51
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
52
|
New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Med 2022; 52:5-23. [PMID: 36173597 PMCID: PMC9734239 DOI: 10.1007/s40279-022-01757-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
The importance of carbohydrate as a fuel source for exercise and athletic performance is well established. Equally well developed are dietary carbohydrate intake guidelines for endurance athletes seeking to optimize their performance. This narrative review provides a contemporary perspective on research into the role of, and application of, carbohydrate in the diet of endurance athletes. The review discusses how recommendations could become increasingly refined and what future research would further our understanding of how to optimize dietary carbohydrate intake to positively impact endurance performance. High carbohydrate availability for prolonged intense exercise and competition performance remains a priority. Recent advances have been made on the recommended type and quantity of carbohydrates to be ingested before, during and after intense exercise bouts. Whilst reducing carbohydrate availability around selected exercise bouts to augment metabolic adaptations to training is now widely recommended, a contemporary view of the so-called train-low approach based on the totality of the current evidence suggests limited utility for enhancing performance benefits from training. Nonetheless, such studies have focused importance on periodizing carbohydrate intake based on, among other factors, the goal and demand of training or competition. This calls for a much more personalized approach to carbohydrate recommendations that could be further supported through future research and technological innovation (e.g., continuous glucose monitoring). Despite more than a century of investigations into carbohydrate nutrition, exercise metabolism and endurance performance, there are numerous new important discoveries, both from an applied and mechanistic perspective, on the horizon.
Collapse
|
53
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
54
|
A Glimpse of the Sports Nutrition Awareness in Spanish Basketball Players. Nutrients 2021; 14:nu14010027. [PMID: 35010902 PMCID: PMC8746623 DOI: 10.3390/nu14010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Basketball is a team sport, with many fans and practitioners worldwide from all ages and levels. In all cases, players accumulate high levels of fatigue, and there is also limited time to recover between games or practices. In particular, nutrition plays a key role in optimizing performance and recovery. However, it is typical to observe erroneous nutritional behaviors among basketball players. It has been theorized that these behaviors are influenced by habits acquired based on the individual’s knowledge. Therefore, the main aim of this study was to conduct a descriptive research of the sports nutrition knowledge and practices in a sample of Spanish basketball players, from athletes under 18 years old (n = 69) to nonprofessional (n = 14) and professional adult players (n = 21). The sample was comprised of 49 men and 55 women. This was a transversal, cross-sectional, observational and descriptive study. All participants (n = 104) completed an anonymous online survey in order to analyze their sports nutrition knowledge and practices. In view of the obtained results, we can conclude that the knowledge of sport-specific nutrition in players under 18 years old, as well as non-professional and professional adult basketball players, is insufficient through all the categories and levels. The lack of professional support and time management difficulties were identified as some of the main barriers.
Collapse
|
55
|
Comparing Acute, High Dietary Protein and Carbohydrate Intake on Transcriptional Biomarkers, Fuel Utilisation and Exercise Performance in Trained Male Runners. Nutrients 2021; 13:nu13124391. [PMID: 34959943 PMCID: PMC8706924 DOI: 10.3390/nu13124391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Manipulating dietary macronutrient intake may modulate adaptive responses to exercise, and improve endurance performance. However, there is controversy as to the impact of short-term dietary modification on athletic performance. In a parallel-groups, repeated measures study, 16 trained endurance runners (maximal oxygen uptake (V˙O2max): 64.2 ± 5.6 mL·kg-1·min-1) were randomly assigned to, and provided with, either a high-protein, reduced-carbohydrate (PRO) or a high-carbohydrate (CHO) isocaloric-matched diet. Participants maintained their training load over 21-consecutive days with dietary intake consisting of 7-days habitual intake (T1), 7-days intervention diet (T2) and 7-days return to habitual intake (T3). Following each 7-day dietary period (T1-T3), a micro-muscle biopsy was taken for assessment of gene expression, before participants underwent laboratory assessment of a 10 km treadmill run at 75% V˙O2max, followed by a 95% V˙O2max time to exhaustion (TTE) trial. The PRO diet resulted in a modest change (1.37-fold increase, p = 0.016) in AMPK expression, coupled with a significant increase in fat oxidation (0.29 ± 0.05 to 0.59 ± 0.05 g·min-1, p < 0.0001). However, a significant reduction of 23.3% (p = 0.0003) in TTE post intervention was observed; this reverted back to pre levels following a return to the habitual diet. In the CHO group, whilst no change in sub-maximal fuel utilisation occurred at T2, a significant 6.5% increase in TTE performance (p = 0.05), and a modest, but significant, increase in AMPK (p = 0.042) and PPAR (p = 0.029) mRNA expression compared to T1 were observed; with AMPK (p = 0.011) and PPAR (p = 0.044) remaining significantly elevated at T3. In conclusion, a 7-day isocaloric high protein diet significantly compromised high intensity exercise performance in trained runners with no real benefit on gene markers of training adaptation. A significant increase in fat oxidation during submaximal exercise was observed post PRO intervention, but this returned to pre levels once the habitual diet was re-introduced, suggesting that the response was driven via fuel availability rather than cellular adaptation. A short-term high protein, low carbohydrate diet in combination with endurance training is not preferential for endurance running performance.
Collapse
|
56
|
Bennett S, Tiollier E, Brocherie F, Owens DJ, Morton JP, Louis J. Three weeks of a home-based "sleep low-train low" intervention improves functional threshold power in trained cyclists: A feasibility study. PLoS One 2021; 16:e0260959. [PMID: 34855913 PMCID: PMC8639084 DOI: 10.1371/journal.pone.0260959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background “Sleep Low-Train Low” is a training-nutrition strategy intended to purposefully reduce muscle glycogen availability around specific exercise sessions, potentially amplifying the training stimulus via augmented cell signalling. The aim of this study was to assess the feasibility of a 3-week home-based “sleep low-train low” programme and its effects on cycling performance in trained athletes. Methods Fifty-five trained athletes (Functional Threshold Power [FTP]: 258 ± 52W) completed a home-based cycling training program consisting of evening high-intensity training (6 × 5 min at 105% FTP), followed by low-intensity training (1 hr at 75% FTP) the next morning, three times weekly for three consecutive weeks. Participant’s daily carbohydrate (CHO) intake (6 g·kg-1·d-1) was matched but timed differently to manipulate CHO availability around exercise: no CHO consumption post- HIT until post-LIT sessions [Sleep Low (SL), n = 28] or CHO consumption evenly distributed throughout the day [Control (CON), n = 27]. Sessions were monitored remotely via power data uploaded to an online training platform, with performance tests conducted pre-, post-intervention. Results LIT exercise intensity reduced by 3% across week 1, 3 and 2% in week 2 (P < 0.01) with elevated RPE in SL vs. CON (P < 0.01). SL enhanced FTP by +5.5% vs. +1.2% in CON (P < 0.01). Comparable increases in 5-min peak power output (PPO) were observed between groups (P < 0.01) with +2.3% and +2.7% in SL and CON, respectively (P = 0.77). SL 1-min PPO was unchanged (+0.8%) whilst CON improved by +3.9% (P = 0.0144). Conclusion Despite reduced relative training intensity, our data demonstrate short-term “sleep low-train low” intervention improves FTP compared with typically “normal” CHO availability during exercise. Importantly, training was completed unsupervised at home (during the COVID-19 pandemic), thus demonstrating the feasibility of completing a “sleep low-train low” protocol under non-laboratory conditions.
Collapse
Affiliation(s)
- Samuel Bennett
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Eve Tiollier
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Daniel J. Owens
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - James P. Morton
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
| | - Julien Louis
- Research Institute for Sport and Exercise Science (RISES), Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
57
|
Aird TP, Farquharson AJ, Bermingham KM, O'Sulllivan A, Drew JE, Carson BP. Divergent serum metabolomic, skeletal muscle signaling, transcriptomic, and performance adaptations to fasted versus whey protein-fed sprint interval training. Am J Physiol Endocrinol Metab 2021; 321:E802-E820. [PMID: 34747202 PMCID: PMC8906818 DOI: 10.1152/ajpendo.00265.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022]
Abstract
Sprint interval training (SIT) is a time-efficient alternative to endurance exercise, conferring beneficial skeletal muscle metabolic adaptations. Current literature has investigated the nutritional regulation of acute and chronic exercise-induced metabolic adaptations in muscle following endurance exercise, principally comparing the impact of training in fasted and carbohydrate-fed (CHO) conditions. Alternative strategies such as exercising in low CHO, protein-fed conditions remain poorly characterized, specifically pertaining to adaptations associated with SIT. Thus, this study aimed to compare the metabolic and performance adaptations to acute and short-term SIT in the fasted state with preexercise hydrolyzed (WPH) or concentrated (WPC) whey protein supplementation. In healthy males, preexercise protein ingestion did not alter exercise-induced increases in PGC-1α, PDK4, SIRT1, and PPAR-δ mRNA expression following acute SIT. However, supplementation of WPH beneficially altered acute exercise-induced CD36 mRNA expression. Preexercise protein ingestion attenuated acute exercise-induced increases in muscle pan-acetylation and PARP1 protein content compared with fasted SIT. Acute serum metabolomic differences confirmed greater preexercise amino acid delivery in protein-fed compared with fasted conditions. Following 3 wk of SIT, training-induced increases in mitochondrial enzymatic activity and exercise performance were similar across nutritional groups. Interestingly, resting muscle acetylation status was downregulated in WPH conditions following training. Such findings suggest preexercise WPC and WPH ingestion positively influences metabolic adaptations to SIT compared with fasted training, resulting in either similar or enhanced performance adaptations. Future studies investigating nutritional modulation of metabolic adaptations to exercise are warranted to build upon these novel findings.NEW & NOTEWORTHY These are the first data to show the influence of preexercise protein on serum and skeletal muscle metabolic adaptations to acute and short-term sprint interval training (SIT). Preexercise whey protein concentrate (WPC) or hydrolysate (WPH) feeding acutely affected the serum metabolome, which differentially influenced acute and chronic changes in mitochondrial gene expression, intracellular signaling (acetylation and PARylation) resulting in either similar or enhanced performance outcomes when compared with fasted training.
Collapse
Affiliation(s)
- Tom P Aird
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Kate M Bermingham
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Aifric O'Sulllivan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Janice E Drew
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Brian P Carson
- Physical Education and Sports Sciences, University of Limerick, Limerick, Ireland
- Physical Activity for Health, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
58
|
Brooke NK, Cosio-Lima L. Nutrition in Cycling. Phys Med Rehabil Clin N Am 2021; 33:159-172. [PMID: 34798997 DOI: 10.1016/j.pmr.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cycling is predominantly an endurance sport in which fuel utilization for energy production relies on the availability and delivery of oxygen to exercising muscle. Nutrition and training interventions to improve endurance performance are continually evolving, but ultimately, prescription should aim to generate improvements in cycling power and velocity while prioritizing athlete health and well-being. The wide range of cycling events and the different environments in which events take place pose a variety of nutrition-related challenges for cyclists. This review addresses some of these challenges and highlights recent advancements in nutrition for cycling performance.
