51
|
Yeung CHC, Au Yeung SL, Schooling CM. Association of autoimmune diseases with Alzheimer's disease: A mendelian randomization study. J Psychiatr Res 2022; 155:550-558. [PMID: 36198219 DOI: 10.1016/j.jpsychires.2022.09.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alzheimer's disease may have an autoimmune component, but the association is unclear. OBJECTIVE The objective of this Mendelian randomization (MR) study was to evaluate the association of liability to autoimmune diseases with Alzheimer's disease. METHODS A systematic search was done using PubMed to identify autoimmune diseases that have been suggested as associated with Alzheimer's disease. Genetic predictors of these autoimmune diseases were obtained from the largest and most recent genome-wide association studies (GWAS). Genetic associations with clinically-diagnosed Alzheimer's disease were obtained from the International Genomics of Alzheimer's Project GWAS (21982 cases; 41944 controls); and with parental and sibling history of Alzheimer's disease from the UK Biobank GWAS (27696 maternal, 14338 paternal and 2171 sibling cases). MR estimates were obtained using inverse variance weighting, MR-Egger and weighted median. To address possible selection bias due to inevitably recruiting only survivors, the analysis was repeated in younger people, i.e., UK Biobank siblings and adjusting for competing risk of Alzheimer's disease. RESULTS Of the 7 autoimmune diseases considered, liability to psoriasis and sarcoidosis were not associated with Alzheimer's disease. Some evidence was found for liability to multiple sclerosis being associated with higher risk and liability to Sjogren's syndrome with lower risk of Alzheimer's disease. Associations found for liability to giant cell arteritis, type 1 diabetes and rheumatoid arthritis were inconsistent in sensitivity analyses. CONCLUSION Liability to multiple sclerosis and Sjogren's syndrome could be associated with Alzheimer's disease. The underlying mechanisms, such as the role of myelin and neuroinflammation, should be further investigated.
Collapse
Affiliation(s)
- Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| |
Collapse
|
52
|
Shorey CL, Mulla RT, Mielke JG. The effects of synthetic glucocorticoid treatment for inflammatory disease on brain structure, function, and dementia outcomes: A systematic review. Brain Res 2022; 1798:148157. [DOI: 10.1016/j.brainres.2022.148157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
53
|
Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022; 12:18332. [PMID: 36316461 PMCID: PMC9622874 DOI: 10.1038/s41598-022-22822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/19/2022] [Indexed: 11/14/2022] Open
Abstract
The relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) is so strong that scientists called it "brain diabetes". According to several studies, the critical factor in this relationship is brain insulin resistance. Due to the rapid global spread of both diseases, overcoming this cross-talk has a significant impact on societies. Long non-coding RNAs (lncRNAs), on the other hand, have a substantial impact on complex diseases due to their ability to influence gene expression via a variety of mechanisms. Consequently, the regulation of lncRNA expression in chronic diseases permits the development of innovative therapeutic techniques. However, developing a new drug requires considerable time and money. Recently repurposing existing drugs has gained popularity due to the use of low-risk compounds, which may result in cost and time savings. in this study, we identified drug repurposing candidates capable of controlling the expression of common lncRNAs in the cross-talk between DM and AD. We also utilized drugs that interfered with this cross-talk. To do this, high degree common lncRNAs were extracted from microRNA-lncRNA bipartite network. The drugs that interact with the specified lncRNAs were then collected from multiple data sources. These drugs, referred to as set D, were classified in to positive (D+) and negative (D-) groups based on their effects on the expression of the interacting lncRNAs. A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D+ and D- with an accuracy of 82.5%. Finally, the same six features were extracted for the most recently Food and Drug Administration (FDA) approved drugs in order to identify those with the highest likelihood of belonging to D+ or D-. The most significant FDA-approved positive drugs, chromium nicotinate and tapentadol, were presented as repurposing candidates, while cefepime and dihydro-alpha-ergocryptine were recommended as significant adverse drugs. Moreover, two natural compounds, curcumin and quercetin, were recommended to prevent this cross-talk. According to the previous studies, less attention has been paid to the role of lncRNAs in this cross-talk. Our research not only did identify important lncRNAs, but it also suggested potential repurposed drugs to control them.
Collapse
|
54
|
Hickey SL, McKim A, Mancuso CA, Krishnan A. A network-based approach for isolating the chronic inflammation gene signatures underlying complex diseases towards finding new treatment opportunities. Front Pharmacol 2022; 13:995459. [PMCID: PMC9597699 DOI: 10.3389/fphar.2022.995459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Complex diseases are associated with a wide range of cellular, physiological, and clinical phenotypes. To advance our understanding of disease mechanisms and our ability to treat these diseases, it is critical to delineate the molecular basis and therapeutic avenues of specific disease phenotypes, especially those that are associated with multiple diseases. Inflammatory processes constitute one such prominent phenotype, being involved in a wide range of health problems including ischemic heart disease, stroke, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease, and autoimmune and neurodegenerative conditions. While hundreds of genes might play a role in the etiology of each of these diseases, isolating the genes involved in the specific phenotype (e.g., inflammation “component”) could help us understand the genes and pathways underlying this phenotype across diseases and predict potential drugs to target the phenotype. Here, we present a computational approach that integrates gene interaction networks, disease-/trait-gene associations, and drug-target information to accomplish this goal. We apply this approach to isolate gene signatures of complex diseases that correspond to chronic inflammation and use SAveRUNNER to prioritize drugs to reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Stephanie L. Hickey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Alexander McKim
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, United States
| | - Christopher A. Mancuso
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Arjun Krishnan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Arjun Krishnan,
| |
Collapse
|
55
|
Kawami M, Ojima T, Yumoto R, Takano M. Role of integrin α2 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Toxicol Res 2022; 38:449-458. [PMID: 36277370 PMCID: PMC9532481 DOI: 10.1007/s43188-022-00127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Methotrexate (MTX) is widely used to treat various diseases. However, it induces adverse reactions like serious lung injury, including pulmonary fibrosis. Increasing evidence suggests that epithelial-mesenchymal transition (EMT) in injured alveolar epithelium contributes to the development of the pathophysiological state of the lung. We demonstrated that MTX induced EMT in cultured alveolar epithelial cell lines. Integrin-mediated signaling is considered a significant factor in recognizing the EMT process. However, the relationship between MTX-induced EMT and integrin family members is poorly understood. In the present study, we aimed to clarify the role of integrin in MTX-induced EMT in A549 and NCI-H1299 (H1299) cells by focusing on the integrin alpha 2 (ITGA2) subunit, selected based on our microarray analysis. MTX treatment for 72 h significantly increased the mRNA and cell surface expression of ITGA2 in both cell lines. However, this upregulation by MTX was suppressed by co-treatment with SB431542 and folic acid, which are inhibitors of MTX-induced EMT in A549 cells. The mRNA expression levels of EMT-related genes were more affected in the MTX-treated A549 cells with high ITGA2 expression than in those with low ITGA2 expression. Finally, E7820, an ITGA2 inhibitor, suppressed MTX-induced EMT-related phenotypic changes, such as morphology and mRNA and protein expression of α-smooth muscle actin, a representative EMT marker. These findings suggest that ITGA2 may play a key role in MTX-induced EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Takamichi Ojima
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553 Japan
| |
Collapse
|
56
|
Łuc M, Woźniak M, Rymaszewska J. Neuroinflammation in Dementia—Therapeutic Directions in a COVID-19 Pandemic Setting. Cells 2022; 11:cells11192959. [PMID: 36230921 PMCID: PMC9562181 DOI: 10.3390/cells11192959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although dementia is a heterogenous group of diseases, inflammation has been shown to play a central role in all of them and provides a common link in their pathology. This review aims to highlight the importance of immune response in the most common types of dementia. We describe molecular aspects of pro-inflammatory signaling and sources of inflammatory activation in the human organism, including a novel infectious agent, SARS-CoV-2. The role of glial cells in neuroinflammation, as well as potential therapeutic approaches, are then discussed. Peripheral immune response and increased cytokine production, including an early surge in TNF and IL-1β concentrations activate glia, leading to aggravation of neuroinflammation and dysfunction of neurons during COVID-19. Lifestyle factors, such as diet, have a large impact on future cognitive outcomes and should be included as a crucial intervention in dementia prevention. While the use of NSAIDs is not recommended due to inconclusive results on their efficacy and risk of side effects, the studies focused on the use of TNF antagonists as the more specific target in neuroinflammation are still very limited. It is still unknown, to what degree neuroinflammation resulting from COVID-19 may affect neurodegenerative process and cognitive functioning in the long term with ongoing reports of chronic post-COVID complications.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
57
|
Simats A, Liesz A. Systemic inflammation after stroke: implications for post-stroke comorbidities. EMBO Mol Med 2022; 14:e16269. [PMID: 35971650 PMCID: PMC9449596 DOI: 10.15252/emmm.202216269] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 12/21/2022] Open
Abstract
Immunological mechanisms have come into the focus of current translational stroke research, and the modulation of neuroinflammatory pathways has been identified as a promising therapeutic approach to protect the ischemic brain. However, stroke not only induces a local neuroinflammatory response but also has a profound impact on systemic immunity. In this review, we will summarize the consequences of ischemic stroke on systemic immunity at all stages of the disease, from onset to long‐term outcome, and discuss underlying mechanisms of systemic brain‐immune communication. Furthermore, since stroke commonly occurs in patients with multiple comorbidities, we will also overview the current understanding of the potential role of systemic immunity in common stroke‐related comorbidities, such as cardiac dysfunction, atherosclerosis, diabetes, and infections. Finally, we will highlight how targeting systemic immunity after stroke could improve long‐term outcomes and alleviate comorbidities of stroke patients.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
58
|
Korologou-Linden R, Bhatta L, Brumpton BM, Howe LD, Millard LAC, Kolaric K, Ben-Shlomo Y, Williams DM, Smith GD, Anderson EL, Stergiakouli E, Davies NM. The causes and consequences of Alzheimer's disease: phenome-wide evidence from Mendelian randomization. Nat Commun 2022; 13:4726. [PMID: 35953482 PMCID: PMC9372151 DOI: 10.1038/s41467-022-32183-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) has no proven causal and modifiable risk factors, or effective interventions. We report a phenome-wide association study (PheWAS) of genetic liability for AD in 334,968 participants of the UK Biobank study, stratified by age. We also examined the effects of AD genetic liability on previously implicated risk factors. We replicated these analyses in the HUNT study. PheWAS hits and previously implicated risk factors were followed up in a Mendelian randomization (MR) framework to identify the causal effect of each risk factor on AD risk. A higher genetic liability for AD was associated with medical history and cognitive, lifestyle, physical and blood-based measures as early as 39 years of age. These effects were largely driven by the APOE gene. The follow-up MR analyses were primarily null, implying that most of these associations are likely to be a consequence of prodromal disease or selection bias, rather than the risk factor causing the disease.
