51
|
Su Y, Song X, Teng J, Zhou X, Dong Z, Li P, Sun Y. Mesenchymal stem cells-derived extracellular vesicles carrying microRNA-17 inhibits macrophage apoptosis in lipopolysaccharide-induced sepsis. Int Immunopharmacol 2021; 95:107408. [PMID: 33915488 DOI: 10.1016/j.intimp.2021.107408] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Sepsis, as a disease affecting the microcirculation and tissue perfusion, results in tissue hypoxia and multiple organ dysfunctions. Bone mesenchymal stem cell (BMSC)-derived extracellular vesicles (EVs) have been demonstrated to transfer trivial molecules (proteins/peptides, mRNA, microRNA and lipids) to alleviate sepsis. We sought to define the function of microRNA (miR)-17 carried in BMSC-EVs in sepsis. METHODS The purity of the extracted BMSCs was identified and confirmed by detection of the surface markers by flow cytometry, followed by osteoblastic, adipogenic, and chondrocyte differentiation experiments. Subsequently, EVs were collected from the medium of BMSCs. The uptake of PKH-67-labeled BMSC-EVs or EVs carrying cy3-miR-17 by RAW264.7 cells was observed under laser confocal microscopy. Furthermore, a series of gain- and loss-of-function approaches were conducted to test the effects of LPS, miR-17 and BRD4 on the inflammatory factors (IL-1β, IL-6 and TNF-α), number of M1 macrophages and M2 macrophages, inflammatory-related signal pathway factors (EZH2, c-MYC and TRAIL), macrophage proliferation, and apoptosis in sepsis. The survival rates were measured in vivo. RESULTS BMSC-EVs was internalized by the RAW264.7 cells. BDR4 was verified as a target of miR-17, while the expression pattern of miR-17 was upregulated in BMSC-EVs. MiR-17 carried by BMSC-EVs inhibited LPS-induced inflammation and apoptosis of RAW264.7 cells, but improved the viability of RAW264.7 cells. Next, in vitro experiments supported that miR-17 inhibited LPS-induced inflammation in RAW264.7 cells through BRD4/EZH2/TRAIL axis. BRD4 overexpression reversed the effects of miR-17. Moreover, the therapeutic function of BMSC-EVs carried miR-17 was verified by in vivo experiments. CONCLUSIONS MiR-17 derived from BMSCs-EVs regulates BRD4-mediated EZH2/TRAIL axis to essentially inhibit LPS-induced macrophages inflammation.
Collapse
Affiliation(s)
- Yuan Su
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xiaoxia Song
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Jinlong Teng
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Xinbei Zhou
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zehua Dong
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Ping Li
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Yunbo Sun
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
52
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2021; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
53
|
Antunes MA, Braga CL, Oliveira TB, Kitoko JZ, Castro LL, Xisto DG, Coelho MS, Rocha N, Silva-Aguiar RP, Caruso-Neves C, Martins EG, Carvalho CF, Galina A, Weiss DJ, Lapa e Silva JR, Lopes-Pacheco M, Cruz FF, Rocco PRM. Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Front Cell Dev Biol 2021; 9:661385. [PMID: 34136481 PMCID: PMC8202416 DOI: 10.3389/fcell.2021.661385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/05/2021] [Indexed: 12/02/2022] Open
Abstract
Although bone marrow-derived mesenchymal stromal cells (BM-MSCs) from patients with chronic obstructive pulmonary disease (COPD) appear to be phenotypically and functionally similar to BM-MSCs from healthy sources in vitro, the impact of COPD on MSC metabolism and mitochondrial function has not been evaluated. In this study, we aimed to comparatively characterize MSCs from healthy and emphysematous donors (H-MSCs and E-MSCs) in vitro and to assess the therapeutic potential of these MSCs and their extracellular vesicles (H-EVs and E-EVs) in an in vivo model of severe emphysema. For this purpose, C57BL/6 mice received intratracheal porcine pancreatic elastase once weekly for 4 weeks to induce emphysema; control animals received saline under the same protocol. Twenty-four hours after the last instillation, animals received saline, H-MSCs, E-MSCs, H-EVs, or E-EVs intravenously. In vitro characterization demonstrated that E-MSCs present downregulation of anti-inflammatory (TSG-6, VEGF, TGF-β, and HGF) and anti-oxidant (CAT, SOD, Nrf2, and GSH) genes, and their EVs had larger median diameter and lower average concentration. Compared with H-MSC, E-MSC mitochondria also exhibited a higher respiration rate, were morphologically elongated, expressed less dynamin-related protein-1, and produced more superoxide. When co-cultured with alveolar macrophages, both H-MSCs and E-MSCs induced an increase in iNOS and arginase-1 levels, but only H-MSCs and their EVs were able to enhance IL-10 levels. In vivo, emphysematous mice treated with E-MSCs or E-EVs demonstrated no amelioration in cardiorespiratory dysfunction. On the other hand, H-EVs, but not H-MSCs, were able to reduce the neutrophil count, the mean linear intercept, and IL-1β and TGF-β levels in lung tissue, as well as reduce pulmonary arterial hypertension and increase the right ventricular area in a murine model of elastase-induced severe emphysema. In conclusion, E-MSCs and E-EVs were unable to reverse cardiorespiratory dysfunction, whereas H-EVs administration was associated with a reduction in cardiovascular and respiratory damage in experimental severe emphysema.
Collapse
Affiliation(s)
- Mariana A. Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Cassia L. Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá B. Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Z. Kitoko
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Inflammation and Immunity, Paulo Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia L. Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Debora G. Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S. Coelho
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Rodrigo P. Silva-Aguiar
- Laboratory of Biochemistry and Cell Signaling, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Laboratory of Biochemistry and Cell Signaling, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda G. Martins
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Fernandes Carvalho
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Galina
- Leopoldo De Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J. Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - José R. Lapa e Silva
- Institute of Thoracic Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda F. Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
54
|
Marycz K, Pielok A, Kornicka-Garbowska K. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + - a Novel Dermal/epidermal Stem Cell Population With a Potential Critical Role for Laminitis Treatment. Stem Cell Rev Rep 2021; 17:1478-1485. [PMID: 34037924 PMCID: PMC8149919 DOI: 10.1007/s12015-021-10187-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Laminitis is a life threating, extremely painful and frequently recurrent disease of horses which affects hoof structure. It results from the disruption of blood flow to the laminae, contributing to laminitis and in severe separation of bone from the hoof capsule. Still, the pathophysiology of the disease remains unclear, mainly due to its complexity. In the light of the presented data, in the extremally difficult process of tissue structure restoration after disruption, a novel type of progenitor cells may be involved. Herein, we isolated and performed the initial characterization of stem progenitor cells isolated from the coronary corium of the equine feet (HPC). Phenotype of the cells was investigated with flow cytometry and RT-qPCR revealing the presence of nestin, CD29, and expression of progenitor cell markers including SOX2, OCT4, NANOG and K14. Morphology of HPC was investigated with light, confocal and SEM microscopes. Cultured cells were characterised by spindle shaped morphology, eccentric nuclei, elongated mitochondria, and high proliferation rate. Plasticity and multilineage differentiation potential was confirmed by specific staining and gene expression analysis. We conclude that HPC exhibit in vitro expansion and plasticity similar to mesenchymal stem cells, which can be isolated from the equine foot, and may be directly involved in the pathogenesis and recovery of laminitis. Obtained results are of importance to the field of laminitis treatment as determining the repairing cell populations could contribute to the discovery of novel therapeutic targets and agents including and cell‐based therapies for affected animals.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland. .,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland.
| | - Ariadna Pielok
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| | - Katarzyna Kornicka-Garbowska
- International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, 55-114, Malin Wisznia Mała, Poland.,Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. CK Norwida 27, 50-375, Wrocław, Poland
| |
Collapse
|
55
|
Shahin HI, Radnaa E, Tantengco OAG, Kechichian T, Kammala AK, Sheller-Miller S, Taylor BD, Menon R. Microvesicles and exosomes released by amnion epithelial cells under oxidative stress cause inflammatory changes in uterine cells†. Biol Reprod 2021; 105:464-480. [PMID: 33962471 DOI: 10.1093/biolre/ioab088] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles play a crucial role in feto-maternal communication and provide an important paracrine signaling mechanism in pregnancy. We hypothesized that fetal cells-derived exosomes and microvesicles (MVs) under oxidative stress (OS) carry unique cargo and traffic through feto-maternal interface, which cause inflammation in uterine cells associated with parturition. Exosomes and MVs, from primary amnion epithelial cell (AEC) culture media under normal or OS-induced conditions, were isolated by optimized differential centrifugation method followed by characterization for size (nanoparticle tracking analyzer), shape (transmission electron microscopy), and protein markers (western blot and immunofluorescence). Cargo and canonical pathways were identified by mass spectroscopy and ingenuity pathway analysis. Myometrial, decidual, and cervical cells were treated with 1 × 107 control/OS-derived exosomes/MVs. Pro-inflammatory cytokines were measured using a Luminex assay. Statistical significance was determined by paired T-test (P < 0.05). AEC produced cup-shaped exosomes of 90-150 nm and circular MVs of 160-400 nm. CD9, heat shock protein 70, and Nanog were detected in exosomes, whereas OCT-4, human leukocyte antigen G, and calnexin were found in MVs. MVs, but not exosomes, were stained for phosphatidylserine. The protein profiles for control versus OS-derived exosomes and MVs were significantly different. Several inflammatory pathways related to OS were upregulated that were distinct between exosomes and MVs. Both OS-derived exosomes and MVs significantly increased pro-inflammatory cytokines (granulocyte-macrophage colony-stimulating factor, interleukin 6 (IL-6), and IL-8) in maternal cells compared with control (P < 0.05). Our findings suggest that fetal-derived exosomes and MVs under OS exhibited distinct characteristics and a synergistic inflammatory role in uterine cells associated with the initiation of parturition.
