51
|
Bioactive Molecules for Skin Repair and Regeneration: Progress and Perspectives. Stem Cells Int 2019; 2019:6789823. [PMID: 32082386 PMCID: PMC7012201 DOI: 10.1155/2019/6789823] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Skin regeneration is a vexing problem in the field of regenerative medicine. A bioactive molecule-based strategy has been frequently used in skin wound healing in recent years. Bioactive molecules are practical tools for regulating cellular processes and have been applied to control cellular differentiation, dedifferentiation, and reprogramming. In this review, we focus on recent progress in the use of bioactive molecules in skin regenerative medicine, by which desired cell types can be generated in vitro for cell therapy and conventional therapeutics can be developed to repair and regenerate skin in vivo through activation of the endogenous repairing potential. We further prospect that the bioactive molecule-base method might be one of the promising strategies to achieve in situ skin regeneration in the future.
Collapse
|
52
|
A Metric Approach to Hot Topics in Biomedicine via Keyword Co-occurrence. JOURNAL OF DATA AND INFORMATION SCIENCE 2019. [DOI: 10.2478/jdis-2019-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Purpose
To reveal the research hotpots and relationship among three research hot topics in biomedicine, namely CRISPR, i PS (induced Pluripotent Stem) cell and Synthetic biology.
Design/methodology/approach
We set up their keyword co-occurrence networks with using three indicators and information visualization for metric analysis.
Findings
The results reveal the main research hotspots in the three topics are different, but the overlapping keywords in the three topics indicate that they are mutually integrated and interacted each other.
Research limitations
All analyses use keywords, without any other forms.
Practical implications
We try to find the information distribution and structure of these three hot topics for revealing their research status and interactions, and for promoting biomedical developments.
Originality/value
We chose the core keywords in three research hot topics in biomedicine by using h-index.
Collapse
|
53
|
Ofenbauer A, Tursun B. Strategies for in vivo reprogramming. Curr Opin Cell Biol 2019; 61:9-15. [DOI: 10.1016/j.ceb.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
|
54
|
Chen Y, Yi Y, Xu J, Chan WK, Loh YH. Re-entering the pluripotent state from blood lineage: promises and pitfalls of blood reprogramming. FEBS Lett 2019; 593:3244-3252. [PMID: 31691960 DOI: 10.1002/1873-3468.13659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Blood reprogramming, in which induced pluripotent stem cells (iPSCs) are derived from haematopoietic lineages, has rapidly advanced over the past decade. Since the first report using human blood, haematopoietic cell types from various sources, such as the peripheral bone marrow and cord blood, have been successfully reprogrammed. The volume of blood required has also decreased, from around tens of millilitres to a single finger-prick drop. Besides, while early studies were limited to reprogramming methods relying on viral integration, nonintegrating reprogramming systems for blood lineages have been subsequently established. Together, these improvements have made feasible the future clinical applications of blood-derived iPSCs. Here, we review the progress in blood reprogramming from various perspectives, including the starting materials and subsequent reprogramming strategies. We also discuss the downstream applications of blood-derived iPSCs, highlighting their clinical value in terms of disease modelling and therapeutic development.
Collapse
Affiliation(s)
- Ying Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Yao Yi
- Department of Biological Sciences, National University of Singapore, Singapore.,Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore
| | - Woon-Khiong Chan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - Yuin-Han Loh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,Epigenetics and Cell Fates Laboratory, Programme in Stem Cell, Regenerative Medicine and Aging, A*STAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
55
|
Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, Greber B, Moore JB. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10:341. [PMID: 31753034 PMCID: PMC6873767 DOI: 10.1186/s13287-019-1455-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can self-renew indefinitely in culture and differentiate into all specialized cell types including gametes. iPSCs do not exist naturally and are instead generated (“induced” or “reprogrammed”) in culture from somatic cells through ectopic co-expression of defined pluripotency factors. Since they can be generated from any healthy person or patient, iPSCs are considered as a valuable resource for regenerative medicine to replace diseased or damaged tissues. In addition, reprogramming technology has provided a powerful tool to study mechanisms of cell fate decisions and to model human diseases, thereby substantially potentiating the possibility to (i) discover new drugs in screening formats and (ii) treat life-threatening diseases through cell therapy-based strategies. However, various legal and ethical barriers arise when aiming to exploit the full potential of iPSCs to minimize abuse or unauthorized utilization. In this review, we discuss bioethical, legal, and societal concerns associated with research and therapy using iPSCs. Furthermore, we present key questions and suggestions for stem cell scientists, legal authorities, and social activists investigating and working in this field.
