51
|
Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y, Fan H, Lv T, Liu H, Song Y. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol 2019; 234:20721-20727. [PMID: 31032916 DOI: 10.1002/jcp.28678] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022]
Abstract
Diagnosis and treatment at an early stage may improve survival of non-small-cell lung cancer (NSCLC). Previous studies have found that long noncoding RNA growth arrest-specific transcript 5 (GAS5) is essential to cancer progression. However, the expression and diagnostic value of GAS5 in exosomes (Exo-GAS5) remain unclear. One hundred and four participants were enrolled, including subjects with NSCLC (n = 64) and healthy subjects ( n = 40). The total Exosome Isolation Kit was applied to isolate exosomes from serum. Total RNA was extracted and the AS5 expression was analyzed using quantitative reverse transcription polymerase chain reaction. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the diagnostic value of Exo-GAS5 in NSCLC. Our data indicated that the Exo-GAS5 was downregulated in patients with NSCLC compared with healthy controls ( p < 0.001). Furthermore, patients with NSCLC with larger tumor size ( p = 0.025) and advanced TNM (T: extent of the primary tumor; N: lymph node involvement; M: metastatic disease) classification ( p = 0.047) showed lower Exo-GAS5 expression. ROC curve analysis using Exo-GAS5 combined with carcinoembryonic antigen showed an area under curve (AUC) of 0.929. Exo-GAS5 could be used to distinguish patients with Stage I NSCLC with an AUC of 0.822. In conclusion, Exo-GAS5 may function as an ideal noninvasive serum-based marker for identifying patients with early NSCLC.
Collapse
Affiliation(s)
- Chuling Li
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yanling Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Chenye Shao
- Department of Cardiothoracic Surgery, Jingling Hospital, Nanjing Medical University, Nanjing, China
| | - Cen Chen
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, China
| | - Tianli Zhang
- Department of Respiratory Medicine, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuqing Wei
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hang Fan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hongbin Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
52
|
Exosomes: A new approach to asthma pathology. Clin Chim Acta 2019; 495:139-147. [PMID: 30978325 DOI: 10.1016/j.cca.2019.04.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways with a complex pathophysiology, making the development of diagnostic and therapeutic tools a challenge. Exosomes are extracellular membranous nanovesicles implicated in intercellular communication. Exosome composition and cargo are highly heterogeneous depending on their cellular origin and physiological state. They contain proteins (tetraspanins, heat-shock proteins), nucleic acids (RNA, microRNA), and lipids (ceramides, cholesterol, sphingolipids). Current scientific advances show that exosomes play a pivotal role in the pathology of asthma as well as other inflammatory diseases, and all types of inflammatory cells (neutrophils, dendritic cells, lymphocytes, eosinophils) release exosomes. Also, structural lung cells such as airway epithelial cells and airway smooth muscle cells produce and secrete these nanovesicles. Exosomes influence and modify the functionality of these inflammatory and structural cells, triggering the characteristic processes of asthma disease. Additionally, exosomes are used as biomarkers in several disorders because they are easier to collect from different biofluids, making them a non-invasive method for screening human pathologies. Also, due to their special molecular characteristics, they can be loaded with different molecules and employed as a drug-delivery vehicle. This review focuses on recent advances related to the role of exosomes in asthma disease.
Collapse
|
53
|
Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, Wen Q, Fan S. Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother 2019; 111:338-346. [DOI: 10.1016/j.biopha.2018.12.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
|
54
|
Exosome Analysis in Tumor-Draining Pulmonary Vein Identifies NSCLC Patients with Higher Risk of Relapse after Curative Surgery. Cancers (Basel) 2019; 11:cancers11020249. [PMID: 30795562 PMCID: PMC6407158 DOI: 10.3390/cancers11020249] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Since tumor-draining pulmonary vein blood (PV) is enriched in tumor-secreted products, we hypothesized that it would also be enriched in tumor-derived exosomes, which would be important in the metastasis process. We characterized exosomes from PV of 61 resected non-small cell lung cancer (NSCLC) patients to evaluate its potential as relapse biomarkers. Exosomes were characterized using transmission electron microscopy, western blot and nanoparticle tracking analysis and we examined time to relapse (TTR) and overall survival (OS). Differences between PV and peripheral vein were found. PV was enriched in smaller exosomes than the paired peripheral vein (p = 0.01). Moreover, PV exosome size mode was able to identify relapsed patients (Area under the curve [AUC] = 0.781; 95%CI: 0.6641⁻0.8978), in whom exosome size was smaller (<112 nm; p < 0.001). The combination of PV exosome size and N (lymph node involvement) showed an AUC of 0.89 (95%CI: 0.80⁻0.97). Moreover, smaller PV exosome size was associated with shorter TTR (28.3 months vs. not reached, p < 0.001) and OS (43.9 months vs. not reached, p = 0.009). Multivariate analyses identified PV exosome size and stage as independent prognostic markers for TTR and OS. PV exosome size is a promising relapse biomarker after surgery that can add valuable information to clinical variables.
Collapse
|
55
|
Sun Y, Zhu Q, Zhou M, Yang W, Shi H, Shan Y, Zhang Q, Yu F. Restoration of miRNA-148a in pancreatic cancer reduces invasion and metastasis by inhibiting the Wnt/β-catenin signaling pathway via downregulating maternally expressed gene-3. Exp Ther Med 2018; 17:639-648. [PMID: 30651845 PMCID: PMC6307449 DOI: 10.3892/etm.2018.7026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Various microRNAs (miRNA) have been recognized potential novel tumor markers and have a critical role in cancer development and progression. Recently, methylation of miRNA-148a was identified as a crucial biochemical process in the progression of cancer. However, its potential role and in pancreatic cancer as well as the underlying mechanisms have remained largely elusive. The present study investigated the potential antitumor effect of miR-148a as well as its impact on invasion and metastasis in pancreatic cancer. It was found that the expression of miRNA-148a and the potential predictive biomarker maternally expressed gene-3 (MEG-3) were obviously decreased in human pancreatic cancer tissues compared with those in adjacent non-tumorous tissues. Furthermore, miR-148a was found to be downregulated in pancreatic cancer cell lines compared with normal pancreatic cells through promoter methylation. An MTT assay and a clonogenic assay demonstrated that restoration of miRNA-148a inhibited the proliferation and colony formation of pancreatic cancer cells. In addition, miR-148a transduction led to the upregulation of MEG-3 expression and promoted apoptosis of pancreatic cancer cells. Western blot analysis revealed that transduction of miR-148a markedly decreased the expression levels of C-myc, cyclin D1 and β-catenin in pancreatic cancer cells. Methylation of miR-148a not only decreased the endogenous β-catenin levels but also inhibited the nuclear translocation of β-catenin to delay cell cycle progression. Furthermore, ectopic miR-148a methylation inhibited pancreatic cancer cell migration and invasion via causing an upregulation of MEG-3 expression. Most importantly, ectopic overexpression of miR-148a in pancreatic cancer cells inhibited tumor formation in an animal experiment. Taken together, miR-148a methylation is a crucial regulatory process to inhibit the proliferation and invasion of pancreatic cancer cells, and transduction of miR-148a suppressed the proliferation of pancreatic cancer cells through negative regulation of the Wnt/β-catenin signaling pathway. The findings of the present study suggested that miRNA-148a acts as a tumor suppressor in pancreatic cancer and may contribute to the development of novel treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Qiandong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Mengtao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Wenjun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Hongqi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| | - Fuxiang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, P.R. China
| |
Collapse
|
56
|
Li LM, Liu H, Liu XH, Hu HB, Liu SM. Clinical significance of exosomal miRNAs and proteins in three human cancers with high mortality in China. Oncol Lett 2018; 17:11-22. [PMID: 30655733 PMCID: PMC6313090 DOI: 10.3892/ol.2018.9631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of mortality worldwide. More importantly, the mortality rates for cancer are increasing. In China, lung cancer, liver cancer and gastric cancer are the top three leading causes of mortality in males, whereas lung cancer, gastric cancer and liver cancer are ranked the top three causes of mortality in females. Exosomes are extracellular vesicles that are produced and released by many different cells; these vesicles have a size range between 30 and 100 nm in diameter, and contain a lipid bilayer. Exosomes exist in various bodily fluids, contain plentiful amounts of nucleic acids and proteins, and shuttle these materials between cells to mediate the development of cancers. The present review summarizes the composition of exosomes and methods for their isolation and then intensively highlights the latest findings on the contributions of exosomal microRNAs (miRNAs) and proteins to lung cancer, liver cancer and gastric cancer. Taken together, exosomal miRNAs and proteins may be used as noninvasive, novel biomarkers for cancer diagnosis, prognosis or precision treatment owing to their ability to promote tumor progression and metastasis, and their ability to regulate the immune response and tumor cell sensitivity to chemotherapy drugs.
