51
|
Hu K, Tang X, Tang G, Yao S, Yao B, Wang H, Nie D, Liang X, Tang C, He S. 18F-FP-PEG2-β-Glu-RGD2: A Symmetric Integrin αvβ3-Targeting Radiotracer for Tumor PET Imaging. PLoS One 2015; 10:e0138675. [PMID: 26397833 PMCID: PMC4580323 DOI: 10.1371/journal.pone.0138675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022] Open
Abstract
Radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive determination of integrin αvβ3 expression in tumors. In this study, we performed radiosynthesis and biological evaluation of a new 18F-labeled RGD homodimeric peptide with one 8-amino-3,6-dioxaoctanoic acid (PEG2) linker on the glutamate β-amino group (18F-FP-PEG2-β-Glu-RGD2) as a symmetric PET tracer for tumor imaging. Biodistribution studies showed that radioactivity of 18F-FP-PEG2-β-Glu-RGD2 was rapidly cleared from blood by predominately renal excretion. MicroPET-CT imaging with 18F-FP-PEG2-β-Glu-RGD2 revealed high tumor contrast and low background in A549 human lung adenocarcinoma-bearing mouse models, PC-3 prostate cancer-bearing mouse models, and orthotopic transplanted C6 brain glioma models. 18F-FP-PEG2-β-Glu-RGD2 exhibited good stability in vitro and in vivo. The results suggest that this tracer is a potential PET tracer for tumor imaging.
Collapse
Affiliation(s)
- Kongzhen Hu
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaolan Tang
- College of Materials and Energy, Southern China Agricultural University, Guangzhou, 510642, China
| | - Ganghua Tang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaobo Yao
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Baoguo Yao
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongliang Wang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiang Liang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Caihua Tang
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shanzhen He
- Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
52
|
Liu S. Radiolabeled Cyclic RGD Peptide Bioconjugates as Radiotracers Targeting Multiple Integrins. Bioconjug Chem 2015; 26:1413-38. [PMID: 26193072 DOI: 10.1021/acs.bioconjchem.5b00327] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis is a requirement for tumor growth and metastasis. The angiogenic process depends on vascular endothelial cell migration and invasion, and is regulated by various cell adhesion receptors. Integrins are such a family of receptors that facilitate the cellular adhesion to and migration on extracellular matrix proteins in the intercellular spaces and basement membranes. Among 24 members of the integrin family, αvβ3 is studied most extensively for its role in tumor angiogenesis and metastasis. The αvβ3 is expressed at relatively low levels on epithelial cells and mature endothelial cells, but it is highly expressed on the activated endothelial cells of tumor neovasculature and some tumor cells. This restricted expression makes αvβ3 an excellent target to develop antiangiogenic drugs and diagnostic molecular imaging probes. Since αvβ3 is a receptor for extracellular matrix proteins with one or more RGD tripeptide sequence, many radiolabeled cyclic RGD peptides have been evaluated as "αvβ3-targeted" radiotracers for tumor imaging over the past decade. This article will use the dimeric and tetrameric cyclic RGD peptides developed in our laboratories as examples to illustrate basic principles for development of αvβ3-targeted radiotracers. It will focus on different approaches to maximize the radiotracer tumor uptake and tumor/background ratios. This article will also discuss some important assays for preclinical evaluations of integrin-targeted radiotracers. In general, multimerization of cyclic RGD peptides increases their integrin binding affinity and the tumor uptake and retention times of their radiotracers. Regardless of their multiplicity, the capability of cyclic RGD peptides to bind other integrins (namely, αvβ5, α5β1, α6β4, α4β1, and αvβ6) is expected to enhance the radiotracer tumor uptake due to the increased integrin population. The results from preclinical and clinical studies clearly show that radiolabeled cyclic RGD peptides (such as (99m)Tc-3P-RGD2, (18)F-Alfatide-I, and (18)F-Alfatide-II) are useful as the molecular imaging probes for early cancer detection and noninvasive monitoring of the tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Shuang Liu
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
53
|
Rashidian M, Keliher EJ, Dougan M, Juras P, Cavallari M, Wojtkiewicz GR, Jacobsen JT, Edens JG, Tas JMJ, Victora G, Weissleder R, Ploegh H. The use of 18F-2-fluorodeoxyglucose (FDG) to label antibody fragments for immuno-PET of pancreatic cancer. ACS CENTRAL SCIENCE 2015; 1:142-147. [PMID: 26955657 PMCID: PMC4778250 DOI: 10.1021/acscentsci.5b00121] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We generated 18F-labeled antibody fragments for PET imaging using a sortase-mediated reaction to install a transcyclooctene (TCO)-functionalized short peptide onto proteins of interest, followed by reaction with a tetrazine-labeled-18F-2-deoxyfluoroglucose (FDG). The method is rapid, robust, and site-specific (radiochemical yields >25%, not decay corrected). The availability of 18F-2-deoxyfluoroglucose avoids the need for more complicated chemistries used to generate carbon-fluorine bonds. We demonstrate the utility of the method by detecting heterotopic pancreatic tumors in mice by PET, using anti-Class II MHC single domain antibodies. We correlate macroscopic PET images with microscopic two-photon visualization of the tumor. Our approach provides easy access to 18F-labeled antibodies and their fragments at a level of molecular specificity that complements conventional18F-FDG imaging.
Collapse
Affiliation(s)
- Mohammad Rashidian
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Edmund J. Keliher
- Center for Systems Biology Department and Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Michael Dougan
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Gastroenterology, Massachusetts General
Hospital, 185 Cambridge
Street, Boston, Massachusetts 02114, United States
| | - Patrick
K. Juras
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Marco Cavallari
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Gregory R. Wojtkiewicz
- Center for Systems Biology Department and Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Johanne T. Jacobsen
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Jerre G. Edens
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Jeroen M. J. Tas
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Gabriel Victora
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Ralph Weissleder
- Center for Systems Biology Department and Department of Radiology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Hidde Ploegh
- Whitehead
Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- E-mail:
| |
Collapse
|
54
|
Biodistribution of the ¹⁸F-FPPRGD₂ PET radiopharmaceutical in cancer patients: an atlas of SUV measurements. Eur J Nucl Med Mol Imaging 2015; 42:1850-8. [PMID: 26062933 DOI: 10.1007/s00259-015-3096-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/25/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the biodistribution of 2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid (RGD) peptide (PEG3-E[c{RGDyk}]2) ((18)F-FPPRGD2) in cancer patients and to compare its uptake in malignant lesions with (18)F-FDG uptake. METHODS A total of 35 patients (11 men, 24 women, mean age 52.1 ± 10.8 years) were enrolled prospectively and had (18)F-FPPRGD2 PET/CT prior to treatment. Maximum standardized uptake values (SUVmax) and mean SUV (SUVmean) were measured in 23 normal tissues in each patient, as well as in known or suspected cancer lesions. Differences between (18)F-FPPRGD2 uptake and (18)F-FDG uptake were also evaluated in 28 of the 35 patients. RESULTS Areas of high (18)F-FPPRGD2 accumulation (SUVmax range 8.9 - 94.4, SUVmean range 7.1 - 64.4) included the bladder and kidneys. Moderate uptake (SUVmax range 2.1 - 6.3, SUVmean range 1.1 - 4.5) was found in the choroid plexus, salivary glands, thyroid, liver, spleen, pancreas, small bowel and skeleton. Compared with (18)F-FDG, (18)F-FPPRGD2 showed higher tumor-to-background ratio in brain lesions (13.4 ± 8.5 vs. 1.1 ± 0.5, P < 0.001), but no significant difference in body lesions (3.2 ± 1.9 vs. 4.4 ± 4.2, P = 0.10). There was no significant correlation between the uptake values (SUVmax and SUVmean) for (18)F FPPRGD2 and those for (18)F-FDG. CONCLUSION The biodistribution of (18)F-FPPRGD2 in cancer patients is similar to that of other RGD dimer peptides and it is suitable for clinical use. The lack of significant correlation between (18)F-FPPRGD2 and (18)F-FDG uptake confirms that the information provided by each PET tracer is different.
Collapse
|
55
|
Evaluation of two novel ⁶⁴Cu-labeled RGD peptide radiotracers for enhanced PET imaging of tumor integrin αvβ₃. Eur J Nucl Med Mol Imaging 2015; 42:1859-68. [PMID: 26016906 DOI: 10.1007/s00259-015-3085-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Our goal was to demonstrate that suitably derivatized monomeric RGD peptide-based PET tracers, targeting integrin αvβ3, may offer advantages in image contrast, time for imaging, and low uptake in nontarget tissues. METHODS Two cyclic RGDfK derivatives, (PEG)2-c(RGDfK) and PEG4-SAA4-c(RGDfK), were constructed and conjugated to NOTA for (64)Cu labeling. Their integrin αvβ3-binding properties were determined via a competitive cell binding assay. Mice bearing U87MG tumors were intravenously injected with each of the (64)Cu-labeled peptides, and PET scans were acquired during the first 30 min, and 2 and 4 h after injection. Blocking and ex vivo biodistribution studies were carried out to validate the PET data and confirm the specificity of the tracers. RESULTS The IC50 values of NOTA-(PEG)2-c(RGDfK) and NOTA-PEG4-SAA4-c(RGDfK) were 444 ± 41 nM and 288 ± 66 nM, respectively. Dynamic PET data of (64)Cu-NOTA-(PEG)2-c(RGDfK) and (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) showed similar circulation t 1/2 and peak tumor uptake of about 4 %ID/g for both tracers. Due to its marked hydrophilicity, (64)Cu-NOTA-PEG4-SAA4-c(RGDfK) provided faster clearance from tumor and normal tissues yet maintained excellent tumor-to-background ratios. Static PET scans at later time-points corroborated the enhanced excretion of the tracer, especially from abdominal organs. Ex vivo biodistribution and receptor blocking studies confirmed the accuracy of the PET data and the integrin αvβ3-specificity of the peptides. CONCLUSION Our two novel RGD-based radiotracers with optimized pharmacokinetic properties allowed fast, high-contrast PET imaging of tumor-associated integrin αvβ3. These tracers may facilitate the imaging of abdominal malignancies, normally precluded by high background uptake.