Collapse
Affiliation(s)
- Hend I Shahin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
56
|
Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer Exosomes: A New Platform for Biotechnology Therapeutics. BioDrugs 2021; 34:567-586. [PMID: 32754790 PMCID: PMC7402079 DOI: 10.1007/s40259-020-00434-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Desirable features of exosomes have made them a suitable manipulative platform for biomedical applications, including targeted drug delivery, gene therapy, cancer diagnosis and therapy, development of vaccines, and tissue regeneration. Although natural exosomes have various potentials, their clinical application is associated with some inherent limitations. Recently, these limitations inspired various attempts to engineer exosomes and develop designer exosomes. Mostly, designer exosomes are being developed to overcome the natural limitations of exosomes for targeted delivery of drugs and functional molecules to wounds, neurons, and the cardiovascular system for healing of damage. In this review, we summarize the possible improvements of natural exosomes by means of two main approaches: parental cell-based or pre-isolation exosome engineering and direct or post-isolation exosome engineering. Parental cell-based engineering methods use genetic engineering for loading of therapeutic molecules into the lumen or displaying them on the surface of exosomes. On the other hand, the post-isolation exosome engineering approach uses several chemical and mechanical methods including click chemistry, cloaking, bio-conjugation, sonication, extrusion, and electroporation. This review focuses on the latest research, mostly aimed at the development of designer exosomes using parental cell-based engineering and their application in cancer treatment and regenerative medicine. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Davod Jafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Allied Medicine, Student Research Committee, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Shajari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosna Gomari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ganji
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. Int J Mol Sci 2021; 22:ijms22083851. [PMID: 33917759 PMCID: PMC8068154 DOI: 10.3390/ijms22083851] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.
Collapse
|
58
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation 2021; 143:1426-1449. [PMID: 33819075 PMCID: PMC8021236 DOI: 10.1161/circulationaha.120.049254] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Marta Adamiak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Prabhu Mathiyalagan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
| | - Sabine Kafert-Kasting
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- REBIRTH Center for Translational Regenerative Medicine (T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| |
Collapse
|
59
|
Song BW, Lee CY, Kim R, Kim WJ, Lee HW, Lee MY, Kim J, Jeong JY, Chang W. Multiplexed targeting of miRNA-210 in stem cell-derived extracellular vesicles promotes selective regeneration in ischemic hearts. Exp Mol Med 2021; 53:695-708. [PMID: 33879860 PMCID: PMC8102609 DOI: 10.1038/s12276-021-00584-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/02/2023] Open
Abstract
Extracellular vesicles (EVs) are cell derivatives containing diverse cellular molecules, have various physiological properties and are also present in stem cells used for regenerative therapy. We selected a "multiplexed target" that demonstrates multiple effects on various cardiovascular cells, while functioning as a cargo of EVs. We screened various microRNAs (miRs) and identified miR-210 as a candidate target for survival and angiogenic function. We confirmed the cellular and biological functions of EV-210 (EVs derived from ASCmiR-210) secreted from adipose-derived stem cells (ASCs) transfected with miR-210 (ASCmiR-210). Under hypoxic conditions, we observed that ASCmiR-210 inhibits apoptosis by modulating protein tyrosine phosphatase 1B (PTP1B) and death-associated protein kinase 1 (DAPK1). In hypoxic endothelial cells, EV-210 exerted its angiogenic capacity by inhibiting Ephrin A (EFNA3). Furthermore, EV-210 enhanced cell survival under the control of PTP1B and induced antiapoptotic effects in hypoxic H9c2 cells. In cardiac fibroblasts, the fibrotic ratio was reduced after exposure to EV-210, but EVs derived from ASCmiR-210 did not communicate with fibroblasts. Finally, we observed the functional restoration of the ischemia/reperfusion-injured heart by maintaining the intercommunication of EVs and cardiovascular cells derived from ASCmiR-210. These results suggest that the multiplexed target with ASCmiR-210 is a useful tool for cardiovascular regeneration.
Collapse
Affiliation(s)
- Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Won Jung Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Hee Won Lee
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
60
|
Croasdell Lucchini A, Gachanja NN, Rossi AG, Dorward DA, Lucas CD. Epithelial Cells and Inflammation in Pulmonary Wound Repair. Cells 2021; 10:339. [PMID: 33562816 PMCID: PMC7914803 DOI: 10.3390/cells10020339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Lucas
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh EH16 4TJ, UK; (A.C.L.); (N.N.G.); (A.G.R.); (D.A.D.)
| |
Collapse
|
61
|
Faruk EM, Alasmari WA, Fouad H, Nafea OE, Hasan RAA. Extracellular vesicles derived from bone marrow mesenchymal stem cells repair functional and structural rat adrenal gland damage induced by fluoride. Life Sci 2021; 270:119122. [PMID: 33508294 DOI: 10.1016/j.lfs.2021.119122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
The adrenal glands have striking morpho-biochemical features that render them vulnerable to the effects of toxins. AIMS This study was conducted to explore the therapeutic utility of extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) against fluoride-induced adrenal toxicity. MATERIALS AND METHODS The work included isolation and further identification of BMSC-EVs by transmission electron microscopy and flow cytometric analysis. Adrenal toxicity in rats was induced by oral administration of 300 ppm of sodium fluoride (NaF) in drinking water for 60 days followed by a single dose injection of BMSC-EVs. The effects of BMSC-EVs against NaF was evaluated by adrenal oxidant/antioxidant biomarkers, hormonal assay of plasma adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) and mRNA gene expression quantitation for adrenal cortical steroidogenic pathway-encoding genes. Histopathological examination of the adrenal tissue was performed. KEY FINDINGS BMSC-EVs were effectively isolated and characterized. NaF exposure decreased adrenal superoxide dismutase and catalase activities, increased adrenal malondialdehyde levels, elevated plasma ACTH, diminished CORT concentrations and downregulated the adrenal cortical steroidogenic pathway-encoding genes. In addition, NaF-induced marked adrenal histopathological lesions. SIGNIFICANCE BMSC-EVs treatment repaired damaged adrenal tissue and recovered its function greatly following NaF consumption. BMSC-EVs reversed the toxic effects of NaF and reprogramed injured adrenal cells by activating regenerative processes.
Collapse
Affiliation(s)
- Eman Mohamed Faruk
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Hanan Fouad
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Rehab Abd Allah Hasan
- Department of Histology and Cell Biology, Faculty of Medicine for Girls (AFMG), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
62
|
Micro-vesicles from mesenchymal stem cells over-expressing miR-34a inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition in renal tubular epithelial cells in vitro. Chin Med J (Engl) 2021; 133:800-807. [PMID: 32149762 PMCID: PMC7147664 DOI: 10.1097/cm9.0000000000000720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The use of microRNAs in the therapy of kidney disease is hampered by the difficulties in their effective delivery. Micro-vesicles (MVs) are known as natural carriers of small RNAs. Our prior research has demonstrated that MVs isolated from mesenchymal stem cells (MSCs) are capable of attenuating kidney injuries induced by unilateral ureteral obstruction and 5/6 sub-total nephrectomy in mice. The present study aimed to evaluate the effects of miR-34a-5p (miR-34a)-modified MSC-MVs on transforming growth factor (TGF)-β1-induced fibrosis and apoptosis in vitro. METHODS Bone marrow MSCs were modified by lentiviruses over-expressing miR-34a, from which MVs were collected for the treatment of human Kidney-2 (HK-2) renal tubular cells exposed to TGF-β1 (6 ng/mL). The survival of HK-2 cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Annexin V-Light 650/propidium iodide (PI) assays. The expression levels of epithelial markers (tight junction protein 1 [TJP1] and E-cadherin) and mesenchymal markers (smooth muscle actin alpha (α-SMA) and fibronectin) in HK-2 cells were measured using Western blot analysis and an immunofluorescence assay. In addition, changes in Notch-1/Jagged-1 signaling were analyzed using Western blotting. Data were analyzed using a Student's t test or one-way analysis of variance. RESULTS MiR-34a expression increased three-fold in MVs generated by miR-34a-modified MSCs compared with that expressed in control MVs (P < 0.01, t = 16.55). In HK-2 cells, TJP1 and E-cadherin levels decreased to 31% and 37% after treatment with TGF-β1, respectively, and were restored to 62% and 70% by miR-34a-enriched MSC-MVs, respectively. The expression of α-SMA and fibronectin increased by 3.9- and 5.0-fold following TGF-β1 treatment, and decreased to 2.0- and 1.7-fold after treatment of HK-2 cells with miR-34a-enriched MSC-MVs. The effects of miR-34a-enriched MSC-MVs on epithelial-mesenchymal transition (EMT) markers were stronger than control MSC-MVs. The effects of miR-34a-enriched MSC-MVs on these EMT markers were stronger than control MSC-MVs. Notch-1 receptor and Jagged-1 ligand, two major molecules of Notch signaling pathway, are predicted targets of miR-34a. It was further observed that elevation of Notch-1 and Jagged-1 induced by TGF-β1 was inhibited by miR-34a-enriched MSC-MVs. In addition, TGF-β1 exposure also induced apoptosis in HK-2 cells. Although miR-34a-mofidied MSC-MVs were able to inhibit TGF-β1-triggered apoptosis in HK-2 cells, the effects were less significant than control MSC-MVs (control:TGF-β1: miR-nc-MV:miR-34a-MV = 1.3:0.6:1.1:0.9 for MTT assay, 1.8%:23.3%:9.4%:17.4% for apoptosis assay). This phenomenon may be the result of the pro-apoptotic effects of miR-34a. CONCLUSIONS The present study demonstrated that miR-34a-over-expressing MSC-MVs inhibit EMT induced by pro-fibrotic TGF-β1 in renal tubular epithelial cells, possibly through inhibition of the Jagged-1/Notch-1 pathway. Genetic modification of MSC-MVs with an anti-fibrotic molecule may represent a novel strategy for the treatment of renal injuries.