Collapse
Affiliation(s)
- Namrita Kumar Brooke
- Department of Movement Sciences and Health, University of West Florida, 11000 University Parkway Building 782/220, Pensacola, FL 32514, USA.
| | - Ludmila Cosio-Lima
- Department of Movement Sciences and Health, University of West Florida, 11000 University Parkway Building 782/220, Pensacola, FL 32514, USA
| |
Collapse
|
59
|
Small SD, Margolis LM. Impact of Dietary Carbohydrate Restriction versus Energy Restriction on Exogenous Carbohydrate Oxidation during Aerobic Exercise. Adv Nutr 2021; 13:S2161-8313(22)00076-X. [PMID: 34788795 PMCID: PMC8970824 DOI: 10.1093/advances/nmab124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Individuals with high physical activity levels, such as athletes and military personnel, are likely to experience periods of low muscle glycogen content. Reductions in glycogen stores are associated with impaired physical performance. Lower glycogen stores in these populations are likely due to sustained aerobic exercise coupled with sub-optimal carbohydrate or energy intake. Consuming exogenous carbohydrate during aerobic exercise may be an effective intervention to sustain physical performance during periods of low glycogen. However, research is limited in the area of carbohydrate recommendations to fuel performance during periods of sub-optimal carbohydrate and energy intake. Additionally, the studies that have investigated the effects of low glycogen stores on exogenous carbohydrate oxidation have yielded conflicting results. Discrepancies between studies may be the result of glycogen stores being lowered by restricting carbohydrate or restricting energy intake. This narrative review discusses the influence of low glycogen status resulting from carbohydrate restriction versus energy restriction on exogenous carbohydrate oxidation and examines the potential mechanism resulting in divergent responses in exogenous carbohydrate oxidation. Results from this review indicate that rates of exogenous carbohydrate oxidation can be maintained when glycogen content is lower following carbohydrate restrictions, but may be reduced following energy restriction. Reductions in exogenous carbohydrate oxidation following energy restriction appear to result from lower insulin sensitivity and glucose uptake. Exogenous carbohydrate may thus be an effective intervention to sustain performance following short-term energy adequate carbohydrate restriction, but may not be an effective ergogenic aid when glycogen stores are low due to energy restriction.
Collapse
Affiliation(s)
- Stephanie D Small
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA,Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | | |
Collapse
|
60
|
Brocherie F, Goto K, Dupuy O, Gruet M, Vercruyssen F, Louis J. Editorial: From Physiological Adaptations to Endurance Performance: It Is Time to Bridge the Gap. Front Sports Act Living 2021; 3:775654. [PMID: 34712953 PMCID: PMC8546105 DOI: 10.3389/fspor.2021.775654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Kazushige Goto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Olivier Dupuy
- University of Poitiers, Laboratory MOVE (EA 6314), Faculty of Sport Sciences, Poitiers, France.,School of Kinesiology and Physical Activity Sciences, University of Montreal, Montreal, QC, Canada
| | - Mathieu Gruet
- IAPS Laboratory, University of Toulon, Toulon, France
| | | | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
61
|
Effects of a Low-Carbohydrate High-Fat Diet Combined with High-Intensity Interval Training on Body Composition and Maximal Oxygen Uptake: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010740. [PMID: 34682481 PMCID: PMC8535842 DOI: 10.3390/ijerph182010740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
The low-carbohydrate high-fat (LCHF) diet has recently been subject to attention on account of its reported influences on body composition and physical performance. However, the combined effect of LCHF with high-intensity interval training (HIIT) is unclear. A systematic review and meta-analysis were conducted to explore the effect of the LCHF diet combined with HIIT on human body composition (i.e., body weight (BM), body mass index (BMI), fat mass (FM), body fat percentage (BFP), fat-free mass (FFM)) and maximal oxygen uptake (VO2max). Online libraries (PubMed, Web of Science, EMBASE, Cochrane Library, EBSCO, CNKI, Wan Fang) were used to search initial studies until July 2021, from which 10 out of 2440 studies were included. WMD served as the effect size with a confidence interval value of 95%. The results of meta-analysis showed a significant reduction in BM (WMD = −5.299; 95% CI: −7.223, −3.376, p = 0.000), BMI (WMD = −1.150; 95% CI: −2.225, −0.075, p = 0.036), BFP (WMD = −2.787; 95% CI: −4.738, −0.835, p = 0.005) and a significant increase in VO2max (WMD = 3.311; 95% CI: 1.705, 4.918, p = 0.000), while FM (WMD = −2.221; 95% CI: −4.582, 0.139, p = 0.065) and FFM (WMD = 0.487; 95% CI: −3.512, 4.469, p = 0.814) remained unchanged. In conclusion, the LCHF diet combined with HIIT can reduce weight and fat effectively. This combination is sufficient to prevent muscle mass loss during LCHF, and further enhance VO2max. Further research might be required to clarify the effect of other types of exercise on body composition and physical performance during LCHF.
Collapse
|
62
|
Abstract
Adolescence (ages 13–18 years) is a period of significant growth and physical development that includes changes in body composition, metabolic and hormonal fluctuations, maturation of organ systems, and establishment of nutrient deposits, which all may affect future health. In terms of nutrition, adolescence is also an important time in establishing an individual’s lifelong relationship with food, which is particularly important in terms of the connection between diet, exercise, and body image. The challenges of time management (e.g., school, training, work and social commitments) and periods of fluctuating emotions are also features of this period. In addition, an adolescent’s peers become increasingly powerful moderators of all behaviours, including eating. Adolescence is also a period of natural experimentation and this can extend to food choice. Adolescent experiences are not the same and individuals vary considerably in their behaviours. To ensure an adolescent athlete fulfils his/her potential, it is important that stakeholders involved in managing youth athletes emphasize eating patterns that align with and support sound physical, physiological and psychosocial development and are consistent with proven principles of sport nutrition.
Collapse
Affiliation(s)
- Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
63
|
Moore DR. Protein Requirements for Master Athletes: Just Older Versions of Their Younger Selves. Sports Med 2021; 51:13-30. [PMID: 34515969 PMCID: PMC8566396 DOI: 10.1007/s40279-021-01510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
It is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, 100 Devonshire Place, Toronto, ON, M5S 2C9, Canada.
| |
Collapse
|
64
|
The Mediterranean dietary pattern for optimising health and performance in competitive athletes: a narrative review. Br J Nutr 2021; 128:1285-1298. [PMID: 34420536 DOI: 10.1017/s0007114521003202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrition plays a key role in training for, and competing in, competitive sport, and is essential for reducing risk of injury and illness, recovering and adapting between bouts of activity, and enhancing performance. Consumption of a Mediterranean diet (MedDiet) has been demonstrated to reduce risk of various non-communicable diseases and increase longevity. Following the key principles of a MedDiet could also represent a useful framework for good nutrition in competitive athletes under most circumstances, with potential benefits for health and performance parameters. In this review, we discuss the potential effects of a MedDiet, or individual foods and compounds readily available in this dietary pattern, on oxidative stress and inflammation, injury and illness risk, vascular and cognitive function, and exercise performance in competitive athletes. We also highlight potential modifications which could be made to the MedDiet (whilst otherwise adhering to the key principles of this dietary pattern) in accordance with contemporary sports nutrition practices, to maximise health and performance effects. In addition, we discuss potential directions for future research.
Collapse
|
65
|
"Fuel for the Damage Induced": Untargeted Metabolomics in Elite Rugby Union Match Play. Metabolites 2021; 11:metabo11080544. [PMID: 34436485 PMCID: PMC8400368 DOI: 10.3390/metabo11080544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023] Open
Abstract
The metabolic perturbations caused by competitive rugby are not well characterized. Our aim is to utilize untargeted metabolomics to develop appropriate interventions, based on the metabolic fluctuations that occur in response to this collision-based team sport. Seven members of an English Premiership rugby squad consented to provide blood, urine, and saliva samples daily, over a competitive week including gameday (GD), with physical demands and dietary intake also recorded. Sample collection, processing and statistical analysis were performed in accordance with best practice set out by the metabolomics standards initiative employing 700 MHz NMR spectroscopy. Univariate and multivariate statistical analysis were employed to reveal the acute energy needs of this high intensity sport are met via glycolysis, the TCA cycle and gluconeogenesis. The recovery period after cessation of match play and prior to training recommencing sees a re-entry to gluconeogenesis, coupled with markers of oxidative stress, structural protein degradation, and reduced fatty acid metabolism. This novel insight leads us to propose that effective recovery from muscle damaging collisions is dependent upon the availability of glucose. An adjustment in the periodisation of carbohydrate to increase GD+1 provision may prevent the oxidation of amino acids which may also be crucial to allay markers of structural tissue degradation. Should we expand the ‘Fuel for the work required’ paradigm in collision-based team sports to include ‘Fuel for the damage induced’?
Collapse
|
66
|
Carbohydrate for endurance athletes in competition questionnaire (CEAC-Q): validation of a practical and time-efficient tool for knowledge assessment. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-021-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Despite unequivocal evidence demonstrating high carbohydrate (CHO) availability improves endurance performance, athletes often report under-eating CHO during competition. Such findings may be related to a lack of knowledge though currently there are no practical or time-efficient tools to assess CHO knowledge in athletes. Accordingly, we aimed to validate a novel questionnaire to rapidly assess endurance athletes’ knowledge of competition CHO guidelines.
Methods
The Carbohydrate for Endurance Athletes in Competition Questionnaire (CEAC-Q) was created by research-active practitioners, based on contemporary guidelines. The CEAC-Q comprised 25 questions divided into 5 subsections (assessing CHO metabolism, CHO loading, pre-event meal, during-competition CHO and recovery) each worth 20 points for a total possible score of 100.
Results
A between-group analysis of variance compared scores in three different population groups to assess construct validity: general population (GenP; n = 68), endurance athletes (EA; n = 145), and sports dietitians/nutritionists (SDN; n = 60). Total scores were different (mean ± SD) in all pairwise comparisons of GenP (17 ± 20%), EA (46 ± 19%) and SDN (76 ± 10%, p < 0.001). Subsection scores were also significantly different between the groups, with mean subsection scores of 3.4 ± 4.7% (GenP), 9.2 ± 5.2% (EA) and 15.2 ± 3.5% (SDN, p < 0.001). Test–retest reliability of the total CEAC-Q was determined in EA (r = 0.742, p < 0.001).