Collapse
|
56
|
Yu HM, Chen JH, Lin KL, Lin WJ. Synthesis of68Ga-labeled NOTA-RGD-GE11 heterodimeric peptide for dual integrin and epidermal growth factor receptor-targeted tumor imaging. J Labelled Comp Radiopharm 2015; 58:299-303. [DOI: 10.1002/jlcr.3296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Hung-Man Yu
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan District Taoyuan City Taiwan
| | - Jyun-Hong Chen
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan District Taoyuan City Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine; National Cheng Kung University; Tainan City Taiwan
| | - Kun-Liang Lin
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan District Taoyuan City Taiwan
| | - Wuu-Jyh Lin
- Isotope Application Division; Institute of Nuclear Energy Research; Longtan District Taoyuan City Taiwan
| |
Collapse
|
57
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
58
|
Kim HL, Sachin K, Jeong HJ, Choi W, Lee HS, Kim DW. F-18 Labeled RGD Probes Based on Bioorthogonal Strain-Promoted Click Reaction for PET Imaging. ACS Med Chem Lett 2015; 6:402-7. [PMID: 25893040 DOI: 10.1021/ml500464f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/06/2015] [Indexed: 01/19/2023] Open
Abstract
A series of fluorine-substituted monomeric and dimeric cRGD peptide derivatives, such as cRGD-ADIBOT-F (ADIBOT = azadibenzocyclooctatriazole), di-cRGD-ADIBOT-F, cRGD-PEG5-ADIBOT-F, and di-cRGD-PEG5-ADIBOT-F, were prepared by strain-promoted alkyne azide cycloaddition (SPAAC) reaction of the corresponding aza-dibenzocyclooctyne (ADIBO) substituted peptides with a fluorinated azide 3. Among these cRGD derivatives, di-cRGD-PEG5-ADIBOT-F had the highest binding affinity in a competitive binding assay compared to other derivatives and even the original cRGDyk. On the basis of the in vitro study results, di-cRGD-PEG5-ADIBOT-(18)F was prepared from a SPAAC reaction with (18)F-labeled azide and subsequent chemo-orthogonal scavenger-assisted separation without high performance liquid chromatography (HPLC) purification in 92% decay-corrected radiochemical yield (dcRCY) with high specific activity for further in vivo positron emission tomography (PET) imaging study. In vivo PET imaging study and biodistribution data showed that this radiotracer allowed successful visualization of tumors with good tumor-to-background contrast and significantly higher tumor uptake compared to other major organs.
Collapse
Affiliation(s)
- Hye Lan Kim
- Department of Nuclear
Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-712, Korea
| | - Kalme Sachin
- Department of Nuclear
Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-712, Korea
| | - Hyeon Jin Jeong
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
| | - Wonsil Choi
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
| | - Hyun Soo Lee
- Department
of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Dong Wook Kim
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
| |
Collapse
|
59
|
Debordeaux F, Schulz J, Savona-Baron C, Hazari PP, Lervat C, Mishra AK, Ries C, Barthe N, Vergier B, Fernandez P. 99mTc-DTPA-bis-c(RGDfK) a potential alpha(v)beta3 integrin based homobivalent radioligand for imaging neoangiogenesis in malignant glioma and melanoma. RSC Adv 2015. [DOI: 10.1039/c5ra09119e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new99mTc-labeled bivalent DTPA-bis-c(RGDfK) conjugate has been developed and successfully synthesized. Promising results have been obtained for its preclinical evaluation on human glioma and melanoma tumor expressing αvβ3targets.
Collapse
Affiliation(s)
| | | | | | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- DRDO
- New Delhi
- India 110052
| | - Cyril Lervat
- Univ. Bordeaux
- INCIA
- UMR 5287
- F-33400 Talence
- France
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- DRDO
- New Delhi
- India 110052
| | - Colette Ries
- Univ. Bordeaux
- INCIA
- UMR 5287
- F-33400 Talence
- France
| | - Nicole Barthe
- Univ. Bordeaux
- Bioingénierie tissulaire
- U1026
- F-33000 Bordeaux
- France
| | - Béatrice Vergier
- CHU de Bordeaux
- Service d'anatomopathologie
- F-33000 Bordeaux
- France
| | | |
Collapse
|
60
|
Guo J, Lang L, Hu S, Guo N, Zhu L, Sun Z, Ma Y, Kiesewetter DO, Niu G, Xie Q, Chen X. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers. Mol Imaging Biol 2014; 16:274-83. [PMID: 23982795 DOI: 10.1007/s11307-013-0668-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. PROCEDURES Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. RESULTS All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. CONCLUSION The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.
Collapse
Affiliation(s)
- Jinxia Guo
- Department of Biomedical Engineering, and Wuhan National Laboratory for Optoelectronics(WNLO), Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Park JA, Lee YJ, Ko IO, Kim TJ, Chang Y, Lim SM, Kim KM, Kim JY. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide. Biochem Biophys Res Commun 2014; 455:246-50. [PMID: 25449282 DOI: 10.1016/j.bbrc.2014.10.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/16/2022]
Abstract
Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.
Collapse
Affiliation(s)
- Ji-Ae Park
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| | - Yong Jin Lee
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In Ok Ko
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Tae-Jeong Kim
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Yongmin Chang
- Institute of Biomedical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Kyeong Min Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Jung Young Kim
- Molecular Imaging Research Center, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
62
|
Li D, Zhao X, Zhang L, Li F, Ji N, Gao Z, Wang J, Kang P, Liu Z, Shi J, Chen X, Zhu Z. (68)Ga-PRGD2 PET/CT in the evaluation of Glioma: a prospective study. Mol Pharm 2014; 11:3923-3929. [PMID: 25093246 PMCID: PMC4224544 DOI: 10.1021/mp5003224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 01/08/2023]
Abstract
Integrin αvβ3 is overexpressed in both neovasculature and glioma cells. We aimed to evaluate (68)gallium-BNOTA-PRGD2 ((68)Ga-PRGD2) as a new reagent for noninvasive integrin αvβ3 imaging in glioma patients. With informed consent, 12 patients with suspicious brain glioma, as diagnosed by enhanced magnetic resonance imaging (MRI) scanning, were enrolled to undergo (68)Ga-PRGD2 PET/CT and (18)F-FDG PET/CT scans before surgery. The preoperative images were compared and correlated with the pathologically determined WHO grade. Next, the expression of integrin αvβ3, CD34, and Ki-67 were determined by immunohistochemical staining of the resected brain tumor tissue. Our findings demonstrated that (68)Ga-PRGD2 specifically accumulated in the brain tumors that were rich of integrin αvβ3 and other neovasculature markers, but not in the brain parenchyma other than the choroid plexus. Therefore, (68)Ga-PRGD2 PET/CT was able to evaluate the glioma demarcation more specifically than (18)F-FDG PET/CT. The maximum standardized uptake values (SUVmax) of (68)Ga-PRGD2, rather than those of (18)F-FDG, were significantly correlated with the glioma grading. The maximum tumor-to-brain ratios (TBRmax) of both tracers were significantly correlated with glioma grading, whereas (68)Ga-PRGD2 seemed to be more superior to (18)F-FDG in differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Moreover, (68)Ga-PRGD2 PET/CT showed different accumulation patterns for HGG of WHO grades III and IV. This is the first noninvasive integrin imaging study, to the best of our knowledge, conducted in preoperative patients with different grades of glioma, and it preliminarily indicated the effectiveness of this novel method for evaluating glioma grading and demarcation.
Collapse
Affiliation(s)
- Deling Li
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Xiaobin Zhao
- Department
of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Fang Li
- Department
of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing, China
| | - Nan Ji
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Zhixian Gao
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Jisheng Wang
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Peng Kang
- Department of Neurosurgery,
Beijing Tiantan Hospital, Capital Medical
University; China National
Clinical Research Center for Neurological Diseases (NCRC-ND); Beijing
Key Laboratory of Brian Tumor, Beijing, China
| | - Zhaofei Liu
- Medical
Isotopes Research Center, Peking University, Beijing, China
| | - Jiyun Shi
- Medical
Isotopes Research Center, Peking University, Beijing, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering (NIBIB), National
Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhaohui Zhu
- Department
of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing, China
| |
Collapse
|
63
|
Iagaru A, Mosci C, Shen B, Chin FT, Mittra E, Telli ML, Gambhir SS. 18F-FPPRGD2 PET/CT: Pilot Phase Evaluation of Breast Cancer Patients. Radiology 2014; 273:549-59. [DOI: 10.1148/radiol.14140028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
64
|
Carpenter CM, Ma X, Liu H, Sun C, Pratx G, Wang J, Gambhir SS, Xing L, Cheng Z. Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers. J Nucl Med 2014; 55:1905-9. [PMID: 25300598 DOI: 10.2967/jnumed.114.139105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Cerenkov luminescence endoscopy (CLE) is an optical technique that captures the Cerenkov photons emitted from highly energetic moving charged particles (β(+) or β(-)) and can be used to monitor the distribution of many clinically available radioactive probes. A main limitation of CLE is its limited sensitivity to small concentrations of radiotracer, especially when used with a light guide. We investigated the improvement in the sensitivity of CLE brought about by using a β(-) radiotracer that improved Cerenkov signal due to both higher β-particle energy and lower γ noise in the imaging optics because of the lack of positron annihilation. METHODS The signal-to-noise ratio (SNR) of (90)Y was compared with that of (18)F in both phantoms and small-animal tumor models. Sensitivity and noise characteristics were demonstrated using vials of activity both at the surface and beneath 1 cm of tissue. Rodent U87MG glioma xenograft models were imaged with radiotracers bound to arginine-glycine-aspartate (RGD) peptides to determine the SNR. RESULTS γ noise from (18)F was demonstrated by both an observed blurring across the field of view and a more pronounced fall-off with distance. A decreased γ background and increased energy of the β particles resulted in a 207-fold improvement in the sensitivity of (90)Y compared with (18)F in phantoms. (90)Y-bound RGD peptide produced a higher tumor-to-background SNR than (18)F in a mouse model. CONCLUSION The use of (90)Y for Cerenkov endoscopic imaging enabled superior results compared with an (18)F radiotracer.
