51
|
Ueki R, Uchida S, Kanda N, Yamada N, Ueki A, Akiyama M, Toh K, Cabral H, Sando S. A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. SCIENCE ADVANCES 2020; 6:eaay2801. [PMID: 32270033 PMCID: PMC7112757 DOI: 10.1126/sciadv.aay2801] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/19/2019] [Indexed: 05/25/2023]
Abstract
Although growth factors have great therapeutic potential because of their regenerative functions, they often have intrinsic drawbacks, such as low thermal stability and high production cost. Oligonucleotides have recently emerged as promising chemical entities for designing synthetic alternatives to growth factors. However, their applications in vivo have been recognized as a challenge because of their susceptibility to nucleases and limited distribution to a target tissue. Here, we present the first example of oligonucleotide-based growth factor mimetics that exerts therapeutic effects at a target tissue after systemic injection. The aptamer was designed to dimerize a growth factor receptor for its activation and mitigated the progression of Fas-induced fulminant hepatitis in a mouse model. This unprecedented functionality of the aptamer can be reasonably explained by its high nuclease stability and migration to the liver parenchyma. These mechanistic analyses provided insights for the successful application of aptamer-based receptor agonists.
Collapse
Affiliation(s)
- Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Naoto Kanda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ayaka Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Momoko Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
52
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
53
|
Liu LQ, Wang ZH, Yao HY. Hepatocyte growth factor can guide treatment of Mycoplasma pneumoniae pneumonia in children. Exp Ther Med 2020; 19:3432-3438. [PMID: 32266043 DOI: 10.3892/etm.2020.8596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of the present study was to explore the role of hepatocyte growth factor (HGF) in directing treatment of Mycoplasma pneumoniae pneumonia (MP). Serum levels of HGF were assessed using ELISA in 65 pediatric patients with MP, 42 with bacterial pneumonia and 30 healthy controls. Serum levels of C-reactive protein (CRP), the standard guide for MP treatment, were also examined in severe and non-severe MP. The sensitivity and specificity of HGF and CRP in assessing the outcome of azithromycin treatment of MP were compared using receiver operating characteristic curves. HGF levels were elevated in MP and bacterial pneumonia patients compared with healthy controls. HGF levels were also significantly higher in severe MP than in non-severe MP. HGF showed higher sensitivity and specificity than CRP in assessing outcomes of azithromycin treatment of MP. The results of the present study indicated that HGF may be used to detect severe MP and to direct its management. Furthermore, HGF may be better predictive marker to assess the effectiveness of azithromycin treatment of MP than CRP.
Collapse
Affiliation(s)
- Lun Qin Liu
- Department of Inspection, Infectious Diseases Hospital of Jinan, Jinan, Shandong 250021, P.R. China
| | - Zhi Hua Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Hai Yun Yao
- Department of Inspection, Jinan Blood Center, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
54
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
55
|
Greenbaum LE, Ukomadu C, Tchorz JS. Clinical translation of liver regeneration therapies: A conceptual road map. Biochem Pharmacol 2020; 175:113847. [PMID: 32035080 DOI: 10.1016/j.bcp.2020.113847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
The increasing incidence of severe liver diseases worldwide has resulted in a high demand for curative liver transplantation. Unfortunately, the need for transplants by far eclipses the availability of suitable grafts leaving many waitlisted patients to face liver failure and often death. Routine use of smaller grafts (for example left lobes, split livers) from living or deceased donors could increase the number of life-saving transplants but is often limited by the graft versus recipient weight ratio defining the safety margins that minimize the risk of small for size syndrome (SFSS). SFSS is a severe complication characterized by failure of a small liver graft to regenerate and occurs when a donor graft is insufficient to meet the metabolic demand of the recipient, leading to liver failure as a result of insufficient liver mass. SFSS is not limited to transplantation but can also occur in the setting of hepatic surgical resections, where life-saving large resections of tumors may be limited by concerns of post-surgical liver failure. There are, as yet no available pro-regenerative therapies to enable liver regrowth and thus prevent SFSS. However, there is optimism around targeting factors and pathways that have been identified as regulators of liver regeneration to induce regrowth in vivo and ex vivo for clinical use. In this commentary, we propose a roadmap for developing such pro-regenerative therapy and for bringing it into the clinic. We summarize the clinical indications, preclinical models, pro-regenerative pathways and safety considerations necessary for developing such a drug.