Collapse
|
63
|
Perez-Hernandez J, Riffo-Campos AL, Ortega A, Martinez-Arroyo O, Perez-Gil D, Olivares D, Solaz E, Martinez F, Martínez-Hervás S, Chaves FJ, Redon J, Cortes R. Urinary- and Plasma-Derived Exosomes Reveal a Distinct MicroRNA Signature Associated With Albuminuria in Hypertension. Hypertension 2021; 77:960-971. [PMID: 33486986 DOI: 10.1161/hypertensionaha.120.16598] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary albumin excretion (UAE) is a marker of cardiovascular risk and renal damage in hypertension. MicroRNAs (miRNAs) packaged into exosomes function as paracrine effectors in cell communication and the kidney is not exempt. This study aimed to state an exosomal miRNA profile/signature associated to hypertension with increased UAE and the impact of profibrotic TGF-β1 (transforming growth factor β1) on exosomes miRNA release. Therefore, exosomes samples from patients with hypertension with/without UAE were isolated and characterized. Three individual and unique small RNA libraries from each subject were prepared (total plasma, urinary, and plasma-derived exosomes) for next-generation sequencing profiling. Differentially expressed miRNAs were over-represented in Kyoto Encyclopedia of Genes and Genomes pathways, and selected miRNAs were validated by real-time quantitative polymerase chain reaction in a confirmation cohort. Thus, a signature of 29 dysregulated circulating miRNAs was identified in UAE hypertensive subjects, regulating 21 pathways. Moreover, changes in the levels of 4 exosomes-miRNAs were validated in a confirmation cohort and found associated with albuminuria. In particular miR-26a, major regulator of TGF-β signaling, was found downregulated in both type of exosomes when compared with healthy controls and to hypertension normoalbuminurics (P<0.01). Similarly, decreased miR-26a levels were found in podocyte-derived exosomes after TGF-β stress. Our results revealed an exosomes miRNA signature associated to albuminuria in hypertension. In particular, exosomes miR-26a seemed to play a key role in the regulation of TGF-β, a relevant effector in podocyte damage. These findings support the use of exosomes miRNAs as biomarkers of cardiovascular risk progression and therapeutic tools in early kidney damage.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Angela L Riffo-Campos
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile (A.L.R.-C.)
| | - Ana Ortega
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Olga Martinez-Arroyo
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Daniel Perez-Gil
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Dolores Olivares
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| | - Elena Solaz
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Fernando Martinez
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.)
| | - Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Clinic Hospital, Spain (S.M.-H.).,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Spain (S.M.-H.)
| | - Felipe J Chaves
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, Minister of Health, Barcelona, Spain (S.M.-H., F.J.C.).,Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain (F.J.C.)
| | - Josep Redon
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.).,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain (E.S., F.M., J.R.).,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Minister of Health, Madrid, Spain (J.R.)
| | - Raquel Cortes
- From the Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain (J.P.-H., A.O., O.M.-A., D.P.-G., D.O., E.S., F.M., J.R., R.C.)
| |
Collapse
|
64
|
Human mesenchymal stromal cell source and culture conditions influence extracellular vesicle angiogenic and metabolic effects on human endothelial cells in vitro. J Trauma Acute Care Surg 2021; 89:S100-S108. [PMID: 32176171 DOI: 10.1097/ta.0000000000002661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mesenchymal stem/stromal cell (MSC)-derived extracellular vesicles (EVs) are a possible cell-free alternative to MSCs because they retain the regenerative potential of MSCs, while still mitigating some of their limitations (such as the possible elicitation of host immune responses). The promotion and restoration of angiogenesis, however, is an important component in treating trauma-related injuries, and has not been fully explored with EVs. Herein, we describe the effects of monolayer adipose-derived EVs, spheroid adipose-derived EVs (SAd-EVs), monolayer bone marrow-derived EVs (MBM-EVs), and spheroid bone marrow-derived EVs (SBM-EVs) on human umbilical vein endothelial cell (HUVEC) tube formation and mitochondrial respiration. METHODS The successful isolation of EVs derived from adipose MSCs or bone marrow MSCs in monolayer or spheroid cultures was confirmed by NanoSight (particle size distribution) and Western blot (surface marker expression). The EV angiogenic potential was measured using a 24-hour HUVEC tube formation assay. The EV effects on HUVEC mitochondrial function were evaluated using the Seahorse respirometer machine. RESULTS The number of junctions, branches, and the average length of branches formed at 24 hours of tube formation were significantly affected by cell and culture type; overall adipose-derived EVs outperformed bone marrow-derived EVs, and spheroid-derived EVs outperformed monolayer-derived EVs. Additionally, adipose-derived EVs resulted in significantly increased HUVEC mitochondrial maximal respiration and adenosine triphosphate (ATP) production, while only MBM-EVs negatively impacted HUVEC proton leak. CONCLUSION Adipose-derived EVs promoted HUVEC tube formation significantly more than bone marrow-derived EVs, while also maximizing HUVEC mitochondria function. Results demonstrate that, as with MSC therapies, it is possible to tailor EV culture and production to optimize therapeutic potential. LEVEL OF EVIDENCE Basic or Foundational Research.
Collapse
|
65
|
González-González A, García-Sánchez D, Dotta M, Rodríguez-Rey JC, Pérez-Campo FM. Mesenchymal stem cells secretome: The cornerstone of cell-free regenerative medicine. World J Stem Cells 2020; 12:1529-1552. [PMID: 33505599 PMCID: PMC7789121 DOI: 10.4252/wjsc.v12.i12.1529] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/07/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the most frequently used stem cells in clinical trials due to their easy isolation from various adult tissues, their ability of homing to injury sites and their potential to differentiate into multiple cell types. However, the realization that the beneficial effect of MSCs relies mainly on their paracrine action, rather than on their engraftment in the recipient tissue and subsequent differentiation, has opened the way to cell-free therapeutic strategies in regenerative medicine. All the soluble factors and vesicles secreted by MSCs are commonly known as secretome. MSCs secretome has a key role in cell-to-cell communication and has been proven to be an active mediator of immune-modulation and regeneration both in vitro and in vivo. Moreover, the use of secretome has key advantages over cell-based therapies, such as a lower immunogenicity and easy production, handling and storage. Importantly, MSCs can be modulated to alter their secretome composition to better suit specific therapeutic goals, thus, opening a large number of possibilities. Altogether these advantages now place MSCs secretome at the center of an important number of investigations in different clinical contexts, enabling rapid scientific progress in this field.
Collapse
Affiliation(s)
- Alberto González-González
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Daniel García-Sánchez
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Monica Dotta
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - José C Rodríguez-Rey
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain
| | - Flor M Pérez-Campo
- Department of Molecular Biology_IDIVAL, Faculty of Medicine, University of Cantabria, Santander 39011, Cantabria, Spain.
| |
Collapse
|
66
|
Barros I, Silva A, de Almeida LP, Miranda CO. Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine Growth Factor Rev 2020; 58:114-133. [PMID: 33397585 PMCID: PMC7836230 DOI: 10.1016/j.cytogfr.2020.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed. MSC represent a highly immunomodulatory cell population and their use may be safe according to clinical studies developed in other pathologies. Notably, four clinical trials and four case reports that have already been performed in COVID-19 patients obtained promising results. The clinical application of MSC in COVID-19 is very preliminary and further investigational studies are required to determine the efficacy of the MSC therapy. Nevertheless, these preliminary studies were important to understand the therapeutic potential of MSC in COVID-19. Based on these encouraging results, the United States Food and Drug Administration (FDA) authorized the compassionate use of MSC, but only in patients with Acute Respiratory Distress Syndrome (ARDS) and a poor prognosis. In fact, patients with severe SARS-CoV-2 can present infection and tissue damage in different organs, such as lung, heart, liver, kidney, gut and brain, affecting their function. MSC may have pleiotropic activities in COVID-19, with the capacity to fight inflammation and repair lesions in several organs.
Collapse
Affiliation(s)
- Inês Barros
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - António Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Viravector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Catarina Oliveira Miranda
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; III - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal.
| |
Collapse
|
67
|
Dong L, Zieren RC, Horie K, Kim C, Mallick E, Jing Y, Feng M, Kuczler MD, Green J, Amend SR, Witwer KW, de Reijke TM, Cho Y, Pienta KJ, Xue W. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. J Extracell Vesicles 2020; 10:e12044. [PMID: 33489012 PMCID: PMC7810129 DOI: 10.1002/jev2.12044] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges that restricts the evolving extracellular vesicle (EV) research field is the lack of a consensus method for EV separation. This may also explain the diversity of the experimental results, as co-separated soluble proteins and lipoproteins may impede the interpretation of experimental findings. In this study, we comprehensively evaluated the EV yields and sample purities of three most popular EV separation methods, ultracentrifugation, precipitation and size exclusion chromatography combined with ultrafiltration, along with a microfluidic tangential flow filtration device, Exodisc, in three commonly used biological samples, cell culture medium, human urine and plasma. Single EV phenotyping and density-gradient ultracentrifugation were used to understand the proportion of true EVs in particle separations. Our findings suggest Exodisc has the best EV yield though it may co-separate contaminants when the non-EV particle levels are high in input materials. We found no 100% pure EV preparations due to the overlap of their size and density with many non-EV particles in biofluids. Precipitation has the lowest sample purity, regardless of sample type. The purities of the other techniques may vary in different sample types and are largely dependent on their working principles and the intrinsic composition of the input sample. Researchers should choose the proper separation method according to the sample type, downstream analysis and their working scenarios.