Collapse
Affiliation(s)
- Colin M Carpenter
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Xiaowei Ma
- Canary Center at Stanford for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongguang Liu
- Canary Center at Stanford for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and
| | - Conroy Sun
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sanjiv S Gambhir
- Canary Center at Stanford for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Zhen Cheng
- Canary Center at Stanford for Cancer Early Detection, Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, Stanford, California; and
| |
Collapse
|
65
|
Jiang W, Fu Y, Yang F, Yang Y, Liu T, Zheng W, Zeng L, Chen T. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13738-48. [PMID: 25073123 DOI: 10.1021/am5031962] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.
Collapse
Affiliation(s)
- Wenting Jiang
- Department of Chemistry and ‡Institute of Hydrobiology, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe. Mol Imaging Biol 2014; 16:781-92. [DOI: 10.1007/s11307-014-0761-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
67
|
Sweetening pharmaceutical radiochemistry by (18)f-fluoroglycosylation: a short review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:214748. [PMID: 24991541 PMCID: PMC4058687 DOI: 10.1155/2014/214748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
At the time when the highly efficient [(18)F]FDG synthesis was discovered by the use of the effective precursor 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl- β -D-mannopyranose (mannose triflate) for nucleophilic (18)F-substitution, the field of PET in nuclear medicine experienced a long-term boom. Thirty years later, various strategies for chemoselective (18)F-labeling of biomolecules have been developed, trying to keep up with the emerging field of radiopharmaceutical sciences. Among the new radiochemical strategies, chemoselective (18)F-fluoroglycosylation methods aim at the sweetening of pharmaceutical radiochemistry by providing a powerful and highly valuable tool for the design of (18)F-glycoconjugates with suitable in vivo properties for PET imaging studies. This paper provides a short review (reflecting the literature not older than 8 years) on the different (18)F-fluoroglycosylation reactions that have been applied to the development of various (18)F-glycoconjugate tracers, including not only peptides, but also nonpeptidic tracers and high-molecular-weight proteins.
Collapse
|
68
|
Jiang L, Kimura RH, Ma X, Tu Y, Miao Z, Shen B, Chin FT, Shi H, Gambhir SS, Cheng Z. A radiofluorinated divalent cystine knot peptide for tumor PET imaging. Mol Pharm 2014; 11:3885-92. [PMID: 24717098 PMCID: PMC4212002 DOI: 10.1021/mp500018s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A divalent
knottin containing two separate integrin binding epitopes
(RGD) in the adjacent loops, 3-4A, was recently developed and reported
in our previous publication. In the current study, 3-4A was radiofluorinated
with a 4-nitrophenyl 2-18F-fluoropropinate (18F-NFP) group and the resulting divalent positron emission tomography
(PET) probe, 18F-FP–3-4A, was evaluated as a novel
imaging probe to detect integrin αvβ3 positive tumors
in living animals. Knottin 3-4A was synthesized by solid phase peptide
synthesis, folded, and site-specifically conjugated with 18/19F-NFP to produce the fluorinated peptide 18/19F-fluoropropinate-3-4A
(18/19F-FP–3-4A). The stability of 18F-FP–3-4A was tested in both phosphate buffered saline (PBS)
buffer and mouse serum. Cell uptake assays of the radiolabeled peptides
were performed using U87MG cells. In addition, small animal PET imaging
and biodistribution studies of 18F-FP–3-4A were
performed in U87MG tumor-bearing mice. The receptor targeting specificity
of the radiolabeled peptide was also verified by coinjecting the probe
with a blocking peptide cyclo(RGDyK). Our study showed that 18F-FP–3-4A exhibited excellent stability in PBS buffer (pH
7.4) and mouse serum. Small animal PET imaging and biodistribution
data revealed that 18F-FP–3-4A exhibited rapid and
good tumor uptake (3.76 ± 0.59% ID/g and 2.22 ± 0.62% ID/g
at 0.5 and 1 h, respectively). 18F-FP–3-4A was rapidly
cleared from the normal tissues, resulting in excellent tumor-to-normal
tissue contrasts. For example, liver uptake was only 0.39 ± 0.07%
ID/g and the tumor to liver ratio was 5.69 at 1 h p.i. Furthermore,
coinjection of cyclo(RGDyK) with 18F-FP–3-4A significantly
inhibited tumor uptake (0.41 ± 0.12 vs 1.02 ± 0.19% ID/g
at 2.5 h) in U87MG xenograft models, demonstrating specific accumulation
of the probe in the tumor. In summary, the divalent probe 18F-FP–3-4A is characterized by rapid and high tumor uptake
and excellent tumor-to-normal tissue ratios. 18F-FP–3-4A
is a highly promising knottin based PET probe for translating into
clinical imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University , 180 Fenglin Road, Shanghai, China 200032
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lindner S, Michler C, Wängler B, Bartenstein P, Fischer G, Schirrmacher R, Wängler C. PESIN Multimerization Improves Receptor Avidities and in Vivo Tumor Targeting Properties to GRPR-Overexpressing Tumors. Bioconjug Chem 2014; 25:489-500. [DOI: 10.1021/bc4004662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Simon Lindner
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Christina Michler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | | | - Peter Bartenstein
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Gabriel Fischer
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| | - Ralf Schirrmacher
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Carmen Wängler
- Department
of Nuclear Medicine, University Hospital Munich, Ludwig Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
70
|
Guo J, Guo N, Lang L, Kiesewetter DO, Xie Q, Li Q, Eden HS, Niu G, Chen X. (18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy. J Nucl Med 2014; 55:154-60. [PMID: 24232871 PMCID: PMC4209961 DOI: 10.2967/jnumed.113.122069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor's status under quasiconstant conditions. This study aimed to investigate the utility of dual-tracer dynamic PET imaging with (18)F-alfatide II ((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and (18)F-FDG for parametric monitoring of tumor responses to therapy. METHODS We administered doxorubicin to one group of athymic nude mice with U87MG tumors and paclitaxel protein-bound particles to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting with injection via the tail vein catheters with (18)F-alfatide II, followed 40 min later by (18)F-FDG. To achieve signal separation of the 2 tracers, we fit a 3-compartment reversible model to the time-activity curve of (18)F-alfatide II for the 40 min before (18)F-FDG injection and then extrapolated to 90 min. The (18)F-FDG tumor time-activity curve was isolated from the 90-min dual-tracer tumor time-activity curve by subtracting the fitted (18)F-alfatide II tumor time-activity curve. With separated tumor time-activity curves, the (18)F-alfatide II binding potential (Bp = k3/k4) and volume of distribution (VD) and (18)F-FDG influx rate ((K1 × k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single-tracer imaging and to monitor therapeutic response. RESULTS The transport and binding rate parameters K1-k3 of (18)F-alfatide II, calculated from the first 40 min of the dual-tracer dynamic scan, as well as Bp and VD correlated well with the parameters from the 60-min single-tracer scan (R(2) > 0.95). Compared with the results of single-tracer PET imaging, (18)F-FDG tumor uptake and influx were recovered well from dual-tracer imaging. On doxorubicin treatment, whereas no significant changes in static tracer uptake values of (18)F-alfatide II or (18)F-FDG were observed, both (18)F-alfatide II Bp and (18)F-FDG influx from kinetic analysis in tumors showed significant decreases. For therapy of MDA-MB-435 tumors with paclitaxel protein-bound particles, a significant decrease was observed only with (18)F-alfatide II Bp value from kinetic analysis but not (18)F-FDG influx. CONCLUSION The parameters fitted with compartmental modeling from the dual-tracer dynamic imaging are consistent with those from single-tracer imaging, substantiating the feasibility of this methodology. Even though no significant differences in tumor size were found until 5 d after doxorubicin treatment started, at day 3 there were already substantial differences in (18)F-alfatide II Bp and (18)F-FDG influx rate. Dual-tracer imaging can measure (18)F-alfatide II Bp value and (18)F-FDG influx simultaneously to evaluate tumor angiogenesis and metabolism. Such changes are known to precede anatomic changes, and thus parametric imaging may offer the promise of early prediction of therapy response.