Collapse
Affiliation(s)
- Linda E Greenbaum
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, East Hanover, NJ, United States.
| | - Chinweike Ukomadu
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Cambridge, MA, United States.
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
56
|
Xia C, Wang Y, Liu C, Wang L, Gao X, Li D, Qi W, An R, Xu H. Novel Peptide CM 7 Targeted c-Met with Antitumor Activity. Molecules 2020; 25:molecules25030451. [PMID: 31973231 PMCID: PMC7038139 DOI: 10.3390/molecules25030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Anomalous changes of the cell mesenchymal–epithelial transition factor (c-Met) receptor tyrosine kinase signaling pathway play an important role in the occurrence and development of human cancers, including gastric cancer. In this study, we designed and synthesized a novel peptide (CM 7) targeting the tyrosine kinase receptor c-Met, that can inhibit c-Met-mediated signaling in MKN-45 and U87 cells. Its affinity to human c-Met protein or c-Met-positive cells was determined, which showed specific binding to c-Met with high affinity. Its biological activities against MKN-45 c-Met-positive cells were evaluated in vitro and in vivo. As a result, peptide CM 7 exhibited moderate regulation of c-Met-mediated cell proliferation, migration, invasion, and scattering. The inhibitory effect of peptide CM 7 on tumor growth in vivo was investigated by establishing a xenograft mouse model using MKN-45 cells, and the growth inhibition rate of tumor masses for peptide CM 7 was 62%. Based on our data, CM 7 could be a promising therapeutic peptide for c-Met-dependent cancer patients.
Collapse
Affiliation(s)
- Chunlei Xia
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Liu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Liwen Wang
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmei Gao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Dongping Li
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weiyan Qi
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Roujin An
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, Jiangsu Province, China Pharmaceutical University, Nanjing 211198, China; (C.X.); (Y.W.); (C.L.); (L.W.); (X.G.); (D.L.); (W.Q.); (R.A.)
- Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: ; Tel.: +86-139-139-25346; Fax: +86-025-86185437
| |
Collapse
|
57
|
Multipotent Neurotrophic Effects of Hepatocyte Growth Factor in Spinal Cord Injury. Int J Mol Sci 2019; 20:ijms20236078. [PMID: 31810304 PMCID: PMC6928986 DOI: 10.3390/ijms20236078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal cord injury (SCI) results in neural tissue loss and so far untreatable functional impairment. In addition, at the initial injury site, inflammation induces secondary damage, and glial scar formation occurs to limit inflammation-mediated tissue damage. Consequently, it obstructs neural regeneration. Many studies have been conducted in the field of SCI; however, no satisfactory treatment has been established to date. Hepatocyte growth factor (HGF) is one of the neurotrophic growth factors and has been listed as a candidate medicine for SCI treatment. The highlighted effects of HGF on neural regeneration are associated with its anti-inflammatory and anti-fibrotic activities. Moreover, HGF exerts positive effects on transplanted stem cell differentiation into neurons. This paper reviews the mechanisms underlying the therapeutic effects of HGF in SCI recovery, and introduces recent advances in the clinical applications of HGF therapy.
Collapse
|
58
|
Zhang XJ, Olsavszky V, Yin Y, Wang B, Engleitner T, Öllinger R, Schledzewski K, Koch PS, Rad R, Schmid RM, Friess H, Goerdt S, Hüser N, Géraud C, von Figura G, Hartmann D. Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:358-371. [PMID: 31783007 DOI: 10.1016/j.ajpath.2019.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) control organ functions, metabolism, and development through the secretion of angiokines. LSECs express hepatocyte growth factor (Hgf), which is involved in prenatal development, metabolic homeostasis, and liver regeneration. This study aimed to elucidate the precise contribution of LSEC-derived Hgf in physiological homeostasis and liver regeneration. Stab2-iCretg/wt;Hgffl/fl (HgfΔLSEC) mice were generated to abrogate Hgf expression selectively in LSECs from early fetal development onwards, to study global development, metabolic and endothelial zonation, and organ functions as well as liver regeneration in response to 70% partial hepatectomy (PH). Although zonation and liver/body weight ratios were not altered, total body weight and total liver weight were reduced in HgfΔLSEC. Necrotic organ damage was more marked in HgfΔLSEC mice, and regeneration was delayed 72 hours after PH. This was associated with decreased hepatocyte proliferation at 48 hours after PH. Molecularly, HgfΔLSEC mice showed down-regulation of Hgf/c-Met signaling and decreased expression of Deptor in hepatocytes. In vitro knockdown of Deptor was associated with decreased proliferation. Therefore, angiocrine Hgf controls hepatocyte proliferation and susceptibility to necrosis after partial hepatectomy via the Hgf/c-Met axis involving Deptor to prevent excessive organ damage.
