51
|
Hakim Elahi S, Abbaszadegan M, Conroy-Ben O. Engineered proteoliposome transporter for treatment of cesium contaminated water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135317. [PMID: 31812387 DOI: 10.1016/j.scitotenv.2019.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Radioactive cesium (137Cs) released from nuclear power plants and nuclear accidents continues to be a worldwide concern, and its removal from water remains a difficult problem. Here, we present the development of an innovative method to remove Cs+ present at low concentrations in water. To achieve this, a proteoliposome transporter was engineered, composed of a membrane-bound potassium uptake protein, Kup from E. coli, which was reconstituted into a liposome vesicle. Cs+ removal (10-100 µg/L) was demonstrated by incubating the constructed proteoliposome in lab-fortified water, followed by ultracentrifugation to remove captured Cs+. Inductively coupled plasma mass spectrometry (ICP-MS) results from testing water spiked with 100 µg/L Cs+ revealed that adding increasing volumes of proteoliposome solution (containing 0.015-1.2 mg of Kup membrane transporter) resulted in 0.29-12.7% removal in a linear fashion. Proteoliposome addition (containing 0.015-0.3 mg of Kup membrane transporter) to water spiked with 10 µg/L Cs+ resulted in 0.65-3.43% removal, while removal by protein-free liposomes was negligible at 0.03%. These results suggest that Kup transporters inserted into the liposomes are mainly responsible for the removal efficiencies. Consequently, a desired removal efficiency can be achieved by adding a higher volume of constructed proteoliposome and subsequently higher mg of Kup transporter to the contaminated water. This provides new insight on the effectiveness and applicability of proteoliposome transporters, and an alternative and a novel contribution to emerging technologies in removing cesium or other metal contaminants undergoing transmembrane transport.
Collapse
Affiliation(s)
- Sepideh Hakim Elahi
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, United States.
| |
Collapse
|
52
|
Pan YZ, Liu X, Rizo J. Analysis of asymmetry in lipid and content mixing assays with reconstituted proteoliposomes containing the neuronal SNAREs. Sci Rep 2020; 10:2907. [PMID: 32076023 PMCID: PMC7031292 DOI: 10.1038/s41598-020-59740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Reconstitution assays with proteoliposomes provide a powerful tool to elucidate the mechanism of neurotransmitter release, but it is important to understand how these assays report on membrane fusion, and recent studies with yeast vacuolar SNAREs uncovered asymmetry in the results of lipid mixing assays. We have investigated whether such asymmetry also occurs in reconstitution assays with the neuronal SNAREs, using syntaxin-1-SNAP-25-containing liposomes and liposomes containing synaptobrevin (T and V liposomes, respectively), and fluorescent probes to monitor lipid and content mixing simultaneously. Switching the fluorescent probes placed on the T and V liposomes, we observed a striking asymmetry in both lipid and content mixing stimulated by a fragment spanning the two C2 domains of synaptotagmin-1, or by a peptide that spans the C-terminal half of the synaptobrevin SNARE motif. However, no such asymmetry was observed in assays performed in the presence of Munc18-1, Munc13-1, NSF and αSNAP, which coordinate the assembly-disassembly cycle of neuronal SNARE complexes. Our results show that switching fluorescent probes between the two types of liposomes provides a useful approach to better understand the reactions that occur between liposomes and detect heterogenous behavior in these reactions.
Collapse
Affiliation(s)
- Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States.
| |
Collapse
|
53
|
Markones M, Fippel A, Kaiser M, Drechsler C, Hunte C, Heerklotz H. Stairway to Asymmetry: Five Steps to Lipid-Asymmetric Proteoliposomes. Biophys J 2020; 118:294-302. [PMID: 31843262 PMCID: PMC6976795 DOI: 10.1016/j.bpj.2019.10.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins are embedded in a complex lipid environment that influences their structure and function. One key feature of nearly all biological membranes is a distinct lipid asymmetry. However, the influence of membrane asymmetry on proteins is poorly understood, and novel asymmetric proteoliposome systems are beneficial. To our knowledge, we present the first study on a multispanning protein incorporated in large unilamellar liposomes showing a stable lipid asymmetry. These asymmetric proteoliposomes contain the Na+/H+ antiporter NhaA from Salmonella Typhimurium. Asymmetry was introduced by partial, outside-only exchange of anionic phosphatidylglycerol (PG), mimicking this key asymmetry of bacterial membranes. Outer-leaflet and total fractions of PG were determined via ζ-potential (ζ) measurements after lipid exchange and after scrambling of asymmetry. ζ-Values were in good agreement with exclusive outside localization of PG. The electrogenic Na+/H+ antiporter was active in asymmetric liposomes, and it can be concluded that reconstitution and generation of asymmetry were successful. Lipid asymmetry was stable for more than 7 days at 23°C and thus enabled characterization of the Na+/H+ antiporter in an asymmetric lipid environment. We present and validate a simple five-step protocol that addresses key steps to be taken and pitfalls to be avoided for the preparation of asymmetric proteoliposomes: 1) optimization of desired lipid composition, 2) detergent-mediated protein reconstitution with subsequent detergent removal, 3) generation of lipid asymmetry by partial exchange of outer-leaflet lipid, 4) verification of lipid asymmetry and stability, and 5) determination of protein activity in the asymmetric lipid environment. This work offers guidance in designing asymmetric proteoliposomes that will enable researchers to compare functional and structural properties of membrane proteins in symmetric and asymmetric lipid environments.
Collapse
Affiliation(s)
- Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany.
| | - Anika Fippel
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Michael Kaiser
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; HSGS Hermann Staudinger Graduate School, University of Freiburg, Breisgau, Germany
| | - Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany
| | - Carola Hunte
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Breisgau, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Breisgau, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
54
|
Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183192. [PMID: 31945320 PMCID: PMC7086155 DOI: 10.1016/j.bbamem.2020.183192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications – particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function. First reported exchange protocol for transferring membrane proteins solubilised in SMALPs, into detergent or amphipols. Purification of protein:lipid complexes without detergent for mass spectrometry and subsequent lipid identification. Cost effective membrane protein purification requiring only minimal amounts of detergents in the exchange process.
Collapse
|
55
|
Tietz S, Leuenberger M, Höhner R, Olson AH, Fleming GR, Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J Biol Chem 2020; 295:1857-1866. [PMID: 31929108 DOI: 10.1074/jbc.ra119.011707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Indexed: 11/06/2022] Open
Abstract
Integral membrane proteins are exposed to a complex and dynamic lipid environment modulated by nonbilayer lipids that can influence protein functions by lipid-protein interactions. The nonbilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant lipid in plant photosynthetic thylakoid membranes, but its impact on the functionality of energy-converting membrane protein complexes is unknown. Here, we optimized a detergent-based reconstitution protocol to develop a proteoliposome technique that incorporates the major light-harvesting complex II (LHCII) into compositionally well-defined large unilamellar lipid bilayer vesicles to study the impact of MGDG on light harvesting by LHCII. Using steady-state fluorescence spectroscopy, CD spectroscopy, and time-correlated single-photon counting, we found that both chlorophyll fluorescence quantum yields and fluorescence lifetimes clearly indicate that the presence of MGDG in lipid bilayers switches LHCII from a light-harvesting to a more energy-quenching mode that dissipates harvested light into heat. It is hypothesized that in the in vitro system developed here, MGDG controls light harvesting of LHCII by modulating the hydrostatic lateral membrane pressure profile in the lipid bilayer sensed by LHCII-bound peripheral pigments.