Collapse
Affiliation(s)
- Jinxia Guo
- Department of Biomedical Engineering and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
- Center for Molecular Imaging and Translational Medicine (CMITM), School of Public Health, Xiamen University, Xiamen, China
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
- Center for Advanced Medical Imaging Science, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
| | - Qingguo Xie
- Department of Biomedical Engineering and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Quanzheng Li
- Center for Advanced Medical Imaging Science, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA
| | - Henry S. Eden
- Intramural Research Program (IRP), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIBIB), Bethesda, Maryland
| |
Collapse
|
71
|
Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 2013; 9:138-45. [PMID: 24356772 DOI: 10.1038/nprot.2013.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So far seven peptide-based (18)F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[(18)F]fluororibose ([(18)F]FDR) as a prosthetic group. The synthesis of [(18)F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K(18)F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [(18)F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21-23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of (18)F-fluoride and [(18)F]FDR-conjugated peptides, respectively. The first HPLC purification provides the (18)F-fluorinated precursor of [(18)F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27-37% starting from the end of bombardment (EOB). The carbohydrate nature of [(18)F]FDR and the operational convenience of this protocol should facilitate its general use.
Collapse
|
72
|
Maschauer S, Haubner R, Kuwert T, Prante O. 18F-Glyco-RGD Peptides for PET Imaging of Integrin Expression: Efficient Radiosynthesis by Click Chemistry and Modulation of Biodistribution by Glycosylation. Mol Pharm 2013; 11:505-15. [DOI: 10.1021/mp4004817] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Simone Maschauer
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University, 91054 Erlangen, Germany
| | - Roland Haubner
- Department
of Nuclear Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Torsten Kuwert
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University, 91054 Erlangen, Germany
| | - Olaf Prante
- Department
of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich Alexander University, 91054 Erlangen, Germany
| |
Collapse
|
73
|
Single step 18F-labeling of dimeric cycloRGD for functional PET imaging of tumors in mice. Nucl Med Biol 2013; 40:959-66. [PMID: 24090672 DOI: 10.1016/j.nucmedbio.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Arylboronates afford rapid aqueous (18)F-labeling via the creation of a highly polar (18)F-aryltrifluoroborate anion ((18)F-ArBF3(-)). HYPOTHESIS Radiosynthesis of an (18)F-ArBF3(-) can be successfully applied to a clinically relevant peptide. To test this hypothesis, we labeled dimeric-cylcoRGD, [c(RGDfK)]2E because a) it is molecularly complex and provides a challenging substrate to test the application of this technique, and b) [c(RGDfK)]2E has already been labeled via several (18)F-labeling methods which provide for a preliminary comparison. GOAL To validate this labeling method in the context of a complex and clinically relevant tracer to show tumor-specific uptake ex vivo with representative PET images in vivo. METHODS An arylborimidine was conjugated to [c(RGDfK)]2E to give the precursor [c(RGDfK)]2E-ArB(dan), which was aliquoted and stored at -20 °C. Aliquots of 10 or 25 nmol, containing only micrograms of precursor, were labeled using relatively low levels of (18)F-activity. Following purification eight mice (pre-blocked/unblocked) with U87M xenograft tumors were injected with [c(RGDfK)]2E-(18)F-ArBF3(-) (n = 4) for ex vivo tissue dissection. Two sets of mice (pre-blocked/unblocked) were also imaged with PET-CT (n = 2). RESULTS The [c(RGDfK)]2E-ArB(dan) is converted within 15 min to [c(RGDfK)]2E-(18)F-ArBF3(-) in isolated radiochemical yields of ~10% (n = 3) at a minimum effective specific activity of 0.3 Ci/μmol. Biodistribution shows rapid clearance to the bladder via the kidney resulting in high tumor-to-blood and tumor-to-muscle ratios of >9 and >6 respectively while pre-blocking with [c(RGDfK)]2E showed high tumor specificity. PET imaging showed good contrast between tumor and non-target tissues confirming the biodistribution data. CONCLUSION An arylborimidine-RGD peptide is rapidly (18)F-labeled in one step, in good yield, at useful specific activity. Biodistribution studies with blocking controls show tumor specificity, which is corroborated by PET images. Advances in Knowledge and Implications for patient Care: Despite many antecedent examples of labeled RGD tracers, this work is the first to show direct aqueous labeling of bisRGD with an (18)F-ArBF3(-). Labeling occurs in near record rapidity (45 min) at useful effective specific activities and competitive yields for high contrast tumor specific images. As bisRGD has been imaged in humans with several prosthetics, this work suggests potential clinical applications of tracers appended with an (18)F-ArBF3(-). More generally, the ability to label a molecularly complex tracer suggests that this method could be useful to label many other peptides. Furthermore, these results portend the development of kits that use only microgram quantities of lyophilized precursor for on demand labeling. The ability to perform one-step aqueous labeling in under an hour to provide tracers with high T:NT ratios has important implications for developing radiotracers for use in fundamental research and in preclinical tracer studies.
Collapse
|
74
|
Synthesis and in vitro evaluation of a novel radioligand for αvβ3 integrin receptor imaging: [18F]FPPA-c(RGDfK). Bioorg Med Chem Lett 2013; 23:6068-72. [PMID: 24095096 DOI: 10.1016/j.bmcl.2013.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 01/14/2023]
Abstract
The development of RGD-based antagonist of αvβ3 integrin receptor has enhanced the interest in PET probes to image this receptor for the early detection of cancer, to monitor the disease progression and the response to therapy. In this work, a novel prosthetic group (N-(4-fluorophenyl)pent-4-ynamide or FPPA) for the (18)F-labeling of an αvβ3 selective RGD-peptide was successfully prepared. [(18)F]FPPA was obtained in three steps with a radiochemical yield of 44% (decay corrected). Conjugation to c(RGDfK(N3)) by the Cu(II) catalyzed Huisgen azido alkyne cycloaddition provided the [(18)F]FPPA-c(RGDfK) with a radiochemical yield of 29% (decay corrected), in an overall synthesis time of 140 min.
Collapse
|
75
|
Haskali MB, Roselt PD, Karas JA, Noonan W, Wichmann CW, Katsifis A, Hicks RJ, Hutton CA. One-step radiosynthesis of 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP); improved preparation of radiolabeled peptides for PET imaging. J Labelled Comp Radiopharm 2013; 56:726-30. [PMID: 24339012 DOI: 10.1002/jlcr.3111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 01/30/2023]
Abstract
The versatile (18) F-labeled prosthetic group, 4-nitrophenyl 2-[(18) F]fluoropropionate ([(18) F]NFP), was synthesized in a single step in 45 min from 4-nitrophenyl 2-bromopropionate, with a decay corrected radiochemical yield of 26.2% ± 2.2%. Employing this improved synthesis of [(18) F]NFP, [(18) F]GalactoRGD - the current 'gold standard' tracer for imaging the expression of αV β3 integrin - was prepared with high specific activity in 90 min and 20% decay corrected radiochemical yield from [(18) F]fluoride.
Collapse
Affiliation(s)
- Mohammad B Haskali
- School of Chemistry, The University of Melbourne, Vic., 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic., 3010, Australia; The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Automated synthesis of symmetric integrin αvβ3-targeted radiotracer [18F]FP-PEG3-β-Glu-RGD2. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2736-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
77
|
Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, Chin FT, Gambhir SS, Dalman RL, McConnell MV. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by (18)F-labeled Arg-Gly-Asp positron-emission tomography. Circ Cardiovasc Imaging 2013; 6:950-6. [PMID: 23995363 DOI: 10.1161/circimaging.113.000234] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Both inflammation and neoangiogenesis contribute to abdominal aortic aneurysm (AAA) disease. Arg-Gly-Asp-based molecular imaging has been shown to detect the integrin αvβ3. We studied a clinical dimeric (18)F-labeled Arg-Gly-Asp positron-emission tomography (PET) agent ((18)F-FPPRGD2) for molecular imaging of experimental AAAs. METHODS AND RESULTS Murine AAAs were induced in Apo-E-deficient mice by angiotensin II infusion, with monitoring of aortic diameter on ultrasound. AAA (n=10) and saline-infused control mice (n=7) were injected intravenously with (18)F-FPPRGD2, as well as an intravascular computed tomography contrast agent, then scanned using a small-animal PET/computed tomography scanner. Aortic uptake of (18)F-FPPRGD2 was quantified by percentage-injected dose per gram and target-to- BACKGROUND =0.003; median target-to- BACKGROUND =0.0008). Ex vivo autoradiography demonstrated high uptake of (18)F-FPPRGD2 into the AAA wall, with immunohistochemistry showing substantial cluster of differentiation (CD)-11b(+) macrophages and CD-31(+) neovessels. Target-to- BACKGROUND =-0.29, P=0.41) but did strongly correlate with both mural macrophage density (r=0.79, P=0.007) and neovessel counts (r=0.87, P=0.001) on immunohistochemistry. CONCLUSIONS PET imaging of experimental AAAs using (18)F-FPPRGD2 detects biologically active disease, correlating to the degree of vascular inflammation and neoangiogenesis. This may provide a clinically translatable molecular imaging approach to characterize AAA biology to predict risk beyond size alone.