Collapse
Affiliation(s)
- Xue-Jun Zhang
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany; Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Victor Olsavszky
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Center of Excellence in Dermatology, Mannheim, Germany
| | - Yuhan Yin
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Baocai Wang
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Thomas Engleitner
- Translatum Cancer Center, and Department of Medicine II, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Rupert Öllinger
- Translatum Cancer Center, and Department of Medicine II, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Kai Schledzewski
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Center of Excellence in Dermatology, Mannheim, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Center of Excellence in Dermatology, Mannheim, Germany
| | - Roland Rad
- Translatum Cancer Center, and Department of Medicine II, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Roland M Schmid
- II: Medical Clinic and Policlinic, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Center of Excellence in Dermatology, Mannheim, Germany
| | - Norbert Hüser
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Center of Excellence in Dermatology, Mannheim, Germany; Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Guido von Figura
- II: Medical Clinic and Policlinic, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
| |
Collapse
|
59
|
A hepatocyte growth factor/MET-induced antiapoptotic pathway protects against radiation-induced salivary gland dysfunction. Radiother Oncol 2019; 138:9-16. [DOI: 10.1016/j.radonc.2019.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
|
60
|
Abe Y, Ochiai D, Masuda H, Sato Y, Otani T, Fukutake M, Ikenoue S, Miyakoshi K, Okano H, Tanaka M. In Utero Amniotic Fluid Stem Cell Therapy Protects Against Myelomeningocele via Spinal Cord Coverage and Hepatocyte Growth Factor Secretion. Stem Cells Transl Med 2019; 8:1170-1179. [PMID: 31407874 PMCID: PMC6811697 DOI: 10.1002/sctm.19-0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the poor prognosis associated with myelomeningocele (MMC), the options for prenatal treatments are still limited. Recently, fetal cellular therapy has become a new option for treating birth defects, although the therapeutic effects and mechanisms associated with such treatments remain unclear. The use of human amniotic fluid stem cells (hAFSCs) is ideal with respect to immunoreactivity and cell propagation. The prenatal diagnosis of MMC during early stages of pregnancy could allow for the ex vivo proliferation and modulation of autologous hAFSCs for use in utero stem cell therapy. Therefore, we investigated the therapeutic effects and mechanisms of hAFSCs‐based treatment for fetal MMC. hAFSCs were isolated as CD117‐positive cells from the amniotic fluid of 15‐ to 17‐week pregnant women who underwent amniocentesis for prenatal diagnosis and consented to this study. Rat dams were exposed to retinoic acid to induce fetal MMC and were subsequently injected with hAFSCs in each amniotic cavity. We measured the exposed area of the spinal cord and hepatocyte growth factor (HGF) levels at the lesion. The exposed spinal area of the hAFSC‐treated group was significantly smaller than that of the control group. Immunohistochemical analysis demonstrated a reduction in neuronal damage such as neurodegeneration and astrogliosis in the hAFSC‐treated group. Additionally, in lesions of the hAFSC‐treated group, HGF expression was upregulated and HGF‐positive hAFSCs were identified, suggesting that these cells migrated to the lesion and secreted HGF to suppress neuronal damage and induce neurogenesis. Therefore, in utero hAFSC therapy could become a novel strategy for fetal MMC. stem cells translational medicine2019;8:1170–1179
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshimitsu Otani
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Marie Fukutake
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Ikenoue
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kei Miyakoshi
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
61
|
Lee SH, Kim S, Lee N, Lee J, Yu SS, Kim JH, Kim S. Intrathecal delivery of recombinant AAV1 encoding hepatocyte growth factor improves motor functions and protects neuromuscular system in the nerve crush and SOD1-G93A transgenic mouse models. Acta Neuropathol Commun 2019; 7:96. [PMID: 31189468 PMCID: PMC6563368 DOI: 10.1186/s40478-019-0737-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease resulting from motor neuron degeneration that causes muscle weakness, paralysis, and eventually respiratory failure. We investigated whether recombinant adeno-associated virus encoding human hepatocyte growth factor (rAAV-HGF) could generate beneficial effects in two mouse models with neuromuscular problems when intrathecally delivered to the subarachnoid space. We chose AAV