Collapse
Affiliation(s)
- Roxanna Korologou-Linden
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Laura D Howe
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Louise A C Millard
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
- Intelligent Systems Laboratory, Department of Computer Science, University of Bristol, Bristol, UK
| | - Katarina Kolaric
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Emma L Anderson
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Evie Stergiakouli
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
59
|
Silvin A, Uderhardt S, Piot C, Da Mesquita S, Yang K, Geirsdottir L, Mulder K, Eyal D, Liu Z, Bridlance C, Thion MS, Zhang XM, Kong WT, Deloger M, Fontes V, Weiner A, Ee R, Dress R, Hang JW, Balachander A, Chakarov S, Malleret B, Dunsmore G, Cexus O, Chen J, Garel S, Dutertre CA, Amit I, Kipnis J, Ginhoux F. Dual ontogeny of disease-associated microglia and disease inflammatory macrophages in aging and neurodegeneration. Immunity 2022; 55:1448-1465.e6. [PMID: 35931085 DOI: 10.1016/j.immuni.2022.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Aymeric Silvin
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Stefan Uderhardt
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum für Immuntherapie, FAU, 91054 Erlangen, Germany; Exploratory Research Unit, Optical Imaging Centre Erlangen, FAU, 91058 Erlangen, Germany
| | - Cecile Piot
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Sandro Da Mesquita
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katharine Yang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laufey Geirsdottir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kevin Mulder
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - David Eyal
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cecile Bridlance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Morgane Sonia Thion
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Xiao Meng Zhang
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Marc Deloger
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Vasco Fontes
- Department of Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum für Immuntherapie, FAU, 91054 Erlangen, Germany; Exploratory Research Unit, Optical Imaging Centre Erlangen, FAU, 91058 Erlangen, Germany
| | - Assaf Weiner
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rachel Ee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Regine Dress
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jing Wen Hang
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Akhila Balachander
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Olivier Cexus
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; School Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Charles Antoine Dutertre
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan Kipnis
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA 22908, USA; Center for Brain Immunology and Glia, Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; INSERM U1015, Gustave Roussy Cancer Campus, Villejuif 94800, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
60
|
Sattui SE, Navarro-Millan I, Xie F, Rajan M, Yun H, Curtis JR. Incidence of Dementia in Patients with Rheumatoid Arthritis and Association with Disease Modifying Anti-Rheumatic Drugs – Analysis of a National Claims Database. Semin Arthritis Rheum 2022; 57:152083. [DOI: 10.1016/j.semarthrit.2022.152083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
|
61
|
Pagoni P, Korologou-Linden RS, Howe LD, Davey Smith G, Ben-Shlomo Y, Stergiakouli E, Anderson EL. Causal effects of circulating cytokine concentrations on risk of Alzheimer's disease and cognitive function. Brain Behav Immun 2022; 104:54-64. [PMID: 35580794 PMCID: PMC10391322 DOI: 10.1016/j.bbi.2022.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is considerable evidence suggesting a role of neuroinflammation in the pathogenesis of Alzheimer's disease. Establishing causality is challenging due to bias from reverse causation and residual confounding. METHODS We used two-sample MR to explore causal effects of circulating cytokine concentrations on Alzheimer's disease risk and cognitive function. We employed genetic variants from the largest publicly available genome-wide association studies (GWASs) of cytokine concentrations (N = 8,293), Alzheimer's disease (71,880 cases/383,378 controls), prospective memory (N = 152,605 to 462,302), reaction time (N = 454,157 to 459,523) and fluid intelligence (N = 149,051). RESULTS Evidence suggest that 1 standard deviation (SD) increase in levels of CTACK (CCL27) (OR = 1.09 95%CI: 1.01 to 1.19, p = 0.03) increased risk of Alzheimer's disease. There was weak evidence of a causal effect of MIP-1b (CCL4) (OR = 1.04 95% CI: 0.99 to 1.09, p = 0.08), Eotaxin (OR = 1.08 95% CI: 0.99 to 1.17, p = 0.10), GROa (CXCL1) (OR = 1.04 95% CI: 0.99 to 1.10, p = 0.15), MIG (CXCL9) (OR = 1.17 95% CI: 0.97 to 1.41, p = 0.10), IL-8 (Wald ratio: OR = 1.21 95% CI: 0.97 to 1.51, p = 0.09) and IL-2 (Wald Ratio: OR = 1.21 95% CI: 0.94 to 1.56, p = 0.14) on Alzheimer's disease risk. A 1 SD increase in concentration of Eotaxin (IVW: OR = 1.05 95% CI: 0.98 to 1.13, p = 0.14), IL-8 (OR = 1.21 95% CI: 1.07 to 1.37, p = 0.003) and MCP1 (OR = 1.07 95% CI: 1.03 to 1.13, p = 0.003) were associated with lower fluid intelligence, and IL-4 (OR = 0.86 95%CI: 0.79 to 0.98, p = 0.02) with higher. CONCLUSIONS Our findings suggest a causal role of cytokines in the pathogenesis of Alzheimer's disease and fluid intelligence.
Collapse
Affiliation(s)
- Panagiota Pagoni
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Roxanna S Korologou-Linden
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura D Howe
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Anderson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
62
|
Watad A, McGonagle D, Anis S, Carmeli R, Cohen AD, Tsur AM, Ben-Shabat N, Lidar M, Amital H. TNF inhibitors have a protective role in the risk of dementia in patients with ankylosing spondylitis: Results from a nationwide study. Pharmacol Res 2022; 182:106325. [PMID: 35752359 DOI: 10.1016/j.phrs.2022.106325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Ankylosing spondylitis (AS) is a chronic progressive and debilitating form of arthritis with associated extra-articular features including uveitis, intestinal and lung apical inflammation and psoriasis. Putative associations between AS and neurologic disorders has been relatively overlooked. The purpose of this study is to assess the link between AS and major neurologic disorders and whether treatment with Tumor-Necrosis-Factor inhibitors (TNFi) has an impact on that association. METHODS A retrospective cross-sectional study was carried out based on the Clalit Health Services (CHS) computerized database. AS patients were compared to age- and gender-matched controls with respect to the proportion of Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and multiple sclerosis (MS). The impact of AS therapy (biologic vs conventional therapy) was assessed as well. RESULTS 4,082 AS patients and 20,397 age- and gender-matched controls were identified. AS was associated with a higher prevalence of AD (odds-ratio(OR) 1.46 [95%Confidence-interval(CI) 1.13-1.87], p=0.003), epilepsy (OR 2.33 [95%CI 1.75-3.09] p<0.0001) and PD (OR 2.75 [95%CI 2.04-3.72], p<0.0001), whereas no statistically significant association was found for MS. Association with PD remained significant in the multivariate analysis (OR 1.49 [95%CI 1.05- 2.13],p=0.027). Within AS patients, the use of TNFi (OR 0.10 [95%CI 0.01-0.74], p=0.024) were associated with a lowered risk of developing AD. CONCLUSION AS is positively associated with AD, PD, and epilepsy but not MS. AS patients treated with TNFi have lower rates of AD.
Collapse
Affiliation(s)
- Abdulla Watad
- Department of Medicine 'B', Sheba Medical Centre, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.
