51
|
Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System. Curr Drug Targets 2020; 20:29-50. [PMID: 29968536 DOI: 10.2174/1389450119666180703145410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technology to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA complexation, high transfection efficiency and enhanced pharmacokinetic properties. This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the nucleic acids' delivery process, and current strategies to improve therapeutic efficacy. Additionally, lipid-based nanocarriers are described, and lessons learned from the relation between biophysical properties and biological performance of the dioctadecyldimethylammonium:monoolein (DODAX: MO) system are explored. Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nevertheless, several issues related to delivery must be overcome before RNAi therapies reach their full potential, namely target-cell specificity and endosomal escape. Understanding the relationship between biophysical properties and biological performance is an essential step in the gene therapy field.
Collapse
Affiliation(s)
- Ana C N Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.,CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Anabela Gonçalves
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
52
|
Batista-Duharte A, Sendra L, Herrero MJ, Téllez-Martínez D, Carlos IZ, Aliño SF. Progress in the Use of Antisense Oligonucleotides for Vaccine Improvement. Biomolecules 2020; 10:E316. [PMID: 32079263 PMCID: PMC7072586 DOI: 10.3390/biom10020316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
: Antisense oligonucleotides (ASOs) are synthetically prepared short single-stranded deoxynucleotide sequences that have been validated as therapeutic agents and as a valuable tool in molecular driving biology. ASOs can block the expression of specific target genes via complementary hybridization to mRNA. Due to their high specificity and well-known mechanism of action, there has been a growing interest in using them for improving vaccine efficacy. Several studies have shown that ASOs can improve the efficacy of vaccines either by inducing antigen modification such as enhanced expression of immunogenic molecules or by targeting certain components of the host immune system to achieve the desired immune response. However, despite their extended use, some problems such as insufficient stability and low cellular delivery have not been sufficiently resolved to achieve effective and safe ASO-based vaccines. In this review, we analyze the molecular bases and the research that has been conducted to demonstrate the potential use of ASOs in vaccines.
Collapse
Affiliation(s)
- Alexander Batista-Duharte
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (UNESP), Rod. Araraquara-Jaú - Km 1, 14800-903 Araraquara, SP, Brazil; (D.T.-M.); (I.Z.C.)
- Pharmacology Department, Faculty of Medicine, Universidad Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (L.S.); (S.F.A.)
| | - Luis Sendra
- Pharmacology Department, Faculty of Medicine, Universidad Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (L.S.); (S.F.A.)
| | - Maria José Herrero
- Pharmacology Department, Faculty of Medicine, Universidad Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (L.S.); (S.F.A.)
| | - Damiana Téllez-Martínez
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (UNESP), Rod. Araraquara-Jaú - Km 1, 14800-903 Araraquara, SP, Brazil; (D.T.-M.); (I.Z.C.)
| | - Iracilda Zeppone Carlos
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (UNESP), Rod. Araraquara-Jaú - Km 1, 14800-903 Araraquara, SP, Brazil; (D.T.-M.); (I.Z.C.)
| | - Salvador Francisco Aliño
- Pharmacology Department, Faculty of Medicine, Universidad Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; (L.S.); (S.F.A.)
| |
Collapse
|
53
|
Tezgel Ö, DiStasio N, Laghezza-Masci V, Taddei AR, Szarpak-Jankowska A, Auzély-Velty R, Navarro FP, Texier I. Collagen scaffold-mediated delivery of NLC/siRNA as wound healing materials. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
Satrialdi, Munechika R, Biju V, Takano Y, Harashima H, Yamada Y. The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter. Chem Commun (Camb) 2020; 56:1145-1148. [DOI: 10.1039/c9cc08563g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The optimization of cancer photodynamic therapy by utilization of a pi-extended porphyrin-type photosensitizer in combination with MITO-Porter.
Collapse
Affiliation(s)
- Satrialdi
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Reina Munechika
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| | - Vasudevanpillai Biju
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | - Yuta Takano
- Research Institute for Electronic Science
- Hokkaido University
- Sapporo 001-0020
- Japan
- Graduate School of Environmental Science
| | | | - Yuma Yamada
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12
- Nishi-6
- Kita-ku
| |
Collapse
|
55
|
Muñoz-Úbeda M, Tolosa-Díaz A, Bhattacharya S, Junquera E, Aicart E, Natale P, López-Montero I. Gemini-Based Lipoplexes Complement the Mitochondrial Phenotype in MFN1-Knockout Mouse Embryonic Fibroblasts. Mol Pharm 2019; 16:4787-4796. [PMID: 31609634 DOI: 10.1021/acs.molpharmaceut.9b00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Andrés Tolosa-Díaz
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Elena Junquera
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Emilio Aicart
- Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Paolo Natale
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Iván López-Montero
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.,Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
56
|
Hussein WM, Cheong YS, Liu C, Liu G, Begum AA, Attallah MA, Moyle PM, Torchilin VP, Smith R, Toth I. Peptide-based targeted polymeric nanoparticles for siRNA delivery. NANOTECHNOLOGY 2019; 30:415604. [PMID: 31295734 DOI: 10.1088/1361-6528/ab313d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of polymer-based nanoparticulate delivery systems for siRNA is important for the clinical success of gene therapy. However, there are some major drawbacks that need to be overcome. Short interfering RNA (siRNA) has been investigated as a potential therapeutic drug to silence disease-associated genes, but its usage is limited due to the lack of effective and safe nanocarriers. In this study, DOPE-PEI, a nanoparticle consisting of the fusogenic lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) conjugated with low-molecular-weight, 600 Da, branched polyethylenimine (PEI) was produced and optimized for siRNA delivery. This delivery system was modified with other components such as 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)2000] (DOPE-PEG2K), DOPE-PEG3.4K-bombesin and 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine/1,2-dioleoyl-3-trimethylammonium-propane (DOPE/DOTAP) and tested on PC-3 cells. The conjugation of DOPE to PEI polymer (DOPE-PEI) improved the efficiency of PEI to deliver siRNA into the cytosol and knockdown genes, but demonstrated high toxicity. The addition of DOPE-PEG2K reduced cellular toxicity by masking the surface positive charge of the DOPE-PEI/siRNA complex, with the incorporation of a gastrin-releasing peptide receptor (GRPR) targeting peptide and DOPE/DOTAP components improving the cellular uptake of siRNA into targeted cells and the siRNA knockdown efficiency.