Collapse
Affiliation(s)
- Li-Man Li
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xing-Hui Liu
- Department of Clinical Laboratory, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Hong-Bin Hu
- Department of Blood Transfusion, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
57
|
Xing XX, Wu SF, Cui JF. Role of tumor-derived exosomes in facilitating pre-metastatic niche formation. Shijie Huaren Xiaohua Zazhi 2018; 26:1390-1395. [DOI: 10.11569/wcjd.v26.i23.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastasis is the biggest obstacle to improving the treatment outcome and prognosis of tumor patients. A better understanding of tumor metastasis mechanism is of great significance to improve cancer diagnosis and treatment levels. Previous studies on metastasis mechanism mainly focus on the interaction between cancer cells and stroma cells in primary tumors. Currently, some studies reveal that soluble factors derived from primary tumor cells reach target organs via systemic circulation and recruit bone marrow-derived cells (BMDCs). The recruited BMDCs interact with intrinsic cells to remodel the matrix microenvironment, ultimately facilitating the formation of pre-metastatic niche and the implementation of tumor metastasis in the target organ. Among them, cancer cell-secreted exosomes serve as an important bridge mediator to link primary tumor and pre-metastatic niche at distant target organ. This article reviews the latest discoveries on exosomes and their effect on pre-metastatic niche of tumor.
Collapse
Affiliation(s)
- Xiao-Xia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Si-Fan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
58
|
Zheng W, Zhao J, Tao Y, Guo M, Ya Z, Chen C, Qin N, Zheng J, Luo J, Xu L. MicroRNA-21: A promising biomarker for the prognosis and diagnosis of non-small cell lung cancer. Oncol Lett 2018; 16:2777-2782. [PMID: 30127862 DOI: 10.3892/ol.2018.8972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer worldwide. The high mortality rate of NSCLC is due to a limited number of diagnosis being made at an early stage of disease. Therefore, the development of a novel biological marker for the diagnosis and prognosis prediction of NSCLC remains urgent. Current literature shows that microRNA-21 (miRNA-21/miR-21), as an oncogenic miRNA, is involved in the growth, metastasis and apoptosis of NSCLC cells through its control of various target molecules and signaling pathways. Notably, a growing body of evidence further shows that miR-21 is closely associated with the prognosis prediction, recurrence and diagnosis of cancer patients, indicating that miR-21 may be a novel promising biomarker for the diagnosis and prognosis prediction of NSCLC. The present review aimed to provide a summary of recent findings on the associated progression toward finding a novel biomarker for NSCLC.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yijing Tao
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Zhou Ya
- Department of Medical Physics, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Jing Zheng
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
59
|
Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications. Cancer Chemother Pharmacol 2018; 82:171-183. [PMID: 29948020 DOI: 10.1007/s00280-018-3586-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer death in the world. Recently, targeted therapy and anti-programmed cell death receptor 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) immunotherapy have made great progress in treatment of lung cancer. However, responses to these therapies are variable, influenced by genetic alterations, high microsatellite instability and mismatch repair deficiency. Liquid biopsy of extracellular vesicles and circulating tumor DNA (ctDNA) emerges as a new promising non-invasive means that enables not only biomarker determination, but also continuous monitoring of cancer treatment. Notably, tumor extracellular vesicles play important roles in tumor formation and progression, and also serve as natural carriers for anti-tumor drugs and short-interfering RNA. In this review, we summarize the latest progress in understanding the relationships of extracellular vesicles and ctDNA in cancer biology, diagnosis and drug delivery. In particular, the application of extracellular vesicles and ctDNA in anti-PD-1/PD-L1 immunotherapy is discussed.
Collapse
|
60
|
Masaoutis C, Mihailidou C, Tsourouflis G, Theocharis S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018; 151:27-36. [PMID: 29857182 DOI: 10.1016/j.biochi.2018.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Lung cancer is one of the main causes of cancer-related death worldwide. Despite advances in lung cancer pathophysiology, diagnosis and prognosis, a better understanding of the disease is strongly needed in order to establish novel diagnostic and therapeutic approaches that should improve treatment outcomes. Exosomes are a type of cell-secreted extracellular vesicles, which transfer a wide variety of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, are implicated in intercellular communication and modulate tumor-host interactions. The potential value of exosomes and their contents in lung cancer diagnosis, prognosis and prediction of treatment outcome is supported by ample literature. Growing attention has been drawn specifically to the critical role of exosomal miRNAs in lung cancer pathogenesis and their potential clinical utility, especially due to their ability to modulate gene expression post-transcriptionally. Owing to their universal presence in the blood and other bodily fluids, exosomes are considered candidate biomarkers. Furthermore, their ability to deliver biomolecules and drugs to recipient cells renders them possible drug delivery vehicles in lung cancer. Here we review the pathological functions of exosomes in cancer and discuss their possible clinical utility as biomarkers and therapeutic agents in the management of lung cancer.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
61
|
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018. [PMID: 29676470 DOI: 10.1002/jcp.26607] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths all over the world, among both men and women, with an incidence of over 200,000 new cases per year coupled with a very high mortality rate. LC comprises of two major clinicopathological categories: small-cell (SCLC) and nonsmall-cell lung carcinoma (NSCLC). The microRNAs (miRNAs) are small noncoding RNAs, usually 18-25 nucleotides long, which repress protein translation through binding to complementary target mRNAs. The miRNAs regulate many biological processes including cell cycle regulation, cellular growth, proliferation, differentiation, apoptosis, metabolism, neuronal patterning, and aging. This review summarizes the role of miRNAs expression in LC. It also provides information about the miRNAs as biomarker and therapeutic target for lung cancer. Understanding the role of miRNAs in LC may provide insights into the diagnosis and treatment strategy for LC.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, India
| | | |
Collapse
|
62
|
Alipoor SD, Mortaz E, Varahram M, Movassaghi M, Kraneveld AD, Garssen J, Adcock IM. The Potential Biomarkers and Immunological Effects of Tumor-Derived Exosomes in Lung Cancer. Front Immunol 2018; 9:819. [PMID: 29720982 PMCID: PMC5915468 DOI: 10.3389/fimmu.2018.00819] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide. Despite considerable achievements in lung cancer diagnosis and treatment, the global control of the disease remains problematic. In this respect, greater understanding of the disease pathology is crucially needed for earlier diagnosis and more successful treatment to be achieved. Exosomes are nano-sized particles secreted from most cells, which allow cross talk between cells and their surrounding environment via transferring their cargo. Tumor cells, just like normal cells, also secrete exosomes that are termed Tumor-Derived Exosome or tumor-derived exosome (TEX). TEXs have gained attention for their immuno-modulatory activities, which strongly affect the tumor microenvironment and antitumor immune responses. The immunological activity of TEX influences both the innate and adaptive immune systems including natural killer cell activity and regulatory T-cell maturation as well as numerous anti-inflammatory responses. In the context of lung cancer, TEXs have been studied in order to better understand the mechanisms underlying tumor metastasis and progression. As such, TEX has the potential to act both as a biomarker for lung cancer diagnosis as well as the response to therapy.