| | - Dennis McGonagle
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| | - Saar Anis
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
| | - Reut Carmeli
- Department of Medicine 'B', Sheba Medical Centre, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Arnon D Cohen
- Chief Physician's Office, Clalit Health Services, Tel Aviv, Israel; Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishai M Tsur
- Department of Medicine 'B', Sheba Medical Centre, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel; Israel Defense Forces, Medical Corps, Tel Hashomer, Ramat Gan, Israel
| | - Niv Ben-Shabat
- Department of Medicine 'B', Sheba Medical Centre, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Merav Lidar
- Rheumatology unit, Sheba Medical Centre, Ramat Gan, Israel
| | - Howard Amital
- Department of Medicine 'B', Sheba Medical Centre, Tel-Hashomer, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Centre, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
63
|
Ballerini C, Njamnshi AK, Juliano SL, Kalaria RN, Furlan R, Akinyemi RO. Non-Communicable Neurological Disorders and Neuroinflammation. Front Immunol 2022; 13:834424. [PMID: 35769472 PMCID: PMC9235309 DOI: 10.3389/fimmu.2022.834424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic brain injury, stroke, and neurodegenerative diseases represent a major cause of morbidity and mortality in Africa, as in the rest of the world. Traumatic brain and spinal cord injuries specifically represent a leading cause of disability in the younger population. Stroke and neurodegenerative disorders predominantly target the elderly and are a major concern in Africa, since their rate of increase among the ageing is the fastest in the world. Neuroimmunology is usually not associated with non-communicable neurological disorders, as the role of neuroinflammation is not often considered when evaluating their cause and pathogenesis. However, substantial evidence indicates that neuroinflammation is extremely relevant in determining the consequences of non-communicable neurological disorders, both for its protective abilities as well as for its destructive capacity. We review here current knowledge on the contribution of neuroinflammation and neuroimmunology to the pathogenesis of traumatic injuries, stroke and neurodegenerative diseases, with a particular focus on problems that are already a major issue in Africa, like traumatic brain injury, and on emerging disorders such as dementias.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN); Neurology Department, Central Hospital Yaounde/Faculty of Medicine and Biomedical Sciences (FMBS), The University of Yaounde 1, Yaounde, Cameroon
| | - Sharon L. Juliano
- Neuroscience, Uniformed Services University Hebert School (USUHS), Bethesda, MD, United States
| | - Rajesh N. Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| | - Rufus O. Akinyemi
- Neuroscience and Ageing Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Roberto Furlan, ; Rufus O. Akinyemi,
| |
Collapse
|
64
|
Resolution of inflammation: Intervention strategies and future applications. Toxicol Appl Pharmacol 2022; 449:116089. [DOI: 10.1016/j.taap.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022]
|
65
|
Desai RJ, Varma VR, Gerhard T, Segal J, Mahesri M, Chin K, Horton DB, Kim SC, Schneeweiss S, Thambisetty M. Comparative Risk of Alzheimer Disease and Related Dementia Among Medicare Beneficiaries With Rheumatoid Arthritis Treated With Targeted Disease-Modifying Antirheumatic Agents. JAMA Netw Open 2022; 5:e226567. [PMID: 35394510 PMCID: PMC8994126 DOI: 10.1001/jamanetworkopen.2022.6567] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IMPORTANCE Cytokine signaling, including tumor necrosis factor (TNF) and interleukin (IL)-6, through the Janus-kinase (JAK)-signal transducer and activator of transcription pathway, was hypothesized to attenuate the risk of Alzheimer disease and related dementia (ADRD) in the Drug Repurposing for Effective Alzheimer Medicines (DREAM) initiative based on multiomics phenotyping. OBJECTIVE To evaluate the association between treatment with tofacitinib, tocilizumab, or TNF inhibitors compared with abatacept and risk of incident ADRD. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted among US Medicare fee-for-service patients with rheumatoid arthritis aged 65 years and older from 2007 to 2017. Patients were categorized into 3 cohorts based on initiation of tofacitinib (a JAK inhibitor), tocilizumab (an IL-6 inhibitor), or TNF inhibitors compared with a common comparator abatacept (a T-cell activation inhibitor). Analyses were conducted from August 2020 to August 2021. MAIN OUTCOMES AND MEASURES The main outcome was onset of ADRD based on diagnosis codes evaluated in 4 alternative analysis schemes: (1) an as-treated follow-up approach, (2) an as-started follow-up approach incorporating a 6-month induction period, (3) incorporating a 6-month symptom to diagnosis period to account for misclassification of ADRD onset, and (4) identifying ADRD through symptomatic prescriptions and diagnosis codes. Hazard ratios (HRs) with 95% CIs were calculated from Cox proportional hazard regression after adjustment for 79 preexposure characteristics through propensity score matching. RESULTS After 1:1 propensity score matching to patients using abatacept, a total of 22 569 propensity score-matched patient pairs, including 4224 tofacitinib pairs (mean [SD] age 72.19 [5.65] years; 6945 [82.2%] women), 6369 tocilizumab pairs (mean [SD] age 72.01 [5.46] years; 10 105 [79.4%] women), and 11 976 TNF inhibitor pairs (mean [SD] age 72.67 [5.91] years; 19 710 [82.3%] women), were assessed. Incidence rates of ADRD varied from 2 to 18 per 1000 person-years across analyses schemes. There were no statistically significant associations of ADRD with tofacitinib (analysis 1: HR, 0.90 [95% CI, 0.55-1.51]; analysis 2: HR, 0.78 [95% CI, 0.53-1.13]; analysis 3: HR, 1.29 [95% CI, 0.72-2.33]; analysis 4: HR, 0.50 [95% CI, 0.21-1.20]), tocilizumab (analysis 1: HR, 0.82 [95% CI, 0.55-1.21]; analysis 2: HR, 1.05 [95% CI, 0.81-1.35]; analysis 3: HR, 1.21 [95% CI, 0.75-1.96]; analysis 4: HR, 0.78 [95% CI, 0.44-1.39]), or TNF inhibitors (analysis 1: HR, 0.93 [95% CI, 0.72-1.20]; analysis 2: HR, 1.02 [95% CI, 0.86-1.20]; analysis 3: HR, 1.13 [95% CI, 0.86-1.48]; analysis 4: 0.90 [95% CI, 0.60-1.37]) compared with abatacept. Results from prespecified subgroup analysis by age, sex, and baseline cardiovascular disease were consistent except in patients with cardiovascular disease, for whom there was a potentially lower risk of ADRD with TNF inhibitors vs abatacept, but only in analyses 2 and 4 (analysis 1: HR, 0.76 [95% CI, 0.50-1.16]; analysis 2: HR, 0.74 [95% CI, 0.56-0.99]; analysis 3: HR, 1.03 [95% CI, 0.65-1.61]; analysis 4: HR, 0.45 [95% CI, 0.21-0.98]). CONCLUSIONS AND RELEVANCE This cohort study did not find any association of risk of ADRD in patients treated with tofacitinib, tocilizumab, or TNF inhibitors compared with abatacept.
Collapse
Affiliation(s)
- Rishi J. Desai
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Tobias Gerhard
- Center for Pharmacoepidemiology and Treatment Science, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Jodi Segal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mufaddal Mahesri
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristyn Chin
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel B. Horton
- Center for Pharmacoepidemiology and Treatment Science, Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Seoyoung C. Kim
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sebastian Schneeweiss
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| |
Collapse
|
66
|
Al-hadlaq SM, Balto HA, Hassan WM, Marraiki NA, El-Ansary AK. Biomarkers of non-communicable chronic disease: an update on contemporary methods. PeerJ 2022; 10:e12977. [PMID: 35233297 PMCID: PMC8882335 DOI: 10.7717/peerj.12977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases constitute a major global burden with significant impact on health systems, economies, and quality of life. Chronic diseases include a broad range of diseases that can be communicable or non-communicable. Chronic diseases are often associated with modifications of normal physiological levels of various analytes that are routinely measured in serum and other body fluids, as well as pathological findings, such as chronic inflammation, oxidative stress, and mitochondrial dysfunction. Identification of at-risk populations, early diagnosis, and prediction of prognosis play a major role in preventing or reducing the burden of chronic diseases. Biomarkers are tools that are used by health professionals to aid in the identification and management of chronic diseases. Biomarkers can be diagnostic, predictive, or prognostic. Several individual or grouped biomarkers have been used successfully in the diagnosis and prediction of certain chronic diseases, however, it is generally accepted that a more sophisticated approach to link and interpret various biomarkers involved in chronic disease is necessary to improve our current procedures. In order to ensure a comprehensive and unbiased coverage of the literature, first a primary frame of the manuscript (title, headings and subheadings) was drafted by the authors working on this paper. Second, based on the components drafted in the preliminary skeleton a comprehensive search of the literature was performed using the PubMed and Google Scholar search engines. Multiple keywords related to the topic were used. Out of screened papers, only 190 papers, which are the most relevant, and recent articles were selected to cover the topic in relation to etiological mechanisms of different chronic diseases, the most recently used biomarkers of chronic diseases and finally the advances in the applications of multivariate biomarkers of chronic diseases as statistical and clinically applied tool for the early diagnosis of chronic diseases was discussed. Recently, multivariate biomarkers analysis approach has been employed with promising prospect. A brief discussion of the multivariate approach for the early diagnosis of the most common chronic diseases was highlighted in this review. The use of diagnostic algorithms might show the way for novel criteria and enhanced diagnostic effectiveness inpatients with one or numerous non-communicable chronic diseases. The search for new relevant biomarkers for the better diagnosis of patients with non-communicable chronic diseases according to the risk of progression, sickness, and fatality is ongoing. It is important to determine whether the newly identified biomarkers are purely associations or real biomarkers of underlying pathophysiological processes. Use of multivariate analysis could be of great importance in this regard.
Collapse
Affiliation(s)
- Solaiman M. Al-hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A. Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, KS, United States of America
| | - Najat A. Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
67
|
Müller S, van Oosterhout A, Bervoets C, Christen M, Martínez-Álvarez R, Bittlinger M. Concerns About Psychiatric Neurosurgery and How They Can Be Overcome: Recommendations for Responsible Research. NEUROETHICS-NETH 2022. [DOI: 10.1007/s12152-022-09485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Background
Psychiatric neurosurgery is experiencing a revival. Beside deep brain stimulation (DBS), several ablative neurosurgical procedures are currently in use. Each approach has a different profile of advantages and disadvantages. However, many psychiatrists, ethicists, and laypeople are sceptical about psychiatric neurosurgery.
Methods
We identify the main concerns against psychiatric neurosurgery, and discuss the extent to which they are justified and how they might be overcome. We review the evidence for the effectiveness, efficacy and safety of each approach, and discuss how this could be improved. We analyse whether and, if so, how randomised controlled trials (RCTs) can be used in the different approaches, and what alternatives are available if conducting RCTs is impossible for practical or ethical reasons. Specifically, we analyse the problem of failed RCTs after promising open-label studies.
Results
The main concerns are: (i) reservations based on historical psychosurgery, (ii) concerns about personality changes, (iii) concerns regarding localised interventions, and (iv) scepticism due to the lack of scientific evidence. Given the need for effective therapies for treatment-refractory psychiatric disorders and preliminary evidence for the effectiveness of psychiatric neurosurgery, further research is warranted and necessary. Since psychiatric neurosurgery has the potential to modify personality traits, it should be held to the highest ethical and scientific standards.