Collapse
Affiliation(s)
- Stefanie Tietz
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Michelle Leuenberger
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ricarda Höhner
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Alice H Olson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, 99164-6340.
| |
Collapse
|
56
|
Kaur H, Grahl A, Hartmann JB, Hiller S. Sample Preparation and Technical Setup for NMR Spectroscopy with Integral Membrane Proteins. Methods Mol Biol 2020; 2127:373-396. [PMID: 32112334 DOI: 10.1007/978-1-0716-0373-4_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NMR spectroscopy is a method of choice to characterize structure, function, and dynamics of integral membrane proteins at atomic resolution. Here, we describe protocols for sample preparation and characterization by NMR spectroscopy of two integral membrane proteins with different architecture, the α-helical membrane protein MsbA and the β-barrel membrane protein BamA. The protocols describe recombinant expression in E. coli, protein refolding, purification, and reconstitution in suitable membrane mimetics, as well as key setup steps for basic NMR experiments. These include experiments on protein samples in the solid state under magic angle spinning (MAS) conditions and experiments on protein samples in aqueous solution. Since MsbA and BamA are typical examples of their respective architectural classes, the protocols presented here can also serve as a reference for other integral membrane proteins.
Collapse
Affiliation(s)
- Hundeep Kaur
- Biozentrum, University of Basel, Basel, Switzerland
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
57
|
Jia Y, Xuan M, Feng X, Duan L, Li J, Li J. Reconstitution of Motor Proteins through Molecular Assembly. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Mingjun Xuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiyun Feng
- Yunnan Normal University Kunming Yunnan 650500 China
| | - Li Duan
- Northwest Institute of Nuclear Technology Xi'an Shaanxi 710024 China
| | - Jieling Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
58
|
Espadas J, Pendin D, Bocanegra R, Escalada A, Misticoni G, Trevisan T, Velasco Del Olmo A, Montagna A, Bova S, Ibarra B, Kuzmin PI, Bashkirov PV, Shnyrova AV, Frolov VA, Daga A. Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nat Commun 2019; 10:5327. [PMID: 31757972 PMCID: PMC6876568 DOI: 10.1038/s41467-019-13327-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility.
Collapse
Affiliation(s)
- Javier Espadas
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Diana Pendin
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
- Neuroscience Institute, Italian National Research Council (CNR), Padova, Italy
| | - Rebeca Bocanegra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Artur Escalada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Giulia Misticoni
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Tatiana Trevisan
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Ariana Velasco Del Olmo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Aldo Montagna
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | - Sergio Bova
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Borja Ibarra
- IMDEA Nanociencia, C/Faraday 9, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia) Unidad Asociada al Centro Nacional de Biotecnologia (CSIC), 28049, Madrid, Spain
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Anna V Shnyrova
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular, Biology, University of the Basque Country, Leioa, 48940, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| | - Andrea Daga
- Scientific Institute, IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
59
|
Clark ST, Arras MML, Sarles SA, Frymier PD. Lipid shape determination of detergent solubilization in mixed-lipid liposomes. Colloids Surf B Biointerfaces 2019; 187:110609. [PMID: 31806354 DOI: 10.1016/j.colsurfb.2019.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
The effects of lipid charge and head group size on liposome partitioning by detergents is an important consideration for applications such as liposomal drug delivery or proteoliposome formation. Yet, the solubilization of mixed-lipid liposomes, those containing multiple types of lipids, by detergents has received insufficient attention. This study examines the incorporation into and subsequent dissolution of mixed-lipid liposomes comprised of both egg phosphatidylcholine (ePC) and egg phosphatidic acid (ePA) by the detergent Triton-X100 (TX). Liposomes were prepared with mixtures of the two lipids, ePC and ePA, at molar ratios from 0 to 1, then step-wise solubilized with TX. Changes in turbidity, size distribution, and molar heat power at constant temperature throughout the solubilization process were assessed. The data suggest that the difference in lipid shapes (shape factors = 0.74 and 1.4 [1,2]) affects packing in membranes, and hence influences how much TX can be incorporated before disruption. As such, liposomes containing the observed ratios of ePA incorporated higher concentrations of TX before initiating dissolution into detergent and lipid mixed-micelles. The cause was concluded to be increased mismatching in the bilayer from the conical shape of ePA compared to the cylindrical shape of ePC. Additionally, the degree to which ePA is approximated as conical versus cylindrical was modulated with pH. It was confirmed that less conical ePA behaved more similarly to ePC than more conical ePA. The understanding gained here on lipid shape in liposome incorporation of TX enables research to use in vitro liposomes that more closely mimic native membranes.
Collapse
Affiliation(s)
- Samantha T Clark
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA
| | - Matthias M L Arras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stephen A Sarles
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, 414 Dougherty Engineering Building, Knoxville, TN 37996, USA
| | - Paul D Frymier
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN 37996, USA.
| |
Collapse
|
60
|
Yue K, Trung TN, Zhu Y, Kaldenhoff R, Kai L. Co-Translational Insertion of Aquaporins into Liposome for Functional Analysis via an E. coli Based Cell-Free Protein Synthesis System. Cells 2019; 8:E1325. [PMID: 31717877 PMCID: PMC6912355 DOI: 10.3390/cells8111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/06/2023] Open
Abstract
Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China;
| | - Tran Nam Trung
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ralf Kaldenhoff
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China;
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
61
|
Pols T, Sikkema HR, Gaastra BF, Frallicciardi J, Śmigiel WM, Singh S, Poolman B. A synthetic metabolic network for physicochemical homeostasis. Nat Commun 2019; 10:4239. [PMID: 31534136 PMCID: PMC6751199 DOI: 10.1038/s41467-019-12287-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
One of the grand challenges in chemistry is the construction of functional out-of-equilibrium networks, which are typical of living cells. Building such a system from molecular components requires control over the formation and degradation of the interacting chemicals and homeostasis of the internal physical-chemical conditions. The provision and consumption of ATP lies at the heart of this challenge. Here we report the in vitro construction of a pathway in vesicles for sustained ATP production that is maintained away from equilibrium by control of energy dissipation. We maintain a constant level of ATP with varying load on the system. The pathway enables us to control the transmembrane fluxes of osmolytes and to demonstrate basic physicochemical homeostasis. Our work demonstrates metabolic energy conservation and cell volume regulatory mechanisms in a cell-like system at a level of complexity minimally needed for life.