Collapse
Affiliation(s)
- Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St. Lucia, QLD 4072, Australia. Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 The Fenway, Boston, MA 02115, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Gigante A, Li M, Junghänel S, Hirschhäuser C, Knauer S, Schmuck C. Non-viral transfection vectors: are hybrid materials the way forward? MEDCHEMCOMM 2019; 10:1692-1718. [PMID: 32180915 PMCID: PMC7053704 DOI: 10.1039/c9md00275h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Transfection is a process by which oligonucleotides (DNA or RNA) are delivered into living cells. This allows the synthesis of target proteins as well as their inhibition (gene silencing). However, oligonucleotides cannot cross the plasma membrane by themselves; therefore, efficient carriers are needed for successful gene delivery. Recombinant viruses are among the earliest described vectors. Unfortunately, they have severe drawbacks such as toxicity and immunogenicity. In this regard, the development of non-viral transfection vectors has attracted increasing interests, and has become an important field of research. In the first part of this review we start with a tutorial introduction into the biological backgrounds of gene transfection followed by the classical non-viral vectors (cationic organic carriers and inorganic nanoparticles). In the second part we highlight selected recent reports, which demonstrate that hybrid vectors that combine key features of classical carriers are a remarkable strategy to address the current challenges in gene delivery.
Collapse
Affiliation(s)
- A Gigante
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - M Li
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Junghänel
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
- Biomedical Technology Center of the Medical Faculty , University of Muenster , Muenster , Germany
| | - C Hirschhäuser
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| | - S Knauer
- Faculty of Biology , University of Duisburg-Essen , 45141 Essen , Germany
| | - C Schmuck
- Institute of Organic Chemistry , University of Duisburg-Essen , 45141 Essen , Germany .
| |
Collapse
|
58
|
Pronin D, Krishnakumar S, Rychlik M, Wu H, Huang D. Development of a Fluorescent Probe for Measurement of Singlet Oxygen Scavenging Activity of Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10726-10733. [PMID: 31469953 DOI: 10.1021/acs.jafc.9b04025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A turn-on fluorescent probe, HOCD-RB, for monitoring singlet oxygen (1O2) was developed by linking rhodamine B as fluorophore with dimethylhomoocoerdianthrone (HOCD) as 1O2 reaction site and fluorescence quencher due to the intramolecular energy transfer (ET) between rhodamine B and HOCD moieties. Upon exposure to 1O2 it rapidly forms endoperoxide with HOCD and turns on the fluorescence of rhodamine B by 18-fold. Taking advantage of the HOCD-RB probe that shows fast response, high sensitivity, and selectivity for 1O2, it is applied for imaging of endogenous 1O2 in living cells and the fluorometric assay for evaluating 1O2 quenching activity of selected common flavonoids found in our daily diets. The results show that the 1O2 scavenging activity of flavonoids depends on not only the structure of individual flavonoid but also the competitive interactions between mixed flavonoids. The best antioxidant capacity for individual and mixed flavonoids is epigallocatechin gallate and the mixture of catechin gallate with kaempferol, respectively. Overall, this work provided a new tool for detection and imaging of singlet oxygen activity in a biological system as well as an efficient fluorometric assay of 1O2 scavenging activity.
Collapse
Affiliation(s)
- Darina Pronin
- Analytical Food Chemistry , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising , Germany
| | - Saarangan Krishnakumar
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| | - Michael Rychlik
- Analytical Food Chemistry , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising , Germany
| | - Haixia Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering , Inner Mongolia University , Hohhot 010021 , People's Republic of China
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| | - Dejian Huang
- Department of Food Science and Technology , National University of Singapore , 3 Science Drive 3 , Singapore 117543 , Republic of Singapore
| |
Collapse
|
59
|
Koide H, Fukuta T, Okishim A, Ariizumi S, Kiyokawa C, Tsuchida H, Nakamoto M, Yoshimatsu K, Ando H, Dewa T, Asai T, Oku N, Hoshino Y, Shea KJ. Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules 2019; 20:3648-3657. [DOI: 10.1021/acs.biomac.9b00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Anna Okishim
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Saki Ariizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroki Tsuchida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| | - Hidenori Ando
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kenneth J. Shea
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| |
Collapse
|
60
|
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 30:313-335. [DOI: 10.1080/08982104.2019.1652645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pirthi Pal Singh
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Veena Vithalapuram
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Sunita Metre
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Ravinder Kodipyaka
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
61
|
Perche F, Clemençon R, Schulze K, Ebensen T, Guzmán CA, Pichon C. Neutral Lipopolyplexes for In Vivo Delivery of Conventional and Replicative RNA Vaccine. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:767-775. [PMID: 31446119 PMCID: PMC6716064 DOI: 10.1016/j.omtn.2019.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Nucleic acid vaccination relies on injecting DNA or RNA coding antigen(s) to induce a protective immune response. RNA vaccination is being increasingly used in preclinical and clinical studies. However, few delivery systems have been reported for in vivo delivery of RNA of different sizes. Using a tripartite formulation with RNA, cationic polymer, and anionic liposomes, we were able to encapsulate RNA into neutral lipopolyplexes (LPPs). LPPs were stable in vitro and successfully delivered conventional RNA and replicative RNA to dendritic cells in cellulo. Their injection led to reporter gene expression in mice. Finally, administration of LPP-Replicon RNA (RepRNA) led to an adaptive immune response against the antigen coded by the RepRNA. Accordingly, LPPs may represent a universal formulation for RNA delivery.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| | - Rudy Clemençon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS Rue Charles Sadron Orléans, Orléans Cedex 02, France.