Collapse
Affiliation(s)
- Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Movassaghi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Ian M Adcock
- Airways Disease Section, Imperial College London, National Heart & Lung Institute, London, United Kingdom.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
63
|
Yang H, Wang H, Zhang C, Tong Z. The accuracy of microRNA-210 in diagnosing lung cancer: a systematic review and meta-analysis. Oncotarget 2018; 7:63283-63293. [PMID: 27557519 PMCID: PMC5325363 DOI: 10.18632/oncotarget.11446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/13/2016] [Indexed: 12/03/2022] Open
Abstract
Studies examining the diagnostic value of microRNA-210 for lung cancer have yielded inconsistent results. Here, we performed a meta-analysis to assess the diagnostic accuracy of microRNA-210 for lung cancer. Nine eligible studies involving 993 patients (554 lung cancer patients and 439 non-cancer patients) were independently identified, and the quality of these studies was assessed according to Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.66 (95% CI, 0.57 to 0.75), 0.82 (95% CI, 0.72 to 0.89), 3.64 (95% CI, 2.54 to 5.21), 0.41 (95% CI, 0.34 to 0.51) and 8.78 (95% CI, 6.10 to 12.66), respectively. The area under the summary receiver operator characteristic curve was 0.80 (95% CI, 0.76 to 0.83). These results indicated that microRNA-210 had moderate diagnostic value for lung cancer. Additional prospective studies are needed to confirm the diagnostic value of microRNA-210.
Collapse
Affiliation(s)
- Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
64
|
Abstract
Oncologic diseases do not behave as isolated entities. Instead, they are based on complex systemic networks involving cell-cell communication between cancerous and healthy cells of the host, which may either facilitate or prevent cancer progression. In addition to cell-cell contacts, cells communicate through secreted factors in a process modulated by ligand concentration, receptor availability and synergy amongst several signaling circuits. Of these secreted factors, exosomes, 30-150 nm membrane vesicles of endocytic origin released by virtually all cells, have emerged as important cell-cell communication players both in physiological and pathological scenarios by being carriers of all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and performing intercellular transfer of components, locally and systemically. By acting both in tumor and non-tumor cells, such as fibroblasts, leukocytes, endothelial and progenitor cells, tumor- and non-tumor cells-derived exosomes can modulate tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and the immune system. In this Review, we summarize the main findings of the literature on the roles of exosomes in mediating interactions between tumor and tumor-associated cells. We also discuss how the molecular composition analysis of circulating exosomes in clinical settings has emerged as an attractive non-invasive source of liquid biopsies for early diagnosis, prognosis and follow-up of patients with oncologic diseases.
Collapse
|
65
|
Pourteimoor V, Paryan M, Mohammadi‐Yeganeh S. microRNA as a systemic intervention in the specific breast cancer subtypes with C‐MYC impacts; introducing subtype‐based appraisal tool. J Cell Physiol 2018; 233:5655-5669. [DOI: 10.1002/jcp.26399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
| | - Mahdi Paryan
- Department of Research and Development, Production and Research ComplexPasteur Institute of IranTehranIran
| | - Samira Mohammadi‐Yeganeh
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
66
|
Gao T, Shu J, Cui J. A systematic approach to RNA-associated motif discovery. BMC Genomics 2018; 19:146. [PMID: 29444662 PMCID: PMC5813387 DOI: 10.1186/s12864-018-4528-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sequencing-based large screening of RNA-protein and RNA-RNA interactions has enabled the mechanistic study of post-transcriptional RNA processing and sorting, including exosome-mediated RNA secretion. The downstream analysis of RNA binding sites has encouraged the investigation of novel sequence motifs, which resulted in exceptional new challenges for identifying motifs from very short sequences (e.g., small non-coding RNAs or truncated messenger RNAs), where conventional methods tend to be ineffective. To address these challenges, we propose a novel motif-finding method and validate it on a wide range of RNA applications. RESULTS We first perform motif analysis on microRNAs and longer RNA fragments from various cellular and exosomal sources, and then validate our prediction through literature search and experimental test. For example, a 4 bp-long motif, GUUG, was detected to be responsible for microRNA loading in exosomes involved in human colon cancer (SW620). Additional performance comparisons in various case studies have shown that this new approach outperforms several existing state-of-the-art methods in detecting motifs with exceptional high coverage and explicitness. CONCLUSIONS In this work, we have demonstrated the promising performance of a new motif discovery approach that is particularly effective in current RNA applications. Important discoveries resulting from this work include the identification of possible RNA-loading motifs in a variety of exosomes, as well as novel insights in sequence features of RNA cargos, i.e., short non-coding RNAs and messenger RNAs may share similar loading mechanism into exosomes. This method has been implemented and deployed as a new webserver named MDS2 which is accessible at http://sbbi-panda.unl.edu/MDS2/ , along with a standalone package available for download at https://github.com/sbbi/MDS2 .
Collapse
Affiliation(s)
- Tian Gao
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Jiang Shu
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
67
|
Lan F, Qing Q, Pan Q, Hu M, Yu H, Yue X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol (Dordr) 2018; 41:25-33. [PMID: 29076027 DOI: 10.1007/s13402-017-0355-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Exosomal miRNAs that play an important role in cell-cell communication have attracted major attention as potential diagnostic and prognostic biomarkers for various cancers. The aim of this study was to determine the diagnostic/prognostic significance of serum exosomal miR-301a in glioma patients. METHODS Quantitative real-time PCR was used to determine the serum exosomal expression levels of miR-301a. Kaplan-Meier survival analyses, Cox regression analyses and ROC working curve analyses were applied to assess the diagnostic and prognostic values of miR-301a in glioma patients. Also, several in vitro assays were used, including proliferation, invasion and cell signaling assays. RESULTS First, we established that serum exosomal miR-301a extracted from grade IV glioblastoma (GBM) patients was biologically active, i.e., promoted the proliferation and invasion of glioma-derived H4 cells. Subsequently, we found that serum exosomal miR-301a levels were significantly up-regulated in glioma patients compared to healthy controls. Additionally, we found that increased serum exosomal miR-301a levels were correlated with ascending pathological grades and lower Karnofsky performance status (KPS) scores. Importantly, we also found that the serum exosomal miR-301a levels were significantly reduced after surgical resection of primary tumors and increased again during GBM recurrence. Kaplan-Meier analysis of patients with an advanced pathological grade (III or IV) and an increased serum exosomal miR-301a level revealed a longer overall survival (OS) compared to those with a lower level (p < 0.01). Both univariate and multivariate Cox regression analyses confirmed that serum exosomal miR-301a levels are independently associated with OS. Finally, we found that miR-301a may activate the AKT and FAK signaling pathways by down regulating PTEN. CONCLUSIONS Our data indicate that serum exosomal miR-301a levels may reflect the cancer-bearing status and pathological changes in glioma patients. Serum exosomal miR-301a expression may serve as a novel biomarker for glioma diagnosis and as a prognostic factor for advanced grade disease.