Conclusions
Psychiatric neurosurgery procedures with preliminary evidence for efficacy and an acceptable risk–benefit profile include DBS and micro- or radiosurgical anterior capsulotomy for intractable obsessive–compulsive disorder. These methods may be considered for individual treatment attempts, but multi-centre RCTs are necessary to provide reliable evidence.
Collapse
|
68
|
Shu J, Li N, Wei W, Zhang L. Detection of molecular signatures and pathways shared by Alzheimer's disease and type 2 diabetes. Gene 2022; 810:146070. [PMID: 34813915 DOI: 10.1016/j.gene.2021.146070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are common in the general elderly population, conferring heavy individual, social, and economic stresses on families and society. Accumulating evidence indicates T2D to be a risk factor for AD. However, the underlying mechanisms for this association are largely unknown. This study aimed to identify the shared molecular signatures between AD and T2D through integrated analysis of temporal cortex gene expression data. Gene Ontology (GO) and pathway enrichment analysis, protein over-representation analysis, protein-protein interaction, DEG-transcription factor interactions, DEG-microRNA interactions, protein-drug interactions, gene-disease association analysis, and protein subcellular localization analysis of the common DEGs were performed. We identified 16 common DEGs between the two datasets, which were mainly enriched in the biological processes of apoptosis, autophagy, inflammation, and hemostasis. We also identified five hub proteins encoded by the DEGs, five central regulatory transcription factors, and six microRNAs. Protein-drug interaction analysis showed C1QB to be associated with different drugs. Gene-disease association analysis revealed that hub genes, SFN and ITGB2, were actively engaged in other diseases. Collectively, these findings provide new insights into shared molecular mechanisms between AD and T2D and provide novel candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jun Shu
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Nan Li
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| | - Li Zhang
- Department of Neurology, Cognitive Disorders Center, Huadong Hospital, Fudan University, No. 221, West Yan An Road, Shanghai, China.
| |
Collapse
|
69
|
Arbo BD, Schimith LE, Goulart dos Santos M, Hort MA. Repositioning and development of new treatments for neurodegenerative diseases: Focus on neuroinflammation. Eur J Pharmacol 2022; 919:174800. [DOI: 10.1016/j.ejphar.2022.174800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
|
70
|
Rosenkranz MA, Dean DC, Bendlin BB, Jarjour NN, Esnault S, Zetterberg H, Heslegrave A, Evans MD, Davidson RJ, Busse WW. Neuroimaging and biomarker evidence of neurodegeneration in asthma. J Allergy Clin Immunol 2022; 149:589-598.e6. [PMID: 34536414 PMCID: PMC8821112 DOI: 10.1016/j.jaci.2021.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epidemiologic studies have shown that Alzheimer's disease (AD) and related dementias (ADRD) are seen more frequently with asthma, especially with greater asthma severity or exacerbation frequency. OBJECTIVE To examine the changes in brain structure that may underlie this phenomenon, we examined diffusion-weighted magnetic resonance imaging (dMRI) and blood-based biomarkers of AD (phosphorylated tau 181, p-Tau181), neurodegeneration (neurofilament light chain, NfL), and glial activation (glial fibrillary acidic protein, GFAP). METHODS dMRI data were obtained in 111 individuals with asthma, ranging in disease severity from mild to severe, and 135 healthy controls. Regression analyses were used to test the relationships between asthma severity and neuroimaging measures, as well as AD pathology, neurodegeneration, and glial activation, indexed by plasma p-Tau181, NfL, and GFAP, respectively. Additional relationships were tested with cognitive function. RESULTS Asthma participants had widespread and large-magnitude differences in several dMRI metrics, which were indicative of neuroinflammation and neurodegeneration, and which were robustly associated with GFAP and, to a lesser extent, NfL. The AD biomarker p-Tau181 was only minimally associated with neuroimaging outcomes. Further, asthma severity was associated with deleterious changes in neuroimaging outcomes, which in turn were associated with slower processing speed, a test of cognitive performance. CONCLUSIONS Asthma, particularly when severe, is associated with characteristics of neuroinflammation and neurodegeneration, and may be a potential risk factor for neural injury and cognitive dysfunction. There is a need to determine how asthma may affect brain health and whether treatment directed toward characteristics of asthma associated with these risks can mitigate these effects.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc.
| | - Douglas C Dean
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisc; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisc; Waisman Center, University of Wisconsin-Madison, Madison, Wisc
| | - Barbara B Bendlin
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, Madison, Wisc
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Stephane Esnault
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | | | - Michael D Evans
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minn
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisc; Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisc; Department of Psychology, University of Wisconsin-Madison, Madison, Wisc
| | - William W Busse
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisc
| |
Collapse
|
71
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
72
|
Leposavić G, Stojić-Vukanić Z. Biomarkers of aging-associated chronic inflammation as a prognostic factor for human longevity. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It has been well-established that age-associated low-grade chronic inflammation contributes to the development of a spectrum of chronic diseases, including diabetes mellitus, ischemic heart disease, stroke, cancer, chronic kidney disease, non-alcoholic fatty liver disease and neurodegenerative diseases, which affect the quality of life of the elderly and influence their life span. This phenomenon is suggested to arise due to the weakening of the regulatory mechanisms of the immune response, and the persistence of exogenous and endogenous (reflecting oxidative cell injury) antigenic challenges, so it is referred to as oxi-inflamm-aging. Considering that the development of age-associated chronic inflammation is "silent", i.e., without clinical signs until the aforementioned complications become apparent, it is important to identify the biomarker(s) or pattern/cluster of biomarkers for this inflammation. It is also important to define new strategies to combat the "silent" damage induced by chronic inflammation. Given that at present there are no reliable biomarkers for chronic inflammation, this review points out the problems in defining biomarker(s) or patterns/clusters of biomarkers for chronic inflammation in order to stimulate further research and points to some possible routes of investigation.
Collapse
|
73
|
Vassilaki M, Crowson CS, Davis III JM, Duong SQ, Jones DT, Nguyen A, Mielke MM, Vemuri P, Myasoedova E. Rheumatoid Arthritis, Cognitive Impairment, and Neuroimaging Biomarkers: Results from the Mayo Clinic Study of Aging. J Alzheimers Dis 2022; 89:943-954. [PMID: 35964191 PMCID: PMC9535562 DOI: 10.3233/jad-220368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Observational studies suggested that dementia risk in patients with rheumatoid arthritis (RA) is higher than in the general population. OBJECTIVE To examine the associations of RA with cognitive decline and dementia, and neuroimaging biomarkers of aging, Alzheimer's disease, and vascular pathology in adult participants in the Mayo Clinic Study of Aging (MCSA). METHODS Participants with RA were matched 1:3 on age, sex, education, and baseline cognitive diagnosis to participants without RA. RA cases with MRI were also matched with non-cases with available MRI. All available imaging studies (i.e., amyloid and FDG PET, sMRI, and FLAIR) were included. The study included 104 participants with RA and 312 without RA (mean age (standard deviation, SD) 75.0 (10.4) years, 33% male and average follow-up (SD) 4.2 (3.8) years). RESULTS Groups were similar in cognitive decline and risk of incident dementia. Among participants with neuroimaging, participants with RA (n = 33) and without RA (n = 98) had similar amyloid burden and neurodegeneration measures, including regions sensitive to aging and dementia, but greater mean white matter hyperintensity volume relative to the total intracranial volume (mean (SD)% : 1.12 (0.57)% versus 0.76 (0.69)% of TIV, p = 0.01), and had higher mean (SD) number of cortical infarctions (0.24 (0.44) versus 0.05 (0.33), p = 0.02). CONCLUSION Although cognitive decline and dementia risk were similar in participants with and without RA, participants with RA had more abnormal cerebrovascular pathology on neuroimaging. Future studies should examine the mechanisms underlying these changes and potential implications for prognostication and prevention of cognitive decline in RA.
Collapse
Affiliation(s)
- Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Cynthia S. Crowson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Stephanie Q. Duong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Elena Myasoedova
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
74
|
Li Y, Fan H, Ni M, Zhang W, Fang F, Sun J, Lyu P, Ma P. Etanercept Reduces Neuron Injury and Neuroinflammation via Inactivating c-Jun N-terminal Kinase and Nuclear Factor-κB Pathways in Alzheimer's Disease: An In Vitro and In Vivo Investigation. Neuroscience 2021; 484:140-150. [PMID: 35058089 DOI: 10.1016/j.neuroscience.2021.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Inflammation contributes to amyloid beta (Aβ) aggregation and neuron loss in Alzheimer's disease (AD). Meanwhile, tumor necrosis factor-α (TNF-α) inhibitors present strong effect on suppressing inflammation. Thus, this study aimed to investigated the effect and molecular mechanism of etanercept (ETN) (a commonly used TNF-α inhibitor) on neuron injury and neuroinflammation in AD. AD cellular model was constructed by co-culture of primary embryonic neuron cells and microglial cells, followed by Aβ treatment. Subsequently, ETN was used to treat AD cellular model. Besides, APPswe/PS1M146V/tauP301L transgenic (AD) mice were respectively treated with saline or ETN by intravenous injection once per 3 days for 10 times. In vitro data revealed that cell viability and neurite outgrowth were increased, but apoptosis and levels of pro-inflammatory cytokines (including TNF-α, interleukin-1β, Interleukin-6 and C-C motif chemokine ligand 2 (CCL2)) were decreased by ETN treatment in AD cellular model. In vivo experiments found that ETN treatment improved spatial, long-term memory (reflected by Morrison water maze) and working memory (reflected by Y maze) in AD mice. Besides, ETN treatment reduced neuron injury (reflected by Hematoxylin-Eosin (HE) and terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) assays) and levels of pro-inflammatory cytokines (including TNF-α, interleukin-1β, Interleukin-6 and CCL2) in AD mice. Moreover, ETN repressed the activation of c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) pathways in AD both in vitro and in vivo. In conclusion, ETN exerts neuroprotective function via inactivating JNK and NF-κB pathways in AD, indicating the potential of ETN for improving AD management.