Collapse
Affiliation(s)
- Liang Dong
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Urology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Richard C. Zieren
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Urology, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Kengo Horie
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of UrologyGifu University Graduate School of MedicineGifuJapan
| | - Chi‐Ju Kim
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical Engineering, School of Life SciencesUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
| | - Emily Mallick
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yuezhou Jing
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mingxiao Feng
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Morgan D. Kuczler
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jordan Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and Translational Tissue Engineering CenterJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sarah R. Amend
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Theo M. de Reijke
- Department of Urology, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Yoon‐Kyoung Cho
- Department of Biomedical Engineering, School of Life SciencesUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea
- Center for Soft and Living MatterInstitute for Basic Science (IBS)UlsanRepublic of Korea
| | - Kenneth J. Pienta
- The Brady Urological InstituteJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Wei Xue
- Department of Urology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
68
|
Franco C, Lacroix R, Vallier L, Judicone C, Bouriche T, Laroumagne S, Astoul P, Dignat-George F, Poncelet P. A new hybrid immunocapture bioassay with improved reproducibility to measure tissue factor-dependent procoagulant activity of microvesicles from body fluids. Thromb Res 2020; 196:414-424. [PMID: 33038585 DOI: 10.1016/j.thromres.2020.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The procoagulant activity of tissue factor-bearing microvesicles (MV-TF) has been associated with the risk of developing venous thrombosis in cancer patients. However, MV-TF assays are limited either by i) a lack of specificity, ii) a low sensitivity, or iii) a lack of repeatability when high-speed centrifugation (HS-C) is used to isolate MV. Therefore, our objective was to develop a new hybrid "capture-bioassay" with improved reproducibility combining MV immunocapture from biofluids and measurement of their TF activity. MATERIALS AND METHODS Factor Xa generation and flow cytometry assays were used to evaluate IMS beads performance, and to select the most effective capture antibodies. The analytical performance between IMS-based and HS-C-based assays was evaluated with various models of plasma samples (from LPS-activated blood, spiked with tumoral MV, or with saliva MV) and different biofluids (buffer, plasma, saliva, and pleural fluid). RESULTS Combining both CD29 and CD59 antibodies on IMS beads was as efficient as HS-C to isolate plasmatic PS+ MV. The IMS-based strategy gave significantly higher levels of MV-TF activity than HS-C in tumor MV spiked buffer, and both pleural fluids and saliva samples. Surprisingly, lower TF values were measured in plasma due to TFPI (TF pathway inhibitor) non-specifically adsorbed onto beads. This was overcome by adding a TFPI-blocking antibody. After optimization, the new IMS-based assay significantly improved reproducibility of MV-TF bioassay versus the HS-C-based assay without losing specificity and sensitivity. In addition, this approach could identify the cellular origin of MV-TF in various biological fluids. CONCLUSION Compared to HS-C, the IMS-based measurement of MV-TF activity in body fluids improves reproducibility and makes the assay compatible with clinical practice. It can facilitate future automation.
Collapse
Affiliation(s)
- Corentin Franco
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; BioCytex, Research and Technology Department, Marseille, France.
| | - Romaric Lacroix
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France.
| | - Loris Vallier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France
| | - Coralie Judicone
- BioCytex, Research and Technology Department, Marseille, France.
| | - Tarik Bouriche
- BioCytex, Research and Technology Department, Marseille, France.
| | - Sophie Laroumagne
- Aix Marseille Univ, APHM, Hôpital Nord, Division of Thoracic Oncology, Pleural Diseases, and Interventional Pulmonology, Marseille, France.
| | - Philippe Astoul
- Aix Marseille Univ, APHM, Hôpital Nord, Division of Thoracic Oncology, Pleural Diseases, and Interventional Pulmonology, Marseille, France.
| | - Francoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Aix Marseille Univ, APHM, CHU La Conception, Department of Hematology and Vascular Biology, Marseille, France.
| | | |
Collapse
|
69
|
Puig-Pijuan T, de Godoy MA, Pinheiro Carvalho LR, Bodart-Santos V, Lindoso RS, Pimentel-Coelho PM, Mendez-Otero R. Human Wharton's jelly mesenchymal stem cells protect neural cells from oxidative stress through paracrine mechanisms. Future Sci OA 2020; 6:FSO627. [PMID: 33235812 PMCID: PMC7668126 DOI: 10.2144/fsoa-2020-0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim Mesenchymal stem cells (MSCs) have neuroprotective and immunomodulatory properties, which are partly mediated by extracellular vesicles (EVs) secretion. We aimed to evaluate the effects of human Wharton's jelly-derived MSCs (WJ-MSCs) and their EVs on rat hippocampal cultures subjected to hydrogen peroxide (H2O2). Materials & methods Hippocampal dissociated cultures were either co-cultured with WJ-MSCs or treated with their EVs prior to H2O2 exposure and reactive oxygen species levels and cell viability were evaluated. Results Coculture with WJ-MSCs or pre-incubation with EVs prior to the insult reduced reactive oxygen species after H2O2 exposure. Cell viability was improved only when coculture was maintained following the insult, while EVs did not significantly improve cell viability. Conclusion WJ-MSCs have potential antioxidant and neuroprotective effects on hippocampal cultures which might be partially mediated by EVs.
Collapse
Affiliation(s)
- Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Mariana A de Godoy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Luiza Rachel Pinheiro Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Victor Bodart-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Rafael Soares Lindoso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
70
|
Jafari D, Malih S, Eini M, Jafari R, Gholipourmalekabadi M, Sadeghizadeh M, Samadikuchaksaraei A. Improvement, scaling-up, and downstream analysis of exosome production. Crit Rev Biotechnol 2020; 40:1098-1112. [PMID: 32772758 DOI: 10.1080/07388551.2020.1805406] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are the most researched extracellular vesicles. In many biological, physiological, and pathological studies, they have been identified as suitable candidates for treatment and diagnosis of diseases by acting as the carriers of both drugs and genes. Considerable success has been achieved regarding the use of exosomes for tissue regeneration, cancer diagnosis, and targeted drug/gene delivery to specific tissues. While major progress has been made in exosome extraction and purification, extraction of large quantities of exosomes is still a major challenge. This issue limits the scope of both exosome-based research and therapeutic development. In this review, we have aimed to summarize experimental studies focused at increasing the number of exosomes. Biotechnological studies aimed at identifying the pathways of exosome biogenesis to manipulate some genes in order to increase the production of exosomes. Generally, two major strategies are employed to increase the production of exosomes. First, oogenesis pathways are genetically manipulated to overexpress activator genes of exosome biogenesis and downregulate the genes involved in exosome recycling pathways. Second, manipulation of the cell culture medium, treatment with specific drugs, and limiting certain conditions can force the cell to produce more exosomes. In this study, we have reviewed and categorized these strategies. It is hoped that the information presented in this review will provide a better understanding for expanding biotechnological approaches in exosome-based therapeutic development.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Eini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Kim SY, Joglekar MV, Hardikar AA, Phan TH, Khanal D, Tharkar P, Limantoro C, Johnson J, Kalionis B, Chrzanowski W. Placenta Stem/Stromal Cell-Derived Extracellular Vesicles for Potential Use in Lung Repair. Proteomics 2020; 19:e1800166. [PMID: 31318160 DOI: 10.1002/pmic.201800166] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/26/2019] [Indexed: 12/28/2022]
Abstract
Many acute and chronic lung injuries are incurable and rank as the fourth leading cause of death globally. While stem cell treatment for lung injuries is a promising approach, there is growing evidence that the therapeutic efficacy of stem cells originates from secreted extracellular vesicles (EVs). Consequently, EVs are emerging as next-generation therapeutics. While EVs are extensively researched for diagnostic applications, their therapeutic potential to promote tissue repair is not fully elucidated. By housing and delivering tissue-repairing cargo, EVs refine the cellular microenvironment, modulate inflammation, and ultimately repair injury. Here, the potential use of EVs derived from two placental mesenchymal stem/stromal cell (MSC) lines is presented; a chorionic MSC line (CMSC29) and a decidual MSC cell line (DMSC23) for applications in lung diseases. Functional analyses using in vitro models of injury demonstrate that these EVs have a role in ameliorating injuries caused to lung cells. It is also shown that EVs promote repair of lung epithelial cells. This study is fundamental to advancing the field of EVs and to unlock the full potential of EVs in regenerative medicine.