Collapse
Affiliation(s)
- Fengming Lan
- Department of Radiation Oncology, Tianjin Hospital, 406 Jiefangnan Road, Tianjin, 300211, People's Republic of China
| | - Qin Qing
- Department of Radiation Oncology, PLA Airforce General Hospital of Anhui Medical University, Beijing, 100142, People's Republic of China
| | - Qiang Pan
- Department of Neurosurgery, Laiwu City People's Hospital, Laiwu, Shandong Province, 271100, People's Republic of China
| | - Man Hu
- Departments of Radiation Oncology and Shandong Province Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, 250117, People's Republic of China
| | - Huiming Yu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of radiotherapy, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijin, 100142, People's Republic of China.
| | - Xiao Yue
- Tianjin Huanhu Hospital, Tianjin Neurosurgery Institute, 6 Jizhao Road, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
68
|
Koutsoulidou A, Photiades M, Kyriakides TC, Georgiou K, Prokopi M, Kapnisis K, Lusakowska A, Nearchou M, Christou Y, Papadimas GK, Anayiotos A, Kyriakou K, Kararizou E, Zamba Papanicolaou E, Phylactou LA. Identification of exosomal muscle-specific miRNAs in serum of myotonic dystrophy patients relating to muscle disease progress. Hum Mol Genet 2018. [PMID: 28637233 DOI: 10.1093/hmg/ddx212] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy, which is characterised by progressive muscle wasting and the discovery of reliable blood-based biomarkers could be useful for the disease progress monitoring. There have been some reports showing that the presence of specific miRNAs in blood correlates with DM1. In one of these, our group identified four muscle-specific miRNAs, miR-1, miR-133a, miR-133b and miR-206, which correlated with the progression of muscle wasting observed in DM1 patients. The levels of the four muscle-specific miRNAs were elevated in the serum of DM1 patients compared to healthy participants and were also elevated in the serum of progressive muscle wasting DM1 patients compared to disease-stable DM1 patients. The aim of this work was to characterise the ontology of these four muscle-specific miRNAs in the blood circulation of DM1 patients. Here we show that the four muscle-specific miRNAs are encapsulated within exosomes isolated from DM1 patients. Our results show for the first time, the presence of miRNAs encapsulated within exosomes in blood circulation of DM1 patients. More interestingly, the levels of the four exosomal muscle-specific miRNAs are associated with the progression of muscle wasting in DM1 patients. We propose that exosomal muscle-specific miRNAs may be useful molecular biomarkers for monitoring the progress of muscle wasting in DM1 patients. There has been a growing interest regarding the clinical applications of exosomes and their role in prognosis and therapy of various diseases and the above results contribute towards this way.
Collapse
Affiliation(s)
- Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marinos Photiades
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Tassos C Kyriakides
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Kristia Georgiou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Marianna Prokopi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus.,Theramir Ltd, Limassol, Cyprus
| | | | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Marianna Nearchou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Yiolanda Christou
- Neurology Clinic D, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George K Papadimas
- Department of Neurology, Eginitio Hospital, Medical School of Athens, Athens, Greece
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus
| | - Kyriakos Kyriakou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evangelia Kararizou
- Department of Neurology, Eginitio Hospital, Medical School of Athens, Athens, Greece
| | | | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| |
Collapse
|
69
|
Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T, Guo M. Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci 2018; 8:2. [PMID: 29344346 PMCID: PMC5763536 DOI: 10.1186/s13578-018-0202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) play important roles in intercellular communication through the delivery of their cargoes, which include proteins, lipids, and RNAs. Increasingly, multiple studies have reported the association between EV small non-coding RNAs and cancer, due to their regulatory functions in gene expression. Hence, analysis of the features of small non-coding RNA expression and their incorporation into EVs is important for cancer research. Results We performed deep sequencing to investigate the expression of small RNAs in plasma EVs from lung adenocarcinoma (ADC) patients, lung squamous cell carcinoma (SQCC) patients, and healthy controls. Then, eighteen differently expressed miRNAs in plasma EVs was validated by QRT-PCR. The small RNA expression profiles of plasma EVs were different among lung ADC, SQCC patients, and healthy controls. And many small RNAs, including 5′ YRNA hY4-derived fragments, miR-451a, miR-122-5p, miR-20a-5p, miR-20b-5p, miR-30b-5p, and miR-665, were significantly upregulated in non-small cell lung cancer (NSCLC) EVs. And the cell viability assays indicated that hY4-derived fragments inhibited the proliferation of lung cancer cell A549. By comparing the cellular and EV expression levels of six miRNAs in NSCLC cells, we found that miR-451a and miR-122-5p were significantly downregulated in NSCLC cell lysates, while significantly upregulated in NSCLC EVs. Conclusions The differently expressed EV small RNAs may serve as potential circulating biomarkers for the diagnosis of NSCLC. Particularly, YRNA hY4-derived fragments can serve as a novel class of biomarkers, which function as tumor suppressors in NSCLC. Additionally, miR-451a and miR-122-5p may be sorted into NSCLC EVs in a selective manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0202-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Li
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fang Qin
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fen Hu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Hui Xu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Guihong Sun
- 3School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Guang Han
- 4Department of Radiation Oncology, Hubei Cancer Hospital, 116 Zhuodaoquan South Road, Wuhan, 430079 Hubei People's Republic of China.,5Department of Oncology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Street, Wuhan, 430060 Hubei People's Republic of China
| | - Tao Wang
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Mingxiong Guo
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| |
Collapse
|
70
|
Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, Munshi A, Ramesh R. Exosomes as Theranostics for Lung Cancer. Adv Cancer Res 2018; 139:1-33. [PMID: 29941101 PMCID: PMC6548197 DOI: 10.1016/bs.acr.2018.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extensive research in genetics and genomics has revealed that lung cancer is a physiologically complex and genetically heterogeneous disease. Although molecular targets that can yield favorable response have been identified, those targets cannot be exploited due to the lack of suitable drug carriers. Furthermore, lung cancer often is diagnosed at an advanced stage when the disease has metastasized. Conventional treatments are not effective for treating metastatic lung cancer. Targeted therapeutics while beneficial has challenges that include poor tumor-targeting, off-target effects, and development of resistance to therapy. Therefore, improved drug delivery systems that can deliver drugs specifically to tumor will produce improved treatment outcomes. Exosomes have a natural ability to carry functional biomolecules, such as small RNAs, DNAs, and proteins, in their lumen. This property makes exosomes attractive for use in drug delivery and molecular diagnosis. Moreover, exosomes can be attached to nanoparticles and used for high precision imaging. Exosomes are now considered an important component in liquid biopsy assessments, which are useful for detecting cancers, including lung cancer. Several studies are currently underway to develop methods of exploiting exosomes for use as efficient drug delivery vehicles and to develop novel diagnostic modalities. This chapter summarizes the current status of exosome studies with regard to their use as theranostics in lung cancer. Examples from other cancers have also been cited to illustrate the extensive applicability of exosomes to therapy and diagnosis.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Narsireddy Amreddy
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mohammad Razaq
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rheal Towner
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Yan Daniel Zhao
- Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebaz A Ahmed
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anupama Munshi
- Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Medicine and Hematology Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
71
|
Samoylova EM, Kalsin VA, Bespalova VA, Devichensky VM, Baklaushev VP. Exosomes: from biology to clinics. GENES & CELLS 2017; 12:7-19. [DOI: 10.23868/201707024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Exosomes are extracellular vesicles with the diameter of 30-120 nm, originating from early endosomes. Exosomes have been actively studied in the last decade, and a great amount of data has appeared on their nature and role in the intercellular transport and signaling both in the normal and pathological conditions. A particular interest to exosomes in the clinical practice emerged after the separation of their circulating fraction from the blood and the study of tumor genetic markers in them became possible (so called “liquid biopsy”). The objective of this review is to familiarize clinical specialists with the fundamentals of exosomes' biology and physiology and with the main achievements on their practical application in the medicine, as a natural drug delivery system, as well as for high-precision, early non-invasive differential diagnostics of diseases.