Collapse
Affiliation(s)
- Yuanlong Li
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ming Ni
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Wei Zhang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Fengqin Fang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Jun Sun
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Pin Lyu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmacy, People's Hospital of Henan University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China.
| |
Collapse
|
75
|
Orlandi M, Muñoz Aguilera E, Marletta D, Petrie A, Suvan J, D'Aiuto F. Impact of the treatment of periodontitis on systemic health and quality of life: A systematic review. J Clin Periodontol 2021; 49 Suppl 24:314-327. [PMID: 34791686 DOI: 10.1111/jcpe.13554] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
AIM To investigate the effect of treatment of periodontitis on systemic health outcomes, pregnancy complications, and associated quality of life. MATERIALS AND METHODS Systematic electronic searches were conducted to identify randomized controlled trials with minimum 6-month follow-up and reporting on the outcomes of interest. Qualitative and quantitative analyses were performed as deemed suitable. RESULTS Meta-analyses confirmed reductions of high-sensitivity C-reactive protein (hs-CRP) [0.56 mg/L, 95% confidence interval (CI) (-0.88, -0.25), p < .001]; interleukin (IL)-6 [0.48 pg/ml, 95% CI (-0.88, -0.08), p = .020], and plasma glucose [1.33 mmol/l, 95% CI (-2.41, -0.24), p = .016], and increase of flow-mediated dilation (FMD) [0.31%, 95% CI (0.07, 0.55), p = .012] and diastolic blood pressure [0.29 mmHg, 95% CI (0.10, 0.49), p = .003] 6 months after the treatment of periodontitis. A significant effect on preterm deliveries (<37 weeks) was observed [0.77 risk ratio, 95% CI (0.60, 0.98), p = .036]. Limited evidence was reported on quality-of-life (QoL) outcomes in the included studies. CONCLUSIONS Treatment of periodontitis results in systemic health improvements including improvement in cardiometabolic risk, reduction in systemic inflammation and the occurrence of preterm deliveries. Further research is however warranted to confirm whether these changes are sustained over time. Further, appropriate QoL outcomes should be included in the study designs of future clinical trials.
Collapse
Affiliation(s)
- Marco Orlandi
- Periodontology Unit, UCL Eastman Dental Institute, London, UK
| | | | | | - Aviva Petrie
- Biostatistics Unit, UCL Eastman Dental Institute, London, UK
| | - Jean Suvan
- Periodontology Unit, UCL Eastman Dental Institute, London, UK
| | | |
Collapse
|
76
|
Booth MJ, Kobayashi LC, Janevic MR, Clauw D, Piette JD. No increased risk of Alzheimer's disease among people with immune-mediated inflammatory diseases: findings from a longitudinal cohort study of U.S. older adults. BMC Rheumatol 2021; 5:48. [PMID: 34763722 PMCID: PMC8588609 DOI: 10.1186/s41927-021-00219-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Immune-mediated inflammatory diseases (IMID) are characterized by systemic inflammation affecting the joints and bodily organs. Studies examining the association between individual IMIDs and the risk of Alzheimer's disease (AD) have yielded inconsistent findings. This study examines AD risk across a group of IMIDs in a large population-based sample of older adults. METHODS Data on a national sample of US adults over age 50 was drawn from the Health and Retirement Study (HRS) and linked Medicare claims from 2006 to 2014. IMIDs include rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, ulcerative colitis, and related conditions. We identified IMIDs from 2006 to 2009 Medicare claims using International Classification of Diseases (ICD9-CM) codes. The date of incident AD was derived from Chronic Conditions Warehouse (CCW) identifiers. We examined the risk of AD from 2009 to 2014 using Cox proportional hazards models, both unadjusted and adjusted for age, gender, education, race, and the genetic risk factor APOE-e4. RESULTS One hundred seventy-one (6.02%) of the 2842 total HRS respondents with Medicare coverage and genetic data were classified with IMIDs. Over the subsequent 6 years, 9.36% of IMID patients developed AD compared to 8.57% of controls (unadjusted hazard ratio (HR): 1.09, 95% CI .66-1.81, p = 0.74). Adjusted HR 1.27 (95% CI 0.76-2.12, p = 0.35). Age (HR for 10-year increment 3.56, p < .001), less than high school education (HR 1.70, p = .007), and APOE-e4 (HR 2.61, p < .001 for one or two copies), were also statistically significant predictors of AD. CONCLUSION HRS respondents with common IMIDs do not have increased risk of Alzheimer's disease over a 6-year period.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA.
| | - Lindsay C Kobayashi
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mary R Janevic
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA
| | - Daniel Clauw
- Department of Anesthesiology, Rheumatology, Psychiatry, Michigan Medicine, Ann Arbor, MI, USA
| | - John D Piette
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA
- Department of Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| |
Collapse
|
77
|
Trzeciak P, Herbet M, Dudka J. Common Factors of Alzheimer's Disease and Rheumatoid Arthritis-Pathomechanism and Treatment. Molecules 2021; 26:6038. [PMID: 34641582 PMCID: PMC8512006 DOI: 10.3390/molecules26196038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
The accumulation of amyloid plaques, or misfolded fragments of proteins, leads to the development of a condition known as amyloidosis, which is clinically recognized as a systemic disease. Amyloidosis plays a special role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease, and rheumatoid arthritis (RA). The occurrence of amyloidosis correlates with the aging process of the organism, and since nowadays, old age is determined by the comfort of functioning and the elimination of unpleasant disease symptoms in the elderly, exposure to this subject is justified. In Alzheimer's disease, amyloid plaques negatively affect glutaminergic and cholinergic transmission and loss of sympathetic protein, while in RA, amyloids stimulated by the activity of the immune system affect the degradation of the osteoarticular bond. The following monograph draws attention to the over-reactivity of the immune system in AD and RA, describes the functionality of the blood-brain barrier as an intermediary medium between RA and AD, and indicates the direction of research to date, focusing on determining the relationship and the cause-effect link between these disorders. The paper presents possible directions for the treatment of amyloidosis, with particular emphasis on innovative therapies.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (P.T.)
| | | |
Collapse
|
78
|
Cisbani G, Rivest S. Targeting innate immunity to protect and cure Alzheimer's disease: opportunities and pitfalls. Mol Psychiatry 2021; 26:5504-5515. [PMID: 33854189 DOI: 10.1038/s41380-021-01083-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Innate immunity has been the focus of many new directions to understand the mechanisms involved in the aetiology of brain diseases, especially Alzheimer's disease (AD). AD is a multifactorial disorder, with the innate immune response and neuroinflammation at the forefront of the pathology. Thus, microglial cells along with peripheral circulating monocytes and more generally the innate immune response have been the target of several pre-clinical and clinical studies. More than a decade ago, inhibiting innate immune cells was considered to be the critical angle for preventing and treating brain diseases. After the failing of numerous clinical trials and the discovery that it may actually be the opposite in various pre-clinical models, the field has changed considerably. Here, we present both sides of the story with a particular emphasis on the beneficial properties of innate immune cells and how they can be targeted to have neuroprotective properties.
Collapse
Affiliation(s)
- Giulia Cisbani
- Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Serge Rivest
- CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
79
|
Kern DM, Lovestone S, Cepeda MS. Treatment with TNF-α inhibitors versus methotrexate and the association with dementia and Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12163. [PMID: 34584936 PMCID: PMC8450793 DOI: 10.1002/trc2.12163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Peripheral inhibition of tumor necrosis factor (TNF)-α, outside of the central nervous system, may result in clinical improvement of Alzheimer's disease (AD) outcomes. TNF-α inhibitors (TNFIs) are effective treatments for various autoimmune conditions and may be effective for preventing and/or treating AD. The objective of this study was to compare the risk of dementia and AD in patients initiating methotrexate versus those initiating TNFIs. METHODS Insurance claims data from databases of commercially insured and Medicare-eligible patients were used to estimate the risk of dementia and AD within patients with rheumatoid arthritis (RA) initiating a TNFI versus initiation of methotrexate. A sensitivity analysis included all patients without the RA diagnosis requirement. The at-risk period spanned from the index date until a diagnosis of the outcome, loss-to-follow-up, or receipt of the comparator drug. Patients were matched 1-to-1 using propensity scores. A Cox proportional hazards model was used to estimate the hazard ratio (HR). Negative controls were used to calibrate the results. RESULTS A total of 11,092 new TNFI patients and 44,023 new methotrexate patients were identified, and 8925 from each group were matched. The outcome of dementia occurred in 1.4% of patients in both groups. The calibrated results from the Cox regression found no difference between the two groups (commercially insured database: calibrated HR = 0.69, 95% confidence interval = 0.45 to 1.05; Medicare-only database: 1.14, 0.66 to 1.96). Results were similar in all sensitivity analyses: outcome of AD and including patients without RA. DISCUSSION No significant difference for the risk of dementia or AD was seen between patients initiating a TNFI versus methotrexate. Although this study cannot conclude whether use of TNFIs is protective against dementia and AD compared with receiving no treatment, there was no evidence that it is more protective than the active comparator methotrexate.