Collapse
Affiliation(s)
- Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, 47138-18983, Babol, Iran.
| | - Hamid Mahdizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for NeurophysiologyMedical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Javad Harati
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran.,Department of Cellular and Molecular Sciences, Faculty of Bioscience and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Boris Greber
- RheinCell Therapeutics GmbH, 40764, Langenfeld, Germany
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.,The Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, USA
| |
Collapse
|
56
|
Wu CF, Zhang DF, Zhang S, Sun L, Liu Y, Dai JJ. Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod Domest Anim 2019; 54:1604-1611. [PMID: 31549747 DOI: 10.1111/rda.13569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Aberration in DNA methylation is believed to be one of the major causes of abnormal gene expression and inefficiency of somatic cell nuclear transfer (SCNT). RG108, a non-nucleoside DNA methyltransferase (DNMT) inhibitor, has been reported to facilitate somatic nuclear reprogramming and improved blastocyst formation. The aim of this study was to investigate interaction effect of RG108 treatment time (24-72 hr) and concentrations (0.05-50 µM) on donor cells, and further to optimize the treatment for porcine SCNT. Our results showed that RG108 treatment resulted in time-dependent decrease of genome-wide DNA methylation on foetal fibroblasts, which only happened after 72-hr treatment in our experiments, and no interaction effect between treatment time and concentration. Remarkable decrease of methylation in imprinted gene H19 and increased apoptosis was observed in 5 and 50 µM RG108-treated cells. Furthermore, the blastocyst rates of SCNT embryos were increased as the fibroblasts treated with RG108 at 5 and 50 µM, and additional treatment during cultivation of SCNT embryos would not provide any advantage for blastocyst formation. In conclusion, the RG108 treatment of 72 hr and 5 μM would be optimized time and concentration for porcine foetal fibroblasts to improve the SCNT embryonic development. In addition, combined treatment of RG108 on donor cells and SCNT embryos would not be beneficial for embryonic development.
Collapse
Affiliation(s)
- Cai-Feng Wu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - De-Fu Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Shushan Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Lingwei Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| | - Ying Liu
- Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jian-Jun Dai
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agriculture Sciences, Shanghai, China.,Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai, China
| |
Collapse
|
57
|
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2019; 13:50-56. [PMID: 31566143 DOI: 10.2174/1874467212666190930144349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
The transcription factors (TFs) play a crucial role in the modulation of specific gene transcription networks. One of the hepatocyte nuclear factors (HNFs) family's member, hepatocyte nuclear factor-1α (HNF-1α) has continuously become a principal TF to control the expression of genes. It is involved in the regulation of a variety of functions in various human organs including liver, pancreas, intestine, and kidney. It regulates the expression of enzymes involved in endocrine and xenobiotic activity through various metabolite transporters located in the above organs. Its expression is also required for organ-specific cell fate determination. Despite two decades of its first identification in hepatocytes, a review of its significance was not comprehended. Here, the role of HNF-1α in the above organs at the molecular level to intimate molecular mechanisms for regulating certain gene expression whose malfunctions are attributed to the disease conditions has been specifically encouraged. Moreover, the epigenetic effects of HNF-1α have been discussed here, which could help in advanced technologies for molecular pharmacological intervention and potential clinical implications for targeted therapies. HNF-1α plays an indispensable role in several physiological mechanisms in the liver, pancreas, intestine, and kidney. Loss of its operations leads to the non-functional or abnormal functional state of each organ. Specific molecular agents or epigenetic modifying drugs that reactivate HNF-1α are the current requirements for the medications of the diseases.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