Collapse
|
72
|
Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep 2017; 7:15277. [PMID: 29127370 PMCID: PMC5681649 DOI: 10.1038/s41598-017-15475-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths. It is diagnosed mostly at the locally advanced or metastatic stage. Recently, micro RNAs (miRs) and their distribution in circulation have been implicated in physiological and pathological processes. In this study, miR-126 was evaluated in serum, exosome and exosome-free serum fractions in non-small cell lung cancer (NSCLC) patients at early and advanced stages, and compared with healthy controls. Down-regulation of miR-126 was found in serum of advanced stage NSCLC patients. In healthy controls, circulating miR-126 was equally distributed between exosomes and exosome-free serum fractions. Conversely, in both early and advanced stage NSCLC patients, miR-126 was mainly present in exosomes. Different fractions of miR-126 in circulation may reflect different conditions during tumour formation. Incubation of exosomes from early and advanced NSCLC patients induced blood vessel formation and malignant transformation in human bronchial epithelial cells. On the other hand, exosome-enriched miR-126 from normal endothelial cells inhibited cell growth and induces loss of malignancy of NSCLC cells. These findings suggest a role of exo-miRs in the modulation of the NSCLC microenvironmental niche. Exosome-delivered miRs thus hold a substantial promise as a diagnostics biomarker as well as a personalized therapeutic modality.
Collapse
|
73
|
Cobelli NJ, Leong DJ, Sun HB. Exosomes: biology, therapeutic potential, and emerging role in musculoskeletal repair and regeneration. Ann N Y Acad Sci 2017; 1410:57-67. [DOI: 10.1111/nyas.13469] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Neil J. Cobelli
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| | - Daniel J. Leong
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
- Department of Radiation Oncology; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| | - Hui B. Sun
- Department of Orthopaedic Surgery; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
- Department of Radiation Oncology; Albert Einstein College of Medicine and Montefiore Medical Center; Bronx New York
| |
Collapse
|
74
|
Ke X, Yan R, Sun Z, Cheng Y, Meltzer A, Lu N, Shu X, Wang Z, Huang B, Liu X, Wang Z, Song JH, Ng CK, Ibrahim S, Abraham JM, Shin EJ, He S, Meltzer SJ. Esophageal Adenocarcinoma-Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids. Neoplasia 2017; 19:941-949. [PMID: 28968550 PMCID: PMC5633352 DOI: 10.1016/j.neo.2017.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
There have been no reports describing the effects of cancer cell-derived extracellular vesicles (EVs) on three-dimensional organoids. In this study, we delineated the proneoplastic effects of esophageal adenocarcinoma (EAC)-derived EVs on gastric organoids (gastroids) and elucidated molecular mechanisms underlying these effects. EVs were identified using PKH-67 staining. Morphologic changes, Ki-67 immunochemistry, cell viability, growth rates, and expression levels of miR-25 and miR-210, as well as of their target mRNAs, were determined in gastroids co-cultured with EAC-derived extracellular vesicles (c-EVs). C-EVs were efficiently taken up by gastroids. Notably, c-EV-treated gastroids were more crowded, compact, and multilayered and contained smaller lumens than did those cultured in organoid medium alone or in EAC-conditioned medium that had been depleted of EVs. Moreover, c-EV-treated gastroids manifested increased proliferation and cellular viability relative to medium-only or EV-depleted controls. Expression levels of miR-25 and miR-210 were significantly higher, and those of PTEN and AIFM3 significantly lower, in c-EV-treated versus medium-only or EV-depleted control groups. Inhibitors of miR-25 and miR-210 reversed the increased cell proliferation induced by c-exosomes in co-cultured gastroids by lowering miR-25 and miR-210 levels. In conclusion, we have constructed a novel model system featuring the co-culture of c-EVs with three-dimensional gastroids. Using this model, we discovered that cancer-derived EVs induce a neoplastic phenotype in gastroids. These changes are due, at least in part, to EV transfer of miR-25 and miR-210.
Collapse
Affiliation(s)
- Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Department of Gastroenterology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rong Yan
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Surgical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Zhenguo Sun
- Department of Thoracic Surgery, Shandong University Qilu Hospital, Jinan, Shandong, PR China
| | - Yulan Cheng
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Amy Meltzer
- Department of Biology, Goucher College, Baltimore, MD, USA
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Huang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Liu
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Pathology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Zhixiong Wang
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Departments of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jee Hoon Song
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Christopher K Ng
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Sariat Ibrahim
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - John M Abraham
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Eun Ji Shin
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| | - Stephen J Meltzer
- Department of Medicine (GI Division), the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; Department of Oncology, the Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
75
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, Wang L, Wang X, He QQ, Sun CC, Li DJ. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28990243 DOI: 10.1111/cpr.12394] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is still one of the most serious causes of cancer-related deaths all over the world. MicroRNAs (miRNAs) are defined as small non-coding RNAs which could play a pivotal role in post-transcriptional regulation of gene expression. Increasing evidence demonstrated dysregulation of miRNA expression associates with the development and progression of NSCLC. AIMS To emphasize a variety of tissue-specific miRNAs, circulating miRNAs and miRNA-derived exosomes could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. MATERIALS & METHODS In the current review, we paid attention to the significant discoveries of preclinical and clinical studies, which performed on tissue-specific miRNA, circulating miRNA and exosomal miRNA. The related studies were obtained through a systematic search of Pubmed, Web of Science, Embase. RESULTS A variety of tissue-specific miRNAs and circulating miRNAs with high sensitivity and specificity which could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In addition, we emphasize that the miRNA-derived exosomes become novel diagnostic biomarkers potentially in these patients with NSCLC. CONCLUSION MiRNAs have emerged as non-coding RNAs, which have potential to be candidates for the diagnosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shao-Xin Huang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430022, Hubei, China
| | - Cong Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong-Yong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi-Qiang He
- Department of School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
76
|
Esophageal Adenocarcinoma-Derived Extracellular Vesicle MicroRNAs Induce a Neoplastic Phenotype in Gastric Organoids. Neoplasia 2017. [PMID: 28968550 DOI: 10.1016/j.neo.2017.06.007.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There have been no reports describing the effects of cancer cell-derived extracellular vesicles (EVs) on three-dimensional organoids. In this study, we delineated the proneoplastic effects of esophageal adenocarcinoma (EAC)-derived EVs on gastric organoids (gastroids) and elucidated molecular mechanisms underlying these effects. EVs were identified using PKH-67 staining. Morphologic changes, Ki-67 immunochemistry, cell viability, growth rates, and expression levels of miR-25 and miR-210, as well as of their target mRNAs, were determined in gastroids co-cultured with EAC-derived extracellular vesicles (c-EVs). C-EVs were efficiently taken up by gastroids. Notably, c-EV-treated gastroids were more crowded, compact, and multilayered and contained smaller lumens than did those cultured in organoid medium alone or in EAC-conditioned medium that had been depleted of EVs. Moreover, c-EV-treated gastroids manifested increased proliferation and cellular viability relative to medium-only or EV-depleted controls. Expression levels of miR-25 and miR-210 were significantly higher, and those of PTEN and AIFM3 significantly lower, in c-EV-treated versus medium-only or EV-depleted control groups. Inhibitors of miR-25 and miR-210 reversed the increased cell proliferation induced by c-exosomes in co-cultured gastroids by lowering miR-25 and miR-210 levels. In conclusion, we have constructed a novel model system featuring the co-culture of c-EVs with three-dimensional gastroids. Using this model, we discovered that cancer-derived EVs induce a neoplastic phenotype in gastroids. These changes are due, at least in part, to EV transfer of miR-25 and miR-210.