| |
Collapse
|
62
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
63
|
Neuberg P, Wagner A, Remy JS, Kichler A. Design and evaluation of ionizable peptide amphiphiles for siRNA delivery. Int J Pharm 2019; 566:141-148. [PMID: 31125716 DOI: 10.1016/j.ijpharm.2019.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
Small interfering RNAs (siRNAs) can down-regulate the expression of a target mRNA molecule in a sequence-specific manner, making them an attractive new class of drugs with broad potential for the treatment of diverse human diseases. Here, we report the synthesis of a series of cationic amphiphiles which were obtained by the coupling of amino acids and dipeptides onto a lipidic double chain. The new amphiphiles presenting a peptidic motif on a short hydrophilic spacer group were evaluated for selective gene silencing through RNA interference. Our results show that tryptophan residues boost siRNA delivery in an unexpected manner. The silencing experiments performed with very low concentrations of siRNA showed that the best formulations could induce significant death of tumor cells after silencing of polo-like kinase 1 which is implicated in cell cycle progression. In addition, these Trp containing peptide amphiphiles were highly efficient siRNA delivery vectors even in presence of competing serum proteins.
Collapse
Affiliation(s)
- Patrick Neuberg
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France; 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Alain Wagner
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Jean-Serge Remy
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| | - Antoine Kichler
- 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| |
Collapse
|
64
|
Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS NANO 2019; 13:3754-3782. [PMID: 30908008 DOI: 10.1021/acsnano.8b07858] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gene therapy is a promising strategy for the treatment of monogenic disorders. Non-viral gene delivery systems including lipid-based DNA therapeutics offer the opportunity to deliver an encoding gene sequence specifically to the target tissue and thus enable the expression of therapeutic proteins in diseased cells. Currently, available gene delivery approaches based on DNA are inefficient and require improvements to achieve clinical utility. In this Review, we discuss state-of-the-art lipid-based DNA delivery systems that have been investigated in a preclinical setting. We emphasize factors influencing the delivery and subsequent gene expression in vitro, ex vivo, and in vivo. In addition, we cover aspects of nanoparticle engineering and optimization for DNA therapeutics. Finally, we highlight achievements of lipid-based DNA therapies in clinical trials.
Collapse
Affiliation(s)
- Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
- Department of Biochemistry and Molecular Biology , University of British Columbia , 2350 Health Sciences Mall , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
65
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
66
|
Kamra M, Maiti B, Dixit A, Karande AA, Bhattacharya S. Tumor Chemosensitization through Oncogene Knockdown Mediated by Unique α-Tocopherylated Cationic Geminis. Biomacromolecules 2019; 20:1555-1566. [DOI: 10.1021/acs.biomac.8b01751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mohini Kamra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Akanksha Dixit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anjali A. Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
67
|
Luneva AS, Puchkov PA, Shmendel EV, Zenkova MA, Kuzevanova AY, Alimov AA, Karpukhin AV, Maslov MA. Optimization of the Technology for the Preparation of Cationic Liposomes for the Delivery of Nucleic Acids. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
68
|
|
69
|
Meng Z, O'Keeffe-Ahern J, Lyu J, Pierucci L, Zhou D, Wang W. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci 2018; 5:2381-2392. [PMID: 29063914 DOI: 10.1039/c7bm00712d] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapy has long been held as having the potential to become a front line treatment for various genetic disorders. However, the direct delivery of nucleic acids to correct a genetic disorder has numerous limitations owing to the inability of naked nucleic acids (DNA and RNA) to traverse the cell membrane. Recently, messenger RNA (mRNA) based delivery has become a more attractive alternative to DNA due to the relatively easier transfection process, higher efficiency and safety profile. As with all gene therapies, the central challenge that remains is the efficient delivery of nucleic acids intracellularly. This review presents the recent progress in mRNA delivery, focusing on comparing the advantages and limitations of non-viral based delivery vectors.
Collapse
Affiliation(s)
- Zhao Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
70
|
Ball RL, Hajj KA, Vizelman J, Bajaj P, Whitehead KA. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA. NANO LETTERS 2018; 18:3814-3822. [PMID: 29694050 DOI: 10.1021/acs.nanolett.8b01101] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although mRNA and siRNA have significant therapeutic potential, their simultaneous delivery has not been previously explored. To facilitate the treatment of diseases associated with aberrant gene upregulation and downregulation, we sought to co-formulate siRNA and mRNA in a single lipidoid nanoparticle (LNP) formulation. We accommodated the distinct molecular characteristics of mRNA and siRNA in a formulation consisting of an ionizable and biodegradable amine-containing lipidoid, cholesterol, DSPC, DOPE, and PEG-lipid. Surprisingly, the co-formulation of siRNA and mRNA in the same LNP enhanced the efficacy of both drugs in vitro and in vivo. Compared to LNPs encapsulating siRNA only, co-formulated LNPs improved Factor VII gene silencing in mice from 44 to 87% at an siRNA dose of 0.03 mg/kg. Co-formulation also improved mRNA delivery, as a 0.5 mg/kg dose of mRNA co-formulated with siRNA induced three times the luciferase protein expression compared to when siRNA was not included. As not all gene therapy applications require both RNA drugs, we sought to extend the benefit of co-formulated LNPs to formulations encapsulating only a single type of RNA. We accomplished this by substituting the "helper" RNA with a negatively charged polymer, polystyrenesulfonate (PSS). LNPs containing PSS mediated the same level of protein silencing or expression as standard LNPs using 2-3-fold less RNA. For example, LNPs formulated with and without PSS induced 50% Factor VII silencing at siRNA doses of 0.01 and 0.03 mg/kg, respectively. Together, these studies demonstrate potent co-delivery of siRNA and mRNA and show that inclusion of a negatively charged "helper polymer" enhances the efficacy of LNP delivery systems.
