | | | | | - Kamal S. Saini
- Fortrea, Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
75
|
Tang T, Huang X, Lu M, Zhang G, Han X, Liang T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat Commun 2023; 14:3364. [PMID: 37291128 PMCID: PMC10250326 DOI: 10.1038/s41467-023-38578-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Cancer cell metabolism contributes to the establishment of an immunosuppressive tumor microenvironment. Aberrant expression of CD73, a critical enzyme in ATP metabolism, on the cell surface results in the extracellular accumulation of adenosine, which exhibits direct inhibitory effects on tumor-infiltrating lymphocytes. However, little is known about the influence of CD73 on negative immune regulation-associated signaling molecules and transduction pathways inside tumor cells. This study aims to demonstrate the moonlighting functions of CD73 in immunosuppression in pancreatic cancer, an ideal model characterized by complex crosstalk among cancer metabolism, immune microenvironment, and immunotherapeutic resistance. The synergistic effect of CD73-specific drugs in combination with immune checkpoint blockade is observed in multiple pancreatic cancer models. Cytometry by time-of-flight analysis shows that CD73 inhibition reduces tumor-infiltrating Tregs in pancreatic cancer. Tumor cell-autonomous CD73 is found to facilitate Treg recruitment, in which CCL5 is identified as a significant downstream effector of CD73 using integrated proteomic and transcriptomic analyses. CD73 transcriptionally upregulates CCL5 through tumor cell-autocrine adenosine-Adora2a signaling-mediated activation of the p38-STAT1 axis, recruiting Tregs to pancreatic tumors and causing an immunosuppressive microenvironment. Together, this study highlights that CD73-adenosine metabolism transcriptionally controls pancreatic cancer immunosuppression in a tumor-autonomous and -autocrine manner.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Minghao Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xu Han
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
76
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
77
|
Ohnishi M, Machida A, Deguchi M, Takiyama N, Kurose Y, Inoue A. Long-term Stimulation of α7 Nicotinic Acetylcholine Receptor Rescues Hemorrhagic Neuron Loss via Apoptosis of M1 Microglia. J Neuroimmune Pharmacol 2023; 18:160-168. [PMID: 37145341 DOI: 10.1007/s11481-023-10065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
We previously revealed that long-term treatment with nicotine suppresses microglial activation, resulting in a protective effect against thrombin-induced shrinkage of the striatal tissue in organotypic slice cultures. Here, the effect of nicotine on impaired M1 and protective M2 microglial polarization was investigated using the BV-2 microglial cell line in the presence or absence of thrombin. Following nicotine treatment, α7 nicotinic acetylcholine receptor expression transiently increased and then gradually decreased until 14 days. Treatment with nicotine for 14 days slightly polarized M0 microglia to M2b and d subtypes. Co-exposure of thrombin and low concentration of interferon-γ recruited inducible NO synthase (iNOS)- and interleukin-1β-double-positive M1 microglia in a thrombin-concentration-dependent manner. Treatment with nicotine for 14 days significantly decreased the thrombin-induced increase of iNOS mRNA levels and conversely showed a tendency to increase arginase1 mRNA levels. Moreover, treatment with nicotine for 14 days suppressed thrombin-induced phosphorylation of p38 MAPK through the α7 receptor. Repeated intraperitoneal administration of α7 agonist PNU-282987 for 14 days selectively evoked the apoptosis of iNOS-positive M1 microglia at the perihematomal area and showed a neuroprotective effect in an in vivo intracerebral hemorrhage model. These findings revealed that long-term stimulation of α7 receptor causes suppression of thrombin-induced activation of p38 MAPK followed by apoptosis in neuropathic M1 microglia.
Collapse
Affiliation(s)
- Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Aoi Machida
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Moemi Deguchi
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Nami Takiyama
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Yuri Kurose
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Atsuko Inoue
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
78
|
Song Z, Cheng Y, Chen M, Xie X. Macrophage polarization in bone implant repair: A review. Tissue Cell 2023; 82:102112. [PMID: 37257287 DOI: 10.1016/j.tice.2023.102112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Macrophages (MΦ) are highly adaptable and functionally polarized cells that play a crucial role in various physiological and pathological processes. Typically, MΦ differentiate into two distinct subsets: the proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Due to their potent immunomodulatory and anti-inflammatory properties, MΦ have garnered significant attention in recent decades. In the context of bone implant repair, the immunomodulatory function of MΦ is of paramount importance. Depending on their polarization phenotype, MΦ can exert varying effects on osteogenesis, angiogenesis, and the inflammatory response around the implant. This paper provides an overview of the immunomodulatory and inflammatory effects of MΦ polarization in the repair of bone implants.