serotype 1 (rAAV1) based on the expression levels and distribution of HGF protein in the lumbar spinal cord (LSC). After a single intrathecal (IT) injection of rAAV1-HGF, the protein level of HGF in the LSC peaked on day 14 and thereafter gradually decreased over the next 14 weeks. rAAV1-HGF was initially tested in the mouse nerve crush model. IT injection of rAAV1-HGF improved mouse hindlimb strength and rotarod performance, while histological analyses showed that the length of regenerated axons was increased and the structure of the neuromuscular junction (NMJ) was restored. rAAV1-HGF was also evaluated in the SOD1-G93A transgenic (TG) mouse model. Again, rAAV1-HGF not only improved motor performance but also increased the survival rate. Moreover, the number and diameter of spinal motor neurons (SMNs) were increased, and the shape of the NMJs restored. Data from in vitro motor cortical culture experiments indicated that treatment with recombinant HGF protein (rHGF) increased the axon length of corticospinal motor neurons (CSMNs). When cultures were treated with an ERK inhibitor, the effects of HGF on axon elongation, protein aggregation, and oxidative stress were suppressed, indicating that ERK phosphorylation played an important role(s). Taken together, our results suggested that HGF might play an important role(s) in delaying disease progression in the SOD1-G93A TG mouse model by reducing oxidative stress through the control of ERK phosphorylation.
Collapse
|
62
|
Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment. Int J Mol Sci 2019; 20:ijms20051054. [PMID: 30823442 PMCID: PMC6429374 DOI: 10.3390/ijms20051054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor (HGF) was first identified as a potent mitogen for mature hepatocytes, and has also gained attention as a strong neurotrophic factor in the central nervous system. We found that during the acute phase of spinal cord injury (SCI) in rats, c-Met, the specific receptor for HGF, increases sharply, while the endogenous HGF up-regulation is relatively weak. Introducing exogenous HGF into the spinal cord by injecting an HGF-expressing viral vector significantly increased the neuron and oligodendrocyte survival, angiogenesis, and axonal regeneration, to reduce the area of damage and to promote functional recovery in rats after SCI. Other recent studies in rodents have shown that exogenously administered HGF during the acute phase of SCI reduces astrocyte activation to decrease glial scar formation, and exerts anti-inflammatory effects to reduce leukocyte infiltration. We also reported that the intrathecal infusion of recombinant human HGF (intrathecal rhHGF) improves neurological hand function after cervical contusive SCI in the common marmoset, a non-human primate. Based on these collective results, we conducted a phase I/II clinical trial of intrathecal rhHGF for patients with acute cervical SCI who showed a modified Frankel grade of A/B1/B2 72 h after injury onset, from June 2014 to May 2018.
Collapse
|
63
|
Naito A, Sakao S, Lang IM, Voelkel NF, Jujo T, Ishida K, Sugiura T, Matsumiya G, Yoshino I, Tanabe N, Tatsumi K. Endothelial cells from pulmonary endarterectomy specimens possess a high angiogenic potential and express high levels of hepatocyte growth factor. BMC Pulm Med 2018; 18:197. [PMID: 30594174 PMCID: PMC6310963 DOI: 10.1186/s12890-018-0769-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Impaired angiogenesis is assumed to be an important factor in the development of chronic thromboembolic pulmonary hypertension (CTEPH). However, the role of endothelial cells (ECs) in CTEPH remains unclear. The aim of this study was to investigate the angiogenic potential of ECs from pulmonary endarterectomy (PEA) specimens. METHODS We isolated ECs from PEA specimens (CTEPH-ECs) and control EC lines from the intact pulmonary arteries of patients with peripheral lung cancers, using a MACS system. These cells were analyzed in vitro including PCR-array analysis, and the PEA specimens were analyzed with immunohistochemistry. Additionally, the serum HGF levels were determined in CTEPH patients. RESULTS A three-dimensional culture assay revealed that CTEPH-ECs were highly angiogenic. An angiogenesis-focused gene PCR array revealed a high expression of hepatocyte growth factor (HGF) in CTEPH-ECs. The high expression of HGF was also confirmed in the supernatant extracted from PEA specimens. The immunohistochemical analysis showed expression of HGF on the surface of the thrombus vessels. The serum HGF levels in CTEPH patients were higher than those in pulmonary thromboembolism survivors. CONCLUSION Our study suggests that there are ECs with pro-angiogenetic character and high expression of HGF in PEA specimens. It remains unknown how these results are attributable to the etiology. However, further investigation focused on the HGF pathway may provide novel diagnostic and therapeutic tools for patients with CTEPH.