Collapse
|
71
|
Uemura Y, Naoi T, Kanai Y, Kobayashi K. The efficiency of lipid nanoparticles with an original cationic lipid as a siRNA delivery system for macrophages and dendritic cells. Pharm Dev Technol 2018; 24:263-268. [PMID: 29688101 DOI: 10.1080/10837450.2018.1469149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small interfering of RNA (siRNA) technology has the potential to be a next-generation therapy. However, naked siRNA does not have high transfection efficiency and is rapidly degraded after systemic injection, so an appropriate drug delivery system (DDS) is required for clinical use. Several potential systems have been assessed, clinically focusing on hepatocyte or cancer tissue using siRNA. However, targeting immune cells using siRNA is still challenging, and a new DDS is required. In this study, we prepared lipid nanoparticles (LNP) composed of original cationic lipid, neutral lipid of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and PEG2000-DMPE (N-(carbonyl-methoxypolyethyleneglycol 2000)-1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, sodium salt). Our LNP encapsulating siRNA (LNP/siRNA) exerted a knock-down (KD) effect on mouse inflammatory peritoneal macrophages in vitro. In addition, an in vivo KD effect by systemic administration of LNP/siRNA was observed in macrophages and dendritic cells (DCs) in mice. Furthermore, our LNP/siRNA showed in vitro KD effects not only on murine cells but also on human cells like monocyte-derived macrophages (MDMs) and monocyte-derived DCs (MDDCs). These results indicate the potential utility of our LNP for siRNA-based therapy targeting macrophages and DCs. Because these cells are known to have a significant role in several kinds of diseases, and siRNA can specifically suppress target genes that are closely associated with disease states and are untreatable by small molecules or antibodies. Therefore, delivering siRNA by our LNP to macrophages and DCs could provide novel therapies.
Collapse
Affiliation(s)
- Yasunori Uemura
- a R&D Division , Kyowa Hakko Kirin Co., Ltd , Nagaizumi-cho, Sunto-gun , Japan
| | - Tomoyuki Naoi
- b R&D Division , Kyowa Hakko Kirin Co., Ltd , Machida , Japan
| | - Yasumasa Kanai
- a R&D Division , Kyowa Hakko Kirin Co., Ltd , Nagaizumi-cho, Sunto-gun , Japan
| | - Katsuya Kobayashi
- a R&D Division , Kyowa Hakko Kirin Co., Ltd , Nagaizumi-cho, Sunto-gun , Japan
| |
Collapse
|
72
|
Yingyuad P, Sinthuvanich C, Leepasert T, Thongyoo P, Boonrungsiman S. Preparation, characterization and in vitro evaluation of calothrixin B liposomes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
73
|
Chen X. Current and future technological advances in transdermal gene delivery. Adv Drug Deliv Rev 2018; 127:85-105. [PMID: 29273516 DOI: 10.1016/j.addr.2017.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022]
Abstract
Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided.
Collapse
|
74
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
75
|
Guimarães PP, Gaglione S, Sewastianik T, Carrasco RD, Langer R, Mitchell MJ. Nanoparticles for Immune Cytokine TRAIL-Based Cancer Therapy. ACS NANO 2018; 12:912-931. [PMID: 29378114 PMCID: PMC5834400 DOI: 10.1021/acsnano.7b05876] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has received significant attention as a cancer therapeutic due to its ability to selectively trigger cancer cell apoptosis without causing toxicity in vivo. While TRAIL has demonstrated significant promise in preclinical studies in mice as a cancer therapeutic, challenges including poor circulation half-life, inefficient delivery to target sites, and TRAIL resistance have hindered clinical translation. Recent advances in drug delivery, materials science, and nanotechnology are now being exploited to develop next-generation nanoparticle platforms to overcome barriers to TRAIL therapeutic delivery. Here, we review the design and implementation of nanoparticles to enhance TRAIL-based cancer therapy. The platforms we discuss are diverse in their approaches to the delivery problem and provide valuable insight into guiding the design of future nanoparticle-based TRAIL cancer therapeutics to potentially enable future translation into the clinic.
Collapse
Affiliation(s)
- Pedro P.G. Guimarães
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham & Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, United States
- Corresponding Authors. .,
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors. .,
| |
Collapse
|
76
|
Miyazawa T, Kamiyoshihara R, Shimizu N, Harigae T, Otoki Y, Ito J, Kato S, Miyazawa T, Nakagawa K. Amadori-glycated phosphatidylethanolamine enhances the physical stability and selective targeting ability of liposomes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171249. [PMID: 29515844 PMCID: PMC5830733 DOI: 10.1098/rsos.171249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/16/2018] [Indexed: 06/09/2023]
Abstract
Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake.