Collapse
Affiliation(s)
- Zhengzheng Song
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Yuxi Cheng
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Minmin Chen
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China.
| | - Xiaoli Xie
- Central South University Xiangya Stomatological Hospital, Central South University, Changsha 410078, Hunan, China; Hunan Key Laboratory of Oral Health Research, Changsha 410008, Hunan, China.
| |
Collapse
|
79
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
80
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
81
|
Zhang ZQ, Gigliotti F, Wright TW. The Dual Benefit of Sulfasalazine on Pneumocystis Pneumonia-Related Immunopathogenesis and Antifungal Host Defense Does Not Require IL-4Rα-Dependent Macrophage Polarization. Infect Immun 2023; 91:e0049022. [PMID: 36916933 PMCID: PMC10112227 DOI: 10.1128/iai.00490-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Pneumocystis is a respiratory fungal pathogen that is among the most frequent causes of life-threatening pneumonia (PcP) in immunocompromised hosts. Alveolar macrophages play an important role in host defense against Pneumocystis, and several studies have suggested that M2 polarized macrophages have anti-Pneumocystis effector activity. Our prior work found that the immunomodulatory drug sulfasalazine (SSZ) provides a dual benefit during PcP-related immune reconstitution inflammatory syndrome (IRIS) by concurrently suppressing immunopathogenesis while also accelerating macrophage-mediated fungal clearance. The benefits of SSZ were associated with heightened Th2 cytokine production and M2 macrophage polarization. Therefore, to determine whether SSZ improves the outcome of PcP through a mechanism that requires Th2-dependent M2 polarization, RAG2-/- mice lacking interleukin 4 receptor alpha chain (IL-4Rα) on macrophage lineage cells were generated. As expected, SSZ treatment dramatically reduced the severity of PcP-related immunopathogenesis and accelerated fungal clearance in immune-reconstituted RAG2-/- mice. Similarly, SSZ treatment was also highly effective in immune-reconstituted RAG2/IL-4Rα-/- and RAG2/gamma interferon receptor (IFN-γR)-/- mice, demonstrating that neither IL-4Rα-dependent M2 nor IFN-γR-dependent M1 macrophage polarization programs were required for the beneficial effects of SSZ. Despite the fact that macrophages from RAG2/IL-4Rα-/- mice could not respond to the Th2 cytokines IL-4 and IL-13, M2-biased alveolar macrophages were identified in the lungs following SSZ treatment. These data demonstrate that not only does SSZ enhance phagocytosis and fungal clearance in the absence of macrophage IL-4Rα signaling, but also that SSZ promotes M2 macrophage polarization in an IL-4Rα-independent manner. These findings could have implications for the treatment of PcP and other diseases in which M2 polarization is beneficial.