Conclusion
Taking ~ 10 min to complete, the CEAC-Q is a new psychometrically valid, practical and time-efficient tool for practitioners to assess athletes’ knowledge of CHO for competition and guide subsequent nutrition intervention.
Collapse
|
67
|
The Validity of Ultrasound Technology in Providing an Indirect Estimate of Muscle Glycogen Concentrations Is Equivocal. Nutrients 2021; 13:nu13072371. [PMID: 34371881 PMCID: PMC8308826 DOI: 10.3390/nu13072371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Researchers and practitioners in sports nutrition would greatly benefit from a rapid, portable, and non-invasive technique to measure muscle glycogen, both in the laboratory and field. This explains the interest in MuscleSound®, the first commercial system to use high-frequency ultrasound technology and image analysis from patented cloud-based software to estimate muscle glycogen content from the echogenicity of the ultrasound image. This technique is based largely on muscle water content, which is presumed to act as a proxy for glycogen. Despite the promise of early validation studies, newer studies from independent groups reported discrepant results, with MuscleSound® scores failing to correlate with the glycogen content of biopsy-derived mixed muscle samples or to show the expected changes in muscle glycogen associated with various diet and exercise strategies. The explanation of issues related to the site of assessment do not account for these discrepancies, and there are substantial problems with the premise that the ratio of glycogen to water in the muscle is constant. Although further studies investigating this technique are warranted, current evidence that MuscleSound® technology can provide valid and actionable information around muscle glycogen stores is at best equivocal.
Collapse
|
68
|
Margolis LM, Wilson MA, Whitney CC, Carrigan CT, Murphy NE, Hatch-McChesney A, Pasiakos SM. Initiating aerobic exercise with low glycogen content reduces markers of myogenesis but not mTORC1 signaling. J Int Soc Sports Nutr 2021; 18:56. [PMID: 34246303 PMCID: PMC8272266 DOI: 10.1186/s12970-021-00455-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background The effects of low muscle glycogen on molecular markers of protein synthesis and myogenesis before and during aerobic exercise with carbohydrate ingestion is unclear. The purpose of this study was to determine the effects of initiating aerobic exercise with low muscle glycogen on mTORC1 signaling and markers of myogenesis. Methods Eleven men completed two cycle ergometry glycogen depletion trials separated by 7-d, followed by randomized isocaloric refeeding for 24-h to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) glycogen. Participants then performed 80-min of cycle ergometry (64 ± 3% VO2peak) while ingesting 146 g carbohydrate. mTORC1 signaling (Western blotting) and gene transcription (RT-qPCR) were determined from vastus lateralis biopsies before glycogen depletion (baseline, BASE), and before (PRE) and after (POST) exercise. Results Regardless of treatment, p-mTORC1Ser2448, p-p70S6KSer424/421, and p-rpS6Ser235/236 were higher (P < 0.05) POST compared to PRE and BASE. PAX7 and MYOGENIN were lower (P < 0.05) in LOW compared to AD, regardless of time, while MYOD was lower (P < 0.05) in LOW compared to AD at PRE, but not different at POST. Conclusion Initiating aerobic exercise with low muscle glycogen does not affect mTORC1 signaling, yet reductions in gene expression of myogenic regulatory factors suggest that muscle recovery from exercise may be reduced.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA.
| | - Marques A Wilson
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Claire C Whitney
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Christopher T Carrigan
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Nancy E Murphy
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Adrienne Hatch-McChesney
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Avenue, Bldg. 42, Natick, MA, 01760, USA
| |
Collapse
|
69
|
Stellingwerff T, Heikura IA, Meeusen R, Bermon S, Seiler S, Mountjoy ML, Burke LM. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med 2021; 51:2251-2280. [PMID: 34181189 DOI: 10.1007/s40279-021-01491-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
Abstract
The symptom similarities between training-overload (with or without an Overtraining Syndrome (OTS) diagnosis) and Relative Energy Deficiency in Sport (RED-S) are significant, with both initiating from a hypothalamic-pituitary origin, that can be influenced by low carbohydrate (CHO) and energy availability (EA). In this narrative review we wish to showcase that many of the negative outcomes of training-overload (with, or without an OTS diagnosis) may be primarily due to misdiagnosed under-fueling, or RED-S, via low EA and/or low CHO availability. Accordingly, we undertook an analysis of training-overload/OTS type studies that have also collected and analyzed for energy intake (EI), CHO, exercise energy expenditure (EEE) and/or EA. Eighteen of the 21 studies (86%) that met our criteria showed indications of an EA decrease or difference between two cohorts within a given study (n = 14 studies) or CHO availability decrease (n = 4 studies) during the training-overload/OTS period, resulting in both training-overload/OTS and RED-S symptom outcomes compared to control conditions. Furthermore, we demonstrate significantly similar symptom overlaps across much of the OTS (n = 57 studies) and RED-S/Female Athlete Triad (n = 88 studies) literature. It is important to note that the prevention of under-recovery is multi-factorial, but many aspects are based around EA and CHO availability. Herein we have demonstrated that OTS and RED-S have many shared pathways, symptoms, and diagnostic complexities. Substantial attention is required to increase the knowledge and awareness of RED-S, and to enhance the diagnostic accuracy of both OTS and RED-S, to allow clinicians to more accurately exclude LEA/RED-S from OTS diagnoses.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada.
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada.
| | - Ida A Heikura
- Pacific Institute for Sport Excellence, Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stéphane Bermon
- Université Côte d'Azur, LAMHESS Nice, Nice, France
- World Athletics, Health and Science Department, Monte Carlo, Monaco
| | - Stephen Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
- IOC Medical Commission Games Group, Lausanne, Switzerland
| | - Louise M Burke
- Australian Institute of Sport, Bruce, ACT, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
70
|
Carbohydrate Considerations for Athletes with a Spinal Cord Injury. Nutrients 2021; 13:nu13072177. [PMID: 34202761 PMCID: PMC8308372 DOI: 10.3390/nu13072177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The Paralympic movement is growing in popularity, resulting in increased numbers of athletes with a spinal cord injury (SCI) competing in various sport disciplines. Athletes with an SCI require specialized recommendations to promote health and to maximize performance, as evidenced by their metabolic and physiological adaptations. Nutrition is a key factor for optimal performance; however, scientifically supported nutritional recommendations are limited. This review summarizes the current knowledge regarding the importance of carbohydrates (CHO) for health and performance in athletes with an SCI. Factors possibly affecting CHO needs, such as muscle atrophy, reduced energy expenditure, and secondary complications are analyzed comprehensively. Furthermore, a model calculation for CHO requirements during an endurance event is provided. Along with assessing the effectiveness of CHO supplementation in the athletic population with SCI, the evaluation of their CHO intake from the available research supplies background to current practices. Finally, future directions are identified. In conclusion, the direct transfer of CHO guidelines from able-bodied (AB) athletes to athletes with an SCI does not seem to be reasonable. Based on the critical role of CHOs in exercise performance, establishing recommendations for athletes with an SCI should be the overall objective for prospective research.
Collapse
|
71
|
Nutrition and indoor cycling: a cross-sectional analysis of carbohydrate intake for online racing and training. Br J Nutr 2021; 127:1204-1213. [PMID: 34080530 DOI: 10.1017/s0007114521001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cycling is a sport characterised by high training load, and adequate nutrition is essential for training and race performance. With the increased popularity of indoor trainers, cyclists have a unique opportunity to practice and implement key nutritional strategies. This study aimed to assess carbohydrate (CHO) intake of cyclists training or racing in this unique scenario for optimising exercise nutrition. A mixed-methods approach consisting of a multiple-pass self-report food recall and questionnaire was used to determine total CHO intake pre, during and post-training or racing using a stationary trainer and compared with current guidelines for endurance exercise. Sub-analyses were also made for higher ability cyclists (>4 W/kg functional threshold power), races v. non-races and 'key' training sessions. Mean CHO intake pre and post-ride was 0·7 (sd 0·6) and 1·0 (sd 0·8) g kg/BM and 39·3 (sd 27·5) g/h during training. CHO intake was not different for races (pre/during/post, P = 0·31, 0·23, 0·18, respectively), 'key sessions' (P = 0·26, 0·89, 0·98) or higher ability cyclists (P = 0·26, 0·76, 0·45). The total proportion of cyclists who failed to meet CHO recommendations was higher than those who met guidelines (pre = 79 %, during = 86 %, post = 89 %). Cyclists training or racing indoors do not meet current CHO recommendations for cycling performance. Due to the short and frequently high-intensity nature of some sessions, opportunity for during exercise feeding may be limited or unnecessary.
Collapse
|
72
|
Maunder E, Bradley HE, Deane CS, Hodgson AB, Jones M, Joanisse S, Turner AM, Breen L, Philp A, Wallis GA. Effects of short-term graded dietary carbohydrate intake on intramuscular and whole body metabolism during moderate-intensity exercise. J Appl Physiol (1985) 2021; 131:376-387. [PMID: 34043470 DOI: 10.1152/japplphysiol.00811.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 wk) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower [LOW, 2.40 ± 0.66 g CHO·kg-1·day-1, 21.3 ± 0.5% of energy intake (EI)], moderate (MOD, 4.98 ± 1.31 g CHO·kg-1·day-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO·kg-1·day-1, 60.5 ± 1.6% EI) CHO. Preexercise muscle glycogen content was lower in LOW [54.3 ± 26.4 mmol·kg-1 wet weight (ww)] compared with MOD (82.6 ± 18.8 mmol·kg -1 ww) and HIGH (80.4 ± 26.0 mmol·kg-1 ww, P < 0.001; MOD vs. HIGH, P = 0.85). Whole body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW [respiratory exchange ratio (RER): 0.81 ± 0.01] compared with MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P = 0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ∼5.0 to ∼6.5 g CHO·kg-1·day-1 (46% to 61% EI), while muscle glycogen, gene expression, and metabolic responses were sensitive to more marked reductions in CHO intake (∼2.4 g CHO·kg-1·day-1, ∼21% EI).NEW & NOTEWORTHY The data presented here suggest that metabolic responses to steady-state aerobic exercise are somewhat resistant to short-term changes in dietary carbohydrate (CHO) intake within the 5-6.5 g CHO·kg-1·day-1 [46-61% energy intake (EI)] range. In contrast, reduction in short-term dietary CHO intake to ∼2.4 g CHO·kg-1·day-1 (21% EI) evoked clear changes indicative of increased fat and decreased CHO metabolism during exercise.