Collapse
Affiliation(s)
- Tjeerd Pols
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Hendrik R Sikkema
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wojciech M Śmigiel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Shubham Singh
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
62
|
Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells. Chembiochem 2019; 20:2581-2592. [PMID: 31381223 DOI: 10.1002/cbic.201900398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/14/2022]
Abstract
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tjeerd Pols
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
63
|
Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells. Proc Natl Acad Sci U S A 2019; 116:16711-16716. [PMID: 31371493 DOI: 10.1073/pnas.1903500116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.
Collapse
|
64
|
Chen Z, Zhang H, Guo P, Zhang J, Tira G, Kim YJ, Wu YA, Liu Y, Wen J, Rajh T, Niklas J, Poluektov OG, Laible PD, Rozhkova EA. Semi-artificial Photosynthetic CO2 Reduction through Purple Membrane Re-engineering with Semiconductor. J Am Chem Soc 2019; 141:11811-11815. [DOI: 10.1021/jacs.9b05564] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaowei Chen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - He Zhang
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Peijun Guo
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jingjing Zhang
- Joint Center for Energy Storage Research, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gregory Tira
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yu Jin Kim
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yimin A. Wu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Philip D. Laible
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Elena A. Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
65
|
Differential Scanning Calorimetry of Protein-Lipid Interactions. Methods Mol Biol 2019. [PMID: 31218615 DOI: 10.1007/978-1-4939-9512-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Differential scanning calorimetry (DSC) is a highly sensitive nonperturbing technique used for studying the thermodynamic properties of thermally induced transitions. Since these properties might be affected by ligand binding, DSC is particularly useful for the characterization of protein interactions with biomimetic membranes. The advantages of this technique over other methods consist in the direct measurement of intrinsic thermal properties of the samples, requiring no chemical modifications or extrinsic probes. This chapter describes the basic theory of DSC and provides the reader with an understanding of the capabilities of DSC instrumentation and the type of information that can be achieved from DSC studies of lipid-protein interactions. In particular, the chapter provides a detailed analysis of DSC data to assess the effects of proteins on biomimetic membranes.
Collapse
|
66
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria‐Based Production of Thiol‐Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jorge Royes
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Oana Ilioaia
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Quentin Lubart
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Federica Angius
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
- Present Address: Department of MicrobiologyInstitute for Water and Wetland Research Heyendaalseweg 135 6525 Nijmegen The Netherlands
| | - Galina V. Dubacheva
- PPSMCNRSÉcole Normale Supérieure Paris-SaclayUniversité Paris-Saclay 61 Avenue du Président Wilson 94235 Cachan France
| | - Marta Bally
- Department of PhysicsChalmers University of Technology Gothenburg Sweden
| | - Bruno Miroux
- UMR7099Institut de Biologie Physico-ChimiqueCNRSUniv. Paris DiderotSorbonne Université 13 rue Pierre et Marie Curie 75005 Paris France
| | - Christophe Tribet
- PASTEURDépartement de ChimieÉcole Normale SuperiéurePSL UniversitySorbonne UniversitéCNRS 24 rue Lhomond 75005 Paris France
| |
Collapse
|
67
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
68
|
Royes J, Ilioaia O, Lubart Q, Angius F, Dubacheva GV, Bally M, Miroux B, Tribet C. Bacteria-Based Production of Thiol-Clickable, Genetically Encoded Lipid Nanovesicles. Angew Chem Int Ed Engl 2019; 58:7395-7399. [PMID: 30934157 DOI: 10.1002/anie.201902929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Despite growing research efforts on the preparation of (bio)functional liposomes, synthetic capsules cannot reach the densities of protein loading and the control over peptide display that is achieved by natural vesicles. Herein, a microbial platform for high-yield production of lipidic nanovesicles with clickable thiol moieties in their outer corona is reported. These nanovesicles show low size dispersity, are decorated with a dense, perfectly oriented, and customizable corona of transmembrane polypeptides. Furthermore, this approach enables encapsulation of soluble proteins into the nanovesicles. Due to the mild preparation and loading conditions (absence of organic solvents, pH gradients, or detergents) and their straightforward surface functionalization, which takes advantage of the diversity of commercially available maleimide derivatives, bacteria-based proteoliposomes are an attractive eco-friendly alternative that can outperform currently used liposomes.
Collapse
Affiliation(s)
- Jorge Royes
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France.,UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Oana Ilioaia
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Quentin Lubart
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Federica Angius
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France.,Present Address: Department of Microbiology, Institute for Water and Wetland Research, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Galina V Dubacheva
- PPSM, CNRS, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Bruno Miroux
- UMR7099, Institut de Biologie Physico-Chimique, CNRS, Univ. Paris Diderot, Sorbonne Université, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Superiéure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005, Paris, France
| |
Collapse
|
69
|
Zhang L, Quan C, Zhang X, Xiong W, Fan S. Proteoliposome-based model for screening inhibitors targeting histidine kinase AgrC. Chem Biol Drug Des 2019; 93:712-723. [PMID: 30737896 DOI: 10.1111/cbdd.13497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/18/2019] [Accepted: 01/26/2019] [Indexed: 11/29/2022]
Abstract
AgrC, as an integral membrane receptor protein with histidine kinase activity, is an important component of the agr quorum-sensing system of Staphylococcus aureus. AgrC acts as a sensor for the recognition of environmental signals and transduction of the signals into the cytoplasm. Therefore, AgrC is considered to be a compelling target for the development of novel quorum-sensing inhibitors. Here, we constructed a proteoliposome-based model for screening inhibitors targeting AgrC by incorporating AgrC into liposomes. We demonstrated that the dissolution state of the liposome was a critical factor in the reconstruction of the AgrC proteoliposome, in which AgrC maintained similar orientation and function as those in natural biological membranes. Two monomers, namely, rhein and aloeemodin, were successfully screened out as inhibitors targeting AgrC by the proteoliposome-based model from 14 traditional Chinese medicine monomers. The inhibitory effects of these compounds on the growth of suspended bacteria was dose dependent, and subinhibitory concentrations of these compounds significantly reduced the expression of three virulence factors (hla, clfA, and clpP), that are regulated by the agr system. The results preliminarily indicated that rhein and aloeemodin can inhibit the agr signaling pathway and also indirectly confirmed the feasibility and effectiveness of the AgrC proteoliposome as a drug screening model.