Collapse
Affiliation(s)
- Zhuo-Qian Zhang
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Terry W. Wright
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
82
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
83
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
84
|
Ye H, Zhao J, Xu X, Zhang D, Shen H, Wang S. Role of adenosine A2a receptor in cancers and autoimmune diseases. Immun Inflamm Dis 2023; 11:e826. [PMID: 37102661 PMCID: PMC10091380 DOI: 10.1002/iid3.826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023] Open
Abstract
Adenosine receptors are P1 class of purinergic receptors that belong to G protein-coupled receptors. There are 4 subtypes of adenosine receptors, namely A1, A2A, A2B, and A3. A2AR has a high affinity for the ligand adenosine. Under pathological conditions or external stimuli, ATP is sequentially hydrolyzed to adenosine by CD39 and CD73. The combination of adenosine and A2AR can increase the concentration of cAMP and activate a series of downstream signaling pathways, and further playing the role of immunosuppression and promotion of tumor invasion. A2AR is expressed to some extent on various immune cells, where it is abnormally expressed on immune cells in cancers and autoimmune diseases. A2AR expression also correlates with disease progression. Inhibitors and agonists of A2AR may be potential new strategies for treatment of cancers and autoimmune diseases. We herein briefly reviewed the expression and distribution of A2AR, adenosine/A2AR signaling pathway, expression, and potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongling Ye
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Junqi Zhao
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Xuejing Xu
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Dagan Zhang
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Han Shen
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| | - Sen Wang
- Department of Clinical Laboratory MedicineNanjing Drum Tower Hospital, Medical School of Nanjing UniversityNanjingJiangsuP.R. China
| |
Collapse
|
85
|
Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol 2023; 14:1130116. [PMID: 36909242 PMCID: PMC9995795 DOI: 10.3389/fphys.2023.1130116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality worldwide. The immune system plays a critical role in normal pregnancy progression; however, inappropriate inflammatory responses have been consistently linked with PE pathophysiology. This inflammatory phenotype consists of activation of the innate immune system, adaptive immune system, and increased inflammatory mediators in circulation. Moreover, recent studies have shown that the inflammatory profile seen in PE persists into the postpartum period. This manuscript aims to highlight recent advances in research relating to inflammation in PE as well as the inflammation that persists postpartum in women after a PE pregnancy. With the advent of the COVID-19 pandemic, there has been an increase in obstetric disorders associated with COVID-19 infection during pregnancy. This manuscript also aims to shed light on the relationship between COVID-19 infection during pregnancy and the increased incidence of PE in these women.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
86
|
Zhang M, Liu K, Zhang Q, Xu J, Liu J, Lin H, Lin B, Zhu M, Li M. Alpha fetoprotein promotes polarization of macrophages towards M2-like phenotype and inhibits macrophages to phagocytize hepatoma cells. Front Immunol 2023; 14:1081572. [PMID: 36911723 PMCID: PMC9995430 DOI: 10.3389/fimmu.2023.1081572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Alpha-fetoprotein(AFP) is a cancer biomarker for the diagnosis of hepatocellular carcinoma(HCC); however, its role in macrophage polarization and phagocytosis remains unclear. In the present study, we explored the correlation between AFP regulation of macrophage function and the possible regulatory mechanisms. Human mononuclear leukemia cells (THP-1) and monocytes from healthy donors were used to analyze the effect of AFP on the macrophages' phenotype and phagocytosis. THP-1 cells and healthy human donor-derived monocytes were polarized into M0 macrophages induced by phorbol ester (PMA), and M0 macrophages were polarized into M1 macrophages induced by lipopolysaccharide(LPS) and interferon-γ(IFN-γ). Interleukin-4(IL-4) and interleukin-13(IL-13) were used to induce M0 macrophage polarization into M2 macrophages. Tumor-derived AFP(tAFP) stimulated M0 macrophage polarization into M2 macrophages and inhibited M1 macrophages to phagocytize HCC cells. The role of AFP in promoting macrophage polarization into M2 macrophages and inhibiting the M1 macrophages to phagocytize HCC cells may be involved in activating the PI3K/Akt signaling pathway. AFP could also enhanced the migration ability of macrophages and inhibited the apoptosis of HCC cells when co-cultured with M1-like macrophages. AFP is a pivotal cytokine that inhibits macrophages to phagocytize HCC cells.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Qiuyue Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Junnv Xu
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Hiakou, Hainan, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, Hainan, China
- Institution of Tumor, Hainan Medical College, Hiakou, Hainan, China
| |
Collapse
|
87
|
Kendall RL, Ray JL, Hamilton RF, Holian A. Self-replicating murine ex vivo cultured alveolar macrophages as a model for toxicological studies of particle-induced inflammation. Toxicol Appl Pharmacol 2023; 461:116400. [PMID: 36702314 PMCID: PMC10022441 DOI: 10.1016/j.taap.2023.116400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1β inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.