Collapse
Affiliation(s)
- Ed Maunder
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Helen E Bradley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Colleen S Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | | | - Michael Jones
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Joanisse
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alice M Turner
- Institute for Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham National Health Services Foundation Trust, Heartlands Hospital, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Philp
- Healthy Ageing Research Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Medical School, University of New South Wales Medicine, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Gareth A Wallis
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
73
|
The Effects of an Acute "Train-Low" Nutritional Protocol on Markers of Recovery Optimization in Endurance-Trained Male Athletes. Int J Sports Physiol Perform 2021; 16:1764-1776. [PMID: 34044369 DOI: 10.1123/ijspp.2020-0847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to determine the effects of an acute "train-low" nutritional protocol on markers of recovery optimization compared to standard recovery nutrition protocol. METHODS After completing a 2-hour high-intensity interval running protocol, 8 male endurance athletes consumed a standard dairy milk recovery beverage (CHO; 1.2 g/kg body mass [BM] of carbohydrate and 0.4 g/kg BM of protein) and a low-carbohydrate (L-CHO; isovolumetric with 0.35 g/kg BM of carbohydrate and 0.5 g/kg BM of protein) dairy milk beverage in a double-blind randomized crossover design. Venous blood and breath samples, nude BM, body water, and gastrointestinal symptom measurements were collected preexercise and during recovery. Muscle biopsy was performed at 0 hour and 2 hours of recovery. Participants returned to the laboratory the following morning to measure energy substrate oxidation and perform a 1-hour distance test. RESULTS The exercise protocol resulted in depletion of muscle glycogen stores (250 mmol/kg dry weight) and mild body-water losses (BM loss = 1.8%). Neither recovery beverage replenished muscle glycogen stores (279 mmol/kg dry weight) or prevented a decrease in bacterially stimulated neutrophil function (-21%). Both recovery beverages increased phosphorylation of mTORSer2448 (main effect of time = P < .001) and returned hydration status to baseline. A greater fold increase in p-GSK-3βSer9/total-GSK-3β occurred on CHO (P = .012). Blood glucose (P = .005) and insulin (P = .012) responses were significantly greater on CHO (618 mmol/L per 2 h and 3507 μIU/mL per 2 h, respectively) compared to L-CHO (559 mmol/L per 2 h and 1147 μIU/mL per 2 h, respectively). Rates of total fat oxidation were greater on CHO, but performance was not affected. CONCLUSION A lower-carbohydrate recovery beverage consumed after exercise in a "train-low" nutritional protocol does not negatively impact recovery optimization outcomes.
Collapse
|
74
|
Nutrition Knowledge Is Associated with Energy Availability and Carbohydrate Intake in Young Female Cross-Country Skiers. Nutrients 2021; 13:nu13061769. [PMID: 34067303 PMCID: PMC8224650 DOI: 10.3390/nu13061769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to provide information on energy availability (EA), macronutrient intake, nutritional periodization practices, and nutrition knowledge in young female cross-country skiers. A total of 19 skiers filled in weighted food and training logs before and during a training camp. Nutrition knowledge was assessed via a validated questionnaire. EA was optimal in 11% of athletes at home (mean 33.7 ± 9.6 kcal·kgFFM−1·d−1) and in 42% at camp (mean 40.3 ± 17.3 kcal·kgFFM−1·d−1). Most athletes (74%) failed to meet recommendations for carbohydrate intake at home (mean 5.0 ± 1.2 g·kg−1·d−1) and 63% failed to do so at camp (mean 7.1 ± 1.6 g·kg−1·d−1). The lower threshold of the pre-exercise carbohydrate recommendations was met by 58% and 89% of athletes while percentages were 26% and 89% within 1 h after exercise, at home and at camp, respectively. None of the athletes met the recommendations within 4 h after exercise. Nutrition knowledge was associated with EA at home (r = 0.52, p = 0.023), and with daily carbohydrate intake at home (r = 0.62, p = 0.005) and at camp (r = 0.52, p = 0.023). Carbohydrate intake within 1 and 4 h post-exercise at home was associated with better nutrition knowledge (r = 0.65, p = 0.003; r = 0.53, p = 0.019, respectively). In conclusion, young female cross-county skiers had difficulties meeting recommendations for optimal EA and carbohydrate intake. Better nutrition knowledge may help young athletes to meet these recommendations.
Collapse
|
75
|
Moore DR, Sygo J, Morton JP. Fuelling the female athlete: Carbohydrate and protein recommendations. Eur J Sport Sci 2021; 22:684-696. [PMID: 34015236 DOI: 10.1080/17461391.2021.1922508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Optimal carbohydrate and protein intakes are vital for modulating training adaptation, recovery, and exercise performance. However, the research base underpinning contemporary sport nutrition guidelines has largely been conducted in male populations with a lack of consensus on whether the menstrual phase and associated changes in sex hormones allow broad application of these principles to female athletes. The present review will summarise our current understanding of carbohydrate and protein requirements in female athletes across the menstrual cycle and provide a critical analysis on how they compare to male athletes. On the basis of current evidence, we consider it premature to conclude that female athletes require sex specific guidelines in relation to CHO or protein requirements provided energy needs are met. However, there is a need for further research using sport-specific competition and training related exercise protocols that rigorously control for prior exercise, CHO/energy intake, contraceptive use and phase of menstrual cycle. Our overarching recommendation is to use current recommendations as a basis for adopting an individualised approach that takes into account athlete specific training and competition goals whilst also considering personal symptoms associated with the menstrual cycle.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Mores University, Liverpool, United Kingdom
| |
Collapse
|
76
|
Competition Nutrition Practices of Elite Male Professional Rugby Union Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105398. [PMID: 34070155 PMCID: PMC8158491 DOI: 10.3390/ijerph18105398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022]
Abstract
Thirty-four elite male professional rugby union players from the New Zealand Super Rugby championship completed dietary intakes via the Snap-N-Send method during a seven-day competition week. Mean seven-day absolute energy intake was significantly higher for forwards (4606 ± 719 kcal·day−1) compared to backs (3761 ± 618 kcal·day−1; p < 0.01; d = 1.26). Forwards demonstrated significantly higher mean seven-day absolute macronutrient intakes compared to backs (p < 0.03; d = 0.86–1.58), but no significant differences were observed for mean seven-day relative carbohydrate (3.5 ± 0.8 vs. 3.7 ± 0.7 g·kg·day−1), protein (2.5 ± 0.4 vs. 2.4 ± 0.5 g·kg·day−1), and fat (1.8 ± 0.4 vs. 1.8 ± 0.5 g·kg·day−1) intakes. Both forwards and backs reported their highest energy (5223 ± 864 vs. 4694 ± 784 kcal·day−1) and carbohydrate (4.4 ± 1.2 vs. 5.1 ± 1.0 g·kg·day−1) intakes on game day, with ≈62% of total calories being consumed prior to kick-off. Mean pre-game meal composition for all players was 1.4 ± 0.5 g·kg−1 carbohydrate, 0.8 ± 0.2 g·kg−1 protein, and 0.5 ± 0.2 g·kg−1 fat. Players fell short of daily sports nutrition guidelines for carbohydrate and appeared to “eat to intensity” by increasing or decreasing energy and carbohydrate intake based on the training load. Despite recommendations and continued education, many rugby players select what would be considered a “lower” carbohydrate intake. Although these intakes appear adequate to be a professional RU player, further research is required to determine optimal dietary intakes.
Collapse
|
77
|
Gejl KD, Nybo L. Performance effects of periodized carbohydrate restriction in endurance trained athletes - a systematic review and meta-analysis. J Int Soc Sports Nutr 2021; 18:37. [PMID: 34001184 PMCID: PMC8127206 DOI: 10.1186/s12970-021-00435-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 11/10/2022] Open
Abstract
Endurance athletes typically consume carbohydrate-rich diets to allow for optimal performance during competitions and intense training. However, acute exercise studies have revealed that training or recovery with low muscle glycogen stimulates factors of importance for mitochondrial biogenesis in addition to favourable metabolic adaptations in trained athletes. Compromised training quality and particularly lower intensities in peak intervals seem to be a major drawback from dietary interventions with chronic carbohydrate (CHO) restriction. Therefore, the concept of undertaking only selected training sessions with restricted CHO availability (periodized CHO restriction) has been proposed for endurance athletes. However, the overall performance effect of this concept has not been systematically reviewed in highly adapted endurance-trained athletes. We therefore conducted a meta-analysis of training studies that fulfilled the following criteria: a) inclusion of females and males demonstrating a VO2max ≥ 55 and 60 ml · kg− 1 · min− 1, respectively; b) total intervention and training periods ≥ 1 week, c) use of interventions including training and/or recovery with periodized carbohydrate restriction at least three times per week, and d) measurements of endurance performance before and after the training period. The literature search resulted in 407 papers of which nine studies fulfilled the inclusion criteria. The subsequent meta-analysis demonstrated no overall effect of CHO periodization on endurance performance compared to control endurance training with normal (high) CHO availability (standardized mean difference = 0.17 [− 0.15, 0.49]; P = 0.29). Based on the available literature, we therefore conclude that periodized CHO restriction does not per se enhance performance in endurance-trained athletes. The review discusses different approaches to CHO periodization across studies with a focus on identifying potential physiological benefits.
Collapse
Affiliation(s)
- Kasper Degn Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
78
|
Salagaras BS, Mackenzie-Shalders KL, Nelson MJ, Fraysse F, Wycherley TP, Slater GJ, McLellan C, Kumar K, Coffey VG. Comparisons of Daily Energy Intake vs. Expenditure Using the GeneActiv Accelerometer in Elite Australian Football Athletes. J Strength Cond Res 2021; 35:1273-1278. [PMID: 33900260 DOI: 10.1519/jsc.0000000000003945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Salagaras, BS, Mackenzie-Shalders, KL, Nelson, MJ, Fraysse, F, Wycherley, TP, Slater, GJ, McLellan, C, Kumar, K, and Coffey, VG. Comparisons of daily energy intake vs. expenditure using the GeneActiv accelerometer in elite Australian Football athletes. J Strength Cond Res 35(5): 1273-1278, 2021-To assess validity of the GeneActiv accelerometer for use within an athlete population and compare energy expenditure (EE) with energy and macronutrient intake of elite Australian Football athletes during a competition week. The GeneActiv was first assessed for utility during high-intensity exercise with indirect calorimetry. Thereafter, 14 professional Australian Football athletes (age, 24 ± 4 [SD] y; height, 1.87 ± 0.08 m; body mass, 86 ± 10 kg) wore the accelerometer and had dietary intake assessed via dietitian-led 24-hour recalls throughout a continuous 7 days of competition period (including match day). There was a significant relationship between metabolic equivalents and GeneActiv g·min-1 (SEE 1.77 METs; r2 = 0.64; p < 0.0001). Across the in-season week a significant difference only occurred on days 3 and 4 (day 3: energy intake [EI] EI 137 ± 31 kJ·kg-1·d-1; 11,763 ± 2,646 kJ·d-1 and EE: 186 ± 14 kJ·kg-1·d-1; 16,018 ± 1973 kJ·d-1; p < 0.05; d = -1.4; day 4: EI: 179 ± 44 kJ·kg-1·d-1, 15,413 ± 3,960 kJ·d-1 and EE: 225 ± 42 kJ·kg-1·d-1; 19,313 ± 3,072 kJ·d-1; d = -0.7). Carbohydrate intake (CI) was substantially below current sports nutrition recommendations on 6 of 7 days with deficits ranging from -1 to -7.2 g·kg-1·d-1 (p < 0.05), whereas daily protein and fat intake was adequate. In conclusion, the GeneActiv provides effective estimation of EE during weekly preparation for a professional team sport competition. Australian Footballers attempt to periodize dietary EI to varying daily training loads but fail to match expenditure on higher-training load days. Specific dietary strategies to increase CI may be beneficial to achieve appropriate energy balance and macronutrient distribution, particularly on days where athletes undertake multiple training sessions.