Collapse
Affiliation(s)
- David M. Kern
- Janssen Research & DevelopmentLLCTitusvilleNew JerseyUSA
| | - Simon Lovestone
- Janssen Research & DevelopmentNeuroscienceBeerse, TurnhoutsewegBelgium
| | | |
Collapse
|
80
|
Gerring ZF, Gamazon ER, White A, Derks EM. Integrative Network-Based Analysis Reveals Gene Networks and Novel Drug Repositioning Candidates for Alzheimer Disease. NEUROLOGY-GENETICS 2021; 7:e622. [PMID: 34532569 PMCID: PMC8441674 DOI: 10.1212/nxg.0000000000000622] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022]
Abstract
Background and Objectives To integrate genome-wide association study data with tissue-specific gene expression information to identify coexpression networks, biological pathways, and drug repositioning candidates for Alzheimer disease. Methods We integrated genome-wide association summary statistics for Alzheimer disease with tissue-specific gene coexpression networks from brain tissue samples in the Genotype-Tissue Expression study. We identified gene coexpression networks enriched with genetic signals for Alzheimer disease and characterized the associated networks using biological pathway analysis. The disease-implicated modules were subsequently used as a molecular substrate for a computational drug repositioning analysis, in which we (1) imputed genetically regulated gene expression within Alzheimer disease implicated modules; (2) integrated the imputed gene expression levels with drug-gene signatures from the connectivity map to identify compounds that normalize dysregulated gene expression underlying Alzheimer disease; and (3) prioritized drug compounds and mechanisms of action based on the extent to which they normalize dysregulated expression signatures. Results Genetic factors for Alzheimer disease are enriched in brain gene coexpression networks involved in the immune response. Computational drug repositioning analyses of expression changes within the disease-associated networks retrieved known Alzheimer disease drugs (e.g., memantine) as well as biologically meaningful drug categories (e.g., glutamate receptor antagonists). Discussion Our results improve the biological interpretation of genetic data for Alzheimer disease and provide a list of potential antidementia drug repositioning candidates for which the efficacy should be investigated in functional validation studies.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory (Z.F.G., E.M.D.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Division of Genetic Medicine (E.R.G.), Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; and Cellular and Molecular Neurodegeneration (A.W.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eric R Gamazon
- Translational Neurogenomics Laboratory (Z.F.G., E.M.D.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Division of Genetic Medicine (E.R.G.), Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; and Cellular and Molecular Neurodegeneration (A.W.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anthony White
- Translational Neurogenomics Laboratory (Z.F.G., E.M.D.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Division of Genetic Medicine (E.R.G.), Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; and Cellular and Molecular Neurodegeneration (A.W.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eske M Derks
- Translational Neurogenomics Laboratory (Z.F.G., E.M.D.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Division of Genetic Medicine (E.R.G.), Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; and Cellular and Molecular Neurodegeneration (A.W.), QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
81
|
Clark IA. Background to new treatments for COVID-19, including its chronicity, through altering elements of the cytokine storm. Rev Med Virol 2021; 31:1-13. [PMID: 33580566 PMCID: PMC7883210 DOI: 10.1002/rmv.2210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Anti-tumour necrosis factor (TNF) biologicals, Dexamethasone and rIL-7 are of considerable interest in treating COVID-19 patients who are in danger of, or have become, seriously ill. Yet reducing sepsis mortality by lowering circulating levels of TNF lost favour when positive endpoints in earlier simplistic models could not be reproduced in well-conducted human trials. Newer information with anti-TNF biologicals has encouraged reintroducing this concept for treating COVID-19. Viral models have had encouraging outcomes, as have the effects of anti-TNF biologicals on community-acquired COVID-19 during their long-term use to treat chronic inflammatory states. The positive outcome of a large scale trial of dexamethasone, and its higher potency late in the disease, harmonises well with its capacity to enhance levels of IL-7Rα, the receptor for IL-7, a cytokine that enhances lymphocyte development and is increased during the cytokine storm. Lymphoid germinal centres required for antibody-based immunity can be harmed by TNF, and restored by reducing TNF. Thus the IL-7- enhancing activity of dexamethasone may explain its higher potency when lymphocytes are depleted later in the infection, while employing anti-TNF, for several reasons, is much more logical earlier in the infection. This implies dexamethasone could prove to be synergistic with rIL-7, currently being trialed as a COVID-19 therapeutic. The principles behind these COVID-19 therapies are consistent with the observed chronic hypoxia through reduced mitochondrial function, and also the increased severity of this disease in ApoE4-positive individuals. Many of the debilitating persistent aspects of this disease are predictably susceptible to treatment with perispinal etanercept, since they have cerebral origins.
Collapse
Affiliation(s)
- Ian A. Clark
- Research School of BiologyAustralian National UniversityCanberraAustralia
| |
Collapse
|
82
|
Booth MJ, Janevic MR, Kobayashi LC, Clauw DJ, Piette JD. No association between rheumatoid arthritis and cognitive impairment in a cross-sectional national sample of older U.S. adults. BMC Rheumatol 2021; 5:24. [PMID: 34404491 PMCID: PMC8371766 DOI: 10.1186/s41927-021-00198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies suggest an increased prevalence of cognitive impairment (CI) among people with rheumatoid arthritis (RA). However, most prior studies have used convenience samples which are subject to selection biases or have failed to adjust for key confounding variables. We thus examined the association between CI and RA in a large national probability sample of older US adults. METHODS Data were from interviews with 4462 participants in the 2016 wave of the nationally representative U.S. Health and Retirement Study with linked Medicare claims. RA diagnoses were identified via a minimum of two ICD-9CM or ICD-10 codes in Medicare billing records during the prior 2 years. The Langa-Weir Classification was used to classify cognitive status as normal, cognitively impaired non-dementia (CIND), or dementia based on a brief neuropsychological battery for self-respondents and informant reports for proxy respondents. We compared the odds of CI between older adults with and without RA using logistic regression, adjusted for age, education, gender, and race. RESULTS Medicare records identified a 3.36% prevalence of RA (150/4462). While age, gender, education, and race independently predicted CI status, controlling for these covariates we found no difference in CI prevalence according to RA status (prevalent CI in 36.7% of older adults with RA vs. 34.0% without RA; adjusted OR = 1.08, 95% CI 0.74-1.59, p = .69). CONCLUSION There was no association between RA and CI in this national sample of older U.S. adults.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA.
| | - Mary R Janevic
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA
| | - Lindsay C Kobayashi
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Clauw
- Department of Anesthesiology, Rheumatology, Psychiatry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John D Piette
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48130, USA
- Department of Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI, USA
| |
Collapse
|
83
|
Hayley S, Hakim AM, Albert PR. Depression, dementia and immune dysregulation. Brain 2021; 144:746-760. [PMID: 33279966 DOI: 10.1093/brain/awaa405] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Major depression is a prevalent illness that increases the risk of several neurological conditions. These include stroke, cardiovascular disease, and dementia including Alzheimer's disease. In this review we ask whether certain types of depression and associated loneliness may be a harbinger of cognitive decline and possibly even dementia. We propose that chronic stress and inflammation combine to compromise vascular and brain function. The resulting increases in proinflammatory cytokines and microglial activation drive brain pathology leading to depression and mild cognitive impairment, which may progress to dementia. We present evidence that by treating the inflammatory changes, depression can be reversed in many cases. Importantly, there is evidence that anti-inflammatory and antidepressant treatments may reduce or prevent dementia in people with depression. Thus, we propose a model in which chronic stress and inflammation combine to increase brain permeability and cytokine production. This leads to microglial activation, white matter damage, neuronal and glial cell loss. This is first manifest as depression and mild cognitive impairment, but can eventually evolve into dementia. Further research may identify clinical subgroups with inflammatory depression at risk for dementia. It would then be possible to address in clinical trials whether effective treatment of the depression can delay the onset of dementia.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Antoine M Hakim
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
84
|
Lee MJ, Bhattarai D, Jang H, Baek A, Yeo IJ, Lee S, Miller Z, Lee S, Hong JT, Kim DE, Lee W, Kim KB. Macrocyclic Immunoproteasome Inhibitors as a Potential Therapy for Alzheimer's Disease. J Med Chem 2021; 64:10934-10950. [PMID: 34309393 PMCID: PMC10913540 DOI: 10.1021/acs.jmedchem.1c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid β. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 (20) effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC50: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 (20) also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Hyeryung Jang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ahreum Baek
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Seongsoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Zachary Miller
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, KY 40536-0596, USA
| |
Collapse
|
85
|
Morgello S, Cortes EP, Gensler G, Meloni G, Jacobs MM, Murray J, Borukov V, Crary JF. HIV disease duration, but not active brain infection, predicts cortical amyloid beta deposition. AIDS 2021; 35:1403-1412. [PMID: 33813555 PMCID: PMC8243827 DOI: 10.1097/qad.0000000000002893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Abnormal deposition of the antimicrobial peptide amyloid beta (Aβ) is a characteristic of Alzheimer's disease. The objective of this study was to elucidate risk factors for brain Aβ in a cohort enriched for HIV and other neurotropic pathogens. DESIGN Cross-sectional cohort study. METHODS We examined autopsy brains of 257 donors with a mean age of 52.8 years; 62% were men; and 194 were HIV+ and 63 HIV-. Hyperphosphorylated tau (p-tau) and Aβ were identified in frontal and temporal regions by immunohistochemistry. APOE genotyping was performed. Clinical and neuropathological predictors for Aβ were identified in univariate analyses, and then tested in multivariate regressions. RESULTS Cortical Aβ was identified in 32% of the sample, and active brain infection in 27%. Increased odds of Aβ were seen with increasing age and having an APOE ε4 allele; for the overall sample, HIV+ status was protective and brain infection was not a predictor. Within the HIV+ population, predictors for Aβ were duration of HIV disease and APOE alleles, but not age. When HIV disease duration and other HIV parameters were introduced into models for the entire sample, HIV disease duration was equivalent to age as a predictor of Aβ. CONCLUSION We hypothesize that dual aspects of immune suppression and stimulation in HIV, and beneficial survivor effects in older HIV+ individuals, account for HIV+ status decreasing, and HIV duration increasing, odds of Aβ. Importantly, with HIV, disease duration replaces age as an independent risk for Aβ, suggesting HIV-associated accelerated brain senescence.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology
- Department of Neuroscience
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Etty P Cortes
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY
| | | | | | | | | | - Valeriy Borukov
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY
| | - John F Crary
- Department of Neuroscience
- Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York City, NY
| |
Collapse
|
86
|
Torres-Acosta N, O'Keefe JH, O'Keefe EL, Isaacson R, Small G. Therapeutic Potential of TNF-α Inhibition for Alzheimer's Disease Prevention. J Alzheimers Dis 2021; 78:619-626. [PMID: 33016914 PMCID: PMC7739965 DOI: 10.3233/jad-200711] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Alzheimer’s disease (AD) is increasingly prevalent and over 99% of drugs developed for AD have failed in clinical trials. A growing body of literature suggests that potent inhibitors of tumor necrosis factor-α (TNF-α) have potential to improve cognitive performance. Objective: In this review, we summarize the evidence regarding the potential for TNF-α inhibition to prevent AD and improve cognitive function in people at risk for dementia. Methods: We conducted a literature review in PubMed, screening all articles published before July 7, 2019 related to TNF blocking agents and curcumin (another TNF-α inhibitor) in the context of AD pathology. The keywords in the search included: AD, dementia, memory, cognition, TNF-α, TNF inhibitors, etanercept, infliximab, adalimumab, golimumab, and curcumin. Results: Three large epidemiology studies reported etanercept treated patients had 60 to 70% lower odds ratio (OR) of developing AD. Two small-randomized control trials (RCTs) demonstrated an improvement in cognitive performance for AD patients treated with etanercept. Studies using animal models of dementia also reported similar findings with TNF blocking agents (etanercept, infliximab, adalimumab, Theracurmin), which appeared to improve cognition. A small human RCT using Theracurmin, a well-absorbed form of curcumin that lowers TNF-α, showed enhanced cognitive performance and decreased brain levels of amyloid-β plaque and tau tangles. Conclusion: TNF-α targeted therapy is a biologically plausible approach to the preservation of cognition, and warrants larger prospective RCTs to further investigate potential benefits in populations at risk of developing AD.