Collapse
Affiliation(s)
- Rebekah L Kendall
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America.
| | - Jessica L Ray
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
88
|
Li M, Jiang P, Wei S, Wang J, Li C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front Immunol 2023; 14:1113312. [PMID: 36845095 PMCID: PMC9947507 DOI: 10.3389/fimmu.2023.1113312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have revealed that tumor-associated macrophages are the most abundant stromal cells in the tumor microenvironment and play an important role in tumor initiation and progression. Furthermore, the proportion of macrophages in the tumor microenvironment is associated with the prognosis of patients with cancer. Tumor-associated macrophages can polarize into anti-tumorigenic phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor progression. Besides, there also is wide communication between tumor-associated macrophages and other immune compositions, such as cytotoxic T cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on. Furthermore, the crosstalk between tumor-associated macrophages and other immune cells greatly influences tumor development and treatment outcomes. Notably, many functional molecules and signaling pathways have been found to participate in the interactions between tumor-associated macrophages and other immune cells and can be targeted to regulate tumor progression. Therefore, regulating these interactions and CAR-M therapy are considered to be novel immunotherapeutic pathways for the treatment of malignant tumors. In this review, we summarized the interactions between tumor-associated macrophages and other immune compositions in the tumor microenvironment and the underlying molecular mechanisms and analyzed the possibility to block or eradicate cancer by regulating tumor-associated macrophage-related tumor immune microenvironment.
Collapse
Affiliation(s)
| | | | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| | - Chunxiao Li
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| |
Collapse
|
89
|
Roy S, Sharma A, Ghosh S. Mechanistic crosstalk of extracellular calcium-mediated regulation of maturation and plasticity in human monocytes. Biochem Biophys Res Commun 2023; 643:39-47. [PMID: 36586157 DOI: 10.1016/j.bbrc.2022.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Innate immune cells play a pivotal role in controlling tissue repair and rejection after biomaterial implantation. Calcium supplementation regulates cellular responses and alter the pathophysiology of various diseases. A series of macrophage activations through differential plasticity has been observed after cell-to-material interactions. We investigated the role of calcium supplementation in controlling macrophage phenotypes in pro-inflammatory and pre-reparative states. Oxidative defence and mitochondria involvement in cellular plasticity and the sequential M0 to M1 and M1 to M2 transitions were observed after calcium supplementation. This study describes the molecular mechanism of reactive oxygen species and drives the interconnected cellular plasticity of macrophages in the presence of calcium. Gene expression, and immunostaining, revealed a relationship between MHC class II maturation and cellular plasticity. This study elucidated the role of controlled calcium supplementation under various conditions. These findings underscore the molecular mechanism of calcium-mediated immune induction and its favourable use in different calcium-containing biomaterials., essential for tissue regeneration.
Collapse
Affiliation(s)
- Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Aarushi Sharma
- Regenerative Engineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi, 110016, India.
| |
Collapse
|
90
|
Bian N, Chu C, Rung S, Huangphattarakul V, Man Y, Lin J, Hu C. Immunomodulatory Biomaterials and Emerging Analytical Techniques for Probing the Immune Micro-Environment. Tissue Eng Regen Med 2023; 20:11-24. [PMID: 36241939 PMCID: PMC9852373 DOI: 10.1007/s13770-022-00491-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 02/01/2023] Open
Abstract
After implantation of a biomaterial, both the host immune system and properties of the material determine the local immune response. Through triggering or modulating the local immune response, materials can be designed towards a desired direction of promoting tissue repair or regeneration. High-throughput sequencing technologies such as single-cell RNA sequencing (scRNA-seq) emerging as a powerful tool for dissecting the immune micro-environment around biomaterials, have not been fully utilized in the field of soft tissue regeneration. In this review, we first discussed the procedures of foreign body reaction in brief. Then, we summarized the influences that physical and chemical modulation of biomaterials have on cell behaviors in the micro-environment. Finally, we discussed the application of scRNA-seq in probing the scaffold immune micro-environment and provided some reference to designing immunomodulatory biomaterials. The foreign body response consists of a series of biological reactions. Immunomodulatory materials regulate immune cell activation and polarization, mediate divergent local immune micro-environments and possess different tissue engineering functions. The manipulation of physical and chemical properties of scaffolds can modulate local immune responses, resulting in different outcomes of fibrosis or tissue regeneration. With the advancement of technology, emerging techniques such as scRNA-seq provide an unprecedented understanding of immune cell heterogeneity and plasticity in a scaffold-induced immune micro-environment at high resolution. The in-depth understanding of the interaction between scaffolds and the host immune system helps to provide clues for the design of biomaterials to optimize regeneration and promote a pro-regenerative local immune micro-environment.