Collapse
Affiliation(s)
- Brie S Salagaras
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine Bond University, Robina, Queensland, Australia
| | - Kristen L Mackenzie-Shalders
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine Bond University, Robina, Queensland, Australia
| | - Maximillian J Nelson
- University of South Australia, Alliance for Research in Exercise, Nutrition and Activity, South Australia, Australia
| | - Francois Fraysse
- University of South Australia, Alliance for Research in Exercise, Nutrition and Activity, South Australia, Australia
| | - Thomas P Wycherley
- University of South Australia, Alliance for Research in Exercise, Nutrition and Activity, South Australia, Australia
| | - Gary J Slater
- University of the Sunshine Coast, School of Health and Sport Sciences Queensland, Australia
| | - Chris McLellan
- University of Southern Queensland, School of Health and Wellbeing, Queensland, Australia ; and
| | - Kuldeep Kumar
- Bond Business School, Bond University, Queensland, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine Bond University, Robina, Queensland, Australia
| |
Collapse
|
79
|
Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med 2021; 51:1855-1874. [PMID: 33900579 DOI: 10.1007/s40279-021-01475-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Muscle glycogen is the main substrate during high-intensity exercise and large reductions can occur after relatively short durations. Moreover, muscle glycogen is stored heterogeneously and similarly displays a heterogeneous and fiber-type specific depletion pattern with utilization in both fast- and slow-twitch fibers during high-intensity exercise, with a higher degradation rate in the former. Thus, depletion of individual fast- and slow-twitch fibers has been demonstrated despite muscle glycogen at the whole-muscle level only being moderately lowered. In addition, muscle glycogen is stored in specific subcellular compartments, which have been demonstrated to be important for muscle function and should be considered as well as global muscle glycogen availability. In the present review, we discuss the importance of glycogen metabolism for single and intermittent bouts of high-intensity exercise and outline possible underlying mechanisms for a relationship between muscle glycogen and fatigue during these types of exercise. Traditionally this relationship has been attributed to a decreased ATP resynthesis rate due to inadequate substrate availability at the whole-muscle level, but emerging evidence points to a direct coupling between muscle glycogen and steps in the excitation-contraction coupling including altered muscle excitability and calcium kinetics.
Collapse
|
80
|
A Qualitative Investigation of Factors Influencing the Dietary Intakes of Professional Australian Football Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084205. [PMID: 33921096 PMCID: PMC8071360 DOI: 10.3390/ijerph18084205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
(1) Background: Many professional Australian Football (AF) players do not meet recommended sports nutrition guidelines despite having access to nutrition advice. There are a range of factors that can influence players′ ability to meet their nutrition goals and awareness of the barriers players face is essential to ensure that dietary advice translates into practice. Therefore, this qualitative research study aimed to explore the factors influencing AF players’ dietary intakes and food choice. (2) Methods: Semi-structured interviews were conducted with twelve professional male AF players. (3) Results: Less experienced players restricted their carbohydrate intake to meet body composition goals, particularly during preseason and surrounding body composition assessment. During the competition season players had a greater focus on performance and placed more emphasis on carbohydrate intake in the lead up to matches. Players felt nutrition goals were easier to achieve when dietary choices were supported by their families and peers. One-on-one consultations provided by a sports dietitian were players′ preferred mode of nutrition intervention. Individualized nutrition advice is required for less experienced AF players who may be vulnerable to unsustainable dietary habits. Experienced AF players can support junior teammates by promoting positive team culture related to body composition, nutrition and performance.
Collapse
|
81
|
Rothschild JA, Kilding AE, Broome SC, Stewart T, Cronin JB, Plews DJ. Pre-Exercise Carbohydrate or Protein Ingestion Influences Substrate Oxidation but Not Performance or Hunger Compared with Cycling in the Fasted State. Nutrients 2021; 13:nu13041291. [PMID: 33919779 PMCID: PMC8070691 DOI: 10.3390/nu13041291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Jeffrey A. Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Correspondence:
| | - Andrew E. Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Sophie C. Broome
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Tom Stewart
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
- Human Potential Centre, School of Sport and Recreation, Auckland University of Technology, Auckland 1010, New Zealand
| | - John B. Cronin
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| | - Daniel J. Plews
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland 0632, New Zealand; (A.E.K.); (T.S.); (J.B.C.); (D.J.P.)
| |
Collapse
|
82
|
Fell JM, Hearris MA, Ellis DG, Moran JEP, Jevons EFP, Owens DJ, Strauss JA, Cocks M, Louis JB, Shepherd SO, Morton JP. Carbohydrate improves exercise capacity but does not affect subcellular lipid droplet morphology, AMPK and p53 signalling in human skeletal muscle. J Physiol 2021; 599:2823-2849. [PMID: 33772787 DOI: 10.1113/jp281127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle glycogen and intramuscular triglycerides (IMTG, stored in lipid droplets) are important energy substrates during prolonged exercise. Exercise-induced changes in lipid droplet (LD) morphology (i.e. LD size and number) have not yet been studied under nutritional conditions typically adopted by elite endurance athletes, that is, after carbohydrate (CHO) loading and CHO feeding during exercise. We report for the first time that exercise reduces IMTG content in both central and peripheral regions of type I and IIa fibres, reflective of decreased LD number in both fibre types whereas reductions in LD size were exclusive to type I fibres. Additionally, CHO feeding does not alter subcellular IMTG utilisation, LD morphology or muscle glycogen utilisation in type I or IIa/II fibres. In the absence of alterations to muscle fuel selection, CHO feeding does not attenuate cell signalling pathways with regulatory roles in mitochondrial biogenesis. ABSTRACT We examined the effects of carbohydrate (CHO) feeding on lipid droplet (LD) morphology, muscle glycogen utilisation and exercise-induced skeletal muscle cell signalling. After a 36 h CHO loading protocol and pre-exercise meal (12 and 2 g kg-1 , respectively), eight trained males ingested 0, 45 or 90 g CHO h-1 during 180 min cycling at lactate threshold followed by an exercise capacity test (150% lactate threshold). Muscle biopsies were obtained pre- and post-completion of submaximal exercise. Exercise decreased (P < 0.01) glycogen concentration to comparable levels (∼700 to 250 mmol kg-1 DW), though utilisation was greater in type I (∼40%) versus type II fibres (∼10%) (P < 0.01). LD content decreased in type I (∼50%) and type IIa fibres (∼30%) (P < 0.01), with greater utilisation in type I fibres (P < 0.01). CHO feeding did not affect glycogen or IMTG utilisation in type I or II fibres (all P > 0.05). Exercise decreased LD number within central and peripheral regions of both type I and IIa fibres, though reduced LD size was exclusive to type I fibres. Exercise induced (all P < 0.05) comparable AMPKThr172 (∼4-fold), p53Ser15 (∼2-fold) and CaMKIIThr268 phosphorylation (∼2-fold) with no effects of CHO feeding (all P > 0.05). CHO increased exercise capacity where 90 g h-1 (233 ± 133 s) > 45 g h-1 (156 ± 66 s; P = 0.06) > 0 g h-1 (108 ± 54 s; P = 0.03). In conditions of high pre-exercise CHO availability, we conclude CHO feeding does not influence exercise-induced changes in LD morphology, glycogen utilisation or cell signalling pathways with regulatory roles in mitochondrial biogenesis.
Collapse
Affiliation(s)
- J Marc Fell
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Mark A Hearris
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Daniel G Ellis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James E P Moran
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Emily F P Jevons
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Juliette A Strauss
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Matthew Cocks
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Julien B Louis
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James P Morton
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
83
|
Kasper AM, Langan-Evans C, Hudson JF, Brownlee TE, Harper LD, Naughton RJ, Morton JP, Close GL. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021; 13:nu13041075. [PMID: 33806245 PMCID: PMC8065383 DOI: 10.3390/nu13041075] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/11/2023] Open
Abstract
Whilst the assessment of body composition is routine practice in sport, there remains considerable debate on the best tools available, with the chosen technique often based upon convenience rather than understanding the method and its limitations. The aim of this manuscript was threefold: (1) provide an overview of the common methodologies used within sport to measure body composition, specifically hydro-densitometry, air displacement plethysmography, bioelectrical impedance analysis and spectroscopy, ultra-sound, three-dimensional scanning, dual-energy X-ray absorptiometry (DXA) and skinfold thickness; (2) compare the efficacy of what are widely believed to be the most accurate (DXA) and practical (skinfold thickness) assessment tools and (3) provide a framework to help select the most appropriate assessment in applied sports practice including insights from the authors' experiences working in elite sport. Traditionally, skinfold thickness has been the most popular method of body composition but the use of DXA has increased in recent years, with a wide held belief that it is the criterion standard. When bone mineral content needs to be assessed, and/or when it is necessary to take limb-specific estimations of fat and fat-free mass, then DXA appears to be the preferred method, although it is crucial to be aware of the logistical constraints required to produce reliable data, including controlling food intake, prior exercise and hydration status. However, given the need for simplicity and after considering the evidence across all assessment methods, skinfolds appear to be the least affected by day-to-day variability, leading to the conclusion 'come back skinfolds, all is forgiven'.
Collapse
Affiliation(s)
- Andreas M. Kasper
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Carl Langan-Evans
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - James F. Hudson
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Thomas E. Brownlee
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Liam D. Harper
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (L.D.H.); (R.J.N.)
| | - Robert J. Naughton
- School of Human and Health Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK; (L.D.H.); (R.J.N.)
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.M.K.); (C.L.-E.); (J.F.H.); (T.E.B.); (J.P.M.)