Collapse
Affiliation(s)
- Liying Zhang
- College of Life Sciences, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Chunshan Quan
- College of Life Sciences, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Xuning Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Wen Xiong
- College of Life Sciences, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| | - Shengdi Fan
- College of Life Sciences, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
70
|
Leone V, Waclawska I, Kossmann K, Koshy C, Sharma M, Prisner TF, Ziegler C, Endeward B, Forrest LR. Interpretation of spectroscopic data using molecular simulations for the secondary active transporter BetP. J Gen Physiol 2019; 151:381-394. [PMID: 30728216 PMCID: PMC6400524 DOI: 10.1085/jgp.201812111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 11/20/2022] Open
Abstract
Mechanistic understanding of dynamic membrane proteins such as transporters, receptors, and channels requires accurate depictions of conformational ensembles, and the manner in which they interchange as a function of environmental factors including substrates, lipids, and inhibitors. Spectroscopic techniques such as electron spin resonance (ESR) pulsed electron-electron double resonance (PELDOR), also known as double electron-electron resonance (DEER), provide a complement to atomistic structures obtained from x-ray crystallography or cryo-EM, since spectroscopic data reflect an ensemble and can be measured in more native solvents, unperturbed by a crystal lattice. However, attempts to interpret DEER data are frequently stymied by discrepancies with the structural data, which may arise due to differences in conditions, the dynamics of the protein, or the flexibility of the attached paramagnetic spin labels. Recently, molecular simulation techniques such as EBMetaD have been developed that create a conformational ensemble matching an experimental distance distribution while applying the minimal possible bias. Moreover, it has been proposed that the work required during an EBMetaD simulation to match an experimentally determined distribution could be used as a metric with which to assign conformational states to a given measurement. Here, we demonstrate the application of this concept for a sodium-coupled transport protein, BetP. Because the probe, protein, and lipid bilayer are all represented in atomic detail, the different contributions to the work, such as the extent of protein backbone movements, can be separated. This work therefore illustrates how ranking simulations based on EBMetaD can help to bridge the gap between structural and biophysical data and thereby enhance our understanding of membrane protein conformational mechanisms.
Collapse
Affiliation(s)
- Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | | - Katharina Kossmann
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Caroline Koshy
- Max Planck Institute for Biophysics, Frankfurt am Main, Germany
| | - Monika Sharma
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Regensburg, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
71
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
72
|
Schwamborn M, Schumacher J, Sibold J, Teiwes NK, Steinem C. Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon Green 488. Analyst 2018; 142:2670-2677. [PMID: 28616949 DOI: 10.1039/c7an00215g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring the proton pumping activity of proteins such as ATPases in reconstituted single proteoliposomes is key to quantify the function of proteins as well as potential proton pump inhibitors. However, most pH-detecting assays available are either not quantitative, require well-adapted reconstitution protocols or are not appropriate for single vesicle studies. Here, we describe the quantitative and time-resolved detection of F-type ATPase-induced pH changes across vesicular membranes doped with the commercially available pH sensitive fluorophore Oregon Green 488 DHPE. This dye is shown to be well suited to monitor acidification of lipid vesicles not only in bulk but also at the single vesicle level. The pKa value of Oregon Green 488 DHPE embedded in a lipid environment was determined to be 6.1 making the fluorophore well suited for a variety of physiologically relevant proton pumps. The TFOF1-ATPase from a thermophilic bacterium was reconstituted into large unilamellar vesicles and the bulk acidification assay clearly reveals the overall activity of the F-type ATPase in the vesicle ensemble with an average pH change of 0.45. However, monitoring the pH changes in individual vesicles attached to a substrate demonstrates that the fraction of vesicles with a significant observable pH change is only about 5%, a number that cannot be gathered from bulk experiments and which is considerably lower than expected.
Collapse
Affiliation(s)
- Miriam Schwamborn
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
73
|
Optimization of Detergent-Mediated Reconstitution of Influenza A M2 Protein into Proteoliposomes. MEMBRANES 2018; 8:membranes8040103. [PMID: 30413063 PMCID: PMC6315538 DOI: 10.3390/membranes8040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 11/03/2018] [Indexed: 12/24/2022]
Abstract
We report the optimization of detergent-mediated reconstitution of an integral membrane-bound protein, full-length influenza M2 protein, by direct insertion into detergent-saturated liposomes. Detergent-mediated reconstitution is an important method for preparing proteoliposomes for studying membrane proteins, and must be optimized for each combination of protein and membrane constituents used. The purpose of the reconstitution was to prepare samples for site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) studies. Our goals in optimizing the protocol were to minimize the amount of detergent used, reduce overall proteoliposome preparation time, and confirm the removal of all detergent. The liposomes were comprised of (1-palmitoyl-2-oleyl-sn-glycero-phosphocholine (POPC) and 1-palmitoyl-2-oleyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG), and the detergent octylglucoside (OG) was used for reconstitution. Rigorous physical characterization was applied to optimize each step of the reconstitution process. We used dynamic light scattering (DLS) to determine the amount of OG needed to saturate the preformed liposomes. During detergent removal by absorption with Bio-Beads, we quantified the detergent concentration by means of a colorimetric assay, thereby determining the number of Bio-Bead additions needed to remove all detergent from the final proteoliposomes. We found that the overnight Bio-Bead incubation used in previously published protocols can be omitted, reducing the time needed for reconstitution. We also monitored the size distribution of the proteoliposomes with DLS, confirming that the size distribution remains essentially constant throughout the reconstitution process.
Collapse
|
74
|
Belardi B, Son S, Vahey MD, Wang J, Hou J, Fletcher DA. Claudin-4 reconstituted in unilamellar vesicles is sufficient to form tight interfaces that partition membrane proteins. J Cell Sci 2018; 132:jcs.221556. [PMID: 30209136 DOI: 10.1242/jcs.221556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023] Open
Abstract
Tight junctions have been hypothesized to act as molecular fences in the plasma membrane of epithelial cells, helping to form differentiated apical and basolateral domains. While this fence function is believed to arise from the interaction of four-pass transmembrane claudins, the complexity of tight junctions has made direct evidence of their role as a putative diffusion barrier difficult to obtain. Here, we address this challenge by reconstituting claudin-4 into giant unilamellar vesicles using microfluidic jetting. We find that reconstituted claudin-4 alone can form adhesive membrane interfaces without the accessory proteins that are present in vivo By controlling the molecular composition of the inner and outer leaflets of jetted vesicle membranes, we show that claudin-4-mediated interfaces can drive partitioning of extracellular membrane proteins with ectodomains as small as 5 nm but not of inner or outer leaflet lipids. Our findings indicate that homotypic interactions of claudins and their small size can contribute to the polarization of epithelial cells.