Collapse
Affiliation(s)
- Nanyan Bian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Shengan Rung
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Vicha Huangphattarakul
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Chen Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, 14#, 3rd section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
91
|
Al-Adwi Y, Westra J, van Goor H, Burgess JK, Denton CP, Mulder DJ. Macrophages as determinants and regulators of fibrosis in systemic sclerosis. Rheumatology (Oxford) 2023; 62:535-545. [PMID: 35861385 PMCID: PMC9891414 DOI: 10.1093/rheumatology/keac410] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
SSc is a multiphase autoimmune disease with a well-known triad of clinical manifestations including vasculopathy, inflammation and fibrosis. Although a plethora of drugs has been suggested as potential candidates to halt SSc progression, nothing has proven clinically efficient. In SSc, both innate and adaptive immune systems are abnormally activated fuelling fibrosis of the skin and other vital organs. Macrophages have been implicated in the pathogenesis of SSc and are thought to be a major source of immune dysregulation. Due to their plasticity, macrophages can initiate and sustain chronic inflammation when classically activated while, simultaneously or parallelly, when alternatively activated they are also capable of secreting fibrotic factors. Here, we briefly explain the polarization process of macrophages. Subsequently, we link the activation of macrophages and monocytes to the molecular pathology of SSc, and illustrate the interplay between macrophages and fibroblasts. Finally, we present recent/near-future clinical trials and discuss novel targets related to macrophages/monocytes activation in SSc.
Collapse
Affiliation(s)
- Yehya Al-Adwi
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
| | - Johanna Westra
- University of Groningen, University Medical Centre Groningen, Department of Rheumatology and Clinical Immunology
| | - Harry van Goor
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Christopher P Denton
- UCL Division of Medicine, University College London
- UCL Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, London, UK
| | - Douwe J Mulder
- University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Division of Vascular Medicine
| |
Collapse
|
92
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
93
|
Jayaprakash AD, Ronk AJ, Prasad AN, Covington MF, Stein KR, Schwarz TM, Hekmaty S, Fenton KA, Geisbert TW, Basler CF, Bukreyev A, Sachidanandam R. Marburg and Ebola Virus Infections Elicit a Complex, Muted Inflammatory State in Bats. Viruses 2023; 15:350. [PMID: 36851566 PMCID: PMC9958679 DOI: 10.3390/v15020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis. While virus transcripts were found primarily in the liver, principal component analysis (PCA) revealed coordinated changes across multiple tissues. Gene signatures in kidney and liver pointed at induction of vasodilation, reduction in coagulation, and changes in the regulation of iron metabolism. Signatures of immune response detected in spleen and liver indicated a robust anti-inflammatory state signified by macrophages in the M2 state and an active T cell response. The evolutionary divergence between bats and humans of many responsive genes might provide a framework for understanding the differing outcomes upon infection by filoviruses. In this study, we outline multiple interconnected pathways that respond to infection by MARV and EBOV, providing insights into the complexity of the mechanisms that enable bats to resist the disease caused by filoviral infections. The results have the potential to aid in the development of new strategies to effectively mitigate and treat the disease caused by these viruses in humans.