Collapse
|
77
|
Reclusa P, Taverna S, Pucci M, Durendez E, Calabuig S, Manca P, Serrano MJ, Sober L, Pauwels P, Russo A, Rolfo C. Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis 2017; 9:S1373-S1382. [PMID: 29184676 PMCID: PMC5676107 DOI: 10.21037/jtd.2017.10.67] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
The concept of exosomes has evolved from be considered garbage bags to the demonstration that exosomes could play very interesting roles and functions, from biomarkers detection to the potential of work as drug delivery systems. It has been widely proved that exosomes can contain key molecules important for the tumour development. The current review summarizes the latest investigations developed in the field of predictive exosomal biomarkers. The microRNAs (miRNAs) are the more known molecules due to their amount inside the exosomes and the sensitivity of the techniques available for their study. However, exosomal proteins, RNA and DNA are becoming an interesting and more feasible field of study due to the improvement in the techniques available for their analysis. In the future years, it is hoped that exosomes will become an established member of the liquid biopsies in the clinical practice due to their diagnostic and prognostic properties.
Collapse
Affiliation(s)
- Pablo Reclusa
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - Simona Taverna
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
- Biopathology and Biomedical Methodology, Biology and Genetic section, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Marzia Pucci
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
- Biopathology and Biomedical Methodology, Biology and Genetic section, University of Palermo, Palermo, Italy
| | - Elena Durendez
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
- Molecular Oncology Laboratory, Research Foundation, Hospital General Universitario de Valencia, Valencia, Spain
| | - Silvia Calabuig
- CIBERONC, Madrid, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Paolo Manca
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - María José Serrano
- GENYO, Centre of Genomics and Oncology, Pfizer-University of Granada-Andalusian Government, Granada, Spain
- Department of Legal Medicine, Laboratory of Genetic Identification-UGR, University of Granada, Granada, Spain
| | - Laure Sober
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| |
Collapse
|
78
|
Ibrahim FK, Ali-Labib R, Galal IH, Mahmoud HM. MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2017. [DOI: 10.1016/j.ejcdt.2017.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
79
|
Li J, Gong W, Zhu W, Shao X, Zhang C. The functional role of exosome microRNAs in lung cancer. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AbstractLung cancer causes the highest incidence and mortality rates of cancer disease worldwide. Despite obvious advances in lung cancer research, a better understanding of the disease is urgently needed to improve early detection and correct diagnoses. Exosomes are released from cancer cells and modulate cell-cell communication. Exosomes transfer a wide variety of molecules including microRNAs. MicroRNAs (miRNAs) are single-stranded, small noncoding RNAs that regulate gene expression. Accumulating evidence indicates that miRNA expression patterns represent the status of physiology and disease. The focus of this review is to provide an update on the progress of miRNAs of cancer-derived exosome as potential biomarkers for lung cancer.
Collapse
Affiliation(s)
- Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Wenhuan Gong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Wenfang Zhu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Xinyu Shao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| | - Chunxia Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian116011, China
| |
Collapse
|
80
|
Liu H, Chen L, Peng Y, Yu S, Liu J, Wu L, Zhang L, Wu Q, Chang X, Yu X, Liu T. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget 2017; 9:2887-2894. [PMID: 29416821 PMCID: PMC5788689 DOI: 10.18632/oncotarget.20812] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Exosomes are vesicles that can be secreted by many types of cell and released into the extracellular space. Studies have found that tumor derived exosomes (TEXs) can promote tumor growth and metastasis, as well as inhibit immune response through transferring their genetic information to the recipient cells. Given their functions in tumor progression, TEXs are considered as promising biomarkers for early detection of human malignancy. Dendritic cells (DCs), a type of antigen presenting cells, can induce tumor-specific T cell immune responses in carcinogenesis. Growing evidences have demonstrated that the matured DCs induced by TEXs exhibit enhanced anti-tumor effects that may be applied for cancer immunotherapy. Thus in this review, according to the previous studies, we summarized the effects of DCs loaded with TEXs in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yaojun Peng
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Songyan Yu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Liangliang Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lijun Zhang
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Qiyan Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Chang
- Department of Clinical Laboratory, Weihai Municipal Hospital, Weihai 264200, Shandong, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianyi Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
81
|
Zhou L, Lv T, Zhang Q, Zhu Q, Zhan P, Zhu S, Zhang J, Song Y. The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett 2017; 407:84-92. [PMID: 28807820 DOI: 10.1016/j.canlet.2017.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/29/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research.
Collapse
Affiliation(s)
- Li Zhou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Qun Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Suhua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Jianya Zhang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China.
| |
Collapse
|
82
|
Liu W, Hu J, Zhou K, Chen F, Wang Z, Liao B, Dai Z, Cao Y, Fan J, Zhou J. Serum exosomal miR-125b is a novel prognostic marker for hepatocellular carcinoma. Onco Targets Ther 2017; 10:3843-3851. [PMID: 28814883 PMCID: PMC5546809 DOI: 10.2147/ott.s140062] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide with high mortality. Circulating miRNA has been demonstrated as a novel noninvasive biomarker for many tumors. This study aimed to investigate the potential of circulating miR-125b as a prognostic marker of HCC. Exosomes were extracted from serum samples collected from two independent cohorts: cohort 1: HCC (n=30), chronic hepatitis B (CHB, n=30), liver cirrhosis (LC, n=30); cohort 2: HCC (n=128). We found that miR-125b levels were remarkably increased in exosomes compared to those in serum from patients with CHB, LC, and HCC (P<0.01, respectively). However, miR-125b levels in exosomes and the serum from HCC patients were inferior to that of CHB (P<0.01 and P=0.06) and LC patients (P<0.01 for all). Additionally, miR-125b levels in exosomes were associated with tumor number (P=0.02), encapsulation (P<0.01), and TNM stage (P<0.01). Kaplan–Meier analysis indicated that HCC patients with lower exosomal miR-125b levels showed reduced time to recurrence (TTR) (P<0.01) and overall survival (OS) (P<0.01). Furthermore, multivariate analysis revealed that miR-125b level in exosomes, but not in serum, was an independent predictive factor for TTR (P<0.001) and OS (P=0.011). Exosomal miR-125b levels predicted the recurrence and survival of HCC patients with an area under the ROC curve of 0.739 (83.0% sensitivity and 67.9% specificity) and 0.702 (82.5% sensitivity and 53.4% specificity). In conclusion, exosomal miR-125b could serve as a promising prognostic marker for HCC.