Collapse
Affiliation(s)
- Taiki Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Reina Kamiyoshihara
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Naoki Shimizu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Takahiro Harigae
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Shunji Kato
- Department of Cell Biology, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
77
|
Goel R, Garg C, Gautam HK, Sharma AK, Kumar P, Gupta A. Fabrication of cationic nanostructures from short self-assembling amphiphilic mixed α/β-pentapeptide: Potential candidates for drug delivery, gene delivery, and antimicrobial applications. Int J Biol Macromol 2018; 111:880-893. [PMID: 29355630 DOI: 10.1016/j.ijbiomac.2018.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022]
Abstract
The present article describes designing and fabrication of nanostructures from a mixed α/β-pentapeptide, Lys-βAla-βAla-Lys-βAla, which majorly contains non-natural β-alanine residues in the backbone with two α-lysine residues at 1- and 4-positions. The amphiphilic pentapeptide showed the ability to self-assemble into cationic nanovesicles in an aqueous solution. The average size of peptide nanostructures was found to be ~270 nm with a very high cationic charge of ~+40 mV. TEM micrographs revealed the average size of the same nanostructures ~80 nm bearing vesicular morphology. CD and FTIR spectroscopic studies on self-assembled pentapeptide hinted at random coil conformation which was also correlated with conformational search program using Hyper Chem 8.0. The pentapeptide nanostructures were then tested for encapsulation of hydrophobic model drug moieties, L-Dopa, and curcumin. Transfection efficiency of the generated cationic nanostructures was evaluated on HEK293 cells and compared the results with those obtained in the presence of chloroquine. The cytotoxicity assay performed using MTT depicted ~75-80% cell viability. The obtained nanostructures also gave positive results against both Gram-negative and Gram-positive bacterial strains. Altogether the results advocate the promising potential of the pentapeptide foldamer, H-Lys-βAla-βAla-Lys-βAla-OEt, for drug and gene delivery applications along with the antimicrobial activity.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India
| | - Charu Garg
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India; Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Hemant Kumar Gautam
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | - Alka Gupta
- Department of Chemistry, Dyal Singh College, University of Delhi, Lodhi Road, New Delhi 110003, India.
| |
Collapse
|
78
|
Kolašinac R, Kleusch C, Braun T, Merkel R, Csiszár A. Deciphering the Functional Composition of Fusogenic Liposomes. Int J Mol Sci 2018; 19:ijms19020346. [PMID: 29364187 PMCID: PMC5855568 DOI: 10.3390/ijms19020346] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis.
Collapse
Affiliation(s)
- Rejhana Kolašinac
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Christian Kleusch
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Tobias Braun
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| | - Agnes Csiszár
- Forschungszentrum Jülich GmbH, Institute of Complex Systems (ICS-7), Biomechanics, 52425 Jülich, Germany.
| |
Collapse
|
79
|
Tezgel Ö, Szarpak-Jankowska A, Arnould A, Auzély-Velty R, Texier I. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery. J Colloid Interface Sci 2018; 510:45-56. [DOI: 10.1016/j.jcis.2017.09.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 01/13/2023]
|
80
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
81
|
Abstract
With the advent of next-generation sequencing (NGS) and the demand for a personalized healthcare system, the fields of precision medicine and gene therapy are advancing in new directions. There is a push to identify genes that contribute to disease development, either alone or in conjunction with other genes or environmental factors, and then design targeted therapies based on this knowledge, rather than the traditional approach of treating generalized symptoms with pharmaceuticals in a one-size-fits-all manner. Identification of genes that contribute to disease pathogenesis and progression is critical for the maturation of the precision medicine field. Concomitant with a better understanding of disease pathology, precision medicine approaches can be adopted with greater confidence and are expected to lead to a new standard for clinical practice. In this chapter, we provide a brief introduction to precision medicine, discuss the importance of identifying genes and genetic variants that contribute to disease development and progression, offer examples of approaches that can be applied to treat specific diseases, and present some of the current challenges and limitations of precision medicine.
Collapse
Affiliation(s)
- Taylor M Benson
- Department of Biomedical Research, Center for Genes, Environment, and Health, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Fatjon Leti
- Department of Biomedical Research, Center for Genes, Environment, and Health, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Johanna K DiStefano
- Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
82
|
Mkhwanazi NK, de Koning CB, van Otterlo WAL, Ariatti M, Singh M. PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor. ACTA ACUST UNITED AC 2017; 72:293-301. [PMID: 28063265 DOI: 10.1515/znc-2016-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89-97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.
Collapse
Affiliation(s)
- Nkosiyethu K Mkhwanazi
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, Department of Chemistry, University of the Witwatersrand, P. Bag 3, Wits 2050, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Sciences, Stellenbosch University, P. Bag X1, Matieland 7602, South Africa
| | - Mario Ariatti
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa, Phone: +27 31 2607981, Fax: +27 31 2607942
| | - Moganavelli Singh
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
83
|
Granot Y, Peer D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics-An innate immune system standpoint. Semin Immunol 2017; 34:68-77. [PMID: 28890238 DOI: 10.1016/j.smim.2017.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
mRNA molecules hold tremendous potential as a tool for gene therapy of a wide range of diseases. However, the main hurdle in implementation of mRNA for therapeutics, the systemic delivery of mRNA molecules to target cells, remains a challenge. A feasible solution for this challenge relies in the rapidly evolving field of nucleic acid-loaded nanocarriers and specifically in the established family of lipid-based nanoparticles (LNPs). Herein, we will discuss the main factors, which determine the fate of modified mRNA (mmRNA)-loaded LNPs in-vivo, and will focus on their interactions with the innate immune system as a main consideration in the design of lipid-based mmRNA delivery platforms.