58
|
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T. Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World J Stem Cells 2019; 11:650-665. [PMID: 31616541 PMCID: PMC6789182 DOI: 10.4252/wjsc.v11.i9.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the field of regenerative medicine, generating numerous transplantable functional cells in the laboratory setting on a large scale is a major challenge. However, the in vitro maintenance and expansion of terminally differentiated cells are challenging because of the lack of specific environmental and intercellular signal stimulations, markedly hindering their therapeutic application. Remarkably, the generation of stem/progenitor cells or functional cells with effective proliferative potential is markedly in demand for disease modeling, cell-based transplantation, and drug discovery. Despite the potent genetic manipulation of transcription factors, integration-free chemically defined approaches for the conversion of somatic cell fate have garnered considerable attention in recent years. This review aims to summarize the progress thus far and discuss the advantages, limitations, and challenges of the impact of full chemicals on the stepwise reprogramming of pluripotency, direct lineage conversion, and direct lineage expansion on somatic cells. Owing to the current chemical-mediated induction, reprogrammed pluripotent stem cells with reproducibility difficulties, and direct lineage converted cells with marked functional deficiency, it is imperative to generate the desired cell types directly by chemically inducing their potent proliferation ability through a lineage-committed progenitor state, while upholding the maturation and engraftment capacity posttransplantation in vivo. Together with the comprehensive understanding of the mechanism of chemical drives, as well as the elucidation of specificity and commonalities, the precise manipulation of the expansion for diverse functional cell types could broaden the available cell sources and enhance the cellular function for clinical application in future.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
59
|
Gong L, Yan Q, Zhang Y, Fang X, Liu B, Guan X. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 2019; 39:48. [PMID: 31464654 PMCID: PMC6716904 DOI: 10.1186/s40880-019-0393-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xiaona Fang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, P.R. China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, 999077, P.R. China.
| |
Collapse
|
60
|
Zhou J, Hou Y, Zhang Z, Xing X, Zou X, Zhong L, Huang H, Zhang Z, Sun J. Conversion of human fibroblasts into functional Leydig-like cells by small molecules and a single factor. Biochem Biophys Res Commun 2019; 516:1-7. [PMID: 31182281 DOI: 10.1016/j.bbrc.2019.05.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/30/2019] [Indexed: 01/20/2023]
Abstract
Reprogramming fibroblasts into Leydig cells (LCs) offers a promising source for cell-based therapy for male hypogonadism. Recently, it has been achieved by forced expression of multiple transcription factors (TFs). However, for ultimate safe and convenient application, small molecules would be a revolutionary and desirable method to reduce or eliminate the genetic manipulations. Here, we report a defined small-molecule cocktail that enables the highly efficient conversion of human fibroblasts into functional LCs with only one transcription factor. These induced cells resembled human LCs with respect to morphology, marker gene expression and secretary function of testosterone. This study lays a foundation for future pharmacological reprogramming and provides a unique venue for investigating mechanisms underlying reprogramming.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Zhiyuan Zhang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Xiaoyu Xing
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Hua Huang
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Zhen Zhang
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678, Dong Fang Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
61
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
62
|
Sacco AM, Belviso I, Romano V, Carfora A, Schonauer F, Nurzynska D, Montagnani S, Di Meglio F, Castaldo C. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming. J Cell Mol Med 2019; 23:4256-4268. [PMID: 30980516 PMCID: PMC6533477 DOI: 10.1111/jcmm.14316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real-time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration-free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Immacolata Belviso