Collapse
|
78
|
Liu H, Liu S, Miao Z, Jiang H, Deng Z, Hong X, Cheng Z. A novel aliphatic 18F-labeled probe for PET imaging of melanoma. Mol Pharm 2013; 10:3384-91. [PMID: 23927458 DOI: 10.1021/mp400225s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Radiofluorinated benzamide and nicotinamide analogues are promising molecular probes for the positron emission tomography (PET) imaging of melanoma. Compounds containing aromatic (benzene or pyridine) and N,N-diethylethylenediamine groups have been successfully used for development of melanin targeted PET and single-photon emission computed tomography (SPECT) imaging agents for melanoma. The objective of this study was to determine the feasibility of using aliphatic compounds as a molecular platform for the development of a new generation of PET probes for melanoma detection. An aliphatic N,N-diethylethylenediamine precursor was directly coupled to a radiofluorination synthon, p-nitrophenyl 2-(18)F-fluoropropionate ((18)F-NFP), to produce the probe N-(2-(diethylamino)ethyl)-2-(18)F-fluoropropanamide ((18)F-FPDA). The melanoma-targeting ability of (18)F-FPDA was further evaluated both in vitro and in vivo through cell uptake assays, biodistribution studies, and small animal PET imaging in C57BL/6 mice bearing B16F10 murine melanoma tumors. Beginning with the precursor (18)F-NFP, the total preparation time for (18)F-FPDA, including the final high-performance liquid chromatography purification step, was approximately 30 min, with a decay-corrected radiochemical yield of 79.8%. The melanin-targeting specificity of (18)F-FPDA was demonstrated by significantly different uptake rates in tyrosine-treated and untreated B16F10 cells in vitro. The tumor uptake of (18)F-FPDA in vivo reached 2.65 ± 0.48 %ID/g at 2 h postinjection (p.i.) in pigment-enriched B16F10 xenografts, whereas the tumor uptake of (18)F-FPDA was close to the background levels, with rates of only 0.37 ± 0.07 %ID/g at 2 h p.i. in the nonpigmented U87MG tumor mouse model. Furthermore, small animal PET imaging studies revealed that (18)F-FPDA specifically targeted the melanotic B16F10 tumor, yielding a tumor-to-muscle ratio of approximately 4:1 at 1 h p.i. and 7:1 at 2 h p.i. In summary, we report the development of a novel (18)F-labeled aliphatic compound for melanoma imaging that can be easily synthesized in high yields using the radiosynthon (18)F-NFP. The PET probe (18)F-FPDA exhibits high B16F10 tumor-targeting efficacy and favorable in vivo pharmacokinetics. Our study demonstrates that aliphatic compounds can be used as a new generation molecular platform for the development of novel melanoma targeting agents. Further evaluation and optimization of (18)F-FPDA for melanin targeted molecular imaging are therefore warranted.
Collapse
Affiliation(s)
- Hongguang Liu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University , California, 94305-5344, United States
| | | | | | | | | | | | | |
Collapse
|
79
|
Fischer G, Schirrmacher R, Wängler B, Wängler C. Radiolabeled Heterobivalent Peptidic Ligands: an Approach with High Future Potential for in vivo Imaging and Therapy of Malignant Diseases. ChemMedChem 2013; 8:883-90. [DOI: 10.1002/cmdc.201300081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Indexed: 12/19/2022]
|
80
|
Cai H, Conti PS. RGD-based PET tracers for imaging receptor integrin αv β3 expression. J Labelled Comp Radiopharm 2013; 56:264-79. [PMID: 24285371 DOI: 10.1002/jlcr.2999] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Positron emission tomography (PET) imaging of receptor integrin αv β3 expression may play a key role in the early detection of cancer and cardiovascular diseases, monitoring disease progression, evaluating therapeutic response, and aiding anti-angiogenic drugs discovery and development. The last decade has seen the development of new PET tracers for in vivo imaging of integrin αv β3 expression along with advances in PET chemistry. In this review, we will focus on the radiochemistry development of PET tracers based on arginine-glycine-aspartic acid (RGD) peptide, present an overview of general strategies for preparing RGD-based PET tracers, and review the recent advances in preparations of (18) F-labeled, (64) Cu-labeled, and (68) Ga-labeled RGD tracers, RGD-based PET multivalent probes, and RGD-based PET multimodality probes for imaging receptor integrin αv β3 expression.
Collapse
Affiliation(s)
- Hancheng Cai
- PET Center, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, 48201, USA; Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | |
Collapse
|
81
|
|
82
|
Liu S, Park R, Conti PS, Li Z. "Kit like" (18)F labeling method for synthesis of RGD peptide-based PET probes. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:97-101. [PMID: 23342304 PMCID: PMC3545367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Positron Emission Tomography (PET) has become a popular imaging technique widely used for diagnostic purposes. To date, much attention has been devoted to (18)F-fluoride because of the characteristics of its nuclear decay, as well as its relative ease of preparation from (18)O-water. However, with a half-life of 110 minutes, swift and efficient incorporation of (18)F-fluorine into biomolecules is necessary to minimize loss of activity. Therefore, the discovery of rapid and reliable incorporation of (18)F-fluorine atoms into biomolecules would be highly beneficial, especially if these protocols can be carried out directly in irradiated 18O-water. In the study published in the American Journal of Nuclear Medicine and Molecular Imaging, cyclo-RGD-(18)F-aryltrifluoroborate conjugates were prepared based on one-step and one-pot-two-step methods. This paper represents recent efforts on the design and development of novel PET tracers based on the "Kit like" (18)F labeling method.
Collapse
Affiliation(s)
- Shuanglong Liu
- Molecular Imaging Center, Department of Radiology, University of Southern California Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
83
|
Li Y, Guo J, Tang S, Lang L, Chen X, Perrin DM. One-step and one-pot-two-step radiosynthesis of cyclo-RGD-(18)F-aryltrifluoroborate conjugates for functional imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:44-56. [PMID: 23342300 PMCID: PMC3545361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/22/2012] [Indexed: 06/01/2023]
Abstract
Arylboronates capture aqueous (18)F-fluoride in one step to afford a highly polar (18)F-labeled aryltrifluoroborate anion ((18)F-ArBF(3) (-)) that clears rapidly in vivo. To date however, there is little data to show that a ligand labeled with a prosthetic (18)F-ArBF(3) (-) will provide functional images. RGD, a high-affinity ligand for integrins that are present on the cell surface of numerous tumors, has been labeled in many formats with many different radionuclides, and as such represents a well-established ligand that can be used to evaluate new labeling methods. Herein we have labeled RGD with a prosthetic (18)F-ArBF(3) (-) via two approaches for the first time: 1) a RGD-boronate bioconjugate is directly labeled in one step and 2) an alkyne-modified arylborimidine is first converted to the corresponding (18)F-ArBF(3) (-) which is then conjugated to an RGD-azide via Cu(+)-mediated [2+3] dipolar cycloaddition in one pot over two steps. RGD-(18)F-ArBF(3) (-) bionconjugates were produced in reasonable radiochemical yields using low amounts of (18)F-fluoride anion (10-50 mCi). Despite relatively low specific activities, good tumor images are revealed in each case.
Collapse
Affiliation(s)
- Ying Li
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Jinxia Guo
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Shiqing Tang
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - David M Perrin
- Department of Chemistry, University of British Columbia2036 Main Mall, Vancouver, B.C., V6T-1Z1, Canada
| |
Collapse
|
84
|
Guo N, Lang L, Gao H, Niu G, Kiesewetter DO, Xie Q, Chen X. Quantitative analysis and parametric imaging of 18F-labeled monomeric and dimeric RGD peptides using compartment model. Mol Imaging Biol 2012; 14:743-52. [PMID: 22437879 PMCID: PMC3401513 DOI: 10.1007/s11307-012-0541-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Non-invasive PET imaging with radiolabeled RGD peptides for α(v)β(3) integrin targeting has become an important tool for tumor diagnosis and treatment monitoring in both pre-clinical and clinical studies. To better understand the molecular process and tracer pharmacokinetics, we introduced kinetic modeling in the investigation of (18)F-labeled RGD peptide monomer (18)F-FP-c(RGDyK) (denoted as (18)F-FPRGD) and dimer (18)F-FP-PEG3-E[c(RGDyK)](2) (denoted as (18)F-FPPRGD2). PROCEDURES MDA-MB-435 tumor-bearing mice underwent 60 min dynamic PET scans following the injection of either (18)F-FPRGD or (18)F-FPPRGD2. Blocking studies with pre-injection of a blocking mass dose were performed for both monomeric and dimeric RGD groups. (18)F-FPRAD (RAD) was used as a negative control. Kinetic parameters (K(1), k(2), k(3), k(4)) of a three-compartment model were fitted to the dynamic data to allow quantitative comparisons between the monomeric and dimeric RGD peptides. RESULTS Dimeric RGD peptide tracer showed significantly higher binding potential (Bp(ND) = k(3)/k(4), 5.87 ± 0.31) than that of the monomeric analog (2.75 ± 0.48, p = 0.0022, n = 4/group). The Bp(ND) values showed a significantly greater ratio (dimer/monomer ~2.1) than the difference in %ID/g uptake measured from static images (dimer/monomer ~1.5, p = 0.0045). Significant decrease in Bp(ND) was found in the blocked groups compared with the unblocked ones (dimer p = 0.00024, monomer p = 0.005, n = 4/group). Similarly, the RAD control group showed the lowest Bp(ND) value among all the test groups, as the RAD peptide does not bind to integrin α(v)β(3). Volume of distribution (V(T) = K(1)/k (2)(1 + k (3)/k (4))) could be separated into non-specific (V (ND) = K (1)/k (2)) and specific (V (S) = K (1) k (3)/(k (2) k (4))) components. Specific distribution volume (V(S)) was the dominant component of V(T) in the unblocked groups and decreased in the blocked groups. Unblocked RGD dimer also showed higher V(S) than that of the monomer (dimer V(S) = 2.38 ± 0.15, monomer V(S) = 0.90 ± 0.17, p = 0.0013, n = 4/group), well correlated with Bp(ND) calculations. Little difference in V(ND) was found among all groups. Moreover, parametric maps allowed quantitative analysis at voxel level and provided higher tumor-to-background contrast for Bp(ND) maps than the static images. Tumor heterogeneity in kinetic parameters was found in parametric images, which could not be clearly identified in static intensity images. CONCLUSIONS The pharmacokinetics of both monomeric and dimeric RGD peptide tracers was compared, and the RGD dimers showed significantly higher binding affinity than the monomeric analogs. Kinetic parameters were demonstrated to be valuable for separating specific and non-specific binding and may allow more sensitive and detailed quantification than simple standardized uptake value analysis.