Collapse
Affiliation(s)
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | - Richard Isaacson
- Alzheimer's Prevention Clinic, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Gary Small
- UCLA Longevity Center, Los Angeles, CA, USA
| |
Collapse
|
87
|
Key Disease Mechanisms Linked to Alzheimer's Disease in the Entorhinal Cortex. Int J Mol Sci 2021; 22:ijms22083915. [PMID: 33920138 PMCID: PMC8069371 DOI: 10.3390/ijms22083915] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain’s entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical–protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.
Collapse
|
88
|
Stefanovski L, Meier JM, Pai RK, Triebkorn P, Lett T, Martin L, Bülau K, Hofmann-Apitius M, Solodkin A, McIntosh AR, Ritter P. Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Front Neuroinform 2021; 15:630172. [PMID: 33867964 PMCID: PMC8047422 DOI: 10.3389/fninf.2021.630172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Despite the acceleration of knowledge and data accumulation in neuroscience over the last years, the highly prevalent neurodegenerative disease of AD remains a growing problem. Alzheimer's Disease (AD) is the most common cause of dementia and represents the most prevalent neurodegenerative disease. For AD, disease-modifying treatments are presently lacking, and the understanding of disease mechanisms continues to be incomplete. In the present review, we discuss candidate contributing factors leading to AD, and evaluate novel computational brain simulation methods to further disentangle their potential roles. We first present an overview of existing computational models for AD that aim to provide a mechanistic understanding of the disease. Next, we outline the potential to link molecular aspects of neurodegeneration in AD with large-scale brain network modeling using The Virtual Brain (www.thevirtualbrain.org), an open-source, multiscale, whole-brain simulation neuroinformatics platform. Finally, we discuss how this methodological approach may contribute to the understanding, improved diagnostics, and treatment optimization of AD.
Collapse
Affiliation(s)
- Leon Stefanovski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Roopa Kalsank Pai
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Paul Triebkorn
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Tristram Lett
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Leon Martin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Konstantin Bülau
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Ana Solodkin
- Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | | | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Brain Simulation Section, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
89
|
Ni J, Wu Z. Inflammation Spreading: Negative Spiral Linking Systemic Inflammatory Disorders and Alzheimer's Disease. Front Cell Neurosci 2021; 15:638686. [PMID: 33716675 PMCID: PMC7947253 DOI: 10.3389/fncel.2021.638686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
As a physiological response to injury in the internal body organs, inflammation is responsible for removing dangerous stimuli and initiating healing. However, persistent and exaggerative chronic inflammation causes undesirable negative effects in the organs. Inflammation occurring in the brain and spinal cord is known as neuroinflammation, with microglia acting as the central cellular player. There is increasing evidence suggesting that chronic neuroinflammation is the most relevant pathological feature of Alzheimer’s disease (AD), regulating other pathological features, such as the accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau. Systemic inflammatory signals caused by systemic disorders are known to strongly influence neuroinflammation as a consequence of microglial activation, inflammatory mediator production, and the recruitment of peripheral immune cells to the brain, resulting in neuronal dysfunction. However, the neuroinflammation-accelerated neuronal dysfunction in AD also influences the functions of peripheral organs. In the present review, we highlight the link between systemic inflammatory disorders and AD, with inflammation serving as the common explosion. We discuss the molecular mechanisms that govern the crosstalk between systemic inflammation and neuroinflammation. In our view, inflammation spreading indicates a negative spiral between systemic diseases and AD. Therefore, “dampening inflammation” through the inhibition of cathepsin (Cat)B or CatS may be a novel therapeutic approach for delaying the onset of and enacting early intervention for AD.
Collapse
Affiliation(s)
- Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
90
|
Yuan W, Beaulieu-Jones BK, Yu KH, Lipnick SL, Palmer N, Loscalzo J, Cai T, Kohane IS. Temporal bias in case-control design: preventing reliable predictions of the future. Nat Commun 2021; 12:1107. [PMID: 33597541 PMCID: PMC7889612 DOI: 10.1038/s41467-021-21390-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
One of the primary tools that researchers use to predict risk is the case-control study. We identify a flaw, temporal bias, that is specific to and uniquely associated with these studies that occurs when the study period is not representative of the data that clinicians have during the diagnostic process. Temporal bias acts to undermine the validity of predictions by over-emphasizing features close to the outcome of interest. We examine the impact of temporal bias across the medical literature, and highlight examples of exaggerated effect sizes, false-negative predictions, and replication failure. Given the ubiquity and practical advantages of case-control studies, we discuss strategies for estimating the influence of and preventing temporal bias where it exists.
Collapse
Affiliation(s)
- William Yuan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | | | - Kun-Hsing Yu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Scott L Lipnick
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Center for Assessment Technology and Continuous Health, Massachusetts General Hospital, Boston, MA, USA
| | - Nathan Palmer
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tianxi Cai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Data Sciences, VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Isaac S Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
91
|
Lai PH, Wang TH, Zhang NY, Wu KC, Yao CCJ, Lin CJ. Changes of blood-brain-barrier function and transfer of amyloid beta in rats with collagen-induced arthritis. J Neuroinflammation 2021; 18:35. [PMID: 33516259 PMCID: PMC7847579 DOI: 10.1186/s12974-021-02086-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by synovial inflammation, cartilage damage, and systemic inflammation. RA is also associated with the occurrence of neuroinflammation and neurodegenerative diseases. In this study, the impacts of RA on the function of the blood-brain barrier (BBB) and the disposition of amyloid beta (Aβ), including BBB transport and peripheral clearance of Aβ, were investigated in rats with collagen-induced arthritis (CIA), an animal model with similarity to clinical and pathological features of human RA. Methods CIA was induced in female Lewis rats. In addition to neuroinflammation, the integrity and function of the BBB were examined. The expression of Aβ-transporting proteins at brain blood vessels was measured. Blood-to-brain influx and plasma clearance of Aβ were determined. Results Both microgliosis and astrogliosis were significantly increased in the brain of CIA rats, compared with controls. In terms of BBB function, the BBB permeability of sodium fluorescein, a marker compound for BBB integrity, was significantly increased in CIA rats. Moreover, increased expression of matrix metalloproteinase-3 (MMP-3) and MMP-9 and decreased expression of tight junction proteins, zonula occludens-1 (ZO-1) and occludin, were observed in brain microvessels of CIA rats. In related to BBB transport of Aβ, protein expression of the receptor of advanced glycation end product (RAGE) and P-glycoprotein (P-gp) was significantly increased in brain microvessels of CIA rats. Notably, much higher expression of RAGE was identified at the arterioles of the hippocampus of CIA rats. Following an intravenous injection of human Aβ, significant higher brain influx of Aβ was observed in the hippocampus of CIA rats. Conclusions Neuroinflammation and the changes of BBB function were observed in CIA rats. The increased RAGE expression at cerebral blood vessels and enhanced blood-to-brain influx of Aβ indicate the imbalanced BBB clearance of Aβ in RA. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02086-2.