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Veronica Romano
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Antonia Carfora
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Fabrizio Schonauer
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Daria Nurzynska
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Stefania Montagnani
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Franca Di Meglio
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Clotilde Castaldo
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
63
|
Warren L, Lin C. mRNA-Based Genetic Reprogramming. Mol Ther 2019; 27:729-734. [PMID: 30598301 PMCID: PMC6453511 DOI: 10.1016/j.ymthe.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/12/2023] Open
Abstract
The discovery that ordinary skin cells can be turned into pluripotent stem cells by the forced expression of defined factors has raised hopes that personalized regenerative treatments based on immunologically compatible material derived from a patient's own cells might be realized in the not-too-distant future. A major barrier to the clinical use of induced pluripotent stem cells (iPSCs) was initially presented by the need to employ integrating viral vectors to express the factors that induce an embryonic gene expression profile, which entails potentially oncogenic alteration of the normal genome. Several "non-integrating" reprogramming systems have been developed over the last decade to address this problem. Among these techniques, mRNA reprogramming is the most unambiguously "footprint-free," most productive, and perhaps the best suited to clinical production of stem cells. Herein, we discuss the origins of the mRNA-based reprogramming system, its benefits and drawbacks, recent technical improvements that simplify its application, and the status of current efforts to industrialize this approach to mass-produce human stem cells for the clinic.
Collapse
Affiliation(s)
- Luigi Warren
- Cellular Reprogramming, Inc., Pasadena, CA, USA.
| | - Cory Lin
- Cellular Reprogramming, Inc., Pasadena, CA, USA
| |
Collapse
|
64
|
Song J, Kim D, Jang J, Min KH. Novel Chiral 1,3,4‐Oxadiazole Derivatives Inducing Astrocyte Differentiation of Rat Fetal Neural Stem Cells. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiho Song
- College of PharmacyChung‐Ang University Seoul 06974 Republic of Korea
| | - Dong‐Wook Kim
- Department of PhysiologyYonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Jiho Jang
- Department of PhysiologyYonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Kyung Hoon Min
- College of PharmacyChung‐Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
65
|
Page S, Patel R, Raut S, Al-Ahmad A. Neurological diseases at the blood-brain barrier: Stemming new scientific paradigms using patient-derived induced pluripotent cells. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165358. [PMID: 30593893 DOI: 10.1016/j.bbadis.2018.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
The blood-brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells (BMECs) surrounded by a specific basement membrane interacting with astrocytes, neurons, and pericytes. The BBB plays an essential function in the maintenance of brain homeostasis, by providing a physical and chemical barrier against pathogens and xenobiotics. Although the disruption of the BBB occurs with several neurological disorders, the scarcity of patient material source and lack of reliability of current in vitro models hindered our ability to model the BBB during such neurological conditions. The development of novel in vitro models based on patient-derived stem cells opened new venues in modeling the human BBB in vitro, by being more accurate than existing in vitro models, but also bringing such models closer to the in vivo setting. In addition, patient-derived models of the BBB opens the avenue to address the contribution of genetic factors commonly associated with certain neurological diseases on the BBB pathophysiology. This review provides a comprehensive understanding of the BBB, the current development of stem cell-based models in the field, the current challenges and limitations of such models.
Collapse
Affiliation(s)
- Shyanne Page
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Ronak Patel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX, United States of America.