Collapse
Affiliation(s)
- Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Michael D Vahey
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA
| | - Jinzhi Wang
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Jianghui Hou
- Department of Internal Medicine & Center for Investigation of Membrane Excitability Disease, Washington University Medical School, St. Louis, MO 63110, USA
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720, USA .,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
75
|
Smirnova IA, Ädelroth P, Brzezinski P. Extraction and liposome reconstitution of membrane proteins with their native lipids without the use of detergents. Sci Rep 2018; 8:14950. [PMID: 30297885 PMCID: PMC6175888 DOI: 10.1038/s41598-018-33208-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Functional studies of membrane-bound channels, transporters or signal transducers require that the protein of interest resides in a membrane that separates two compartments. One approach that is commonly used to prepare these systems is to reconstitute the protein in liposomes. An intermediate step of this method is purification of the protein, which typically involves solubilization of the native membrane using detergent. The use of detergents often results in removal of lipids surrounding the protein, which may alter its structure and function. Here, we have employed a method for isolation of membrane proteins with a disc of their native lipids to develop an approach that allows transfer of the purified membrane protein to liposomes without the use of any detergents.
Collapse
Affiliation(s)
- Irina A Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
76
|
Betancourt-Solis MA, Desai T, McNew JA. The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. J Biol Chem 2018; 293:18514-18524. [PMID: 30287684 DOI: 10.1074/jbc.ra118.003812] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.
Collapse
Affiliation(s)
| | - Tanvi Desai
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - James A McNew
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| |
Collapse
|
77
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
78
|
Puiggalí-Jou A, Pawlowski J, del Valle LJ, Michaux C, Perpète EA, Sek S, Alemán C. Properties of Omp2a-Based Supported Lipid Bilayers: Comparison with Polymeric Bioinspired Membranes. ACS OMEGA 2018; 3:9003-9019. [PMID: 31459033 PMCID: PMC6645002 DOI: 10.1021/acsomega.8b00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/19/2018] [Indexed: 05/31/2023]
Abstract
Omp2a β-barrel outer membrane protein has been reconstituted into supported lipid bilayers (SLBs) to compare the nanomechanical properties (elastic modulus, adhesion forces, and deformation) and functionality of the resulting bioinspired system with those of Omp2a-based polymeric nanomembranes (NMs). Protein reconstitution into lipid bilayers has been performed using different strategies, the most successful one consisting of a detergent-mediated process into preformed liposomes. The elastic modulus obtained for the lipid bilayer and Omp2a are ∼19 and 10.5 ± 1.7 MPa, respectively. Accordingly, the protein is softer than the lipid bilayer, whereas the latter exhibits less mechanical strength than polymeric NMs. Besides, the function of Omp2a in the SLB is similar to that observed for Omp2a-based polymeric NMs. Results open the door to hybrid bioinspired substrates based on the integration of Omp2a-proteoliposomes and nanoperforated polymeric freestanding NMs.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Jan Pawlowski
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Luis J. del Valle
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Catherine Michaux
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A. Perpète
- Laboratoire
de Chimie Physique des Biomolécules, University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Slawomir Sek
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Carlos Alemán
- Departament
d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| |
Collapse
|
79
|
Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, Tuz K, Minh DDL, Juárez O. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. J Biol Chem 2018; 293:15664-15677. [PMID: 30135204 DOI: 10.1074/jbc.ra118.003194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium responsible for a large number of nosocomial infections. The P. aeruginosa respiratory chain contains the ion-pumping NADH:ubiquinone oxidoreductase (NQR). This enzyme couples the transfer of electrons from NADH to ubiquinone to the pumping of sodium ions across the cell membrane, generating a gradient that drives essential cellular processes in many bacteria. In this study, we characterized P. aeruginosa NQR (Pa-NQR) to elucidate its physiologic function. Our analyses reveal that Pa-NQR, in contrast with NQR homologues from other bacterial species, is not a sodium pump, but rather a completely new form of proton pump. Homology modeling and molecular dynamics simulations suggest that cation selectivity could be determined by the exit ion channels. We also show that Pa-NQR is resistant to the inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO). HQNO is a quinolone secreted by P. aeruginosa during infection that acts as a quorum sensing agent and also has bactericidal properties against other bacteria. Using comparative analysis and computational modeling of the ubiquinone-binding site, we identified the specific residues that confer resistance toward this inhibitor. In summary, our findings indicate that Pa-NQR is a proton pump rather than a sodium pump and is highly resistant against the P. aeruginosa-produced compound HQNO, suggesting an important role in the adaptation against autotoxicity. These results provide a deep understanding of the metabolic role of NQR in P. aeruginosa and provide insight into the structural factors that determine the functional specialization in this family of respiratory complexes.
Collapse
Affiliation(s)
| | | | - William M Menzer
- From the Departments of Biological Sciences and.,Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Chen Li
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Xuan Fang
- From the Departments of Biological Sciences and
| | | | - Karina Tuz
- From the Departments of Biological Sciences and
| | - David D L Minh
- Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616
| | | |
Collapse
|
80
|
De Franceschi N, Miihkinen M, Hamidi H, Alanko J, Mai A, Picas L, Guzmán C, Lévy D, Mattjus P, Goult BT, Goud B, Ivaska J. ProLIF - quantitative integrin protein-protein interactions and synergistic membrane effects on proteoliposomes. J Cell Sci 2018; 132:jcs.214270. [PMID: 30072441 DOI: 10.1242/jcs.214270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/07/2018] [Indexed: 01/23/2023] Open
Abstract
Integrin transmembrane receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. Diverse methods have been used to investigate interactions between integrins and intracellular proteins, and predominantly include peptide-based pulldowns and biochemical immuno-isolations from detergent-solubilised cell lysates. However, quantitative methods to probe integrin-protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here, we describe 'protein-liposome interactions by flow cytometry' (denoted ProLIF), a technique to reconstitute recombinant integrin transmembrane domains (TMDs) and cytoplasmic tail (CT) fragments in liposomes as individual subunits or as αβ heterodimers and, via flow cytometry, allow rapid and quantitative measurement of protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. Moreover, the effect of membrane composition, such as PI(4,5)P2 incorporation, on protein recruitment to the integrin CTs can be analysed. ProLIF requires no specific instrumentation and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses.This article has associated First Person interviews with the first authors of the paper (see doi: 10.1242/jcs.223644 and doi: 10.1242/jcs.223719).