Collapse
Affiliation(s)
- Akira Naito
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.,Department of Advancing Research on Treatment Strategies for respiratory disease, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Norbert F Voelkel
- Victoria Johnson Center for Obstructive Lung Disease, Virginia Commonwealth University, 1101 East Marshall Street, Sanger Hall, Richmond, VA, 23298-0565, USA
| | - Takayuki Jujo
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Keiichi Ishida
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Toshihiko Sugiura
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Ichiro Yoshino
- Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City, 260-8670, Japan
| |
Collapse
|
64
|
HGF/c-MET Signaling in Melanocytes and Melanoma. Int J Mol Sci 2018; 19:ijms19123844. [PMID: 30513872 PMCID: PMC6321285 DOI: 10.3390/ijms19123844] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Hepatocyte growth factor (HGF)/ mesenchymal-epithelial transition factor (c-MET) signaling is involved in complex cellular programs that are important for embryonic development and tissue regeneration, but its activity is also utilized by cancer cells during tumor progression. HGF and c-MET usually mediate heterotypic cell–cell interactions, such as epithelial–mesenchymal, including tumor–stroma interactions. In the skin, dermal fibroblasts are the main source of HGF. The presence of c-MET on keratinocytes is crucial for wound healing in the skin. HGF is not released by normal melanocytes, but as melanocytes express c-MET, they are receptive to HGF, which protects them from apoptosis and stimulates their proliferation and motility. Dissimilar to melanocytes, melanoma cells not only express c-MET, but also release HGF, thus activating c-MET in an autocrine manner. Stimulation of the HGF/c-MET pathways contributes to several processes that are crucial for melanoma development, such as proliferation, survival, motility, and invasiveness, including distant metastatic niche formation. HGF might be a factor in the innate and acquired resistance of melanoma to oncoprotein-targeted drugs. It is not entirely clear whether elevated serum HGF level is associated with low progression-free survival and overall survival after treatment with targeted therapies. This review focuses on the role of HGF/c-MET signaling in melanoma with some introductory information on its function in skin and melanocytes.
Collapse
|
65
|
Lu W, Burton L, Larkin J, Chapman PB, Ascierto PA, Ribas A, Robert C, Sosman JA, McArthur GA, Chang I, Caro I, Penuel E, Yan Y, Wongchenko MJ. Elevated Levels of BRAFV600 Mutant Circulating Tumor DNA and Circulating Hepatocyte Growth Factor Are Associated With Poor Prognosis in Patients With Metastatic Melanoma. JCO Precis Oncol 2018; 2:1-17. [DOI: 10.1200/po.17.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose We performed a retrospective exploratory analysis to evaluate the prognostic and predictive effect of two circulating biomarkers, BRAFV600 mutant circulating tumor DNA (ctDNA) and circulating hepatocyte growth factor (cHGF), in metastatic melanoma. Materials and Methods This study evaluated patients from BRIM-3, a phase III trial comparing vemurafenib and dacarbazine in 675 patients with BRAFV600 mutated advanced melanoma. ctDNA was measured using droplet digital polymerase chain reaction, and cHGF was measured by enzyme-linked immunosorbent assay. Overall survival (OS) was estimated using the Kaplan-Meier method, and hazard ratios (HRs) were estimated using Cox proportional hazards modeling. Partitioning analysis was used to group patients into risk categories. Results Patients with elevated levels of baseline BRAFV600 ctDNA had significantly shorter median OS than those with undetectable levels of ctDNA (vemurafenib arm, 9.9 v 21.4 months, respectively, and dacarbazine arm: 6.1 v 21.0 months, respectively). Median OS was also shorter in patients with high levels of cHGF compared with those with low cHGF (vemurafenib arm, 11.9 v 17.3 months, respectively, and dacarbazine arm, 6.1 v 14.4 months, respectively). In a multivariable proportional hazards model with adjustment for lactate dehydrogenase, Eastern Cooperative Oncology Group status, disease stage, and treatment, ctDNA and cHGF were both independent prognostic factors for OS, (HR, 1.75; 95% CI, 1.35 to 2.28 for high v undetectable ctDNA; HR, 1.24; 95% CI, 1.00 to 1.53 for high v low cHGF). Using partitioning analysis, we found that patients with elevated ctDNA combined with elevated cHGF constituted the highest risk group with significantly shorter OS. Conclusion Here, we report that BRIM-3 patients with high levels of ctDNA and cHGF have worse OS regardless of treatment and that these factors are independent prognostic markers for metastatic melanoma.