| |
Collapse
|
66
|
Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2018; 686:146-159. [PMID: 30472380 DOI: 10.1016/j.gene.2018.11.069] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Over a decade ago, a landmark study that reported derivation of induced Pluripotent Stem Cells (iPSCs) by reprogramming fibroblasts has transformed stem cell research attracting the interest of the scientific community worldwide. These cells circumvent the ethical and immunological concerns associated with embryonic stem cells, and the limited self-renewal ability and restricted differentiation potential linked to adult stem cells. iPSCs hold great potential for understanding basic human biology, in vitro disease modeling, high-throughput drug testing and discovery, and personalized regenerative medicine. The conventional reprogramming methods involving retro- and lenti-viral vectors to deliver reprogramming factors in somatic cells to generate iPSCs nullify the clinical applicability of these cells. Although these gene delivery systems are efficient and robust, they carry an enormous risk of permanent genetic modifications and are potentially tumorigenic. To evade these safety concerns and derive iPSCs for human therapy, tremendous technological advancements have resulted in the development of non-integrating viral- and non-viral approaches. These gene delivery techniques curtail or eliminate the risk of any genomic alteration and enhance the prospects of iPSCs from bench-to-bedside. The present review provides a comprehensive overview of non-integrating viral (adenoviral vectors, adeno-associated viral vectors, and Sendai virus vectors) and DNA-based, non-viral (plasmid transfection, minicircle vectors, transposon vectors, episomal vectors, and liposomal magnetofection) approaches that have the potential to generate transgene-free iPSCs. The understanding of these techniques could pave the way for the use of iPSCs for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Bitan Saha
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
67
|
Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM. Transdifferentiating Astrocytes Into Neurons Using ASCL1 Functionalized With a Novel Intracellular Protein Delivery Technology. Front Bioeng Biotechnol 2018; 6:173. [PMID: 30525033 PMCID: PMC6258721 DOI: 10.3389/fbioe.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/31/2018] [Indexed: 01/26/2023] Open
Abstract
Cellular transdifferentiation changes mature cells from one phenotype into another by altering their gene expression patterns. Manipulating expression of transcription factors, proteins that bind to DNA promoter regions, regulates the levels of key developmental genes. Viral delivery of transcription factors can efficiently reprogram somatic cells, but this method possesses undesirable side effects, including mutations leading to oncogenesis. Using protein transduction domains (PTDs) fused to transcription factors to deliver exogenous transcription factors serves as an alternative strategy that avoids the issues associated with DNA integration into the host genome. However, lysosomal degradation and inefficient nuclear localization pose significant barriers when performing PTD-mediated reprogramming. Here, we investigate a novel PTD by placing a secretion signal sequence next to a cleavage inhibition sequence at the end of the target transcription factor–achaete scute homolog 1 (ASCL1), a powerful regulator of neurogenesis, resulting in superior stability and nuclear localization. A fusion protein consisting of the amino acid sequence of ASCL1 transcription factor with this novel PTD added can transdifferentiate cerebral cortex astrocytes into neurons. Additionally, we show that the synergistic action of certain small molecules improves the efficiency of the transdifferentiation process. This study serves as the first step toward developing a clinically relevant in vivo transdifferentiation strategy for converting astrocytes into neurons.
Collapse
Affiliation(s)
- Meghan Robinson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ian Fraser
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Emily McKee
- Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada
| | - Kali Scheck
- Biology Program, University of Victoria, Victoria, BC, Canada
| | - Lillian Chang
- Biochemistry Program, Bates College, Lewiston, ME, United States
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Biomedical Engineering Program, University of Victoria, Victoria, BC, Canada.,Mechanical Engineering, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,Center for Biomedical Research, Faculty of Engineering, University of Victoria, Victoria, BC, Canada.,International Collaboration for Repair Discovery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
68
|
Effects of the Extracts from Fruit and Stem of Camellia japonica on Induced Pluripotency and Wound Healing. J Clin Med 2018; 7:jcm7110449. [PMID: 30463279 PMCID: PMC6262430 DOI: 10.3390/jcm7110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/16/2022] Open
Abstract
Small molecules that improve reprogramming, stem cell properties, and regeneration can be widely applied in regenerative medicine. Natural plant extracts represent an abundant and valuable source of bioactive small molecules for drug discovery. Natural products themselves or direct derivatives of them have continued to provide small molecules that have entered clinical trials, such as anticancer and antimicrobial drugs. Here, we tested 3695 extracts from native plants to examine whether they can improve induced pluripotent stem cell (iPSC) generation using genetically homogeneous secondary mouse embryonic fibroblasts (MEFs) harboring doxycycline (dox)-inducible reprograming transgenes. Among the tested extracts, extracts from the fruit and stem of Camellia japonica (CJ) enhanced mouse and human iPSC generation and promoted efficient wound healing in an in vivo mouse wound model. CJ is one of the best-known species of the genus Camellia that belongs to the Theaceae family. Our findings identified the natural plant extracts from the fruit and stem of CJ as novel regulators capable of enhancing cellular reprogramming and wound healing, providing a useful supplement in the development of a more efficient and safer method to produce clinical-grade iPSCs and therapeutics.