Collapse
Affiliation(s)
- Nicola De Franceschi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR 168, 75005 Paris, France.,Sorbonne Universités, UPMC, 75005 Paris, France
| | - Mitro Miihkinen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Jonna Alanko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anja Mai
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Picas
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Camilo Guzmán
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Daniel Lévy
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Peter Mattjus
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Bruno Goud
- Institut Curie, PSL Research University, UMR 168, Centre de Recherche, 75248 Paris, France
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland .,Department of Biochemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
81
|
|
82
|
Single-molecule fluorescence studies on the conformational change of the ABC transporter MsbA. BIOPHYSICS REPORTS 2018. [DOI: 10.1007/s41048-018-0057-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
83
|
Assur Sanghai Z, Liu Q, Clarke OB, Belcher-Dufrisne M, Wiriyasermkul P, Giese MH, Leal-Pinto E, Kloss B, Tabuso S, Love J, Punta M, Banerjee S, Rajashankar KR, Rost B, Logothetis D, Quick M, Hendrickson WA, Mancia F. Structure-based analysis of CysZ-mediated cellular uptake of sulfate. eLife 2018; 7:27829. [PMID: 29792261 PMCID: PMC5967866 DOI: 10.7554/elife.27829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/11/2018] [Indexed: 01/25/2023] Open
Abstract
Sulfur, most abundantly found in the environment as sulfate (SO42-), is an essential element in metabolites required by all living cells, including amino acids, co-factors and vitamins. However, current understanding of the cellular delivery of SO42- at the molecular level is limited. CysZ has been described as a SO42- permease, but its sequence family is without known structural precedent. Based on crystallographic structure information, SO42- binding and flux experiments, we provide insight into the molecular mechanism of CysZ-mediated translocation of SO42- across membranes. CysZ structures from three different bacterial species display a hitherto unknown fold and have subunits organized with inverted transmembrane topology. CysZ from Pseudomonas denitrificans assembles as a trimer of antiparallel dimers and the CysZ structures from two other species recapitulate dimers from this assembly. Mutational studies highlight the functional relevance of conserved CysZ residues.
Collapse
Affiliation(s)
- Zahra Assur Sanghai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, United States
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Meagan Belcher-Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| | - Pattama Wiriyasermkul
- Center for Molecular Recognition, Department of Psychiatry, Columbia University, New York, United States
| | - M Hunter Giese
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Edgar Leal-Pinto
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, United States
| | - Brian Kloss
- New York Structural Biology Center, New York, United States
| | | | - James Love
- New York Structural Biology Center, New York, United States
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, United States
| | | | - Burkhard Rost
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Diomedes Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, United States
| | - Matthias Quick
- Center for Molecular Recognition, Department of Psychiatry, Columbia University, New York, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, United States
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,New York Structural Biology Center, New York, United States
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
| |
Collapse
|
84
|
Abstract
Niosomes are used in studies for drug delivery or gene transfer. However, their physical properties and features relative to liposomes are not well documented. To characterize and more rationally optimize niosome formulations, the properties of these vesicle systems are compared to those of liposomes composed of phosphatidylcholine and phosphatidylethanolamine lipids plus cholesterol. Niosomes are highly stable and only slightly more leaky than liposomes as assayed by calcein leakage; the permeability for ions (KCl) is higher than that of liposomes. Contrary to liposomes, the size of niosomes decreases substantially upon freezing in liquid nitrogen and subsequent thawing, as shown by cryo-EM and dynamic light scattering. The packing of niosomal membranes was determined by laurdan fluorescence and is slightly lower than that of liposomes. We did not succeed in the functional reconstitution of the L-arginine/L-ornithine antiporter ArcD2 in niosomes, which we attribute to the non-ionic nature of the surfactants. The antimicrobial peptides alamethicin and melittin act similarly on niosomes and liposomes composed of unsaturated components, whereas both niosomes and liposomes are unaffected when saturated amphiphiles are used. In conclusion, in terms of stability and permeability for drug-size molecules niosomes are comparable to liposomes and they may offer an excellent, inexpensive alternative for delivery purposes.
Collapse
|
85
|
Preobraschenski J, Cheret C, Ganzella M, Zander JF, Richter K, Schenck S, Jahn R, Ahnert-Hilger G. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter. Cell Rep 2018; 23:535-545. [DOI: 10.1016/j.celrep.2018.03.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022] Open
|
86
|
Zobel K, Choi SE, Minakova R, Gocyla M, Offenhäusser A. N-Cadherin modified lipid bilayers promote neural network formation and circuitry. SOFT MATTER 2017; 13:8096-8107. [PMID: 29085948 DOI: 10.1039/c7sm01214d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neural adhesion, maturation, and the correct wiring of the brain to establish each neuron's intended connectivity are controlled by complex interactions of bioactive molecules such as ligands, growth factors, or enzymes. The correct pairing of adjacent neurons is thought to be highly regulated by ligand-mediated cell-cell adhesion proteins, which are known to induce signaling activities. We developed a new platform consisting of supported lipid bilayers incorporated with Fc-chimera synaptic proteins like ephrinA5 or N-cadherin. We extensively characterized their function employing a quartz crystal microbalance with dissipation (QCM-D), calcium imaging, and immunofluorescence analysis. Our biomimetic platform has been shown to promote neural cell adhesion and to improve neural maturation at day in vitro 7 (DIV7) as indicated by an elevated expression of synaptophysin.
Collapse
Affiliation(s)
- K Zobel
- Institute of Bioelectronics (ICS-8), Forschungszentrum Juelich, Wilhelm-Johnen Straße, 52425 Juelich, Germany.
| | | | | | | | | |
Collapse
|
87
|
Otrin L, Marušič N, Bednarz C, Vidaković-Koch T, Lieberwirth I, Landfester K, Sundmacher K. Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes. NANO LETTERS 2017; 17:6816-6821. [PMID: 29067800 DOI: 10.1021/acs.nanolett.7b03093] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
For energy supply to biomimetic constructs, a complex chemical energy-driven ATP-generating artificial system was built. The system was assembled with bottom-up detergent-mediated reconstitution of an ATP synthase and a terminal oxidase into two types of novel nanocontainers, built from either graft copolymer membranes or from hybrid graft copolymer/lipid membranes. The versatility and biocompatibility of the proposed nanocontainers was demonstrated through convenient system assembly and through high retained activity of both membrane-embedded enzymes. In the future, the nanocontainers might be used as a platform for the functional reconstitution of other complex membrane proteins and could considerably expedite the design of nanoreactors, biosensors, and artificial organelles.
Collapse
Affiliation(s)
- Lado Otrin
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Nika Marušič
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems , Sandtorstrasse 1, 39106 Magdeburg, Germany
- Otto von Guericke University , Universitaetsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
88
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
89
|
Bhattacharya A, Brea RJ, Devaraj NK. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem Sci 2017; 8:7912-7922. [PMID: 29619165 PMCID: PMC5858084 DOI: 10.1039/c7sc02339a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
The assembly of synthetic membranes provides a powerful tool to reconstruct the structure and function of living cells.