Collapse
Affiliation(s)
- Sally Yunsun Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Mugdha V Joglekar
- Islet Biology and Diabetes Group, National Health and Medical Research Council Clinical Trials Center, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Anandwardhan A Hardikar
- Islet Biology and Diabetes Group, National Health and Medical Research Council Clinical Trials Center, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Thanh Huyen Phan
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Dipesh Khanal
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Priyanka Tharkar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Christina Limantoro
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| | - Jancy Johnson
- Department of Maternal fetal Medicine, Royal Women's Hospital, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bill Kalionis
- Department of Maternal fetal Medicine, Royal Women's Hospital, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, New South Wales, 2006, Australia.,Nano Institute, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
72
|
The effects of cell type and culture condition on the procoagulant activity of human mesenchymal stromal cell-derived extracellular vesicles. J Trauma Acute Care Surg 2020; 87:S74-S82. [PMID: 31246910 DOI: 10.1097/ta.0000000000002225] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have great potential as a cell-free therapy in wound healing applications. Because EV populations are not equivalent, rigorous characterization is needed before clinical use. Although there has been much focus on their RNA composition and regenerative capabilities, relatively less is known regarding the effects of MSC cell type (adipose tissue [Ad-MSCs] or bone marrow [BM-MSCs]) and culture condition (monolayer or spheroid) on MSC-EV performance, including characteristics related to their ability to promote coagulation, which could determine EV safety if administered intravenously. METHODS The successful isolation of EVs derived from Ad-MSCs or BM-MSCs cultured in either monolayer or spheroid cultures was confirmed by NanoSight (particle size distribution) and Western blot (surface marker expression). Extracellular vesicle surface expression of procoagulant molecules (tissue factor and phosphatidylserine) was evaluated by flow cytometry. Extracellular vesicle thrombogenicity was tested using calibrated thrombogram, and clotting parameters were assessed using thromboelastography and a flow-based adhesion model simulating blood flow over a collagen-expressing surface. RESULTS The MSC cell type and culture condition did not impact EV size distribution. Extracellular vesicles from all groups expressed phosphatidylserine and tissue factor on their surfaces were functionally thrombogenic and tended to increase clotting rates compared to the negative control of serum-free media without EVs. On average, EVs did not form significantly larger or stronger clots than the negative control, regardless of cell source or culture condition. Additionally, EVs interfered with platelet adhesion in an in vitro flow-based assay. CONCLUSION Adipose-derived EVs were more thrombogenic and expressed higher amounts of phosphatidylserine. Our findings suggest that, like intact MSCs, source variability among EVs is an important factor when considering EVs for potential therapeutic purposes. LEVEL OF EVIDENCE Therapeutic care management, level II.
Collapse
|
73
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
74
|
Goodman RR, Davies JE. Mesenchymal stromal cells and their derivatives - putative therapeutics in the management of autoimmune pancreatitis. FEBS Open Bio 2020; 10:969-978. [PMID: 32323467 PMCID: PMC7262915 DOI: 10.1002/2211-5463.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune pancreatitis, a derivative of chronic pancreatitis, frequently causes acute episodes with clinical symptoms parallel to those of acute pancreatitis. Corticosteroids are effective in the treatment of 90% of autoimmune pancreatitis cases, but for the remaining 10%, options are limited. Due to their significant immunomodulatory capabilities, mesenchymal stromal cells (MSCs) have been proposed as a novel treatment strategy for various immune and inflammatory pathologies including those with autoimmune origins. Here, we not only highlight the most recent MSC live‐cell experiments to address acute pancreatitis, but also discuss the opportunities afforded by the emergence of the newly identified field of MSC necrobiology. We conclude that the putative employment of MSC derivatives provides a newer and simpler therapeutic approach that could have significant advantages over the use of cells themselves.
Collapse
Affiliation(s)
- Robbie R Goodman
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.,Faculty of Dentistry, University of Toronto, Canada.,Tissue Regeneration Therapeutics Inc, Toronto, Canada
| |
Collapse
|
75
|
Franco da Cunha F, Andrade-Oliveira V, Candido de Almeida D, Borges da Silva T, Naffah de Souza Breda C, Costa Cruz M, Faquim-Mauro EL, Antonio Cenedeze M, Ioshie Hiyane M, Pacheco-Silva A, Aparecida Cavinato R, Torrecilhas AC, Olsen Saraiva Câmara N. Extracellular Vesicles isolated from Mesenchymal Stromal Cells Modulate CD4 + T Lymphocytes Toward a Regulatory Profile. Cells 2020; 9:cells9041059. [PMID: 32340348 PMCID: PMC7226573 DOI: 10.3390/cells9041059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by T cells was detected by confocal microscopy. Expression of surface markers was detected by flow cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1 polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-γ+/Foxp3+T cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-β pathway in this metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative regulatory profile by miRNAs and metabolism shifting.
Collapse
Affiliation(s)
- Flavia Franco da Cunha
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Correspondence: (F.F.d.C.); (N.O.S.C.)
| | - Vinicius Andrade-Oliveira
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Danilo Candido de Almeida
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Tamiris Borges da Silva
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Cristiane Naffah de Souza Breda
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Mario Costa Cruz
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil;
| | - Marcos Antonio Cenedeze
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Alvaro Pacheco-Silva
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Hospital Israelita Albert Einstein, Av. Albert Einstein, São Paulo 627–05652-900, Brazil
| | - Regiane Aparecida Cavinato
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau 210, Diadema 09913-030, São Paulo, Brazil;
| | - Niels Olsen Saraiva Câmara
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
- Correspondence: (F.F.d.C.); (N.O.S.C.)
| |
Collapse
|
76
|
Kholia S, Herrera Sanchez MB, Cedrino M, Papadimitriou E, Tapparo M, Deregibus MC, Bruno S, Antico F, Brizzi MF, Quesenberry PJ, Camussi G. Mesenchymal Stem Cell Derived Extracellular Vesicles Ameliorate Kidney Injury in Aristolochic Acid Nephropathy. Front Cell Dev Biol 2020; 8:188. [PMID: 32266268 PMCID: PMC7105599 DOI: 10.3389/fcell.2020.00188] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Limitations in the current therapeutic strategies for the prevention of progression of chronic kidney disease (CKD) to end stage renal disease has been a drawback to improving patient recovery. It is therefore imperative that a solution is found to alleviate this problem and improve the health and well-being of patients overall. Aristolochic acid (AA) induced nephropathy, a type of nephrotoxic CKD is characterised by cortical tubular injury, inflammation, leading to interstitial fibrosis. Extracellular vesicles derived from human bone marrow mesenchymal stem cells (MSC-EVs) display therapeutic properties in various disease models including kidney injury. In the current study, we intended to investigate the ability of MSC-EVs on ameliorating tubular injury and interstitial fibrosis in a mouse model of aristolochic acid nephropathy (AAN). The chronic model of AAN is comprised of an intraperitoneal injection of AA in NSG mice, followed by a three-day incubation period and then inoculation of MSC-EVs intravenously. This routine was performed on a weekly basis for four consecutive weeks, accompanied by the monitoring of body weight of all mice. Blood and tissue samples were collected post sacrifice. All animals administered with AA developed kidney injury and renal fibrosis. A gradual loss of body weight was observed, together with a deterioration in kidney function. Although no significant recovery was observed in weight loss following treatment with MSC-EVs, a significant reduction in: blood creatinine and blood urea nitrogen (BUN), tubular necrosis, and interstitial fibrosis was observed. In addition, infiltration of CD45 positive immune cells, fibroblasts, and pericytes which were elevated in the interstitium post AA induced injury, were also significantly reduced by MSC-EVs. Kidneys were also subjected to molecular analyses to evaluate the regulation of pro-fibrotic genes. MSC-EVs significantly reduced AA induction of the pro-fibrotic genes α-Sma, Tgfb1 and Col1a1. A downregulation in pro-fibrotic genes was also observed in fibroblasts activated by AA injured mTECs in vitro. Furthermore, meta-analyses of miRNAs downregulated by MSC-EVs, such as miR21, revealed the regulation of multiple pathways involved in kidney injury including fibrosis, inflammation, and apoptosis. These results therefore suggest that MSC-EVs could play a regenerative and anti-fibrotic role in AAN through the transfer of biologically active cargo that regulates the disease both at a protein and genetic level.
Collapse
Affiliation(s)
- Sharad Kholia
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | | | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Maria Chiara Deregibus
- Molecular Biotechnology Center, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Federica Antico
- FORB, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Peter J. Quesenberry
- Division of Hematology/Oncology, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy
- 2i3T Società per la Gestione dell’Incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Turin, Turin, Italy
| |
Collapse
|
77
|
Cavallari C, Figliolini F, Tapparo M, Cedrino M, Trevisan A, Positello L, Rispoli P, Solini A, Migliaretti G, Camussi G, Brizzi MF. miR-130a and Tgfβ Content in Extracellular Vesicles Derived from the Serum of Subjects at High Cardiovascular Risk Predicts their In-Vivo Angiogenic Potential. Sci Rep 2020; 10:706. [PMID: 31959759 PMCID: PMC6971269 DOI: 10.1038/s41598-019-55783-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Serum-derived extracellular vesicles (sEV) from healthy donors display in-vivo pro-angiogenic properties. To identify patients that may benefit from autologous sEV administration for pro-angiogenic purposes, sEV angiogenic capability has been evaluated in type 2 diabetic (T2DM) subjects (D), in obese individuals with (OD) and without (O) T2DM, and in subjects with ischemic disease (IC) (9 patients/group). sEV display different angiogenic properties in such cluster of individuals. miRNomic profile and TGFβ content in sEV were evaluated. We found that miR-130a and TGFβ content correlates with sEV in-vitro and in-vivo angiogenic properties, particularly in T2DM patients. Ingenuity Pathway Analysis (IPA) identified a number of genes as among the most significant miR-130a interactors. Gain-of-function experiments recognized homeoboxA5 (HOXA5) as a miR-130a specific target. Finally, ROC curve analyses revealed that sEV ineffectiveness could be predicted (Likelihood Ratio+ (LH+) = 3.3 IC 95% from 2.6 to 3.9) by comparing miR-130a and TGFβ content 'in Series'. We demonstrate that sEV from high cardiovascular risk patients have different angiogenic properties and that miR-130a and TGFβ sEV content predicts 'true ineffective sEVs'. These results provide the rationale for the use of these assays to identify patients that may benefit from autologous sEV administration to boost the angiogenetic process.