Collapse
Affiliation(s)
- Yasmin Granot
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Dept. of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv 69978, Israel; Dept. of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
84
|
Mamusa M, Barbero F, Montis C, Cutillo L, Gonzalez-Paredes A, Berti D. Inclusion of oligonucleotide antimicrobials in biocompatible cationic liposomes: A structural study. J Colloid Interface Sci 2017; 508:476-487. [PMID: 28865342 DOI: 10.1016/j.jcis.2017.08.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Transcription factor decoys (TFD) are short oligonucleotides designed to block essential genetic pathways in bacteria and defeat resistant infections. TFD protection in biological fluids and their delivery to the site of infection require formulation in appropriate delivery systems. In this work, we build on a classical phosphatidylcholine/phosphatidylethanolamine (POPC/DOPE) scaffold to design TFD-loaded cationic liposomes by combining the DNA-complexing abilities of a bolaamphiphile, (1,1'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride (12-bis-THA), with the biocompatible cationic lipid ethyl-phosphatidylcholine (DPePC). The goal is to perform a structural study to determine the impact of the bolaamphiphile and TFD incorporation on the liposome structure, the capacity for TFD encapsulation, and the colloidal stability in saline media and cell culture environments. EXPERIMENTS The systems are characterized by means of dynamic light scattering, small-angle X-ray scattering, and ζ-potential measurements, to provide a clear picture of the liposome structure. Circular dichroism (CD) spectroscopy is used to assess the compaction of the oligonucleotide in a psi form, while steady-state fluorescence and fluorescence correlation spectroscopies give insight into the entrapment rate and distribution of the TFD in the liposomes. FINDINGS We found that the combination of the two cationic species, 12-bis-THA and DPePC, allows encapsulation of 90% of the TFD. Results of CD experiments revealed that the TFD is condensed, therefore likely protected from the lytic action of serum nucleases. Finally, the systems showed colloidal stability in aqueous dispersion with ionic strength comparable to biologically relevant media.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | | | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Laura Cutillo
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | | | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
85
|
Michel T, Luft D, Abraham MK, Reinhardt S, Salinas Medina ML, Kurz J, Schaller M, Avci-Adali M, Schlensak C, Peter K, Wendel HP, Wang X, Krajewski S. Cationic Nanoliposomes Meet mRNA: Efficient Delivery of Modified mRNA Using Hemocompatible and Stable Vectors for Therapeutic Applications. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:459-468. [PMID: 28918045 PMCID: PMC5545769 DOI: 10.1016/j.omtn.2017.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Synthetically modified mRNA is a unique bioactive agent, ideal for use in therapeutic applications, such as cancer vaccination or treatment of single-gene disorders. In order to facilitate mRNA transfections for future therapeutic applications, there is a need for the delivery system to achieve optimal transfection efficacy, perform with durable stability, and provide drug safety. The objective of our study was to comprehensively analyze the use of 3β-[N-(N',N'-dimethylaminoethane) carbamoyl](DC-Cholesterol)/dioleoylphosphatidylethanolamine (DOPE) liposomes as a potential transfection agent for modified mRNAs. Our cationic liposomes facilitated a high degree of mRNA encapsulation and successful cell transfection efficiencies. More importantly, no negative effects on cell viability or immune reactions were detected posttransfection. Notably, the liposomes had a long-acting transfection effect on cells, resulting in a prolonged protein production of alpha-1-antitrypsin (AAT). In addition, the stability of these mRNA-loaded liposomes allowed storage for 80 days, without the loss of transfection efficacy. Finally, comprehensive analysis showed that these liposomes are fully hemocompatible with fresh human whole blood. In summary, we present an extensive analysis on the use of DC-cholesterol/DOPE liposomes as mRNA delivery vehicles. This approach provides the basis of a safe and efficient therapeutic strategy in the development of successful mRNA-based drugs.
Collapse
Affiliation(s)
- Tatjana Michel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Daniel Luft
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Meike-Kristin Abraham
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany; Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sabrina Reinhardt
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martha L Salinas Medina
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Julia Kurz
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia; Department of Medicine, Monash University, Melbourne, VIC 3500, Australia
| | - Stefanie Krajewski
- Department of Thoracic and Cardiovascular Surgery, Clinical Research Laboratory, University Medical Center, 72076 Tübingen, Germany.
| |
Collapse
|
86
|
Mamusa M, Sitia L, Barbero F, Ruyra A, Calvo TD, Montis C, Gonzalez-Paredes A, Wheeler GN, Morris CJ, McArthur M, Berti D. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1767-1777. [PMID: 28610721 DOI: 10.1016/j.bbamem.2017.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| | - Leopoldo Sitia
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Angels Ruyra
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Teresa Díaz Calvo
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | | | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Michael McArthur
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|
87
|
Santos RS, Dakwar GR, Zagato E, Brans T, Figueiredo C, Raemdonck K, Azevedo NF, De Smedt SC, Braeckmans K. Intracellular delivery of oligonucleotides in Helicobacter pylori by fusogenic liposomes in the presence of gastric mucus. Biomaterials 2017; 138:1-12. [PMID: 28550752 DOI: 10.1016/j.biomaterials.2017.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Abstract
The rising antimicrobial resistance contributes to 25000 annual deaths in Europe. This threat to the public health can only be tackled if novel antimicrobials are developed, combined with a more precise use of the currently available antibiotics through the implementation of fast, specific, diagnostic methods. Nucleic acid mimics (NAMs) that are able to hybridize intracellular bacterial RNA have the potential to become such a new class of antimicrobials and additionally could serve as specific detection probes. However, an essential requirement is that these NAMs should be delivered into the bacterial cytoplasm, which is a particular challenge given the fact that they are charged macromolecules. We consider these delivery challenges in relation to the gastric pathogen Helicobacter pylori, the most frequent chronic infection worldwide. In particular, we evaluate if cationic fusogenic liposomes are suitable carriers to deliver NAMs across the gastric mucus barrier and the bacterial envelope. Our study shows that DOTAP-DOPE liposomes post-PEGylated with DSPE-PEG (DSPE Lpx) can indeed successfully deliver NAMs into Helicobacter pylori, while offering protection to the NAMs from binding and inactivation in gastric mucus isolated from pigs. DSPE Lpx thus offer exciting new possibilities for in vivo diagnosis and treatment of Helicobacter pylori infections.