Collapse
Affiliation(s)
| | - Adam J. Ronk
- Department of Pathology, the University Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abhishek N. Prasad
- Department of Pathology, the University Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Kathryn R. Stein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Toni M. Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saboor Hekmaty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karla A. Fenton
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, TX 77555, USA
- Department Microbiology & Immunology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, TX 77555, USA
- Department Microbiology & Immunology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Bukreyev
- Department of Pathology, the University Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, TX 77555, USA
- Department Microbiology & Immunology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
94
|
Benito-Lopez JJ, Marroquin-Muciño M, Perez-Medina M, Chavez-Dominguez R, Aguilar-Cazares D, Galicia-Velasco M, Lopez-Gonzalez JS. Partners in crime: The feedback loop between metabolic reprogramming and immune checkpoints in the tumor microenvironment. Front Oncol 2023; 12:1101503. [PMID: 36713558 PMCID: PMC9879362 DOI: 10.3389/fonc.2022.1101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
The tumor microenvironment (TME) is a complex and constantly changing cellular system composed of heterogeneous populations of tumor cells and non-transformed stromal cells, such as stem cells, fibroblasts, endothelial cells, pericytes, adipocytes, and innate and adaptive immune cells. Tumor, stromal, and immune cells consume available nutrients to sustain their proliferation and effector functions and, as a result of their metabolism, produce a wide array of by-products that gradually alter the composition of the milieu. The resulting depletion of essential nutrients and enrichment of by-products work together with other features of the hostile TME to inhibit the antitumor functions of immune cells and skew their phenotype to promote tumor progression. This review briefly describes the participation of the innate and adaptive immune cells in recognizing and eliminating tumor cells and how the gradual metabolic changes in the TME alter their antitumor functions. In addition, we discuss the overexpression of the immune checkpoints and their ligands as a result of nutrient deprivation and by-products accumulation, as well as the amplification of the metabolic alterations induced by the immune checkpoints, which creates an immunosuppressive feedback loop in the TME. Finally, the combination of metabolic and immune checkpoint inhibitors as a potential strategy to treat cancer and enhance the outcome of patients is highlighted.
Collapse
Affiliation(s)
- Jesus J Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
95
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
96
|
Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:1-14. [PMID: 36624636 PMCID: PMC9971708 DOI: 10.52547/ibj.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunometabolism is an emerging field in tumor immunotherapy. Understanding the metabolic competition for access to the limited nutrients between tumor cells and immune cells can reveal the complexity of the tumor microenvironment and help develop new therapeutic approaches for cancer. Recent studies have focused on modifying the function of immune cells by manipulating their metabolic pathways. Besides, identifying metabolic events, which affect the function of immune cells leads to new therapeutic opportunities for treatment of inflammatory diseases and immune-related conditions. According to the literature, metabolic pathway such as glycolysis, tricarboxylic acid cycle, and fatty acid metabolism, significantly influence the survival, proliferation, activation, and function of immune cells and thus regulate immune responses. In this paper, we reviewed the role of metabolic processes and major signaling pathways involving in T-cell regulation and T-cell responses against tumor cells. Moreover, we summarized the new therapeutics suggested to enhance anti-tumor activity of T cells through manipulating metabolic pathways.
Collapse
|
97
|
Kang C, Liu L, Wu C, Li L, Jia X, Xie W, Chen S, Wu X, Zheng H, Liu J, Li R, Zeng B. The adenosinergic machinery in cancer: In-tandem insights from basic mechanisms to therapy. Front Immunol 2023; 14:1111369. [PMID: 36911717 PMCID: PMC9995374 DOI: 10.3389/fimmu.2023.1111369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Extracellular adenosine (eADO) signaling has emerged as an increasingly important regulator of immune responses, including tumor immunity. eADO is mainly produced from extracellular ATP (eATP) hydrolysis. eATP is rapidly accumulated in the extracellular space following cell death or cellular stress triggered by hypoxia, nutrient starvation, or inflammation. eATP plays a pro-inflammatory role by binding and activating the P2 purinergic receptors (P2X and P2Y), while eADO has been reported in many studies to mediate immunosuppression by activating the P1 purinergic receptors (A1, A2A, A2B, and A3) in diverse immune cells. Consequently, the hydrolysis of eATP to eADO alters the immunosurveillance in the tumor microenvironment (TME) not only by reducing eATP levels but also by enhancing adenosine receptor signaling. The effects of both P1 and P2 purinergic receptors are not restricted to immune cells. Here we review the most up-to-date understanding of the tumor adenosinergic system in all cell types, including immune cells, tumor cells, and stromal cells in TME. The potential novel directions of future adenosinergic therapies in immuno-oncology will be discussed.