Collapse
|
69
|
Pesaresi M, Bonilla-Pons SA, Cosma MP. In vivo somatic cell reprogramming for tissue regeneration: the emerging role of the local microenvironment. Curr Opin Cell Biol 2018; 55:119-128. [PMID: 30071468 DOI: 10.1016/j.ceb.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
The past few years have witnessed an exponential increase of interest in the reprogramming process. This has been motivated by the enthusiasm of unravelling key aspects not only of cell identity and dedifferentiation, but also of the endogenous regenerative capacities of mammalian organs. Here, we present the most recent advances in the field of reprogramming, stressing how they are re-defining the rules of cell fate and plasticity in vivo. Specifically, we focus on the emerging role of the tissue microenvironment, with particular emphasis on tissue damage, inflammation and senescence that can facilitate in vivo reprogramming and regeneration through cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
70
|
Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng XH, Fu J, Zhu S. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 2018; 9:1303. [PMID: 29610531 PMCID: PMC5880812 DOI: 10.1038/s41467-018-03760-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have potential applications in biological studies and regenerative medicine. However, precise genome editing in hPSCs remains time-consuming and labor-intensive. Here we demonstrate that the recently identified CRISPR-Cpf1 can be used to efficiently generate knockout and knockin hPSC lines. The unique properties of CRISPR-Cpf1, including shorter crRNA length and low off-target activity, are very attractive for many applications. In particular, we develop an unbiased drug-selection-based platform feasible for high-throughput screening in hPSCs and this screening system enables us to identify small molecules VE-822 and AZD-7762 that can promote CRISPR-Cpf1-mediated precise genome editing. Significantly, the combination of CRISPR-Cpf1 and small molecules provides a simple and efficient strategy for precise genome engineering. Precise genome editing in human pluripotent stem cells requires the development of methods for rapid and efficient genetic manipulation. Here, the authors screen for small molecules that enhance CRISPR-Cpf1-mediated genome engineering.
Collapse
Affiliation(s)
- Xiaojie Ma
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xi Chen
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yan Jin
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Wenyan Ge
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Weiyun Wang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Linghao Kong
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xing Guo
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Junfen Fu
- The Children's Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Saiyong Zhu
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China. .,Stem Cell Institute, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
71
|
Abstract
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity.
Collapse
|
72
|
Keck J, Gupta R, Christenson LK, Arulanandam BP. MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 2017; 36:287-299. [PMID: 28800263 PMCID: PMC6904929 DOI: 10.1080/08830185.2017.1347649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity. We discuss the involvement of miRNAs in regulating these processes against gram negative pathogens in this review.
Collapse
Affiliation(s)
- Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
73
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
74
|
Ishikawa T. Next-generation sequencing traces human induced pluripotent stem cell lines clonally generated from heterogeneous cancer tissue. World J Stem Cells 2017; 9:77-88. [PMID: 28596815 PMCID: PMC5440771 DOI: 10.4252/wjsc.v9.i5.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate genotype variation among induced pluripotent stem cell (iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing.
METHODS Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer (OCT3/4, SOX2, and KLF4). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using next-generation sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants (SNVs) (missense, nonsense, and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbSNP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer.
RESULTS In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2, TTN, ULK4, TSSK1B, FLT4, STK19, STK31, TRRAP, WNK1, PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer (stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the non-cancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer (stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells.
CONCLUSION The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.
Collapse
|