- Correspondence: ; Tel.: +44-151-904-6266
| |
Collapse
|
84
|
Ramos C, Cheng AJ, Kamandulis S, Subocius A, Brazaitis M, Venckunas T, Chaillou T. Carbohydrate restriction following strenuous glycogen-depleting exercise does not potentiate the acute molecular response associated with mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol 2021; 121:1219-1232. [PMID: 33564963 PMCID: PMC7966224 DOI: 10.1007/s00421-021-04594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
Purpose Carbohydrate (CHO) restriction could be a potent metabolic regulator of endurance exercise-induced muscle adaptations. Here, we determined whether post-exercise CHO restriction following strenuous exercise combining continuous cycling exercise (CCE) and sprint interval exercise could affect the gene expression related to mitochondrial biogenesis and oxidative metabolism in human skeletal muscle. Methods In a randomized cross-over design, 8 recreationally active males performed two cycling exercise sessions separated by 4 weeks. Each session consisted of 60-min CCE and six 30-s all-out sprints, which was followed by ingestion of either a CHO or placebo beverage in the post-exercise recovery period. Muscle glycogen concentration and the mRNA levels of several genes related to mitochondrial biogenesis and oxidative metabolism were determined before, immediately after, and at 3 h after exercise. Results Compared to pre-exercise, strenuous cycling led to a severe muscle glycogen depletion (> 90%) and induced a large increase in PGC1A and PDK4 mRNA levels (~ 20-fold and ~ 10-fold, respectively) during the acute recovery period in both trials. The abundance of the other transcripts was not changed or was only moderately increased during this period. CHO restriction during the 3-h post-exercise period blunted muscle glycogen resynthesis but did not increase the mRNA levels of genes associated with muscle adaptation to endurance exercise, as compared with abundant post-exercise CHO consumption. Conclusion CHO restriction after a glycogen-depleting and metabolically-demanding cycling session is not effective for increasing the acute mRNA levels of genes involved in mitochondrial biogenesis and oxidative metabolism in human skeletal muscle.
Collapse
Affiliation(s)
- Catarina Ramos
- School of Health Sciences, Örebro University, 701 82, Örebro, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, Toronto, M3J 1P3, Canada
| | - Sigitas Kamandulis
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Andrejus Subocius
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania.,Department of Surgery, Kaunas Clinical Hospital, 47144, Kaunas, Lithuania.,Clinic of Surgery, Republican Hospital of Kaunas, 45130, Kaunas, Lithuania
| | - Marius Brazaitis
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Tomas Venckunas
- Sports Science and Innovation Institute, Lithuanian Sports University, 44221, Kaunas, Lithuania
| | - Thomas Chaillou
- School of Health Sciences, Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
85
|
Burke LM. Ketogenic low-CHO, high-fat diet: the future of elite endurance sport? J Physiol 2021; 599:819-843. [PMID: 32358802 PMCID: PMC7891323 DOI: 10.1113/jp278928] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023] Open
Abstract
The ability of ketogenic low-carbohydrate (CHO) high-fat (K-LCHF) diets to enhance muscle fat oxidation has led to claims that it is the 'future of elite endurance sport'. There is robust evidence that substantial increases in fat oxidation occur, even in elite athletes, within 3-4 weeks and possibly 5-10 days of adherence to a K-LCHF diet. Retooling of the muscle can double exercise fat use to ∼1.5 g min-1 , with the intensity of maximal rates of oxidation shifting from ∼45% to ∼70% of maximal aerobic capacity. Reciprocal reductions in CHO oxidation during exercise are clear, but current evidence to support the hypothesis of the normalization of muscle glycogen content with longer-term adaptation is weak. Importantly, keto-adaptation may impair the muscle's ability to use glycogen for oxidative fates, compromising the use of a more economical energy source when the oxygen supply becomes limiting and, thus, the performance of higher-intensity exercise (>80% maximal aerobic capacity). Even with moderate intensity exercise, individual responsiveness to K-LCHF is varied, with extremes at both ends of the performance spectrum. Periodisation of K-LCHF with high CHO availability might offer opportunities to restore capacity for higher-intensity exercise, but investigations of various models have failed to find a benefit over dietary approaches based on current sports nutrition guidelines. Endurance athletes who are contemplating the use of K-LCHF should undertake an audit of event characteristics and personal experiences to balance the risk of impaired performance of higher-intensity exercise with the likelihood of an unavoidable depletion of carbohydrate stores.
Collapse
Affiliation(s)
- Louise M. Burke
- Australian Institute of SportCanberra2616Australia
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourne3000Australia
| |
Collapse
|
86
|
A Systematic Review of CrossFit® Workouts and Dietary and Supplementation Interventions to Guide Nutritional Strategies and Future Research in CrossFit®. Int J Sport Nutr Exerc Metab 2021; 31:187-205. [PMID: 33513565 DOI: 10.1123/ijsnem.2020-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022]
Abstract
CrossFit® is a high-intensity functional training method consisting of daily workouts called "workouts of the day." No nutritional recommendations exist for CrossFit® that are supported by scientific evidence regarding the energetic demands of this type of activity or dietary and supplement interventions. This systematic review performed in accordance with PRISMA guidelines aimed to identify studies that determined (a) the physiological and metabolic demands of CrossFit® and (b) the effects of nutritional strategies on CrossFit® performance to guide nutritional recommendations for optimal recovery, adaptations, and performance for CrossFit® athletes and direct future research in this emerging area. Three databases were searched for studies that investigated physiological responses to CrossFit® and dietary or supplementation interventions on CrossFit® performance. Various physiological measures revealed the intense nature of all CrossFit® workouts of the day, reflected in substantial muscle fatigue and damage. Dietary and supplementation studies provided an unclear insight into effective strategies to improve performance and enhance adaptations and recovery due to methodological shortcomings across studies. This systematic review showed that CrossFit® is a high-intensity sport with fairly homogenous anaerobic and aerobic characteristics, resulting in substantial metabolic stress, leading to metabolite accumulation (e.g., lactate and hydrogen ions) and increased markers of muscle damage and muscle fatigue. Limited interventional data exist on dietary and supplementation strategies to optimize CrossFit® performance, and most are moderate to very low quality with some critical methodological limitations, precluding solid conclusions on their efficacy. High-quality work is needed to confirm the ideal dietary and supplemental strategies for optimal performance and recovery for CrossFit® athletes and is an exciting avenue for further research.
Collapse
|
87
|
An Assessment of the Validity of the Remote Food Photography Method (Termed Snap-N-Send) in Experienced and Inexperienced Sport Nutritionists. Int J Sport Nutr Exerc Metab 2021; 31:125-134. [PMID: 33477111 DOI: 10.1123/ijsnem.2020-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
The remote food photography method, often referred to as "Snap-N-Send" by sport nutritionists, has been reported as a valid method to assess energy intake in athletic populations. However, preliminary studies were not conducted in true free-living conditions, and dietary assessment was performed by one researcher only. The authors, therefore, assessed the validity of Snap-N-Send to assess the energy and macronutrient composition in experienced (EXP, n = 23) and inexperienced (INEXP, n = 25) sport nutritionists. The participants analyzed 2 days of dietary photographs, comprising eight meals. Day 1 consisted of "simple" meals based around easily distinguishable foods (i.e., chicken breast and rice), and Day 2 consisted of "complex" meals, containing "hidden" ingredients (i.e., chicken curry). The estimates of dietary intake were analyzed for validity using one-sample t tests and typical error of estimates (TEE). The INEXP and EXP nutritionists underestimated energy intake for the simple day (mean difference [MD] = -1.5 MJ, TEE = 10.1%; -1.2 MJ, TEE = 9.3%, respectively) and the complex day (MD = -1.2 MJ, TEE = 17.8%; MD = -0.6 MJ, 14.3%, respectively). Carbohydrate intake was underestimated by INEXP (MD = -65.5 g/day, TEE = 10.8% and MD = -28.7 g/day, TEE = 24.4%) and EXP (MD = -53.4 g/day, TEE = 10.1% and -19.9 g/day, TEE = 17.5%) for both the simple and complex days, respectively. Interpractitioner reliability was generally "poor" for energy and macronutrients. The data demonstrate that the remote food photography method/Snap-N-Send underestimates energy intake in simple and complex meals, and these errors are evident in the EXP and INEXP sport nutritionists.
Collapse
|
88
|
Koivisto-Mørk AE, Paur I, Paulsen G, Garthe I, Raastad T, Bastani NE, Blomhoff R, Bøhn SK. Dietary Adjustments to Altitude Training in Elite Endurance Athletes; Impact of a Randomized Clinical Trial With Antioxidant-Rich Foods. Front Sports Act Living 2020; 2:106. [PMID: 33345095 PMCID: PMC7739752 DOI: 10.3389/fspor.2020.00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Altitude training stresses several physiological and metabolic processes and alters the dietary needs of the athletes. International Olympic Committee (IOC)'s Nutrition Expert Group suggests that athletes should increase intake of energy, carbohydrate, iron, fluid, and antioxidant-rich foods while training at altitude. Objective: We investigated whether athletes adjust their dietary intake according to the IOC's altitude-specific dietary recommendations, and whether an in-between meal intervention with antioxidant-rich foods altered the athletes' dietary composition and nutrition-related blood parameters (mineral, vitamin, carotenoid, and hormone concentrations). Design: The dietary adjustments to altitude training (3 weeks at 2,320 m) were determined for 31 elite endurance athletes (23 ± 5 years, 23 males, 8 females) by six interviewer-administered 24-h dietary recalls on non-consecutive days; three before and during the altitude camp. The additional effect of in -between meal intervention with eucaloric antioxidant-rich or control snacks (1,000 kcal/day) was tested in a randomized controlled trial with parallel design. Results: At altitude the athletes increased their energy intake by 35% (1,430 ± 630 kcal/day, p < 0.001), the provided snacks accounting for 70% of this increase. Carbohydrate intake increased from 6.5 ± 1.8 g/kg body weight (BW) (50 E%) to 9.3 ± 2.1 g/kg BW (53 E%) (p < 0.001), with no difference between the antioxidant and control group. Dietary iron, fluid, and antioxidant-rich food intake increased by 37, 38, and 104%, respectively, in the whole cohort. The intervention group had larger increases in polyunsaturated fatty acids (PUFA), ω3 PUFA (n-3 fatty acids), ω6 PUFA (n-6 fatty acids), fiber, vitamin C, folic acid, and copper intake, while protein intake increased more among the controls, reflecting the nutritional content of the snacks. Changes in the measured blood minerals, vitamins, and hormones were not differentially affected by the intervention except for the carotenoid; zeaxanthin, which increased more in the intervention group (p < 0.001). Conclusions: Experienced elite endurance athletes increased their daily energy, carbohydrate, iron, fluid, and antioxidant-rich food intake during a 3-week training camp at moderate altitude meeting most of the altitude-specific dietary recommendations. The intervention with antioxidant-rich snacks improved the composition of the athletes' diets but had minimal impact on the measured nutrition-related blood parameters. Clinical Trial Registry Number: NCT03088891 (www.clinicaltrials.gov), Norwegian registry number: 626539 (https://rekportalen.no/).