Collapse
Affiliation(s)
- Po-Hsuan Lai
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei, Taiwan
| | - Ting-Hsuan Wang
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei, Taiwan
| | - Nai-You Zhang
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei, Taiwan
| | - Kuo-Chen Wu
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, Dental School, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, College of Medicine, National Taiwan University, 33 Linsen South Road, Taipei, Taiwan.
| |
Collapse
|
92
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
93
|
Sattui SE, Rajan M, Lieber SB, Lui G, Sterling M, Curtis JR, Mandl LA, Navarro-Millán I. Association of cardiovascular disease and traditional cardiovascular risk factors with the incidence of dementia among patients with rheumatoid arthritis. Semin Arthritis Rheum 2021; 51:292-298. [PMID: 33433365 DOI: 10.1016/j.semarthrit.2020.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To determine the incidence of dementia in patients with rheumatoid arthritis (RA) 65 years and older, and compare the incidence of dementia in patients with RA with prevalent cardiovascular (CV) disease (CVD), CV risk factors but no prevalent CVD and neither (referent group). METHODS We analyzed claims data from the Center for Medicare & Medicaid Services (CMS) from 2006-2014. Eligibility criteria included continuous medical and pharmacy coverage for ≥ 12 months (baseline period 2006), > 2 RA diagnoses by a rheumatologist and at least 1 medication for RA. CVD and CV risk factors were identified using codes from the Chronic Condition Data Warehouse. Incident dementia was defined by 1 inpatient or 2 outpatient claims, or one dementia specific medication. Age-adjusted incident rates were calculated within each age strata. Univariate and multivariate Cox proportional hazard models were used to calculate Hazard Ratios (HR) and 95% confidence intervals. RESULTS Among 56,567 patients with RA, 11,789 (20.1%) incident cases of dementia were included in the main analysis. Age adjusted incident rates were high among all groups and increased with age. After adjustment for age, sex, comorbidities and baseline CV and RA medications, patients with CVD and CV risk factors between 65 and 74 years had an increased risk for incident dementia compared to those without CVD and without CV risk factors (HR 1.18 (95% CI 1.04-1.33) and HR 1.03 (95% CI 1.00-1.11), respectively). We observed a trend towards increased risk in patients between 75 and 84 years with CVD at baseline. CONCLUSION Patients with RA with both CVD and CV risk factors alone are at an increased risk for dementia compared to those with neither CVD nor CV risk factors; however, this risk is attenuated with increasing age. The impact of RA treatment and CV primary prevention strategies in the prevention of dementia in patients with RA warrants further studies.
Collapse
Affiliation(s)
- Sebastian E Sattui
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States
| | - Mangala Rajan
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sarah B Lieber
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States; Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Geyanne Lui
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Madeline Sterling
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Jeffrey R Curtis
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lisa A Mandl
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States; Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Iris Navarro-Millán
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, United States; Division of General Internal Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
94
|
Fulop T, Tripathi S, Rodrigues S, Desroches M, Bunt T, Eiser A, Bernier F, Beauregard PB, Barron AE, Khalil A, Plotka A, Hirokawa K, Larbi A, Bocti C, Laurent B, Frost EH, Witkowski JM. Targeting Impaired Antimicrobial Immunity in the Brain for the Treatment of Alzheimer's Disease. Neuropsychiatr Dis Treat 2021; 17:1311-1339. [PMID: 33976546 PMCID: PMC8106529 DOI: 10.2147/ndt.s264910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and aging is the most common risk factor for developing the disease. The etiology of AD is not known but AD may be considered as a clinical syndrome with multiple causal pathways contributing to it. The amyloid cascade hypothesis, claiming that excess production or reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was accepted for a long time as the main cause of AD. However, many studies showed that Aβ is a frequent consequence of many challenges/pathologic processes occurring in the brain for decades. A key factor, sustained by experimental data, is that low-grade infection leading to production and deposition of Aβ, which has antimicrobial activity, precedes the development of clinically apparent AD. This infection is chronic, low grade, largely clinically silent for decades because of a nearly efficient antimicrobial immune response in the brain. A chronic inflammatory state is induced that results in neurodegeneration. Interventions that appear to prevent, retard or mitigate the development of AD also appear to modify the disease. In this review, we conceptualize further that the changes in the brain antimicrobial immune response during aging and especially in AD sufferers serve as a foundation that could lead to improved treatment strategies for preventing or decreasing the progression of AD in a disease-modifying treatment.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Shreyansh Tripathi
- Cluster Innovation Centre, North Campus, University of Delhi, Delhi, 110007, India.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.,Mathematical Computational and Experimental Neuroscience (MCEN), BCAM - The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Sophia Antipolis, France.,Department of Mathematics, Université Côte d'Azur, Nice, France
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA, USA
| | - Arnold Eiser
- Leonard Davis Institute, University of Pennsylvania, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd, Next Generation Science Institute, Kanagawa, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Abdelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Plotka
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Med. Dent. University, Tokyo and Nito-Memory Nakanosogo Hospital, Department of Pathology, Tokyo, Japan
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (ASTAR), Immunos Building, Biopolis, Singapore, Singapore
| | - Christian Bocti
- Research Center on Aging, Department of Medicine, Division of Neurology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Benoit Laurent
- Research Center on Aging, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric H Frost
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
95
|
Süβ P, Lana AJ, Schlachetzki JCM. Chronic peripheral inflammation: a possible contributor to neurodegenerative diseases. Neural Regen Res 2021; 16:1711-1714. [PMID: 33510059 PMCID: PMC8328777 DOI: 10.4103/1673-5374.306060] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of chronic peripheral inflammation to the pathogenesis of neurodegenerative diseases is an outstanding question. Sustained activation of the peripheral innate and adaptive immune systems occurs in the context of a broad array of disorders ranging from chronic infectious diseases to autoimmune and metabolic diseases. In addition, progressive systemic inflammation is increasingly recognized during aging. Peripheral immune cells could potentially modulate the cellular brain environment via the secretion of soluble molecules. There is an ongoing debate whether peripheral immune cells have the potential to migrate into the brain under certain permissive circumstances. In this perspective, we discuss the possible contribution of chronic peripheral inflammation to the pathogenesis of age-related neurodegenerative diseases with a focus on microglia, the resident immune cells of the brain parenchyma.
Collapse
Affiliation(s)
- Patrick Süβ
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Addison J Lana
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
96
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
97
|
Wang LL, Song YP, Mi JH, Ding ML. Peptidyl arginine deiminase 4 and its potential role in Alzheimer's disease. Med Hypotheses 2020; 146:110466. [PMID: 33412502 DOI: 10.1016/j.mehy.2020.110466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is the main cause of dementia, and its pathogenesis is still not clear. Peptidyl arginine deiminases 4(PAD4) as one of the important members of PAD family, is the only protein with nuclear transfer function, it can regulate the expression of many proteins through citrullinating histone. PAD4 can also interact with many transcription factors, involved in regulating gene expression. PAD4 expression is closely related to the inflammatory factors secreted, cell autophagy, tumorigenesis and other neurodegenerative diseases. More importantly, PAD4 and its citrullinated protein were found in cortical and hippocampal neurons of AD patients. To study the expression and regulatory pathway of PAD4 in vivo and in vitro experiments on AD may be of helpful to elucidate the pathogenesis of AD. Meanwhile, detection of anti-citrullinated antibody will have potential value as novel biomarkers of AD.
Collapse
Affiliation(s)
- Li-Ling Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Ye-Ping Song
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Jian-Hua Mi
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 201100, China
| | - Meng-Lei Ding
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, 200120, China.
| |
Collapse
|
98
|
The Cholinesterase Inhibitory Properties of Stephaniae Tetrandrae Radix. Molecules 2020; 25:molecules25245914. [PMID: 33327436 PMCID: PMC7764916 DOI: 10.3390/molecules25245914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022] Open
Abstract
Stephaniae tetrandrae radix (STR) is a commonly used traditional Chinese medicine in alleviating edema by inducing diuresis. In the clinic, STR extracts or its components are widely used in the treatment of edema, dysuria, and rheumatism for the regulation of water metabolism. Furthermore, STR has been used in treating emotional problems for years by combining with other Chinese herbs. However, the material basis and mechanism of STR on the nervous system have not been revealed. Here, the main components of STR extracts with different extracting solvents were identified, including three major alkaloids, i.e., cyclanoline, fangchinoline, and tetrandrine. The cholinesterase inhibitory activity of STR extracts and its alkaloids was determined using the Ellman assay. Both cyclanoline and fangchinoline showed acetylcholinesterase (AChE) inhibitory activity, demonstrating noncompetitive enzyme inhibition. In contrast, tetrandrine did not show enzymatic inhibition. The synergism of STR alkaloids with huperzine A or donepezil was calculated by the median-effect principle. The drug combination of fangchinoline–huperzine A or donepezil synergistically inhibited AChE, having a combination index (CI) < 1 at Fa = 0.5. Furthermore, the molecular docking results showed that fangchinoline bound with AChE residues in the peripheral anionic site, and cyclanoline bound with AChE residues in the peripheral anionic site, anionic site, and catalytic site. In parallel, cyclanoline bound with butyrylcholinesterase (BChE) residues in the anionic site, catalytic site, and aromatic site. The results support that fangchinoline and cyclanoline, alkaloids derived from STR, could account for the anti-AChE function of STR. Thus, STR extract or its alkaloids may potentially be developed as a therapeutic strategy for Alzheimer’s patients.
Collapse
|
99
|
Süß P, Rothe T, Hoffmann A, Schlachetzki JCM, Winkler J. The Joint-Brain Axis: Insights From Rheumatoid Arthritis on the Crosstalk Between Chronic Peripheral Inflammation and the Brain. Front Immunol 2020; 11:612104. [PMID: 33362800 PMCID: PMC7758283 DOI: 10.3389/fimmu.2020.612104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by erosive polyarthritis. Beyond joint pathology, RA is associated with neuropsychiatric comorbidity including depression, anxiety, and an increased risk to develop neurodegenerative diseases in later life. Studies investigating the central nervous system (CNS) in preclinical models of RA have leveraged the understanding of the intimate crosstalk between peripheral and central immune responses. This mini review summarizes the current knowledge of CNS comorbidity in RA patients and known underlying cellular mechanisms. We focus on the differential regulation of CNS myeloid and glial cells in different mouse models of RA reflecting different patterns of peripheral immune activation. Moreover, we address CNS responses to anti-inflammatory treatment in human RA patients and mice. Finally, to illustrate the bidirectional communication between the CNS and chronic peripheral inflammation, we present the current knowledge about the impact of the CNS on arthritis. A comprehensive understanding of the crosstalk between the CNS and chronic peripheral inflammation will help to identify RA patients at risk of developing CNS comorbidity, setting the path for future therapeutic approaches in both RA and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Patrick Süß
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany.,Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Rothe
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Alana Hoffmann
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jürgen Winkler
- Department of Molecular Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
100
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|