Collapse
Affiliation(s)
- Weifeng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Kaiqian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Feiyu Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zheng Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Boyi Liao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Central South University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
83
|
Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 2017. [PMID: 28623135 DOI: 10.1016/j.bbrc.2017.06.055] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Circulating lncRNAs have been defined as a novel biomarker for non-small cell lung cancer (NSCLC), MALAT-1 was first identified lncRNA that was related to lung cancer metastasis. However, the relationship between exosomal lncRNAs and the diagnosis and prognosis of NSCLC was poorly understood. The aim of this study is to evaluate the clinical significance of serum exosomal MALAT-1 as a biomarker in the metastasis of NSCLC. In this study, we firstly isolated the exosomes from healthy subjects and NSCLC patients. Then we measured the expression levels of MALAT-1 contained in exosomes, and found that exosomal MALAT-1 was highly expressed in NSCLC patients, more importantly, the levels of exosomal MALAT-1 were positively associated with tumor stage and lymphatic metastasis. In addition, we decreased MALAT-1 expression by short hairpin RNA and conducted a series of assays including MTT, cell cycle, colony formation, wound-healing scratch and Annexin/V PI by flow cytometry in human lung cancer cell lines. These in vitro studies demonstrated that serum exosome-derived long noncoding RNA MALAT-1 promoted the tumor growth and migration, and prevented tumor cells from apoptosis in lung cancer cell lines. Taken together, this study shed a light on utilizing MALAT-1 in exosomes as a non-invasive serum-based tumor biomarker for diagnosis and prognosis of NSCLC.
Collapse
Affiliation(s)
- Rui Zhang
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China.
| | - Yuhong Xia
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Zhixin Wang
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Jie Zheng
- Thoracic Surgery Department 1, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Yafei Chen
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Xiaoli Li
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Yu Wang
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| | - Huaikun Ming
- Respiratory Diseases Ward 2, The Central Hospital of Xinxiang City, Xinxiang, China
| |
Collapse
|
84
|
Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, Xie Y, Ye Y, Liu J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J Cell Mol Med 2017; 21:1228-1236. [PMID: 28026121 PMCID: PMC5431139 DOI: 10.1111/jcmm.13056] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022] Open
Abstract
Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA-96 (miR-96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR-96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR-96-containing exosomes, anti-miR-96 and anti-miR negative control (anti-miR-NC) transfections. Dual-luciferase reporter assay was used to study interaction between miR-96 and LIM-domain only protein 7 (LMO7). Changes induced by miR-96 transfection and LMO7 overexpression were also evaluated. MiR-96 expression was positively correlated with high-grade and metastatic lung cancers. While anti-miR-96 transfection exhibited a tumour-suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR-96 binding sites were found within the 3'-UTR of wild-type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR-96. We have identified exosomal miR-96 as a serum biomarker of malignant lung cancer. MiR-96 promotes lung cancer progression by targeting LMO7. The miR-96-LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR-96-LMO7 axis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Jingcheng Zhou
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Shanshan Mei
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Da Wu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Zhimin Mu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Baokun Chen
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Yuancai Xie
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Yiwang Ye
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
85
|
Exosomes: a new horizon in lung cancer. Drug Discov Today 2017; 22:927-936. [PMID: 28288782 DOI: 10.1016/j.drudis.2017.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
Circulating exosomes are the major mediators of cell-cell communication. They have been found in various body fluids of healthy individuals and patients with malignancies as cargos of several molecules including miRNAs. Several studies have underlined the role of exosome miRNAs in different tumor types, including lung cancer, suggesting their potential use as biomarkers and therapeutic agents. An overview of the biology and function of exosomes and exosome miRNAs as indicators of diagnosis and treatment response in lung cancer is presented. In addition, preliminary data on exosomes as potential therapeutic agents are reported.
Collapse
|
86
|
Chen Y, Song Y, Huang J, Qu M, Zhang Y, Geng J, Zhang Z, Liu J, Yang GY. Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke. Front Neurol 2017; 8:57. [PMID: 28289400 PMCID: PMC5326773 DOI: 10.3389/fneur.2017.00057] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Recent studies have demonstrated that exosomal microRNAs (miRNAs) are novel biomarkers and therapeutic targets for various diseases including vascular disease. However, specific exosomal miRNAs expression in stroke patients has not been reported yet. Here, we explored whether circulating exosomal miRNAs can serve as potential biomarkers for the diagnosis of acute ischemic stroke and discussed the potential for clinical application. Blood samples were collected from acute ischemic stroke patients within the first 72 h (n = 50). Circulating exosomes were exacted by Exoquick exosome isolation kit and characterized by transmission electron microscopy. Western blot was performed to assess the expression of exosomal protein makers. Exosomal miRNA-223 (miR-223) was detected by RT-PCR assay. The relationship between the expression levels of miR-223 and National Institutes of Health Stroke Scale (NIHSS) scores, brain infarct volume, and neurological outcomes were analyzed. Circulating exosomes were isolated and the size of vesicles ranged between 30 and 100 nm. The identification of exosomes was further confirmed by the detection of specific exosomal protein markers CD9, CD63, and Tsg101. Exosomal miR-223 in acute ischemic stroke patients was significantly upregulated compared to control group (p < 0.001). Exosomal miR-223 level was positively correlated with NIHSS scores (r = 0.31, p = 0.03). Exosomal miR-223 expression in stroke patients with poor outcomes was higher than those with good outcomes (p < 0.05). Increased exosomal miR-223 was associated with acute ischemic stroke occurrence, stroke severity, and short-term outcomes. Future studies with large sample are needed to assess the clinical application of exosomal miR-223 as a novel biomarker for ischemic stroke diagnosis.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Song
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Huang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meijie Qu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yu Zhang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jieli Geng
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University , Shanghai , China
| | - Jianrong Liu
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital and Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Neuroscience and Neuroengineering Center, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
87
|
Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML, Yan J, Miller DM, Zhang HG. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 2017; 8:14448. [PMID: 28211508 PMCID: PMC5321731 DOI: 10.1038/ncomms14448] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression. Exosomes are involved in the development of metastasis but how their composition is regulated is not well known. Here the authors propose that major vault protein-dependent loading of miR-193a into exosomes could be a general mechanism by which cancer cells get rid of oncosuppressor miRNAs.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Yi Ren
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223001, China
| | - Xin Hu
- Program in Biostatistics, Bioinformatics and Systems Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Abhilash Samykutty
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Xiaoying Zhuang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Donald M Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA.,Robley Rex VA Medical Center, Louisville, Kentucky 40206, USA
| |
Collapse
|
88
|
Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol 2017; 44:170-181. [PMID: 28215970 DOI: 10.1016/j.semcancer.2017.02.006] [Citation(s) in RCA: 303] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small membrane vesicles with a size ranging from 40 to 100nm. They can serve as functional mediators in cell interaction leading to cancer metastasis. Metastasis is a complex multistep process of cancer cell invasion, survival in blood vessels, attachment to and colonization of the host organ. Exosomes influence every step of this cascade and can be targeted by oncological treatment. This review highlights the role of exosomes in the various steps of the metastatic cascade and how exosome dependent pathways can be targeted as therapeutic approach or used for liquid biopsies.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
89
|
Cordonnier M, Chanteloup G, Isambert N, Seigneuric R, Fumoleau P, Garrido C, Gobbo J. Exosomes in cancer theranostic: Diamonds in the rough. Cell Adh Migr 2017; 11:151-163. [PMID: 28166442 DOI: 10.1080/19336918.2016.1250999] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During the last 10 years, exosomes, which are small vesicles of 50-200 nm diameter of endosomal origin, have aroused a great interest in the scientific and clinical community for their roles in intercellular communication in almost all physiological and pathological processes. Most cells can potentially release these nanovesicles that share with the parent cell a similar lipid bilayer with transmembrane proteins and a panel of enclosed soluble proteins such as heat shock proteins and genetic material, thus acting as potential nanoshuttles of biomarkers. Exosomes surface proteins allow their targeting and capture by recipient cells, while the exosomes' content can modify the physiological state of recipient cells. Tumor derived exosomes by interacting with other cells of the tumor microenvironment modulate tumor progression, angiogenic switch, metastasis, and immune escape. Targeting tumor-derived exosomes might be an interesting approach in cancer therapy. Furthermore, because a key issue to improve cancer patients' outcome relies on earlier cancer diagnosis (metastases, as opposed to the primary tumor, are responsible for most cancer deaths) exosomes have been put forward as promising biomarker candidates for cancer diagnosis and prognosis. This review summarizes the roles of exosomes in cancer and clinical interest, focusing on the importance of exosomal heat shock proteins (HSP). The challenges of clinical translation of HSP-exosomes as therapeutic targets and biomarkers for early cancer detection are also discussed.