The assembly of artificial cells provides a novel strategy to reconstruct life's functions and shed light on how life emerged on Earth and possibly elsewhere. A major challenge to the development of artificial cells is the establishment of simple methodologies to mimic native membrane generation. An ambitious strategy is the bottom-up approach, which aims to systematically control the assembly of highly ordered membrane architectures with defined functionality. This perspective will cover recent advances and the current state-of-the-art of minimal lipid architectures that can faithfully reconstruct the structure and function of living cells. Specifically, we will overview work related to the de novo formation and growth of biomimetic membranes. These studies give us a deeper understanding of the nature of living systems and bring new insights into the origin of cellular life.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| |
Collapse
|
90
|
Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F 1F 0-ATP synthase. Proc Natl Acad Sci U S A 2017; 114:11291-11296. [PMID: 29073046 PMCID: PMC5664490 DOI: 10.1073/pnas.1701207114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The shape of biological membranes is constantly remodeled and maintained out of equilibrium by active proteins. The functional capacity of membrane deformation is mainly determined by the mechanical interplay between protein activity and bending elasticity. In our experiments, we find that ATP synthase, a rotating membrane protein that synthesizes the biochemical energy in cells through proton-pumping activity across the membrane, promotes localized nonequilibrium membrane fluctuations when reconstituted in giant lipid vesicles. The large membrane deformations emerge from the pumping action of rotating proteins clustered at specific emplacements in the membrane. Our results pave the way to new experimental realizations to explore the collective effects of rotating ATP synthases and their possible biological implications for biomembrane organization and protein functionality. ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature−protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.
Collapse
|
91
|
Lacabanne D, Lends A, Danis C, Kunert B, Fogeron ML, Jirasko V, Chuilon C, Lecoq L, Orelle C, Chaptal V, Falson P, Jault JM, Meier BH, Böckmann A. Gradient reconstitution of membrane proteins for solid-state NMR studies. JOURNAL OF BIOMOLECULAR NMR 2017; 69:81-91. [PMID: 28900789 DOI: 10.1007/s10858-017-0135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
We here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR. NMR spectra recorded on a sample produced by GRecon showed a highly similar fingerprint as those recorded previously on samples reconstituted by dialysis. GRecon sample preparation presents a gain in time of nearly an order of magnitude for reconstitution, and shall represent a valuable alternative in solid-state NMR membrane protein sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Alons Lends
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Clément Danis
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Britta Kunert
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Vlastimil Jirasko
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Claire Chuilon
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS-Université de Lyon, IBCP, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
92
|
Ritzmann N, Thoma J, Hirschi S, Kalbermatter D, Fotiadis D, Müller DJ. Fusion Domains Guide the Oriented Insertion of Light-Driven Proton Pumps into Liposomes. Biophys J 2017; 113:1181-1186. [PMID: 28697898 PMCID: PMC5607040 DOI: 10.1016/j.bpj.2017.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/16/2022] Open
Abstract
One major objective of synthetic biology is the bottom-up assembly of minimalistic nanocells consisting of lipid or polymer vesicles as architectural scaffolds and of membrane and soluble proteins as functional elements. However, there is no reliable method to orient membrane proteins reconstituted into vesicles. Here, we introduce a simple approach to orient the insertion of the light-driven proton pump proteorhodopsin (PR) into liposomes. To this end, we engineered red or green fluorescent proteins to the N- or C-terminus of PR, respectively. The fluorescent proteins optically identified the PR constructs and guided the insertion of PR into liposomes with the unoccupied terminal end facing inward. Using the PR constructs, we generated proton gradients across the vesicle membrane along predefined directions such as are required to power (bio)chemical processes in nanocells. Our approach may be adapted to direct the insertion of other membrane proteins into vesicles.
Collapse
Affiliation(s)
- Noah Ritzmann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Johannes Thoma
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - David Kalbermatter
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
93
|
Liu X, Seven AB, Xu J, Esser V, Su L, Ma C, Rizo J. Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Nat Protoc 2017; 12:2014-2028. [PMID: 28858288 PMCID: PMC6163043 DOI: 10.1038/nprot.2017.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This protocol describes reconstitution assays to study how the neurotransmitter release machinery triggers Ca2+-dependent synaptic vesicle fusion. The assays monitor fusion between proteoliposomes containing the synaptic vesicle SNARE synaptobrevin (with or without the Ca2+ sensor synaptotagmin-1) and proteoliposomes initially containing the plasma membrane SNAREs syntaxin-1 and soluble NSF attachment protein (SNAP)-25. Lipid mixing (from fluorescence de-quenching of Marina-Blue-labeled lipids) and content mixing (from development of fluorescence resonance energy transfer (FRET) between phycoerythrin-biotin (PhycoE-Biotin) and Cy5-streptavidin trapped in the two proteoliposome populations) are measured simultaneously to ensure that true, nonleaky membrane fusion is monitored. This protocol is based on a method developed to study yeast vacuolar fusion. In contrast to other protocols used to study the release machinery, this assay incorporates N-ethylmaleimide sensitive factor (NSF) and α-SNAP, which disassemble syntaxin-1 and SNAP-25 heterodimers. As a result, fusion requires Munc18-1, which binds to the released syntaxin-1, and Munc13-1, which, together with Munc18-1, orchestrates SNARE complex assembly. The protocol can be readily adapted to investigation of other types of intracellular membrane fusion by using appropriate alternative proteins. Total time required for one round of the assay is 4 d.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alpay Burak Seven
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lijing Su
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
94
|
Abstract
During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix (ECM) by promoting the synthesis of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Several lipid and proteins present in the membrane of the MVs mediate the interactions of MVs with the ECM and regulate the initial mineral deposition and posterior propagation. Among the proteins of MV membranes, ion transporters control the availability of phosphate and calcium needed for initial HA deposition. Phosphatases (orphan phosphatase 1, ectonucleotide pyrophosphatase/phosphodiesterase 1 and tissue-nonspecific alkaline phosphatase) play a crucial role in controlling the inorganic pyrophosphate/inorganic phosphate ratio that allows MV-mediated initiation of mineralization. The lipidic microenvironment can help in the nucleation process of first crystals and also plays a crucial physiological role in the function of MV-associated enzymes and transporters (type III sodium-dependent phosphate transporters, annexins and Na+/K+ ATPase). The whole process is mediated and regulated by the action of several molecules and steps, which make the process complex and highly regulated. Liposomes and proteoliposomes, as models of biological membranes, facilitate the understanding of lipid-protein interactions with emphasis on the properties of physicochemical and biochemical processes. In this review, we discuss the use of proteoliposomes as multiple protein carrier systems intended to mimic the various functions of MVs during the initiation and propagation of mineral growth in the course of biomineralization. We focus on studies applying biophysical tools to characterize the biomimetic models in order to gain an understanding of the importance of lipid-protein and lipid-lipid interfaces throughout the process.
Collapse
|
95
|
Abstract
Functional characterization of transport proteins using conventional electrophysiology can be challenging, especially for low turnover transporters or transporters from bacteria and intracellular compartments. Solid-supported membrane (SSM)-based electrophysiology is a sensitive and cell-free assay technique for the characterization of electrogenic membrane proteins. Purified proteins reconstituted into proteoliposomes or membrane vesicles from cell culture or native tissues are adsorbed to the sensor holding an SSM. A substrate or a ligand is applied via rapid solution exchange. The electrogenic transporter activity charges the sensor, which is recorded as a transient current. The high stability of the SSM allows cumulative measurements on the same sensor using different experimental conditions. This allows the determination of kinetic properties including EC50, IC50, Km, KD, and rate constants of electrogenic reactions. About 100 different transporters have been measured so far using this technique, among them symporters, exchangers, uniporters, ATP-, redox-, and light-driven ion pumps, as well as receptors and ion channels. Different instruments apply this technique: the laboratory setups use a closed flow-through arrangement, while the commercially available SURFE2R N1 resembles a pipetting robot. For drug screening purposes high-throughput systems, such as the SURFE2R 96SE enable the simultaneous measurement of up to 96 sensors.