Collapse
MESH Headings
- Animals
- Anti-Infective Agents/administration & dosage
- Anti-Infective Agents/chemical synthesis
- Anti-Infective Agents/metabolism
- Cytoplasm/metabolism
- Drug Delivery Systems
- Drug Resistance, Microbial
- Fatty Acids, Monounsaturated/chemistry
- Fluorescent Dyes/chemistry
- Helicobacter Infections/diagnosis
- Helicobacter Infections/drug therapy
- Helicobacter Infections/microbiology
- Helicobacter pylori/genetics
- Helicobacter pylori/metabolism
- In Situ Hybridization, Fluorescence
- Liposomes
- Molecular Mimicry
- Mucus/chemistry
- Mucus/microbiology
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemical synthesis
- Oligonucleotides/genetics
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phosphatidylethanolamines/chemistry
- Polyethylene Glycols/chemistry
- Quaternary Ammonium Compounds/chemistry
- RNA, Bacterial/antagonists & inhibitors
- RNA, Bacterial/genetics
- RNA, Ribosomal/antagonists & inhibitors
- RNA, Ribosomal/genetics
- Stomach/microbiology
- Swine
Collapse
Affiliation(s)
- Rita S Santos
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - George R Dakwar
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elisa Zagato
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| | - Céu Figueiredo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine of the University of Porto, Portugal
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Nuno F Azevedo
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium; Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
Alamoudi K, Martins P, Croissant JG, Patil S, Omar H, Khashab NM. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine (Lond) 2017; 12:1421-1433. [PMID: 28524721 DOI: 10.2217/nnm-2017-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy. METHODS A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing. RESULTS The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes. CONCLUSION The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.
Collapse
Affiliation(s)
- Kholod Alamoudi
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| | - Patricia Martins
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| | - Jonas G Croissant
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| | - Sachin Patil
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| | - Haneen Omar
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory, Advanced Membranes & Porous Materials Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
| |
Collapse
|
89
|
Kulkarni JA, Myhre JL, Chen S, Tam YYC, Danescu A, Richman JM, Cullis PR. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1377-1387. [DOI: 10.1016/j.nano.2016.12.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 01/10/2023]
|
90
|
Mel'nikov PA, Baklaushev VP, Gabashvili AN, Nukolova NV, Kuznetsov II, Cherepanov SA, Koshkin FA, Leopol'd AV, Chekhonin VP. Internalization of Vectorized Liposomes Loaded with Plasmid DNA in C6 Glioma Cells. Bull Exp Biol Med 2017; 163:114-122. [PMID: 28580488 DOI: 10.1007/s10517-017-3750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/14/2022]
Abstract
We studied internalization of vector nanocarriers loaded with plasmid DNA into C6 glioma cells. For improving selectivity of plasmid delivery, the liposomes were conjugated with monoclonal antibodies to VEGF and its receptor VEGFR2. Flow cytofluorometry and laser scanning confocal microscopy showed more intensive (more than 2-fold) internalization and accumulation of antibody-vectorized liposomes in C6 glioma cells in comparison with the control (liposomes conjugated with non-specific antibodies and non-vectorized liposomes). Using quantitative analysis of fluorescent signal, we showed that cationic immunoliposomes significantly more effective delivered pCop-Green-N plasmid DNA and ensured effective transfection of C6 glioma cells.
Collapse
Affiliation(s)
- P A Mel'nikov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Federal Clinical Research Centre, Federal Medical-Biological Agency, Moscow, Russia.
| | - V P Baklaushev
- Federal Clinical Research Centre, Federal Medical-Biological Agency, Moscow, Russia
| | - A N Gabashvili
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Nukolova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| | - I I Kuznetsov
- Department of Chemical Enzymology, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S A Cherepanov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - F A Koshkin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Leopol'd
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov National Research Medical University, Moscow, Russia
| |
Collapse
|
91
|
Ullah I, Muhammad K, Akpanyung M, Nejjari A, Neve AL, Guo J, Feng Y, Shi C. Bioreducible, hydrolytically degradable and targeting polymers for gene delivery. J Mater Chem B 2017; 5:3253-3276. [PMID: 32264392 DOI: 10.1039/c7tb00275k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, synthetic gene carriers have been intensively developed owing to their promising application in gene therapy and considered as a suitable alternative to viral vectors because of several benefits. But cationic polymers still face some problems like low transfection efficiency, cytotoxicity, and poor cell recognition and internalization. The emerging engineered and smart polymers can respond to some changes in the biological environment like pH change, ionic strength change and redox potential, which is beneficial for cellular uptake. Redox-sensitive disulfide based and hydrolytically degradable cationic polymers serve as gene carriers with excellent transfection efficiency and good biocompatibility owing to degradation in the cytoplasm. Additionally, biodegradable polymeric micelles with cell-targeting function are recently emerging gene carriers, especially for the transfection of endothelial cells. In this review, some strategies for gene carriers based on these bioreducible and hydrolytically degradable polymers will be illustrated.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Shaikh MH, Clarke DTW, Johnson NW, McMillan NAJ. Can gene editing and silencing technologies play a role in the treatment of head and neck cancer? Oral Oncol 2017; 68:9-19. [PMID: 28438299 DOI: 10.1016/j.oraloncology.2017.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Conventional treatment strategies have done little to improve the prognosis or disease-free survival in head and neck cancer (HNC) patients. Recent progress in our understanding of molecular aspects of head and neck squamous cell carcinoma (HNSCC) has provided insights into the potential use of molecular targeted therapies in combination with current treatment strategies. Here we review the current understanding of treatment modalities for both HPV-positive and HPV-negative HNSCCs with the potential to use gene editing and silencing technologies therapeutically. The development of sequence-specific RNA interference (RNAi) with its strong gene-specific silencing ability, high target specificity, greater potency and reduced side effects, has shown it to be a promising therapeutic candidate for treating cancers. CRISPR/Cas gene editing is the newest technology with the ability to delete, mutate or replace genes of interest and has great potential for treating HNSCCs. We also discuss the major challenge in using these approaches in HNSCC; that being the choice of target and the ability to deliver the payload. Finally, we highlight the potential combination of RNAi or CRIPSR/Cas with current treatment strategies and outline the possible path to the clinic.