Collapse
Affiliation(s)
- William Lu
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Luciana Burton
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - James Larkin
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Paul B. Chapman
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Paolo A. Ascierto
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Antoni Ribas
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Caroline Robert
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Jeffrey A. Sosman
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Grant A. McArthur
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Ilsung Chang
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Ivor Caro
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Elicia Penuel
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Yibing Yan
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| | - Matthew J. Wongchenko
- William Lu, Luciana Burton, Ilsung Chang, Ivor Caro, Elicia Penuel, Yibing Yan, and Matthew J. Wongchenko, Genentech, South San Francisco; Antoni Ribas, The Jonsson Comprehensive Cancer Center at University of California, Los Angeles, CA; James Larkin, The Royal Marsden NHS Foundation Trust, London, United Kingdom; Paul B. Chapman, Memorial Sloan Kettering Cancer Center, New York, NY; Paolo A. Ascierto, Istituto Nazionale Tumori Fondazione G. Pascale, Naples, Italy; Caroline Robert, Institut Gustave
| |
Collapse
|
66
|
Švajger U, Rožman P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Front Immunol 2018; 9:2482. [PMID: 30416505 PMCID: PMC6212600 DOI: 10.3389/fimmu.2018.02482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of microenvironment on dendritic cell (DC) function and development has been strongly established during the last two decades. Although DCs with general tolerogenic characteristics have been isolated and defined as a particular sub-population, it is predominantly their unequivocal biological plasticity, which allows for unparalleled responsiveness to environmental ques and shaping of their tolerogenic characteristics when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for a great number of endogenous factors, which, after ligation, can importantly influence the development of their activation state. For this there is ample evidence merely by observation of DC characteristics isolated from various anatomical niches, e.g., the greater immunosuppressive potential of DCs isolated from intestine compared to conventional blood DCs. Endogenous biomolecules present in these environments most likely play a major role as a determinant of their phenotype and function. In this review, we will concisely summarize in what way various, tolerance-inducing endogenous factors influence DC biology, the development of their particular tolerogenic state and their subsequent actions in context of immune response inhibition and induction of regulatory T cells.
Collapse
Affiliation(s)
- Urban Švajger
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Rožman
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
67
|
Sowa K, Nito C, Nakajima M, Suda S, Nishiyama Y, Sakamoto Y, Nitahara-Kasahara Y, Nakamura-Takahashi A, Ueda M, Kimura K, Okada T. Impact of Dental Pulp Stem Cells Overexpressing Hepatocyte Growth Factor after Cerebral Ischemia/Reperfusion in Rats. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:281-290. [PMID: 30151417 PMCID: PMC6108066 DOI: 10.1016/j.omtm.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
Hepatocyte growth factor (HGF) has neuroprotective effects against ischemia-induced injuries. Dental pulp stem cell (DPSC) transplantation attenuates tissue injury in the brain of rats with post-transient middle cerebral artery occlusion. We sought to determine whether DPSCs that overexpress HGF can enhance their therapeutic effects on brain damage post-ischemia/reperfusion injury. Treatment with DPSCs overexpressing HGF reduced infarct volumes compared to unmodified DPSC treatment at 3 and 7 days post-transient middle cerebral artery occlusion. The use of unmodified DPSCs and DPSCs overexpressing HGF was associated with improved motor function compared to that with administration of vehicle at 7 days post-transient middle cerebral artery occlusion. DPSCs overexpressing HGF significantly inhibited microglial activation and pro-inflammatory cytokine production along with suppression of neuronal degeneration. Post-reperfusion, DPSCs overexpressing HGF attenuated the decreases in tight junction proteins, maintained blood-brain barrier integrity, and increased microvessel density in peri-infarct areas. The administration of DPSCs overexpressing HGF during the acute phase of stroke increased their neuroprotective effects by modulating inflammation and blood-brain barrier permeability, thereby promoting improvements in post-ischemia/reperfusion brain injury.