Collapse
Affiliation(s)
- Ning Guo
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
85
|
Colombo R, Mingozzi M, Belvisi L, Arosio D, Piarulli U, Carenini N, Perego P, Zaffaroni N, De Cesare M, Castiglioni V, Scanziani E, Gennari C. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine-glycine-aspartate (RGD) peptidomimetic-paclitaxel conjugates targeting integrin αVβ3. J Med Chem 2012; 55:10460-74. [PMID: 23140358 DOI: 10.1021/jm301058f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A small library of integrin ligand-paclitaxel conjugates 10-13 was synthesized with the aim of using the tumor-homing cyclo[DKP-RGD] peptidomimetics for site-directed delivery of the cytotoxic drug. All the paclitaxel-RGD constructs 10-13 inhibited biotinylated vitronectin binding to the purified αVβ3 integrin receptor at low nanomolar concentration and showed in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of paclitaxel. Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin αVβ3, making them attractive to be tested in in vivo models. cyclo[DKP-f3-RGD]-PTX 11 displayed sufficient stability in physiological solution and in both human and murine plasma to be a good candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice, compound 11 exhibited a superior activity compared with paclitaxel, despite the lower (about half) molar dosage used.
Collapse
Affiliation(s)
- Raffaele Colombo
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, I-20133, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Binding of the phage display derived peptide CaIX-P1 on human colorectal carcinoma cells correlates with the expression of carbonic anhydrase IX. Int J Mol Sci 2012. [PMID: 23202936 PMCID: PMC3497310 DOI: 10.3390/ijms131013030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phage display represents an attractive screening strategy for the identification of novel, specific binding ligands that could be used for tumor targeting. Recently, a new peptide (CaIX-P1) with affinity for human carbonic anhydrase IX (CAIX) was identified and evaluated. The aim of the present study is to characterize the properties of CaIX-P1 for targeting human colorectal carcinoma and investigate the correlation of peptide binding with the expression of carbonic anhydrase IX. Human colorectal carcinoma HCT116 and HT29 cells were investigated for CAIX expression using Western Blot analysis. Binding and competition studies of 125I-radiolabeled CaIX-P1 were performed on HCT116 cells in vitro. FACS analysis and fluorescence microscopy studies were carried out after cell incubation with fluorescein-labeled CaIX-P1 and rhodamine-labeled anti-human CAIX-mAb. Our studies revealed an enhanced in vitro expression of carbonic anhydrase IX in HCT116 and HT29 cells with increasing cell density. Binding of 125I-labeled-CaIX-P1 on HCT116 cells increased with increasing cell density and correlated to the CAIX expression. FACS analysis demonstrated a correlation of cell labeling between FITC-CaIX-P1 and rhodamine-labeled anti-CAIX-mAb in both HCT116 and HT29 cells. The results of our study indicate that the phage display identified peptide CaIX-P1 might be an attractive candidate for the development of a ligand targeting CAIX in colorectal cancer.
Collapse
|
87
|
A novel radiofluorinated agouti-related protein for tumor angiogenesis imaging. Amino Acids 2012; 44:673-81. [PMID: 22945905 DOI: 10.1007/s00726-012-1391-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
A novel protein scaffold based on the cystine knot domain of the agouti-related protein (AgRP) has been used to engineer mutants that can bind to the α(v)β(3) integrin receptor with high affinity and specificity. In the current study, an (18)F-labeled AgRP mutant (7C) was prepared and evaluated as a positron emission tomography (PET) probe for imaging tumor angiogenesis. AgRP-7C was synthesized by solid phase peptide synthesis and site-specifically conjugated with 4-nitrophenyl 2-(18/19)F-fluoropropionate ((18/19)F-NFP) to produce the fluorinated peptide, (18/19)F-FP-AgRP-7C. Competition binding assays were used to measure the relative affinities of AgRP-7C and (19)F-FP-AgRP-7C to human glioblastoma U87MG cells that overexpress α(v)β(3) integrin. In addition, biodistribution, metabolic stability, and small animal PET imaging studies were conducted with (18)F-FP-AgRP-7C using U87MG tumor-bearing mice. Both AgRP-7C and (19)F-FP-AgRP-7C specifically competed with (125)I-echistatin for binding to U87MG cells with half maximal inhibitory concentration (IC(50)) values of 9.40 and 8.37 nM, respectively. Non-invasive small animal PET imaging revealed that (18)F-FP-AgRP-7C exhibited rapid and good tumor uptake (3.24 percentage injected dose per gram [% ID/g] at 0.5 h post injection [p.i.]). The probe was rapidly cleared from the blood and from most organs, resulting in excellent tumor-to-normal tissue contrasts. Tumor uptake and rapid clearance were further confirmed with biodistribution studies. Furthermore, co-injection of (18)F-FP-AgRP-7C with a large molar excess of blocking peptide c(RGDyK) significantly inhibited tumor uptake in U87MG xenograft models, demonstrating the integrin-targeting specificity of the probe. Metabolite assays showed that the probe had high stability, making it suitable for in vivo applications. (18)F-FP-AgRP-7C exhibits promising in vivo properties such as rapid tumor targeting, good tumor uptake, and excellent tumor-to-normal tissue ratios, and warrants further investigation as a novel PET probe for imaging tumor angiogenesis.
Collapse
|
88
|
Li W, Lang L, Niu G, Guo N, Ma Y, Kiesewetter DO, Shen B, Chen X. N-Succinimidyl 4-[(18)F]-fluoromethylbenzoate-labeled dimeric RGD peptide for imaging tumor integrin expression. Amino Acids 2012; 43:1349-57. [PMID: 22209865 PMCID: PMC3577934 DOI: 10.1007/s00726-011-1208-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 12/21/2011] [Indexed: 01/25/2023]
Abstract
RGD peptides, radiolabeled with (18)F, have been used in the clinic for PET imaging of tumor angiogenesis in cancer patients. RGD peptides are typically labeled using a prosthetic group such as N-succinimidyl 4-[(18)F]-fluorobenzoate ([(18)F]SFB) or 4-nitrophenyl 2-[(18)F]-fluoropropionate ([(18)F]NPFP). However, the complex radiosynthetic procedures have impeded their broad application in clinical studies. We previously radiolabeled proteins and peptides with the prosthetic group, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB), which was prepared in a simple one-step procedure. In this study, we labeled a PEGylated cyclic RGD peptide dimer, PEG(3)-E[c(RGDyK)](2) (PRGD2), using [(18)F]SFMB and evaluated for imaging tumor αvβ3 integrin expression with positron emission tomography (PET). [(18)F]SFMB was prepared in one step using [(18)F]fluoride displacement of a nitrobenzenesulfonate leaving group under mild reaction conditions followed by HPLC purification. The (18)F-labeled peptide, [(18)F]FMBPRGD2 was prepared by coupling PRGD2 with [(18)F]SFMB in pH 8.6 borate buffer and purified with HPLC. The direct labeling on BMBPRGD2 was also attempted. A Siemens Inveon PET was used to image the uptake of the [(18)F]FMBPRGD2 into a U87MG xenograft mouse model. [(18)F]FMBPRGD2, was prepared with a 15% overall radiochemical yield (uncorrected) in a total synthesis time of 90 min, which was considerably shorter than the preparation of [(18)F]SFB- and [(18)F]NPFP-labeled RGD peptides. The direct labeling, however, was not successful. High quality microPET images using [(18)F]FMBPRGD2 clearly visualized tumors by 15 min with good target to background ratio. Early tracer accumulation in the bladder suggests fast renal clearance. No obvious bone uptake can be detected even at 4-h time point indicating that fluorine attachment is stable in mice. In conclusion, N-succinimidyl 4-[(18)F]-fluoromethylbenzoate ([(18)F]SFMB) prosthetic group can be a good alternative for labeling RGD peptides to image αvβ3 integrin expression and for labeling other peptides.
Collapse
Affiliation(s)
- Weihua Li
- Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Dale O. Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| | - Baozhong Shen
- Department of Medical Imaging and Nuclear Medicine, Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), 31 Center Drive, Suite 1C14, Bethesda, MD 20892-2281, USA
| |
Collapse
|
89
|
Jeon J, Shen B, Xiong L, Miao Z, Lee KH, Rao J, Chin FT. Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjug Chem 2012; 23:1902-8. [PMID: 22845703 DOI: 10.1021/bc300273m] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine has been developed for (18)F-labeling of N-terminal cysteine-bearing peptides and proteins. An (18)F-labeled dimeric cRGD ([(18)F]CBTRGD(2)) has been synthesized with an excellent radiochemical yield (92% based on radio-HPLC conversion, 80% decay-corrected, and isolated yield) and radiochemical purity (>99%) under mild conditions using (18)F-CBT, and shown good in vivo tumor targeting efficiency for PET imaging. The labeling strategy was also applied to the site-specific (18)F-labeling of a protein, Renilla lucifierase (RLuc8) with a cysteine residue at its N-terminus. The protein labeling was achieved with 12% of decay-corrected radiochemical yield and more than 99% radiochemical purity. This strategy should provide a general approach for efficient and site-specific (18)F-labeling of various peptides and proteins for in vivo molecular imaging applications.