Collapse
Affiliation(s)
- Mushfiq H Shaikh
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Daniel T W Clarke
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Newell W Johnson
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| | - Nigel A J McMillan
- School of Medical Science, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia; Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Australia.
| |
Collapse
|
93
|
Shi K, Zhao Y, Miao L, Satterlee A, Haynes M, Luo C, Musetti S, Huang L. Dual Functional LipoMET Mediates Envelope-type Nanoparticles to Combinational Oncogene Silencing and Tumor Growth Inhibition. Mol Ther 2017; 25:1567-1579. [PMID: 28274796 DOI: 10.1016/j.ymthe.2017.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
The success of small interfering RNA (siRNA)-mediated gene silencing for cancer therapy is still limited because of its instability and poor intracellular internalization. Traditional cationic carriers cannot adequately meet the need for clinical application of siRNA. We herein report a dual-functional liposome containing a cholesterol derivative of metformin, i.e., LipoMET, which takes advantage of the fusogenic activity as well as intrinsic tumor apoptosis inducing ability of biguanide moiety to achieve a combinational anti-oncogenic effect. In this study, the vascular endothelial growth factor (VEGF)-specific siRNAs were first electrostatically condensed into a ternary nanocomplex composed of polycation and hyaluronate, which was subsequently enveloped by LipoMET through membrane fusion. In comparison with common cationic control group, the resulting envelope-type nanoparticles (PH@LipoMET nanoparticles [NPs]) showed the ability of rapid cellular internalization and effective endosomal escape of siRNA during intracellular trafficking studies. Systemic administration of the targeted LipoMETs was capable of inducing apoptosis and tumor growth inhibition in the NCI-H460 xenograft model. When carrying VEGF-specific siRNAs, PH@LipoMET NPs remarkably downregulated the expression of VEGF and led to even more tumor suppression in vivo. Thus, LipoMET originated envelope-type nanoparticles may serve as a potential dual-functional siRNA delivery system to improve therapeutic effect of oncogene silencing.
Collapse
Affiliation(s)
- Kai Shi
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yi Zhao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lei Miao
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Haynes
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cong Luo
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Sara Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
94
|
Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Control Release 2017; 249:131-142. [DOI: 10.1016/j.jconrel.2017.01.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/28/2017] [Indexed: 12/18/2022]
|
95
|
Panahi Y, Farshbaf M, Mohammadhosseini M, Mirahadi M, Khalilov R, Saghfi S, Akbarzadeh A. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:788-799. [DOI: 10.1080/21691401.2017.1282496] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mozhdeh Mirahadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rovshan Khalilov
- Department of Plant Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Siamak Saghfi
- Department of Plant Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| |
Collapse
|
96
|
Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28160452 DOI: 10.1002/wnan.1452] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Using nanoparticles to deliver drugs to cells has the potential to revolutionize the treatment of many diseases, including HIV, cancer, and diabetes. One of the major challenges facing this field is controlling where the drug is trafficked once the nanoparticle is taken up into the cell. In particular, if drugs remain localized in an endosomal or lysosomal compartment, the therapeutic can be rendered completely ineffective. To ensure the design of more effective delivery systems we must first develop a better understanding of how nanoparticles and their cargo are trafficked inside cells. This needs to be combined with an understanding of what characteristics are required for nanoparticles to achieve endosomal escape, along with methods to detect endosomal escape effectively. This review is focused into three sections: first, an introduction to the mechanisms governing internalization and trafficking in cells, second, a discussion of methods to detect endosomal escape, and finally, recent advances in controlling endosomal escape from polymer- and lipid-based nanoparticles, with a focus on engineering materials to promote endosomal escape. WIREs Nanomed Nanobiotechnol 2017, 9:e1452. doi: 10.1002/wnan.1452 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christina M Cortez-Jugo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.,Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Georgina K Such
- Department of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
97
|
Hinman SS, Ruiz CJ, Cao Y, Ma MC, Tang J, Laurini E, Posocco P, Giorgio S, Pricl S, Peng L, Cheng Q. Mix and Match: Coassembly of Amphiphilic Dendrimers and Phospholipids Creates Robust, Modular, and Controllable Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1029-1035. [PMID: 27957833 PMCID: PMC6041472 DOI: 10.1021/acsami.6b11556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Self-assembly of supramolecular structures has become an attractive means to create new biologically inspired materials and interfaces. We report the first robust hybrid bilayer systems readily coassembled from amphiphilic dendrimers and a naturally occurring phospholipid. Both concentration and generation of the dendrimers have direct impacts on the biophysical properties of the coassemblies. Raising the dendrimer concentration increases the hybrid bilayer stability, while changes in the generation and the concentration of the embedded dendrimers impact the fluidity of the coassembled systems. Multivalent dendrimer amine terminals allow for nondestructive in situ derivatization, providing a convenient approach to decorate and modulate the local environment of the hybrid bilayer. The coassembly of lipid/dendrimer interfaces offers a unique platform for the creation of hybrid systems with modular and precisely controllable behavior for further applications in sensing and drug delivery.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California, Riverside, Riverside, California 92521, United States
| | - Charles J. Ruiz
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Yu Cao
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Meghann C. Ma
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jingjie Tang
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste University, 34127 Trieste, Italy
| | - Paola Posocco
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste University, 34127 Trieste, Italy
| | - Suzanne Giorgio
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), Trieste University, 34127 Trieste, Italy
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Quan Cheng
- Environmental Toxicology, University of California, Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
98
|
Abstract
During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.
Collapse
|
99
|
Kozintsev A, Sugihara K. Artificial tubular connections between cells based on synthetic lipid nanotubes. RSC Adv 2017. [DOI: 10.1039/c7ra02187a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Open-ended artificial tubular connections between cells were controllably fabricated using synthetic lipid nanotubes.
Collapse
Affiliation(s)
- Alexander Kozintsev
- Department of Physical Chemistry
- University of Geneva
- 1211 Geneva 4
- Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry
- University of Geneva
- 1211 Geneva 4
- Switzerland
| |
Collapse
|
100
|
Abstract
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use.
Collapse
Affiliation(s)
- Jian Guo
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Xiaojing Jiang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, People’s Republic of China
| |
Collapse
|