Collapse
Affiliation(s)
| | | | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Pietro Rispoli
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Giuseppe Migliaretti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Giovanni Camussi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- 2i3T Scarl, University of Turin, Turin, Italy. .,Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
78
|
Missoum A. Recent Updates on Mesenchymal Stem Cell Based Therapy for Acute Renal Failure. Curr Urol 2020; 13:189-199. [PMID: 31998051 DOI: 10.1159/000499272] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury, formerly known as acute renal failure, is a pathological condition in which ischemia or toxic damage contributes to the loss of renal proximal tubule epithelial cells. Pathophysiological events such as oxidative stress, mitochondrial dysfunction, and direct renal tubular epithelial cells toxicity are responsible for the progression of the disease. This devastating decline in renal function affects mostly patients in the intensive care units and requires costly and invasive treatments such as dialysis and organ transplant. Fortunately, recent therapies such as the use of mesenchymal stem cells (MSCs) were proven to be effective in ameliorating renal failure via paracrine and immunomodulatory mechanisms. These fibroblast-like adult stem cells that differentiate multilineagely can be isolated from dental pulps, umbilical cords, amniotic fluids, adipose tissues, and bone marrows. Depending on their sources, the therapeutical application of each MSC type has its own capacities, advantages, and drawbacks. The review discusses and compares the latest research studies on the use of different MSCs sources to treat renal failure. Concerns about the future clinical application of MSCs such as homing, toxicity, and the risk of immune rejection are also highlighted.
Collapse
Affiliation(s)
- Asmaa Missoum
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
79
|
Regulatory, ethical, and technical considerations on regenerative technologies and adipose-derived mesenchymal stem cells. EUROPEAN JOURNAL OF PLASTIC SURGERY 2019. [DOI: 10.1007/s00238-019-01571-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
80
|
Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. Int J Mol Sci 2019; 20:ijms20215468. [PMID: 31684046 PMCID: PMC6861905 DOI: 10.3390/ijms20215468] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that injury induced by irradiation to murine marrow can be partially or completely reversed by exposure to human or murine mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). Investigation of the biodistribution of EVs in vivo is essential for understanding EV biology. In this study, we evaluated the DiD lipid dye labeled MSC-EV biodistribution in mice under different conditions, including different MSC-EV doses and injection schedules, time post MSC-EV injection, and doses of radiation. DiD-labeled MSC-EVs appeared highest in the liver and spleen; lower in bone marrow of the tibia, femur, and spine; and were undetectable in the heart, kidney and lung, while a predominant EV accumulation was detected in the lung of mice infused with human lung fibroblast cell derived EVs. There was significantly increased MSC-EV accumulation in the spleen and bone marrow (tibia and femur) post radiation appearing with an increase of MSC-EV uptake by CD11b+ and F4/80+ cells, but not by B220 cells, compared to those organs from non-irradiated mice. We further demonstrated that increasing levels of irradiation caused a selective increase in vesicle homing to marrow. This accumulation of MSC-EVs at the site of injured bone marrow could be detected as early as 1 h after MSC- EV injection and was not significantly different between 2 and 24 h post MSC-EV injection. Our study indicates that irradiation damage to hematopoietic tissue in the spleen and marrow targets MSC-EVs to these tissues.
Collapse
|
81
|
Hassan R, Rabea AA, Ragae A, Sabry D. The prospective role of mesenchymal stem cells exosomes on circumvallate taste buds in induced Alzheimer's disease of ovariectomized albino rats: (Light and transmission electron microscopic study). Arch Oral Biol 2019; 110:104596. [PMID: 31734542 DOI: 10.1016/j.archoralbio.2019.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the effect of Alzheimer's disease on the structure of circumvallate papilla taste buds and the possible role of exosomes on the taste buds in Alzheimer's disease. DESIGN Forty two ovariectomized female adult albino rats were utilized and divided into: Group I: received vehicle. Group II: received aluminum chloride to induce Alzheimer's disease. Group III: after the induction of Alzheimer's disease, each rat received single dose of exosomes then left for 4 weeks. The circumvallate papillae were prepared for examination by light and transmission electron microscope. STATISTICAL ANALYSIS histomorphometric data were statistically analyzed. RESULTS Histological examination of circumvallate papilla in Group I showed normal histological features. Group II revealed distorted features. Group III illustrated nearly normal histological features of circumvallate. Silver impregnation results showed apparently great number of heavily impregnated glossopharyngeal nerve fibers in both Groups I & III but markedly decreased in Group II. Synaptophysin-immunoreactivity was strong in Group I, mild in Group II and moderate in Group III. The ultra-structural examination of taste bud cells revealed normal features in Group I, distorted features in Group II and almost normal features in Group III. Statistically highest mean of Synaptophysin-immunoreactivity area% was for Group I, followed by Group III, and the least value was for Group II. CONCLUSIONS Alzheimer's disease has degenerative effects. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes have the ability to improve the destructive changes induced by Alzheimer's disease.
Collapse
Affiliation(s)
- Rabab Hassan
- Lecturer of Oral Biology, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Amany A Rabea
- Associate Professor of Oral Biology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Alyaa Ragae
- Professor of General Histology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Dina Sabry
- Professor of Medical biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
82
|
Isolation and characterization of microvesicles from mesenchymal stem cells. Methods 2019; 177:50-57. [PMID: 31669353 DOI: 10.1016/j.ymeth.2019.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem or stromal cells are currently under clinical investigation for multiple diseases. While their mechanism of action is still not fully elucidated, vesicles secreted by MSCs are believed to recapitulate their therapeutic potentials to some extent. Microvesicles (MVs), also called as microparticles or ectosome, are among secreted vesicles that could transfer cytoplasmic cargo, including RNA and proteins, from emitting (source) cells to recipient cells. Given the importance of MVs, we here attempted to establish a method to isolate and characterize MVs secreted from unmodified human bone marrow derived MSCs (referred to as native MSCs, and their microvesicles as Native-MVs) and IFNγ stimulated MSCs (referred to as IFNγ-MSCs, and their microvesicles as IFNγ-MVs). We first describe an ultracentrifugation technique to isolate MVs from the conditioned cell culture media of MSCs. Next, we describe characterization and quality control steps to analyze the protein and RNA content of MVs. Finally, we examined the potential of MVs to exert immunomodulatory effects through induction of regulatory T cells (Tregs). Secretory vesicles from MSCs are promising alternatives for cell therapy with applications in drug delivery, regenerative medicine, and immunotherapy.
Collapse
|
83
|
Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci 2019; 236:116861. [PMID: 31513815 DOI: 10.1016/j.lfs.2019.116861] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis is a prevalent worldwide joint disease, which demonstrates a remarkable adverse effect on the patients' life modality. Medicinal agents, exclusively nonsteroidal anti-inflammatory drugs (NSAIDs), have been routinely applied in the clinic. But, their effects are restricted to pain control with insignificant effects on cartilage renovation, which would finally lead to cartilage destruction. In the field of regenerative medicine, many researchers have tried to use stem cells to repair tissues and other human organs. However, in recent years, with the discovery of extracellular microvesicles, especially exosomes, researchers have been able to offer more exciting alternatives on the subject. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, and osteoclasts. They are also recognized to play substantial roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. Specifically, exosomes derived from a mesenchymal stem cell have shown a great potential for the desired purpose. Exosomal products include miRNA, DNA, proteins, and other factors. At present, if it is possible to extract exosomes from various stem cells effectively and load certain products or drugs into them, they can be used in diseases, such as rheumatoid arthritis, osteoarthritis, bone fractures, and other diseases. Of course, to achieve proper clinical use, advances have to be made to establish a promising regenerative ability for microvesicles for treatment purposes in the orthopedic disorders. In this review, we describe the exosomes biogenesis and bone cell derived exosomes in the regenerate process of bone and cartilage remodeling.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Khodadadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
84
|
Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J Heart Lung Transplant 2019; 38:1306-1316. [PMID: 31530458 DOI: 10.1016/j.healun.2019.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lung ischemia/reperfusion (IR) injury contributes to the development of severe complications in patients undergoing transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) exert beneficial actions comparable to those of MSCs without the risks of the cell-based strategy. This research investigated EV effects during IR injury in isolated rat lungs. METHODS An established model of 180-minutes ex vivo lung perfusion (EVLP) was used. At 60 minutes EVs (n = 5) or saline (n = 5) were administered. Parallel experiments used labeled EVs to determine EV biodistribution (n = 4). Perfusate samples were collected to perform gas analysis and to assess the concentration of nitric oxide (NO), hyaluronan (HA), inflammatory mediators, and leukocytes. Lung biopsies were taken at 180 minutes to evaluate HA, adenosine triphosphate (ATP), gene expression, and histology. RESULTS Compared with untreated lungs, EV-treated organs showed decreased vascular resistance and a rise of perfusate NO metabolites. EVs prevented the reduction in pulmonary ATP caused by IR. Increased medium-high-molecular-weight HA was detected in the perfusate and in the lung tissue of the IR + EV group. Significant differences in cell count on perfusate and tissue samples, together with induction of transcription and synthesis of chemokines, suggested EV-dependent modulation of leukocyte recruitment. EVs upregulated genes involved in the resolution of inflammation and oxidative stress. Biodistribution analysis showed that EVs were retained in the lung tissue and internalized within pulmonary cells. CONCLUSIONS This study shows multiple novel EV influences on pulmonary energetics, tissue integrity, and gene expression during IR. The use of cell-free therapies during EVLP could constitute a valuable strategy for reconditioning and repair of injured lungs before transplantation.