Collapse
Affiliation(s)
- Jongho Jeon
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S11-30. [PMID: 22388624 DOI: 10.1007/s00259-011-2001-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as (99m)Tc, M(3+) radiometals ((111)In, (86/90)Y, (177)Lu, (67/68)Ga), (64/67)Cu, (18)F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin, bombesin, cholecystokinin/gastrin, GLP-1/exendin and RGD.
Collapse
Affiliation(s)
- Melpomeni Fani
- Department of Nuclear Medicine, University Hospital Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany.
| | | |
Collapse
|
91
|
Abstract
Imaging of angiogenesis has become increasingly important with the rising use of targeted antiangiogenic therapies like bevacizumab (Avastin). Non-invasive assessment of angiogenic activity is in this respect interesting, e.g. for response assessment of such targeted antiangiogenic therapies. One promising approach of angiogenesis imaging is imaging of specific molecular markers of the angiogenic cascade like the integrin α(v)β(3). For molecular imaging of integrin expression, the use of radiolabelled peptides is still the only approach that has been successfully translated into the clinic. In this review we will summarize the current data on imaging of α(v)β(3) expression using radiolabelled RGD peptides with a focus on tracers already in clinical use. A perspective will be presented on the future clinical use of radiolabelled RGD peptides including an outlook on potential applications for radionuclide therapy.
Collapse
|
92
|
Jin ZH, Furukawa T, Claron M, Boturyn D, Coll JL, Fukumura T, Fujibayashi Y, Dumy P, Saga T. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4. Angiogenesis 2012; 15:569-80. [PMID: 22644563 PMCID: PMC3496517 DOI: 10.1007/s10456-012-9281-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/08/2012] [Indexed: 02/06/2023]
Abstract
64Cu-cyclam-RAFT-c(-RGDfK-)4 is a novel multimeric positron emission tomography (PET) probe for αVβ3 integrin imaging. Its uptake and αVβ3 expression in tumors showed a linear correlation. Since αVβ3 integrin is strongly expressed on activated endothelial cells during angiogenesis, we aimed to determine whether 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used to image tumor angiogenesis and monitor the antiangiogenic effect of a novel multi-targeted tyrosine kinase inhibitor, TSU-68. Athymic nude mice bearing human hepatocellular carcinoma HuH-7 xenografts, which expressed negligible αVβ3 levels on the tumor cells, received intraperitoneal injections of TSU-68 or the vehicle for 14 days. Antiangiogenic effects were determined at the end of therapy in terms of 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake evaluated using PET, biodistribution assay, and autoradiography, and they were compared with microvessel density (MVD) determined by CD31 immunostaining. 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET enabled clear tumor visualization by targeting the vasculature, and the biodistribution assay indicated high tumor-to-blood and tumor-to-muscle ratios of 31.6 ± 6.3 and 6.7 ± 1.1, respectively, 3 h after probe injection. TSU-68 significantly slowed tumor growth and reduced MVD; these findings were consistent with a significant reduction in the tumor 64Cu-cyclam-RAFT-c(-RGDfK-)4 uptake. Moreover, a linear correlation was observed between tumor MVD and the corresponding standardized uptake value (SUV) (r = 0.829, P = 0.011 for SUVmean; r = 0.776, P = 0.024 for SUVmax) determined by quantitative PET. Autoradiography and immunostaining showed that the distribution of intratumoral radioactivity and tumor vasculature corresponded. We concluded that 64Cu-cyclam-RAFT-c(-RGDfK-)4 PET can be used for in vivo angiogenesis imaging and monitoring of tumor response to antiangiogenic therapy.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Li J, Gray BD, Pak KY, Ng CK. Optimization of labeling dipicolylamine derivative, N,N'-(5-(4-aminobutoxy)-1,3-phenylene)bis(methylene)bis(1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine), with three 18F-prosthetic groups as potential imaging agents for metastatic infectious disease. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junling Li
- Department of Diagnostic Radiology; University of Louisville; Louisville; KY; USA
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc.; West Chester; PA; USA
| | - Koon Y Pak
- Molecular Targeting Technologies, Inc.; West Chester; PA; USA
| | - Chin K. Ng
- Department of Diagnostic Radiology; University of Louisville; Louisville; KY; USA
| |
Collapse
|
94
|
Chin FT, Shen B, Liu S, Berganos RA, Chang E, Mittra E, Chen X, Gambhir SS. First experience with clinical-grade ([18F]FPP(RGD₂): an automated multi-step radiosynthesis for clinical PET studies. Mol Imaging Biol 2012; 14:88-95. [PMID: 21400112 PMCID: PMC3617483 DOI: 10.1007/s11307-011-0477-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE A reliable and routine process to introduce a new ¹⁸F-labeled dimeric RGD-peptide tracer ([¹⁸F]FPP(RGD₂) for noninvasive imaging of α(v)β₃ expression in tumors needed to be developed so the tracer could be evaluated for the first time in man. Clinical-grade [¹⁸F]FPP(RGD)₂ was screened in mouse prior to our first pilot study in human. PROCEDURES [¹⁸F]FPP(RGD)₂ was synthesized by coupling 4-nitrophenyl-2-[¹⁸F]fluoropropionate ([¹⁸F]NPE) with the dimeric RGD-peptide (PEG₃-c(RGDyK)₂). Imaging studies with [¹⁸F]FPP(RGD)₂ in normal mice and a healthy human volunteer were carried out using small animal and clinical PET scanners, respectively. RESULTS Through optimization of each radiosynthetic step, [¹⁸F]FPP(RGD)₂ was obtained with RCYs of 16.9 ± 2.7% (n = 8, EOB) and specific radioactivity of 114 ± 72 GBq/μmol (3.08 ± 1.95 Ci/μmol; n = 8, EOB) after 170 min of radiosynthesis. In our mouse studies, high radioactivity uptake was only observed in the kidneys and bladder with the clinical-grade tracer. Favorable [¹⁸F]FPP(RGD)₂ biodistribution in human studies, with low background signal in the head, neck, and thorax, showed the potential applications of this RGD-peptide tracer for detecting and monitoring tumor growth and metastasis. CONCLUSIONS A reliable, routine, and automated radiosynthesis of clinical-grade [¹⁸F]FPP(RGD)₂ was established. PET imaging in a healthy human volunteer illustrates that [¹⁸F]FPP(RGD)₂ possesses desirable pharmacokinetic properties for clinical noninvasive imaging of α(v)β₃ expression. Further imaging studies using [¹⁸F]FPP(RGD)₂ in patient volunteers are now under active investigation.
Collapse
Affiliation(s)
- Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Departments of Radiology and Bioengineering, Bio-X Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Gao H, Lang L, Guo N, Cao F, Quan Q, Hu S, Kiesewetter DO, Niu G, Chen X. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging 2012; 39:683-92. [PMID: 22274731 DOI: 10.1007/s00259-011-2052-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/27/2011] [Indexed: 12/12/2022]
Abstract
PURPOSE The α(v)β(3) integrin represents a potential target for noninvasive imaging of angiogenesis. The purpose of this study was to evaluate a novel one-step labeled integrin α(v)β(3)-targeting positron emission tomography (PET) probe, (18)F-AlF-NOTA-PRGD2, for angiogenesis imaging in a myocardial infarction/reperfusion (MI/R) animal model. METHODS Male Sprague-Dawley rats underwent 45-min transient left coronary artery occlusion followed by reperfusion. The myocardial infarction was confirmed by ECG, (18)F-fluorodeoxyglucose (FDG) imaging, and cardiac ultrasound. In vivo PET imaging was used to determine myocardial uptake of (18)F-AlF-NOTA-PRGD2 at different time points following reperfusion. The control peptide RAD was labeled with a similar procedure and used to confirm the specificity. Ex vivo autoradiographic analysis and CD31/CD61 double immunofluorescence staining were performed to validate the PET results. RESULTS Myocardial origin of the (18)F-AlF-NOTA-PRGD2 accumulation was confirmed by (18)F-FDG and autoradiography. PET imaging demonstrated increased focal accumulation of (18)F-AlF-NOTA-PRGD2 in the infarcted area which started at day 3 (0.28 ± 0.03%ID/g, p < 0.05) and peaked between 1 and 3 weeks (0.59 ± 0.16 and 0.55 ± 0.13%ID/g, respectively). The focal accumulation decreased but still kept at a higher level than the sham group after 4 months of reperfusion (0.31 ± 0.01%ID/g, p < 0.05). Pretreatment with unlabeled arginine-glycine-aspartic acid (RGD) peptide significantly decreased tracer uptake, indicating integrin specificity of this tracer. At 1 week after MI/R, uptake of the control tracer (18)F-AlF-NOTA-RAD that does not bind to integrin, in the infarcted area, was only 0.21 ± 0.01%ID/g. Autoradiographic imaging showed the same trend of uptake in the myocardial infarction area. The time course of focal tracer uptake was consistent with the pattern of vascular density and integrin β(3) expression as measured by CD31 and CD61 immunostaining analysis. CONCLUSION PET imaging using one-step labeled (18)F-AlF-NOTA-PRGD2 allows noninvasive visualization of ischemia/reperfusion-induced myocardial angiogenesis longitudinally. The favorable in vivo kinetics and easy production method of this integrin-targeted PET tracer facilitates its future clinical translation for lesion evaluation and therapy response monitoring in patients with occlusive cardiovascular diseases.