Collapse
Affiliation(s)
- Marine Cordonnier
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Gaëtan Chanteloup
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Nicolas Isambert
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Renaud Seigneuric
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France
| | - Pierre Fumoleau
- c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| | - Carmen Garrido
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France.,d Equipe Labellisée par la Ligue Nationale Contre le Cancer , Paris , France
| | - Jessica Gobbo
- a INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon , France.,b University of Burgundy, Faculty of Medicine and Pharmacy , Dijon , France.,c Department of Medical Oncology , Georges-François Leclerc Centre , Dijon , France
| |
Collapse
|
90
|
Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med 2017; 49:e285. [PMID: 28104913 PMCID: PMC5291842 DOI: 10.1038/emm.2016.153] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell–cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.
Collapse
|
91
|
Abstract
Better diagnostic biomarkers and therapeutic options are still necessary for patients with sarcomas due to the current limitations of diagnosis and treatment. Exosomes are small extracellular membrane vesicles that are released by various cells and are found in most body fluids. Tumor-derived exosomes have been proven to mediate tumorigenesis, intercellular communication, microenvironment modulation, and metastasis in different cancers, including in sarcomas. Recently, exosomes have been considered as potential biomarkers for sarcoma diagnosis and prognosis, and as possible targets for sarcoma therapy. Moreover, due to their specific cell tropism and bioavailability, exosomes can also be engineered as vehicles for drug delivery. In this review, we discuss recent advances in the roles of tumor-derived exosomes in sarcoma and their potential clinical applications.
Collapse
|
92
|
邹 洪, 邬 红, 许 川. [Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:778-783. [PMID: 27866522 PMCID: PMC5999640 DOI: 10.3779/j.issn.1009-3419.2016.11.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 12/15/2022]
Abstract
As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- 洪波 邹
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 610083 成都,成都军区总医院肿瘤诊治中心Department of Oncology, Chengdu Military General Hospital, Chengdu 610083, China
| | - 红 邬
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 530021 南宁,广西医科大学Guangxi Medical University, Nanning 530021, China
| | - 川 许
- 646000 泸州,西南医科大学附属医院The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 610083 成都,成都军区总医院肿瘤诊治中心Department of Oncology, Chengdu Military General Hospital, Chengdu 610083, China
| |
Collapse
|
93
|
Rolfo C, Giallombardo M, Reclusa P, Sirera R, Peeters M. Exosomes in lung cancer liquid biopsies: Two sides of the same coin? Lung Cancer 2016; 104:134-135. [PMID: 27894607 DOI: 10.1016/j.lungcan.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Christian Rolfo
- Phase I - Early Clinical Trials Unit,Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium.
| | - Marco Giallombardo
- Phase I - Early Clinical Trials Unit,Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - Pablo Reclusa
- Phase I - Early Clinical Trials Unit,Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - Rafael Sirera
- Phase I - Early Clinical Trials Unit,Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| | - Marc Peeters
- Phase I - Early Clinical Trials Unit,Oncology Department, Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University, Antwerp, Belgium
| |
Collapse
|
94
|
Awan M, Sharma N, Towe CW, Efird JT, Machtay M, Biswas T. Optimum treatment for mediastinal lymph node positive (N2) resectable non-small cell lung cancer: what is the role for surgery? Expert Rev Anticancer Ther 2016; 16:1131-1144. [PMID: 27654059 DOI: 10.1080/14737140.2016.1240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION A third of patients with Non-Small Cell Lung Cancer (NSCLC) present with Stage III disease with mediastinal (N2) nodal involvement representing an extremely heterogeneous population with a generally poor prognosis. Areas covered: This article describes the complexity of Stage III-N2 patients reviewing the outcomes of key clinical trials while highlighting the trial designs and subtleties that have created controversy in management. Both bimodality approaches combining chemotherapy with either surgery or radiation and trimodality approaches combining chemotherapy with both local therapies are reviewed. Finally, prognostic factors and future directions are explored for the management of this population. Expert commentary: Upfront surgery is not recommended for patients with Stage III-N2 NSCLC. Neoadjuvant approaches with both chemotherapy and chemoradiation are acceptable in a multidisciplinary setting if appropriate surgery is performed by a dedicated thoracic surgeon. Non-operative candidates should receive definitive concurrent chemoradiation. Innovative approaches are necessary to improve outcomes in this population.
Collapse
Affiliation(s)
- Musaddiq Awan
- a Department of Radiation Oncology , Case Western Reserve University , Cleveland , OH , USA
| | - Neelesh Sharma
- b Department of Medical Oncology , Case Western Reserve University , Cleveland , OH , USA
| | - Christopher W Towe
- c Department of Surgery, Division of Thoracic and Esophageal Surgery , University Hospitals Case Medical Center , Cleveland , OH , USA
| | - Jimmy T Efird
- d Center for Health Disparities, Brody School of Medicine and Office of Research, College of Nursing , East Carolina University , Greenville , NC , USA
| | - Mitchell Machtay
- a Department of Radiation Oncology , Case Western Reserve University , Cleveland , OH , USA
| | - Tithi Biswas
- a Department of Radiation Oncology , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
95
|
Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC, Ding WQ. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res 2016; 18:90. [PMID: 27608715 PMCID: PMC5016889 DOI: 10.1186/s13058-016-0753-x] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. METHODS Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. RESULTS Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. CONCLUSIONS Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.
Collapse
Affiliation(s)
- Bethany N. Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - Yvonne D. Trigoso
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Cameron L. Calloway
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Y. Daniel Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - David H. Lum
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 USA
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112 USA
| | - Zhizhuang J. Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - Kenneth E. Blick
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - William C. Dooley
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| | - W. Q. Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
96
|
Torrano V, Royo F, Peinado H, Loizaga-Iriarte A, Unda M, Falcón-Perez JM, Carracedo A. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr Opin Pharmacol 2016; 29:47-53. [PMID: 27366992 DOI: 10.1016/j.coph.2016.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation.
Collapse
Affiliation(s)
- Veronica Torrano
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain
| | - Felix Royo
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | | | - Miguel Unda
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Juan M Falcón-Perez
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801ª bld., 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain.
| |
Collapse
|