Collapse
Affiliation(s)
- Kota Sowa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masataka Nakajima
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yasuhiro Nishiyama
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Aki Nakamura-Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masayuki Ueda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Neurology and Stroke Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
68
|
Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 2018; 18:341-358. [PMID: 29674709 DOI: 10.1038/s41568-018-0002-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.
Collapse
Affiliation(s)
- Paolo M Comoglio
- Exploratory Research and Molecular Cancer Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Livio Trusolino
- Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| | - Carla Boccaccio
- Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| |
Collapse
|
69
|
Abstract
Liver regeneration after simple resection represents a unique process in which the organ returns to its original size and histologic structure. Over the past 30 years, there has been significant progress in elucidating the mechanisms associated with regeneration after loss of hepatic mass. Liver regeneration after acute liver failure shares several of these classical pathways. It differs, however, in key processes, including the role of both differentiated and stemlike cells. This article outlines these differences in addition to new molecular mechanisms, including immunomodulation, microRNAs, and the gut-liver axis. In addition, applications to the patient population, including prognostication and stem cell therapies, are explored.
Collapse
Affiliation(s)
- Keith M Wirth
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA.
| | - Scott Kizy
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
70
|
Sagi Z, Hieronymus T. The Impact of the Epithelial-Mesenchymal Transition Regulator Hepatocyte Growth Factor Receptor/Met on Skin Immunity by Modulating Langerhans Cell Migration. Front Immunol 2018; 9:517. [PMID: 29616031 PMCID: PMC5864859 DOI: 10.3389/fimmu.2018.00517] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/27/2018] [Indexed: 01/16/2023] Open
Abstract
Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the transmembrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory activities via Met signaling and was found to regulate various functions of immune cells, including differentiation and maturation, cytokine production, cellular migration and adhesion, and T cell effector function. It has only recently become evident that a number of HGF-regulated functions in inflammatory processes and immune responses are imparted via DCs. However, the mechanisms by which Met signaling in DCs conveys its immunoregulatory effects have not yet been fully understood. In this review, we focus on the current knowledge of Met signaling in DCs with particular attention on the morphogenic and motogenic activities. Met signaling was shown to promote DC mobility by regulating matrix metalloproteinase activities and adhesion. This is a striking resemblance to the role of Met in regulating a cell fate program during embryonic development, wound healing, and in tumor invasion known as epithelial–mesenchymal transition (EMT). Hence, we propose the concept that an EMT program is executed by Met signaling in LCs.
Collapse
Affiliation(s)
- Zsofia Sagi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Hieronymus
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
71
|
Abstract
Background/Aims To date, numerous studies have demonstrated that several angiogenesis regulators circulate in the blood and may function as endocrine factors in cancer patients. This review aims to give a comprehensive insight into the possible clinical value of circulating angiogenesis regulators, mainly basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF), angiogenin, pleiotrophin, thrombospondin (TSP) and endostatin (ES) in cancer patients. Methods A computerized (MEDLINE) and a manual search based on the reference lists of the publications were performed to identify articles published on this topic. Results In a detailed literature search, approximately 100 publications were found up to the end of 1999. Circulating angiogenic factors such as bFGF, VEGF, HGF and angiogenin have been evaluated not only as diagnostic and/or prognostic factors but also as predictive factors in cancer patients. On the other hand, little is known about the clinical significance of negative regulators. Neither the source nor the mechanism of protein externalization has been clarified in detail. Conclusions Although there are no known factors with established clinical utility, circulating angiogenesis regulators may be useful in several situations. They could be used to determine the risk of developing cancer, to screen for early detection, to distinguish benign from malignant disease, and to distinguish between different types of malignancies. In patients with established malignancies such factors might be used to determine prognosis, to predict the response to therapy, and to monitor the clinical course. Further investigations are warranted to assess the specific utility of each factor.