Collapse
Affiliation(s)
- Anu E Koivisto-Mørk
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Ingvild Paur
- Norwegian National Advisory Unit on Disease-Related Undernutrition, Oslo University Hospital, Oslo, Norway
| | - Gøran Paulsen
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ina Garthe
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Siv K Bøhn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
89
|
Inside the Belly of a Beast: Individualizing Nutrition for Young, Professional Male Rugby League Players: A Review. Int J Sport Nutr Exerc Metab 2020; 31:73-89. [PMID: 33321472 DOI: 10.1123/ijsnem.2019-0321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Professional rugby league (RL) football is a contact sport involving repeated collisions and high-intensity efforts; both training and competition involve high energy expenditure. The present review summarizes and critiques the available literature relating the physiological demands of RL to nutritional requirements and considers potential ergogenic supplements that could improve players' physical capacity, health, and recovery during the preparatory and competition phases of a season. Although there may not be enough data to provide RL-specific recommendations, the available data suggest that players may require approximately 6-8 g·kg-1·day-1 carbohydrate, 1.6-2.6 g·kg-1·day-1 protein, and 0.7-2.2 g·kg-1·day-1 fat, provided that the latter also falls within 20-35% of total energy intake. Competition nutrition should maximize glycogen availability by consuming 1-4 g/kg carbohydrate (∼80-320 g) plus 0.25 g/kg (∼20-30 g) protein, 1-4 hr preexercise for 80-120 kg players. Carbohydrate intakes of approximately 80-180 g (1.0-1.5 g/kg) plus 20-67 g protein (0.25-0.55 g/kg) 0-2 hr postexercise will optimize glycogen resynthesis and muscle protein synthesis. Supplements that potentially improve performance, recovery, and adaptation include low to moderate dosages of caffeine (3-6 mg/kg) and ∼300 mg polyphenols consumed ∼1 hr preexercise, creatine monohydrate "loading" (0.3 g·kg-1·day-1) and/or maintenance (3-5 g/day), and beta-alanine (65-80 mg·kg-1·day-1). Future research should quantify energy expenditures in young, professional male RL players before constructing recommendations.
Collapse
|
90
|
McKay AKA, Pyne DB, Burke LM, Peeling P. Iron Metabolism: Interactions with Energy and Carbohydrate Availability. Nutrients 2020; 12:E3692. [PMID: 33265953 PMCID: PMC7761418 DOI: 10.3390/nu12123692] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The provision or restriction of select nutrients in an athlete's diet can elicit a variety of changes in fuel utilization, training adaptation, and performance outcomes. Furthermore, nutrient availability can also influence athlete health, with one key system of interest being iron metabolism. The aim of this review was to synthesize the current evidence examining the impact of dietary manipulations on the iron regulatory response to exercise. Specifically, we assessed the impact of both acute and chronic carbohydrate (CHO) restriction on iron metabolism, with relevance to contemporary sports nutrition approaches, including models of periodized CHO availability and ketogenic low CHO high fat diets. Additionally, we reviewed the current evidence linking poor iron status and altered hepcidin activity with low energy availability in athletes. A cohesive understanding of these interactions guides nutritional recommendations for athletes struggling to maintain healthy iron stores, and highlights future directions and knowledge gaps specific to elite athletes.
Collapse
Affiliation(s)
- Alannah K. A. McKay
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia;
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia;
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia;
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA 6009, Australia;
- Western Australian Institute of Sport, Mt Claremont, WA 6010, Australia
| |
Collapse
|
91
|
Rothschild JA, Kilding AE, Plews DJ. What Should I Eat before Exercise? Pre-Exercise Nutrition and the Response to Endurance Exercise: Current Prospective and Future Directions. Nutrients 2020; 12:nu12113473. [PMID: 33198277 PMCID: PMC7696145 DOI: 10.3390/nu12113473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
The primary variables influencing the adaptive response to a bout of endurance training are exercise duration and exercise intensity. However, altering the availability of nutrients before and during exercise can also impact the training response by modulating the exercise stimulus and/or the physiological and molecular responses to the exercise-induced perturbations. The purpose of this review is to highlight the current knowledge of the influence of pre-exercise nutrition ingestion on the metabolic, physiological, and performance responses to endurance training and suggest directions for future research. Acutely, carbohydrate ingestion reduces fat oxidation, but there is little evidence showing enhanced fat burning capacity following long-term fasted-state training. Performance is improved following pre-exercise carbohydrate ingestion for longer but not shorter duration exercise, while training-induced performance improvements following nutrition strategies that modulate carbohydrate availability vary based on the type of nutrition protocol used. Contrasting findings related to the influence of acute carbohydrate ingestion on mitochondrial signaling may be related to the amount of carbohydrate consumed and the intensity of exercise. This review can help to guide athletes, coaches, and nutritionists in personalizing pre-exercise nutrition strategies, and for designing research studies to further elucidate the role of nutrition in endurance training adaptations.
Collapse
|
92
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
93
|
Fernandes HS. Carbohydrate Consumption and Periodization Strategies Applied to Elite Soccer Players. Curr Nutr Rep 2020; 9:414-419. [PMID: 33098050 DOI: 10.1007/s13668-020-00338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW During a soccer season, athletes tend to play intense and light matches such as decisive and qualifying games. The amount of muscle glycogen stores is a determining factor of performance during exercise, and manipulation of carbohydrate intake during the soccer season to enhance muscle glycogen stores can improve the performance of elite soccer players. The purpose of this review is to provide a holistic view of the periodization of carbohydrates and their effects on sports performance, based on what the literature recommends for the periodization of carbohydrates for endurance athletes, and of muscle glycogen recovery and compensation among professional soccer players. RECENT FINDINGS The ingestion of large amounts of carbohydrates (CHO;10 g/kg of body weight (BW)/day) is important 36 h before a match for the elite soccer player to ensure muscle glycogen supercompensation. In addition, elite soccer players should intake 1 to 1.5 g/kg BW/h within the first 4 h after a soccer game to maximize glycogen resynthesis. However, the season is comprised of away and home games that require different intensities; thus, soccer players need to periodize CHO intake based on evidence-based recommendations such as "train low," "train low, compete high," and/or "sleep low." The goal is to induce training adaptations by alternating with high or low CHO availability based on seasons, matches, and training intensities. The strategy can result in improved performance during games. Periodizing the consumption of carbohydrates, based on the intensity of training and matches, should include more carbohydrates when the matches require higher intensity and fewer carbohydrates when they require lower intensity; this is a strategy that will improve the performance of elite soccer athletes.
Collapse
Affiliation(s)
- Haniel Soares Fernandes
- Nutrition Departament, Estácio de Sá College, Fortaleza, Ceará, Brazil.
- Nutrition, Metabolism e Physiology in Sport, São Gabriel da Palha College, São Gabriel da Palha, Espírito Santo, Brazil.
- Clinical and Functional Nutrition, São Gabriel da Palha College, São Gabriel da Palha, Espírito Santo, Brazil.
| |
Collapse
|
94
|
Stokes KA, Jones B, Bennett M, Close GL, Gill N, Hull JH, Kasper AM, Kemp SP, Mellalieu SD, Peirce N, Stewart B, Wall BT, West SW, Cross M. Returning to Play after Prolonged Training Restrictions in Professional Collision Sports. Int J Sports Med 2020; 41:895-911. [PMID: 32483768 PMCID: PMC7799169 DOI: 10.1055/a-1180-3692] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic in 2020 has resulted in widespread training disruption in many sports. Some athletes have access to facilities and equipment, while others have limited or no access, severely limiting their training practices. A primary concern is that the maintenance of key physical qualities (e. g. strength, power, high-speed running ability, acceleration, deceleration and change of direction), game-specific contact skills (e. g. tackling) and decision-making ability, are challenged, impacting performance and injury risk on resumption of training and competition. In extended periods of reduced training, without targeted intervention, changes in body composition and function can be profound. However, there are strategies that can dramatically mitigate potential losses, including resistance training to failure with lighter loads, plyometric training, exposure to high-speed running to ensure appropriate hamstring conditioning, and nutritional intervention. Athletes may require psychological support given the challenges associated with isolation and a change in regular training routine. While training restrictions may result in a decrease in some physical and psychological qualities, athletes can return in a positive state following an enforced period of rest and recovery. On return to training, the focus should be on progression of all aspects of training, taking into account the status of individual athletes.