Collapse
|
85
|
Park KS, Svennerholm K, Shelke GV, Bandeira E, Lässer C, Jang SC, Chandode R, Gribonika I, Lötvall J. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10:231. [PMID: 31370884 PMCID: PMC6676541 DOI: 10.1186/s13287-019-1352-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved. Methods NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging. Results Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h. Conclusions Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Su Chul Jang
- Codiak BioSciences Inc, 500 Technology Square, 9th floor, Cambridge, MA, 02139, USA
| | - Rakesh Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| |
Collapse
|
86
|
Gonsalez SR, Cortês AL, Silva RCD, Lowe J, Prieto MC, Silva Lara LD. Acute kidney injury overview: From basic findings to new prevention and therapy strategies. Pharmacol Ther 2019; 200:1-12. [PMID: 30959059 PMCID: PMC10134404 DOI: 10.1016/j.pharmthera.2019.04.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
Acute kidney injury (AKI) is defined as a decrease in kidney function within hours, which encompasses both injury and impairment of renal function. AKI is not considered a pathological condition of single organ failure, but a syndrome in which the kidney plays an active role in the progression of multi-organ dysfunction. The incidence rate of AKI is increasing and becoming a common (8-16% of hospital admissions) and serious disease (four-fold increased hospital mortality) affecting public health costs worldwide. AKI also affects the young and previously healthy individuals affected by infectious diseases in Latin America. Because of the multifactorial pathophysiological mechanisms, there is no effective pharmacological therapy that prevents the evolution or reverses the injury once established; therefore, renal replacement therapy is the only current alternative available for renal patients. The awareness of an accurate and prompt recognition of AKI underlying the various clinical phenotypes is an urgent need for more effective therapeutic interventions to diminish mortality and socio-economic impacts of AKI. The use of biomarkers as an indicator of the initial stage of the disease is critical and the cornerstone to fulfill the gaps in the field. This review discusses emerging strategies from basic science toward the anticipation of features, treatment of AKI, and new treatments using pharmacological and stem cell therapies. We will also highlight bioartificial kidney studies, addressing the limitations of the development of this innovative technology.
Collapse
Affiliation(s)
- Sabrina Ribeiro Gonsalez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Aline Leal Cortês
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Raquel Costa da Silva
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, sala I2-035, Rio de Janeiro, RJ 21941-902, Brazil
| | - Minolfa C Prieto
- Department of Physiology & Tulane Renal and Hypertension Center of Excellence, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lucienne da Silva Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
87
|
Bussolati B, Camussi G. Renal injury: Early apoptotic extracellular vesicles in injury and repair. Nat Rev Nephrol 2019; 13:523-524. [PMID: 28819190 DOI: 10.1038/nrneph.2017.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Corso Dogliotti 14, Torino 10126, Italy
| |
Collapse
|
88
|
Jafari D, Malih S, Eslami SS, Jafari R, Darzi L, Tarighi P, Samadikuchaksaraei A. The relationship between molecular content of mesenchymal stem cells derived exosomes and their potentials: Opening the way for exosomes based therapeutics. Biochimie 2019; 165:76-89. [PMID: 31302163 DOI: 10.1016/j.biochi.2019.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
At least, more than half of our understanding of extracellular vesicles owes to the studies conducted over the past few years. When it became clear that the exosomes have various potentials in medicine, extensive research has focused on these potentials in a variety of areas including cancer, drug delivery and regenerative medicine. The growing understanding of molecular structure and functions of exosomes causes the vision to become brighter in the exosomes complexity, and our attitude toward these vesicles has undergone changes accordingly. Proteomic and transcriptomic studies on exosomes have highlighted their molecular diversity. In this review, we explicitly examine the exosomes composition, molecular structure and their therapeutic potentials in some diseases. Due to the very heterogeneous nature of exosomes, the process of their use as a therapeutic agent in the clinic has been challenged. We are still at the beginning of recognizing the molecular composition of exosomes and mechanisms that affect their physiology and biology. The growing trend of engineering of exosomes has shown a promising future to further utilize them in a different field. Molecular profiling of exosomes and their content for their related potentials in regenerative medicine should be done exactly for further defining a minimum content for specific therapeutic potentials.
Collapse
Affiliation(s)
- Davod Jafari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Sadegh Eslami
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Leila Darzi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
89
|
Mazzeo A, Lopatina T, Gai C, Trento M, Porta M, Beltramo E. Functional analysis of miR-21-3p, miR-30b-5p and miR-150-5p shuttled by extracellular vesicles from diabetic subjects reveals their association with diabetic retinopathy. Exp Eye Res 2019; 184:56-63. [DOI: 10.1016/j.exer.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
90
|
Weiss DJ, English K, Krasnodembskaya A, Isaza-Correa JM, Hawthorne IJ, Mahon BP. The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Front Immunol 2019; 10:1228. [PMID: 31214185 PMCID: PMC6557974 DOI: 10.3389/fimmu.2019.01228] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid progress is occurring in understanding the mechanisms underlying mesenchymal stromal cell (MSC)-based cell therapies (MSCT). However, the results of clinical trials, while demonstrating safety, have been varied in regard to efficacy. Recent data from different groups have shown profound and significant influences of the host inflammatory environment on MSCs delivered systemically or through organ-specific routes, for example intratracheal, with subsequent actions on potential MSC efficacies. Intriguingly in some models, it appears that dead or dying cells or subcellular particles derived from them, may contribute to therapeutic efficacy, at least in some circumstances. Thus, the broad cellular changes that accompany MSC death, autophagy, pre-apoptotic function, or indeed the host response to these processes may be essential to therapeutic efficacy. In this review, we summarize the existing literature concerning the necrobiology of MSCs and the available evidence that MSCs undergo autophagy, apoptosis, transfer mitochondria, or release subcellular particles with effector function in pathologic or inflammatory in vivo environments. Advances in understanding the role of immune effector cells in cell therapy, especially macrophages, suggest that the reprogramming of immunity associated with MSCT has a weighty influence on therapeutic efficacy. If correct, these data suggest novel approaches to enhancing the beneficial actions of MSCs that will vary with the inflammatory nature of different disease targets and may influence the choice between autologous or allogeneic or even xenogeneic cells as therapeutics.
Collapse
Affiliation(s)
- Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Karen English
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Anna Krasnodembskaya
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Johana M. Isaza-Correa
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Ian J. Hawthorne
- Cellular Immunology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| | - Bernard P. Mahon
- Immunology & Cell Biology Laboratory, Biology Department, Human Health Research Institute, Maynooth University, Maynooth, Ireland
| |
Collapse
|
91
|
Mesenchymal Stem Cells-Potential Applications in Kidney Diseases. Int J Mol Sci 2019; 20:ijms20102462. [PMID: 31109047 PMCID: PMC6566143 DOI: 10.3390/ijms20102462] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells constitute a pool of cells present throughout the lifetime in numerous niches, characteristic of unlimited replication potential and the ability to differentiate into mature cells of mesodermal tissues in vitro. The therapeutic potential of these cells is, however, primarily associated with their capabilities of inhibiting inflammation and initiating tissue regeneration. Owing to these properties, mesenchymal stem cells (derived from the bone marrow, subcutaneous adipose tissue, and increasingly urine) are the subject of research in the settings of kidney diseases in which inflammation plays the key role. The most advanced studies, with the first clinical trials, apply to ischemic acute kidney injury, renal transplantation, lupus and diabetic nephropathies, in which beneficial clinical effects of cells themselves, as well as their culture medium, were observed. The study findings imply that mesenchymal stem cells act predominantly through secreted factors, including, above all, microRNAs contained within extracellular vesicles. Research over the coming years will focus on this secretome as a possible therapeutic agent void of the potential carcinogenicity of the cells.
Collapse
|
92
|
Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G. Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 2019; 317:C303-C313. [PMID: 31091143 DOI: 10.1152/ajpcell.00129.2019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular vesicles (EVs) are membrane vesicles carrying proteins, nucleic acids, and bioactive lipids of the cell of origin. These vesicles released within the extracellular space and entering into the circulation may transfer their cargo to neighboring or distant cells and induce phenotypical and functional changes that may be relevant in several physiopathological conditions. In an attempt to define the biological properties of EVs, several investigations have focused on their cargo and on the effects elicited in recipient cells. EVs have been involved in modulation of tumor microenvironment and behavior, as well as in the immune and inflammatory response. In the present review, we address the paracrine action of EVs released by stem cells and their potential involvement in the activation of regenerative programs in injured cells.