Collapse
Affiliation(s)
- Haokao Gao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Liu S, Liu H, Ren G, Kimura RH, Cochran JR, Cheng Z. PET Imaging of Integrin Positive Tumors Using F Labeled Knottin Peptides. Am J Cancer Res 2011; 1:403-12. [PMID: 22211146 PMCID: PMC3248644 DOI: 10.7150/thno/v01p0403] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/17/2011] [Indexed: 12/03/2022] Open
Abstract
Purpose: Cystine knot (knottin) peptides, engineered to bind with high affinity to integrin receptors, have shown promise as molecular imaging agents in living subjects. The aim of the current study was to evaluate tumor uptake and in vivo biodistribution of 18F-labeled knottins in a U87MG glioblastoma model. Procedures: Engineered knottin mutants 2.5D and 2.5F were synthesized using solid phase peptide synthesis and were folded in vitro, followed by radiolabeling with 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP). The resulting probes, 18F-FP-2.5D and 18F-FP-2.5F, were evaluated in nude mice bearing U87MG tumor xenografts using microPET and biodistribution studies. Results: MicroPET imaging studies with 18F-FP-2.5D and 18F-FP-2.5F demonstrated high tumor uptake in U87MG xenograft mouse models. The probes exhibited rapid clearance from the blood and kidneys, thus leading to excellent tumor-to-normal tissue contrast. Specificity studies confirmed that 18F-FP-2.5D and 18F-FP-2.5F had reduced tumor uptake when co-injected with a large excess of the peptidomimetic c(RGDyK) as a blocking agent. Conclusions: 18F-FP-2.5D and 18F-FP-2.5F showed reduced gallbladder uptake compared with previously published 18F-FB-2.5D. 18F-FP-2.5D and 18F-FP-2.5F enabled integrin-specific PET imaging of U87MG tumors with good imaging contrasts. 18F-FP-2.5D demonstrated more desirable pharmacokinetics compared to 18F-FP-2.5F, and thus has greater potential for clinical translation.
Collapse
|
97
|
Lang L, Li W, Guo N, Ma Y, Zhu L, Kiesewetter DO, Shen B, Niu G, Chen X. Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug Chem 2011; 22:2415-22. [PMID: 22026940 DOI: 10.1021/bc200197h] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[(18)F]FPPRGD2, an F-18 labeled dimeric cyclic RGDyK peptide, has favorable properties for PET imaging of angiogenesis by targeting the α(v)β(3) integrin receptor. This radiotracer has been approved by the FDA for use in clinical trials. However, the time-consuming multiple-step synthetic procedure required for its preparation may hinder the widespread usage of this tracer. The recent development of a method using an F-18 fluoride-aluminum complex to radiolabel peptides provides a strategy for simplifying the labeling procedure. On the other hand, the easy-to-prepare [(68)Ga]-labeled NOTA-RGD derivatives have also been reported to have promising properties for imaging α(v)β(3) integrin receptors. The purpose of this study was to prepare [(18)F]FPPRGD2 [corrected] , [(18)F]FAl-NOTA-PRGD2, and [(68)Ga]Ga-NOTA-PRGD2 and to compare their pharmacokinetics and tumor imaging properties using small animal PET. All three compounds showed rapid and high tracer uptake in U87MG tumors with high target-to-background ratios. The uptake in the liver, kidneys, and muscle were similar for all three tracers, and they all showed predominant renal clearance. In conclusion, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]Ga-NOTA-PRGD2 have imaging properties and pharmacokinetics comparable to those of [(18)F]FPPRGD2. Considering their ease of preparation and good imaging qualities, [(18)F]FAl-NOTA-PRGD2 and [(68)Ga]NOTA-PRGD2 are promising alternatives to [(18)F]FPPRGD2 for PET imaging of tumor α(v)β(3) integrin expression.
Collapse
Affiliation(s)
- Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), Radiology and Imaging Sciences, Clinical Center, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH ), Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Quan Q, Yang M, Gao H, Zhu L, Lin X, Guo N, Niu G, Zhang G, Eden HS, Chen X. Imaging tumor endothelial marker 8 using an 18F-labeled peptide. Eur J Nucl Med Mol Imaging 2011; 38:1806-15. [PMID: 21814853 PMCID: PMC3200564 DOI: 10.1007/s00259-011-1871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/15/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy. METHODS A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models. RESULTS A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC50 value of 304 nM. Coupling 4-nitrophenyl 2-(18)F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2±7.4 TBq/mmol, n=5) of 18F-FP-QQM at the end of synthesis. 18F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96±0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38±0.56 %ID/g at 1 h after injection). CONCLUSION QQM peptide bound specifically to the extracellular domain of TEM8. 18F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted.
Collapse
Affiliation(s)
- Qimeng Quan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
- Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Min Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Lei Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Xin Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
- Imaging Sciences Training Program, Radiology and Imaging Sciences, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA,
| | - Guixiang Zhang
- Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Henry S. Eden
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Dr, 31/1 C22, Bethesda, MD 20892, USA,
| |
Collapse
|
99
|
Lang L, Li W, Jia HM, Fang DC, Zhang S, Sun X, Zhu L, Ma Y, Shen B, Kiesewetter DO, Niu G, Chen X. New Methods for Labeling RGD Peptides with Bromine-76. Theranostics 2011; 1:341-53. [PMID: 21938262 PMCID: PMC3177243 DOI: 10.7150/thno/v01p0341] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/15/2011] [Indexed: 01/16/2023] Open
Abstract
Direct bromination of the tyrosine residues of peptides and antibodies with bromine-76, to create probes for PET imaging, has been reported. For peptides that do not contain tyrosine residues, however, a prosthetic group is required to achieve labeling via conjugation to other functional groups such as terminal α-amines or lysine ε-amines. The goal of this study was to develop new strategies for labeling small peptides with Br-76 using either a direct labeling method or a prosthetic group, depending on the available functional group on the peptides. A new labeling agent, N-succinimidyl-3-[(76)Br]bromo-2,6-dimethoxybenzoate ([(76)Br]SBDMB) was prepared for cyclic RGD peptide labeling. N-succinimidyl-2, 6-dimethoxybenzoate was also used to pre-attach a 2, 6-dimethoxybenzoyl (DMB) moiety to the peptide, which could then be labeled with Br-76. A competitive cell binding assay was performed to determine the binding affinity of the brominated peptides. PET imaging of U87MG human glioblastoma xenografted mice was performed using [(76)Br]-BrE[c(RGDyK)](2) and [(76)Br]-BrDMB-E[c(RGDyK)](2). An ex vivo biodistribution assay was performed to confirm PET quantification. The mechanisms of bromination reaction between DMB-c(RGDyK) and the brominating agent CH(3)COOBr were investigated with the SCRF-B3LYP/6-31G* method with the Gaussian 09 program package. The yield for direct labeling of c(RGDyK) and E[c(RGDyK)](2) using chloramine-T and peracetic acid at ambient temperature was greater than 50%. The yield for [(76)Br]SBDMB was over 60% using peracetic acid. The conjugation yields for labeling c(RGDfK) and c(RGDyK) were over 70% using the prosthetic group at room temperature. Labeling yield for pre-conjugated peptides was over 60%. SDMB conjugation and bromination did not affect the binding affinity of the peptides with integrin receptors. Both [(76)Br]Br-E[c(RGDyK)](2) and [(76)Br]BrDMB-E[c(RGDyK)](2) showed high tumor uptake in U87MG tumor bearing mice. The specificity of the imaging tracers was confirmed by decreased tumor uptake after co-administration of unlabeled dimeric RGD peptides. The energy barrier of the transition state of bromination for the dimethoxybenzoyl group was about 9 kcal/mol lower than that for the tyrosine residue. In conclusion, the newly developed N-succinimidyl-2, 6-dimethoxybenzoate molecule can be used either for one step labeling through pre-conjugation or as the precursor for a Br-76 labeled prosthetic group for indirect labeling. Radiobromination on a dimethoxybenzoyl group has selectivity over radiobromination on tyrosine. The energy barrier difference of the transition states of bromination between the dimethoxybenzoyl group and the tyrosine residue may account for the reaction selectivity when both groups are present in the same molecule.
Collapse
Affiliation(s)
- Lixin Lang
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Weihua Li
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- 2. Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hong-Mei Jia
- 3. Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- 3. Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shushu Zhang
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Xilin Sun
- 2. Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Lei Zhu
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Ying Ma
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Baozhong Shen
- 2. Department of Medical Imaging and Nuclear Medicine, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Dale O. Kiesewetter
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Gang Niu
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
- 4. Imaging Sciences Training Program, Radiology and Imaging Sciences, Clinical Center and National Institute Biomedical Imaging and Bioengineering, NIH, Bethesda, Maryland, 20892, USA
| | - Xiaoyuan Chen
- 1. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
100
|
Molecular imaging in tumor angiogenesis and relevant drug research. Int J Biomed Imaging 2011; 2011:370701. [PMID: 21808639 PMCID: PMC3144661 DOI: 10.1155/2011/370701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging,
including fluorescence imaging (FMI),
bioluminescence imaging (BLI), positron emission
tomography (PET), single-photon emission-computed tomography (SPECT), and computed tomography
(CT), has a pivotal role in the
process of tumor and relevant drug research. CT,
especially Micro-CT, can provide the anatomic
information for a region of interest (ROI); PET
and SPECT can provide functional information for
the ROI. BLI and FMI can provide optical
information for an ROI. Tumor angiogenesis and
relevant drug development is a lengthy,
high-risk, and costly process, in which a novel
drug needs about 10–15 years of testing to
obtain Federal Drug Association (FDA) approval.
Molecular imaging can enhance the development
process by understanding the tumor mechanisms
and drug activity. In this paper, we focus on
tumor angiogenesis, and we review the
characteristics of molecular imaging modalities
and their applications in tumor angiogenesis and
relevant drug research.
Collapse
|