Collapse
Affiliation(s)
- Keith A. Stokes
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University
Carnegie Faculty, Leeds, United Kingdom of Great Britain and Northern
Ireland
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom of Great Britain and
Northern Ireland
- England Performance Unit, Rugby Football League Ltd, Leeds, United Kingdom
of Great Britain and Northern Ireland
- Division of Exercise Science and Sports Medicine, University of Cape Town,
Faculty of Health Sciences, Cape Town, South Africa
| | - Mark Bennett
- Rugby Union of Russia, Moscow, Russian Federation
- Applied Sport Technology Exercise and Medicine Research Centre (A-STEM),
Swansea University College of Engineering, Swansea, United Kingdom of Great Britain
and Northern Ireland
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores
University, Liverpool, United Kingdom of Great Britain and Northern
Irelan
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Nicholas Gill
- New Zealand Rugby Union, Wellington, New Zealand
- Te HuatakiWaiora School of Health, University of Waikato, Hamilton, New
Zealand
| | - James H. Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, United
Kingdom of Great Britain and Northern Ireland
| | - Andreas M. Kasper
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| | - Simon P.T. Kemp
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Stephen D. Mellalieu
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan
University, Cardiff, United Kingdom of Great Britain and Northern
Ireland
| | - Nicholas Peirce
- Sport Science & Medicine, England and Wales Cricket Board,
Loughborough, United Kingdom of Great Britain and Northern Ireland
| | - Bob Stewart
- Medical Services, Rugby Football Union, Twickenham, United Kingdom of Great
Britain and Northern Ireland
| | - Benjamin T. Wall
- School of Sport and Health Sciences, University of Exeter, Exeter, United
Kingdom of Great Britain and Northern Ireland
| | - Stephen W. West
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
| | - Matthew Cross
- Department for Health, University of Bath, Bath, United Kingdom of Great
Britain and Northern Ireland
- Professional Rugby Department, Rugby Football Union, Twickenham, United
Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
95
|
Hearris MA, Owens DJ, Strauss JA, Shepherd SO, Sharples AP, Morton JP, Louis JB. Graded reductions in pre‐exercise glycogen concentration do not augment exercise‐induced nuclear AMPK and PGC‐1α protein content in human muscle. Exp Physiol 2020; 105:1882-1894. [DOI: 10.1113/ep088866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/21/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A. Hearris
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Daniel J. Owens
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Juliette A. Strauss
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Sam O. Shepherd
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Adam P. Sharples
- Institute of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Julien B. Louis
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Liverpool UK
| |
Collapse
|
96
|
Hansen M, Oxfeldt M, Larsen AE, Thomsen LS, Rokkedal-Lausch T, Christensen B, Rittig N, De Paoli FV, Bangsbo J, Ørtenblad N, Madsen K. Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners. J Int Soc Sports Nutr 2020; 17:46. [PMID: 32894140 PMCID: PMC7487963 DOI: 10.1186/s12970-020-00376-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
Background Protein supplementation has been suggested to augment endurance training adaptations by increasing mixed muscle and myofibrillar protein synthesis and lean body mass. However, a potential beneficial effect on mitochondrial adaptations is yet to be clarified. The aim of the present study was to investigate the effect of consuming whey protein hydrolysate before and whey protein hydrolysate plus carbohydrate (PRO-CHO) after each exercise session during a six-week training period compared to similarly timed intake of isocaloric CHO supplements on biomarkers of mitochondrial biogenesis, VO2max and performance in trained runners. Methods Twenty-four trained runners (VO2max 60.7 ± 3.7 ml O2 kg− 1 min1) completed a six-week block randomized controlled intervention period, consisting of progressive running training. Subjects were randomly assigned to either PRO-CHO or CHO and matched in pairs for gender, age, VO2max, training and performance status. The PRO-CHO group ingested a protein beverage (0.3 g kg− 1) before and protein-carbohydrate beverage (0.3 g protein kg− 1 and 1 g carbohydrate kg− 1) after each exercise session. The CHO group ingested an energy matched carbohydrate beverage. Resting muscle biopsies obtained pre and post intervention were analyzed for mitochondrial specific enzyme activity and mitochondrial protein content. Subjects completed a 6 K time trial (6 K TT) and a VO2max test pre, midway (only 6 K TT) and post intervention. Results Following six weeks of endurance training Cytochrome C (Cyt C) protein content was significantly higher in the PRO-CHO group compared to the CHO group (p < 0.05), with several other mitochondrial proteins (Succinate dehydrogenase (SDHA), Cytochrome C oxidase (COX-IV), Voltage-dependent anion channel (VDAC), Heat shock protein 60 (HSP60), and Prohibitin (PHB1)) following a similar, but non-significant pattern (p = 0.07–0.14). β-hydroxyacyl-CoA dehydrogenase (HAD) activity was significantly lower after training in the CHO group (p < 0.01), but not in the PRO-CHO group (p = 0.24). VO2max and 6 K TT was significantly improved after training with no significant difference between groups. Conclusion Intake of whey PRO hydrolysate before and whey PRO hydrolysate plus CHO after each exercise session during a six-week endurance training period may augment training effects on specific mitochondrial proteins compared to intake of iso-caloric CHO but does not alter VO2max or 6 K TT performance. Trial registration clinicaltrials.gov, NCT03561337. Registered 6 June 2018 – Retrospectively registered.
Collapse
Affiliation(s)
- Mette Hansen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.
| | - Mikkel Oxfeldt
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Anne E Larsen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark
| | - Lise S Thomsen
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | - Britt Christensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nikolaj Rittig
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department for Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ørtenblad
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Klavs Madsen
- Section for Sport Sciences, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus C, Denmark.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
97
|
Murphy NE, Carrigan CT, Margolis LM. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Adv Nutr 2020; 12:223-233. [PMID: 32865567 PMCID: PMC7850028 DOI: 10.1093/advances/nmaa101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Use of high-fat, ketogenic diets (KDs) to support physical performance has grown in popularity over recent years. While these diets enhance fat and reduce carbohydrate oxidation during exercise, the impact of a KD on physical performance remains controversial. The objective of this work was to assess the effect of KDs on physical performance compared with mixed macronutrient diets [control (CON)]. A systematic review of the literature was conducted using PubMed and Cochrane Library databases. Randomized and nonrandomized studies were included if participants were healthy (free of chronic disease), nonobese [BMI (kg/m2) <30], trained or untrained men or women consuming KD (<50 g carbohydrate/d or serum or whole-blood β-hydroxybutyrate >0.5 mmol/L) compared with CON (fat, 12-38% of total energy intake) diets for ≥14 d, followed by a physical performance test. Seventeen studies (10 parallel, 7 crossover) with 29 performance (13 endurance, 16 power or strength) outcomes were identified. Of the 13 endurance-type performance outcomes, 3 (1 time trial, 2 time-to-exhaustion) reported lower and 10 (4 time trials, 6 time-to-exhaustion) reported no difference in performance between the KD compared with CON. Of the 16 power or strength performance outcomes, 3 (1 power, 2 strength) reported lower, 11 (4 power, 7 strength) no difference, and 2 (power) enhanced performance in the KD compared with the CON. Risk of bias identified some concern of bias primarily due to studies allowing participants to self-select diet intervention groups and the inability to blind participants to the study intervention. Overall, the majority of null results across studies suggest that a KD does not have a positive or negative impact on physical performance compared with a CON diet. However, discordant results between studies may be due to multiple factors, such as the duration consuming study diets, training status, performance test, and sex differences, which will be discussed in this systematic review.
Collapse
Affiliation(s)
- Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | | |
Collapse
|
98
|
Nutrition and Exercise Performance in Adults With Type 1 Diabetes. Can J Diabetes 2020; 44:750-758. [PMID: 32847769 DOI: 10.1016/j.jcjd.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
The best nutritional practices for exercise and sports performance are largely activity specific. The presence of type 1 diabetes undeniably bestows additional factors to consider to manage exercise and ensure adequate nutrients and fuels are available for optimal performance. Whether participating in sports or physical activity on a recreational basis or striving to achieve a high level of athletic performance, individuals with type 1 diabetes must pay attention to their nutritional and dietary patterns, including intake of macronutrients, micronutrients, fluids and supplements, such as caffeine to maintain metabolic and glycemic balance. Performance aside, nutritional recommendations may also differ on an individual basis relative to exercise, glycemic management and body weight goals. Balancing all these dietary factors can be challenging for individuals with type 1 diabetes, and many related aspects have yet to be fully researched in this population.
Collapse
|
99
|
PGC-1α alternative promoter (Exon 1b) controls augmentation of total PGC-1α gene expression in response to cold water immersion and low glycogen availability. Eur J Appl Physiol 2020; 120:2487-2493. [PMID: 32840695 PMCID: PMC7560925 DOI: 10.1007/s00421-020-04467-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022]
Abstract
This investigation sought to determine whether post-exercise cold water immersion and low glycogen availability, separately and in combination, would preferentially activate either the Exon 1a or Exon 1b Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) promoter. Through a reanalysis of sample design, we identified that the systemic cold-induced augmentation of total PGC-1α gene expression observed previously (Allan et al. in J Appl Physiol 123(2):451–459, 2017) was largely a result of increased expression from the alternative promoter (Exon 1b), rather than canonical promoter (Exon 1a). Low glycogen availability in combination with local cooling of the muscle (Allan et al. in Physiol Rep 7(11):e14082, 2019) demonstrated that PGC-1α alternative promoter (Exon 1b) expression continued to rise at 3 h post-exercise in all conditions; whilst, expression from the canonical promoter (Exon 1a) decreased between the same time points (post-exercise–3 h post-exercise). Importantly, this increase in PGC-1α Exon 1b expression was reduced compared to the response of low glycogen or cold water immersion alone, suggesting that the combination of prior low glycogen and CWI post-exercise impaired the response in gene expression versus these conditions individually. Data herein emphasise the influence of post-exercise cooling and low glycogen availability on Exon-specific control of total PGC-1 α gene expression and highlight the need for future research to assess Exon-specific regulation of PGC-1α.
Collapse
|
100
|
Nieman DC, Gillitt ND, Chen GY, Zhang Q, Sha W, Kay CD, Chandra P, Kay KL, Lila MA. Blueberry and/or Banana Consumption Mitigate Arachidonic, Cytochrome P450 Oxylipin Generation During Recovery From 75-Km Cycling: A Randomized Trial. Front Nutr 2020; 7:121. [PMID: 32850939 PMCID: PMC7426440 DOI: 10.3389/fnut.2020.00121] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oxylipins are bioactive lipid oxidation products, have vital regulatory roles in numerous physiological processes including inflammation, and can be impacted by diet. This study determined if 2-weeks of blueberry and/or acute banana ingestion influenced generation of n-6 and n-3 PUFA-derived oxylipins during recovery from exercise-induced physiological stress. Cyclists (n = 59, 39 ± 2 years of age) were randomized to freeze-dried blueberry or placebo groups, and ingested 26 grams/d (1 cup/d blueberries equivalent) for 2 weeks. Cyclists reported to the lab in an overnight fasted state and engaged in a 75-km cycling time trial (185.5 ± 5.2 min). Cyclists from each group (blueberry, placebo) were further randomized to ingestion of a water-only control or water with a carbohydrate source (Cavendish bananas, 0.2 g/kg carbohydrate every 15 min) during exercise. Blood samples were collected pre- and post-2-weeks blueberry supplementation, and 0, 1.5, 3, 5, 24, and 48 h-post-exercise. Plasma oxylipins and blueberry and banana metabolites were measured with UPLC–tandem MS/MS. Significant time by treatment effects (eight time points, four groups) were found for 24 blueberry- and seven banana-derived phenolic metabolites in plasma (FDR adjusted p < 0.05). Significant post-exercise increases were observed for 64 of 67 identified plasma oxylipins. When oxylipins were grouped relative to fatty acid substrate [arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), linoleic acid (LA)], and enzyme systems [cytochrome P450 (CYP), lipoxygenase (LOX)], banana and blueberry ingestion were independently associated with significant post-exercise reductions in pro-inflammatory ARA-CYP hydroxy- and dihydroxy-eicosatetraenoic acids (HETEs, DiHETrEs) (treatment effects, FDR adjusted p < 0.05). These trial differences were especially apparent within the first 3 h of recovery. In summary, heavy exertion evoked a transient but robust increase in plasma levels of oxylipins in cyclists, with a strong attenuation effect linked to both chronic blueberry and acute banana intake on pro-inflammatory ARA-CYP oxylipins.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | | | - Guan-Yuan Chen
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D Kay
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Preeti Chandra
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Kristine L Kay
- Department of Nutrition, University of North Carolina at Chapel Hill, Nutrition Research Institute, Kannapolis, NC, United States
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|