Collapse
Affiliation(s)
- Chifei Kang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China.,College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Luyu Liu
- Guangdong Institute of Intelligence Science and Technology, Hengqin Guangdong-Macao In-Depth Cooperation Zone, Zhuhai, Guangdong, China
| | - Chengyu Wu
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Lingyun Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xiao Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Wendi Xie
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Siyu Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xinying Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Huaxiao Zheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
98
|
Marson RF, Regner AP, da Silva Meirelles L. Mesenchymal "stem" cells, or facilitators for the development of regenerative macrophages? Pericytes at the interface of wound healing. Front Cell Dev Biol 2023; 11:1148121. [PMID: 36936686 PMCID: PMC10017474 DOI: 10.3389/fcell.2023.1148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Cultured mesenchymal stromal cells are among the most used cells in clinical trials. Currently, their potential benefits include provision of mature cell types through differentiation, and secretion of various types of paracrine signaling molecules. Even though research on these cells has spanned some decades now, surprisingly, their therapeutic potential has not been fully translated into clinical practice yet, which calls for further understanding of their intrinsic nature and modes of action. In this review, after discussing pieces of evidence that suggest that some perivascular cells may exhibit mesenchymal stem cell characteristics in vivo, we examine the possibility that subpopulations of perivascular and/or adventitial cells activated after tissue injury behave as MSCs and contribute to the resolution of tissue injury by providing cues for the development of regenerative macrophages at injured sites. Under this perspective, an important contribution of cultured MSCs (or their acellular products, such as extracellular vesicles) used in cell therapies would be to instigate the development of M2-like macrophages that support the tissue repair process.
Collapse
Affiliation(s)
- Renan Fava Marson
- Graduate Program in Cellular and Molecular Biology Applied to Health—PPGBioSaúde, Lutheran University of Brazil, Canoas, Brazil
| | - Andrea Pereira Regner
- Graduate Program in Cellular and Molecular Biology Applied to Health—PPGBioSaúde, Lutheran University of Brazil, Canoas, Brazil
- School of Medicine, Lutheran University of Brazil, Canoas, Brazil
| | - Lindolfo da Silva Meirelles
- Graduate Program in Cellular and Molecular Biology Applied to Health—PPGBioSaúde, Lutheran University of Brazil, Canoas, Brazil
- School of Medicine, Lutheran University of Brazil, Canoas, Brazil
- *Correspondence: Lindolfo da Silva Meirelles, ,
| |
Collapse
|
99
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
100
|
Hoque J, Zeng Y, Newman H, Gonzales G, Lee C, Varghese S. Microgel-Assisted Delivery of Adenosine to Accelerate Fracture Healing. ACS Biomater Sci Eng 2022; 8:4863-4872. [PMID: 36266245 PMCID: PMC11188841 DOI: 10.1021/acsbiomaterials.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular adenosine plays a key role in promoting bone tissue formation. Local delivery of adenosine could be an effective therapeutic strategy to harness the beneficial effect of extracellular adenosine on bone tissue formation following injury. Herein, we describe the development of an injectable in situ curing scaffold containing microgel-based adenosine delivery units. The two-component scaffold includes adenosine-loaded microgels and functionalized hyaluronic acid (HA) molecules. The microgels were generated upon copolymerization of 3-acrylamidophenylboronic acid (3-APBA)- and 2-aminoethylmethacrylamide (2-AEMA)-conjugated HA (HA-AEMA) in an emulsion suspension. The PBA functional groups were used to load the adenosine molecules. Mixing of the microgels with the HA polymers containing clickable groups, dibenzocyclooctyne (DBCO) and azide (HA-DBCO and HA-Azide), resulted in a 3D scaffold embedded with adenosine delivery units. Application of the in situ curing scaffolds containing adenosine-loaded microgels following tibial fracture injury showed improved bone tissue healing in a mouse model as demonstrated by the reduced callus size, higher bone volume, and increased tissue mineral density compared to those treated with the scaffold without adenosine. Overall, our results suggest that local delivery of adenosine could potentially be an effective strategy to promote bone tissue repair.
Collapse
Affiliation(s)
- Jiaul Hoque
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Yuze Zeng
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
| | - Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Cheryl Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| | - Shyni Varghese
- Department of Orthopaedic Surgery School of Medicine, Duke University, Durham, North Carolina 27710, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27710, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|