Collapse
Affiliation(s)
- Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Enrica Favaro
- Department of Medical Sciences, University of Torino, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
93
|
Alzahrani FA. Melatonin improves therapeutic potential of mesenchymal stem cells-derived exosomes against renal ischemia-reperfusion injury in rats. Am J Transl Res 2019; 11:2887-2907. [PMID: 31217862 PMCID: PMC6556638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Renal ischemia-reperfusion injury (RIRI) is one of the main causes for acute kidney injury (AKI). Many previous attempts failed to adopt a suitable treatment regimen for AKI. Recently, combined melatonin (Mel) and mesenchymal stem cell (MSC)-derived exosomes (Exo) therapy gave a promising therapeutic option for acute liver ischemic injury, however this treatment approach has not been tested against RIRI yet. This study tested the hypothesis that administration of exosomes derived from MSCs preconditioned with Mel gave best protection against RIRI as compared to therapy by MSCs or exosomes derived from non-preconditioned MSCs. Female adult rats (n = 60) equally divided into control group, sham group, RIRI group (induced by bilateral renal arteries clamping), RIRI + MSCs group (1 × 106 bone marrow derived MSCs), RIRI + Exo group (250 μg Exo derived from no-preconditioned MSCs), and RIRI + Mel + Exo group (250 μg Exo derived from Mel preconditioned MSCs). MSCs or Exo was bilaterally injected once in each renal artery during reperfusion. The obtained results revealed notable improvement in RIRI following all treatment (MSCs, Exo, and Exo + Mel) with best improvement in Exo + Mel group as evidenced by: 1) decreased kidney injury histopathological score; 2) reduced blood levels of kidney damage markers [blood urea nitrogen (BUN) and creatinine]; 3) declined oxidative stress status (MDA level, HIF1α gene, and NOX2 protein); 4) increased anti-oxidant status (HO1 gene, and SOD, CAT, GPX activities); 5) declined apoptosis (caspase 3 activity and mRNA, and PARP1, Bax genes), 6) induced anti-apoptotic effect (Bcl2 gene); 7) inhibition of inflammation (decreased MPO activity and ICAM1, IL1B, NFkB genes and increased IL10 genes); 8) improved regeneration (bFGF, HGF and SOX9 proteins); and 9) enhanced angiogenesis (VEGF gene). These data indicate that treatment with exosomes derived from MSCs preconditioned with melatonin gave best protective effect against renal ischemia-reperfusion injury as compared to therapy by non-preconditioned MSCs or their exosomes.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Rabigh BranchRabigh 21589, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz UniversityJeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz UniversityJeddah 21589, Saudi Arabia
| |
Collapse
|
94
|
Sheveleva ON, Domaratskaya EI, Payushina OV. Extracellular Vesicles and Prospects of Their Use for Tissue Regeneration. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747818040104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, Brizzi MF. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep 2019; 9:4468. [PMID: 30872726 PMCID: PMC6418239 DOI: 10.1038/s41598-019-41100-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) that are derived from mesenchymal stromal cells (MSCs) have been shown to reprogram injured cells by activating regenerative processes. We herein investigate the potential therapeutic effect of EVs, shed by human bone marrow MSCs and by human liver stem-like cells (HLSCs), on the progression and reversion of fibrosis in a mouse model of diabetic nephropathy, as induced by streptozotocin. After the development of nephropathy, stem cell-derived EVs were administered weekly to diabetic mice for four weeks. The stem cell-derived EV treatment, but not the fibroblast EV treatment that was used as a control, significantly ameliorated functional parameters, such as albumin/creatinine excretion, plasma creatinine and blood urea nitrogen, which are altered in diabetic mice. Moreover, the renal fibrosis that develops during diabetic nephropathy progression was significantly inhibited in stem cell EV-treated animals. A correlation was found between the down regulation of several pro-fibrotic genes in renal tissues and the anti-fibrotic effect of HLSC and MSC EVs. A comparative analysis of HLSC and MSC EV miRNA content highlighted some common and some specific patterns of miRNAs that target predicted pro-fibrotic genes. In conclusion, stem cell-derived EVs inhibit fibrosis and prevent its progression in a model of diabetes-induced chronic kidney injury.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Stefania Tritta
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Turin, Italy. .,Molecular Biotechnology Centre, University of Turin, Turin, Italy. .,2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy.
| |
Collapse
|
96
|
Galieva LR, James V, Mukhamedshina YO, Rizvanov AA. Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Front Neurosci 2019; 13:163. [PMID: 30890911 PMCID: PMC6411850 DOI: 10.3389/fnins.2019.00163] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The use of extracellular vesicles (EVs) as cell free therapy is a promising approach to stimulate tissue regeneration including that of the nervous system. EVs transfer bioactive proteins and lipids, RNA and microRNAs, which play a relevant role in EV-mediated intercellular communication. The immunomodulatory, anti-inflammatory, and neuroprotective effects of mesenchymal stem cells-derived EVs have been well studied, knowledge of this paracrine mechanism and the availability of these cells, positions mesenchymal stem cells as a potential source of EVs for cell free therapy for a variety of regenerative and nervous system disorders. In this review, we focus on the immunomodulatory and neuroprotective effects of stem cells-derived EVs within in vitro and in vivo models of nerve disorders.
Collapse
Affiliation(s)
- Luisa R Galieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
97
|
Guan S, Yu H, Yan G, Gao M, Sun W, Zhang X. Size-dependent sub-proteome analysis of urinary exosomes. Anal Bioanal Chem 2019; 411:4141-4149. [DOI: 10.1007/s00216-019-01616-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022]
|
98
|
Davis CN, Phillips H, Tomes JJ, Swain MT, Wilkinson TJ, Brophy PM, Morphew RM. The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Negl Trop Dis 2019; 13:e0007191. [PMID: 30811394 PMCID: PMC6411213 DOI: 10.1371/journal.pntd.0007191] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/11/2019] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Robust protocols for the isolation of extracellular vesicles (EVs) from the rest of their excretory-secretory products are necessary for downstream studies and application development. The most widely used purification method of EVs for helminth pathogens is currently differential centrifugation (DC). In contrast, size exclusion chromatography (SEC) has been included in the purification pipeline for EVs from other pathogens, highlighting there is not an agreed research community 'gold standard' for EV isolation. In this case study, Fasciola hepatica from natural populations were cultured in order to collect EVs from culture media and evaluate a SEC or DC approach to pathogen helminth EV purification. METHODOLOGY/PRINCIPAL FINDINGS Transmission electron and atomic force microscopy demonstrated that EVs prepared by SEC were both smaller in size and less diverse than EV resolved by DC. Protein quantification and Western blotting further demonstrated that SEC purification realised a higher EV purity to free excretory-secretory protein (ESP) yield ratio compared to DC approaches as evident by the reduction of soluble free cathepsin L proteases in SEC EV preparations. Proteomic analysis further highlighted DC contamination from ESP as shown by an increased diversity of protein identifications and unique peptide hits in DC EVs as compared to SEC EVs. In addition, SEC purified EVs contained less tegumental based proteins than DC purified EVs. CONCLUSIONS/SIGNIFICANCE The data suggests that DC and SEC purification methods do not isolate equivalent EV population profiles and caution should be taken in the choice of EV purification utilised, with certain protocols for DC preparations including more free ES proteins and tegumental artefacts. We propose that SEC methods should be used for EV purification prior to downstream studies.
Collapse
Affiliation(s)
- Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
99
|
Marycz K, Kornicka K, Röcken M. Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate - New Perspectives in Regenerative Medicine Arising from an Underestimated Tool. Stem Cell Rev Rep 2019; 14:785-792. [PMID: 30225821 PMCID: PMC6223715 DOI: 10.1007/s12015-018-9847-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue engineering and stem cell-based therapies are one of the most rapidly developing fields in medical sciences. Therefore, much attention has been paid to the development of new drug-delivery systems characterized by low cytotoxicity, high efficiency and controlled release. One of the possible strategies to achieve these goals is the application of magnetic field and/or magnetic nanoparticles, which have been shown to exert a wide range of effects on cellular metabolism. Static magnetic field (SMF) has been commonly used in medicine as a tool to increase wound healing, bone regeneration and as a component of magnetic resonance technique. However, recent data shed light on deeper mechanism of SMF action on physiological properties of different cell populations, including stem cells. In the present review, we focused on SMF effects on stem cell biology and its possible application as a tool for controlled drug delivery. We also highlighted the perspectives, in which SMF can be used in future therapies in tissue engineering due to its easy application and a wide range of possible effects on cells and organisms.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland. .,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany.
| | - K Kornicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B, Wrocław, Poland
| | - M Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| |
Collapse
|
100
|
van Balkom BWM, Gremmels H, Giebel B, Lim SK. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019; 19:e1800163. [PMID: 30467989 DOI: 10.1002/pmic.201800163] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Small extracellular vesicles (EVs) are 50-200 nm vesicles secreted by most cells. They are considered as mediators of intercellular communication, and EVs from specific cell types, in particular mesenchymal stem/stromal cells (MSCs), offer powerful therapeutic potential, and can provide a novel therapeutic strategy. They appear promising and safe (as EVs are non-self-replicating), and eventually MSC-derived EVs (MSC-EVs) may be developed to standardized, off-the-shelf allogeneic regenerative and immunomodulatory therapeutics. Promising pre-clinical data have been achieved using MSCs from different sources as EV-producing cells. Similarly, a variety EV isolation and characterization methods have been applied. Interestingly, MSC-EVs obtained from different sources and prepared with different methods show in vitro and in vivo therapeutic effects, indicating that isolated EVs share a common potential. Here, well-characterized and controlled, publicly available proteome profiles of MSC-EVs are compared to identify a common MSC-EV protein signature that might be coupled to the MSC-EVs' common therapeutic potential. This protein signature may be helpful in developing MSC-EV quality control platforms required to confirm the identity and test for the purity of potential therapeutic MSC-EVs.
Collapse
Affiliation(s)
- Bas W M van Balkom
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX, Utrecht, The Netherlands
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Sai Kiang Lim
- Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 138648, Singapore
| |
Collapse
|