Collapse
Affiliation(s)
- Andre Bazzone
- Max Planck Institute of Biophysics, Frankfurt/Main, Germany; Nanion Technologies GmbH, Munich, Germany
| | | | - Klaus Fendler
- Max Planck Institute of Biophysics, Frankfurt/Main, Germany.
| |
Collapse
|
96
|
Radiolabeling and Quantitative In Vivo SPECT/CT Imaging Study of Liposomes Using the Novel Iminothiolane- 99mTc-Tricarbonyl Complex. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:4693417. [PMID: 29097923 PMCID: PMC5612672 DOI: 10.1155/2017/4693417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/04/2017] [Indexed: 01/18/2023]
Abstract
The in vivo biodistribution of liposomal formulations greatly influences the pharmacokinetics of these novel drugs; therefore the radioisotope labeling of liposomes and the use of nuclear imaging methods for in vivo studies are of great interest. In the present work, a new procedure for the surface labeling of liposomes is presented using the novel 99mTc-tricarbonyl complex. Liposomes mimicking the composition of two FDA approved liposomal drugs were used. In the first step of the labeling, thiol-groups were formed on the surface of the liposomes using Traut's reagent, which were subsequently used to bind 99mTc-tricarbonyl complex to the liposomal surface. The labeling efficiency determined by size exclusion chromatography was 95%, and the stability of the labeled liposomes in bovine serum was found to be 94% over 2 hours. The obtained specific activity was 50 MBq per 1 μmol lipid which falls among the highest values reported for 99mTc labeling of liposomes. Quantitative in vivo SPECT/CT biodistribution studies revealed distinct differences between the labeled liposomes and the free 99mTc-tricarbonyl, which indicates the in vivo stability of the labeling. As the studied liposomes were non-PEGylated, fast clearance from the blood vessels and high uptake in the liver and spleen were observed.
Collapse
|
97
|
Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 2017; 12:2161-2177. [PMID: 28356734 PMCID: PMC5367562 DOI: 10.2147/ijn.s128611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency due to dysfunction of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex leading to severe and recurrent infections in early childhood. The main genetic form is the X-linked CGD leading to the absence of cytochrome b558 composed of NOX2 and p22phox, the membrane partners of the NADPH oxidase complex. The first cause of death of CGD patients is pulmonary infections. Recombinant proteoliposome-based therapy is an emerging and innovative approach for membrane protein delivery, which could be an alternative local, targeted treatment to fight lung infections in CGD patients. We developed an enzyme therapy using recombinant NOX2/p22phox liposomes to supply the NADPH oxidase activity in X0-linked CGD (X0-CGD) macrophages. Using an optimized prokaryotic cell-free protein synthesis system, a recombinant cytochrome b558 containing functional hemes was produced and directly inserted into the lipid bilayer of specific liposomes. The size of the NOX2/p22phox liposomes was estimated to be around 700 nm. These proteoliposomes were able to generate reactive oxygen species (ROS) in an activated reconstituted cell-free NADPH oxidase activation assay in the presence of recombinant p47phox, p67phox and Rac, the cytosolic components of the NADPH oxidase complex. Furthermore, using flow cytometry and fluorescence microscopy, we demonstrated that cytochrome b558 was successfully delivered to the plasma membrane of X0-CGD-induced pluripotent stem cell (iPSC)-derived macrophages. In addition, NADPH oxidase activity was restored in X0-CGD iPSC-derived macrophages treated with NOX2/p22phox liposomes for 8 h without any toxicity. In conclusion, we confirmed that proteoliposomes provide a new promising technology for the delivery of functional proteins to the membrane of targeted cells. This efficient liposomal enzyme replacement therapy will be useful for future treatment of pulmonary infections in CGD patients refractory to conventional anti-infectious treatments.
Collapse
Affiliation(s)
- Julie Brault
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| | | | - Aline Le Roy
- IBS, University of Grenoble Alpes, Grenoble, France; CNRS, IBS, University Grenoble Alpes, Grenoble, France; CEA, IBS, University of Grenoble Alpes, Grenoble, France
| | | | | | - Marie José Stasia
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| |
Collapse
|
98
|
Nematollahi MH, Pardakhty A, Torkzadeh-Mahanai M, Mehrabani M, Asadikaram G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: a promising approach for niosome bilayer intervention. RSC Adv 2017. [DOI: 10.1039/c7ra07834j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the self-assembly property of nonionic surfactants has been utilized to create vesicles as alternatives to liposomes.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Pharmaceutics Research Center
- Institute of Neuropharmacology
- Kerman University of Medical Science
- Kerman
- Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center
- Institute of Neuropharmacology
- Kerman University of Medical Science
- Kerman
- Iran
| | - Masoud Torkzadeh-Mahanai
- Biotechnology Department
- Institute of Science and High Technology and Environmental Sciences
- Graduate University of Advanced Technology
- Kerman
- Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center
- Institute of Basic and Clinical Physiology Sciences
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry
- School of Medicine
- Kerman University of Medical Sciences
- Kerman
- Iran
| |
Collapse
|
99
|
Lacabanne D, Kunert B, Gardiennet C, Meier BH, Bo Ckmann A. Sample Preparation for Membrane Protein Structural Studies by Solid-State NMR. Methods Mol Biol 2017; 1635:345-358. [PMID: 28755379 DOI: 10.1007/978-1-4939-7151-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conformational studies of membrane proteins remain a challenge in the field of structural biology, and in particular the investigation of the proteins in a native-like lipid environment. Solid-state NMR presents a valuable opportunity for this, and we present here three critical steps in the solid-state NMR sample preparation, i.e., membrane reconstitution of the protein in native lipids, rotor filling, and sample quality assessment, at the example of the Bacillus subtilis ATP-binding cassette transporter BmrA.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS - Université de Lyon, 7 Passage du Vercors, 69367, Lyon, France
| | - Britta Kunert
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS - Université de Lyon, 7 Passage du Vercors, 69367, Lyon, France
| | - Carole Gardiennet
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS - Université de Lyon, 7 Passage du Vercors, 69367, Lyon, France.,CRM2, UMR 7036, CNRS, Université de Lorraine, 54506, Vandoeuvre-lès-Nancy, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Anja Bo Ckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS - Université de Lyon, 7 Passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
100
|
Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:40-47. [DOI: 10.1016/j.bbamem.2016.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022]
|