Collapse
Affiliation(s)
- K Kuroi
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Japan.
| | | |
Collapse
|
72
|
Paré B, Gros-Louis F. Potential skin involvement in ALS: revisiting Charcot's observation - a review of skin abnormalities in ALS. Rev Neurosci 2018; 28:551-572. [PMID: 28343168 DOI: 10.1515/revneuro-2017-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients' skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.
Collapse
|
73
|
Zhu Y, Hilal S, Chai YL, Ikram MK, Venketasubramanian N, Chen CP, Lai MKP. Serum Hepatocyte Growth Factor Is Associated with Small Vessel Disease in Alzheimer's Dementia. Front Aging Neurosci 2018; 10:8. [PMID: 29410622 PMCID: PMC5787106 DOI: 10.3389/fnagi.2018.00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Background: While hepatocyte growth factor (HGF) is known to exert cell growth, migration and morphogenic effects in various organs, recent studies suggest that HGF may also play a role in synaptic maintenance and cerebrovascular integrity. Although increased levels of HGF have been reported in brain and cerebrospinal fluid (CSF) samples of patients with Alzheimer’s disease (AD), it is unclear whether peripheral HGF may be associated with cerebrovascular disease (CeVD) and dementia. In this study, we examined the association of baseline serum HGF with neuroimaging markers of CeVD in a cohort of pre-dementia (cognitive impaired no dementia, CIND) and AD patients. Methods: Serum samples from aged, Non-cognitively impaired (NCI) controls, CIND and AD subjects were measured for HGF levels. CeVD (cortical infarcts, microinfarcts, lacunes, white matter hyperintensities (WMH) and microbleeds) were assessed by magnetic resonance imaging (MRI). Results: After controlling for covariates, higher levels of HGF were associated with both CIND and AD. Among the different CeVD MRI markers in CIND and AD, only small vessel disease, but not large vessel disease markers were associated with higher HGF levels. Conclusion: Serum HGF may be a useful peripheral biomarker for small vessel disease in subjects with cognitive impairment and AD.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Departments of Radiology and Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yuek L Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - M K Ikram
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Departments of Neurology and Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| |
Collapse
|
74
|
Miyagi H, Thomasy SM, Russell P, Murphy CJ. The role of hepatocyte growth factor in corneal wound healing. Exp Eye Res 2018; 166:49-55. [PMID: 29024692 PMCID: PMC5831200 DOI: 10.1016/j.exer.2017.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Hepatocyte growth factor (HGF) is a glycoprotein produced by mesenchymal cells and operates as a key molecule for tissue generation and renewal. During corneal injury, HGF is primarily secreted by stromal fibroblasts and promotes epithelial wound healing in a paracrine manner. While this mesenchymal-epithelial interaction is well characterized in various organs and the cornea, the role of HGF in corneal stromal and endothelial wound healing is understudied. In addition, HGF has been shown to play an anti-fibrotic role by inhibiting myofibroblast generation and subsequent production of a disorganized extracellular matrix and tissue fibrosis. Therefore, HGF represents a potential therapeutic tool in numerous organs in which myofibroblasts are responsible for tissue scarring. Corneal fibrosis can be a devastating sequela of injury and can result in corneal opacification and retrocorneal membrane formation leading to severe vision loss. In this article, we concisely review the available literature regarding the role of HGF in corneal wound healing. We highlight the influence of HGF on cellular behaviors in each corneal layer. Additionally, we suggest the possibility that HGF may represent a therapeutic tool for interrupting dysregulated corneal repair processes to improve patient outcomes.
Collapse
Affiliation(s)
- Hidetaka Miyagi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Kasumi 1-2-3, Hiroshima, 7348551, Japan.
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave., Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, 2315 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
75
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
76
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
77
|
Madonna R, Cevik C, Nasser M, De Caterina R. Hepatocyte growth factor: Molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thromb Haemost 2017; 107:656-61. [DOI: 10.1160/th11-10-0711] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/03/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe liver possesses impressive regenerative capacities. Grafts of embryonic liver explants and liver explant-conditioned media have been shown to enhance the mitotic activity of hepatocytes. Hepatocyte growth factor (HGF), also named scatter factor (SF), has been identified as a primary candidate in promoting and regulating liver regeneration. Although initially thought to be a liver-specific mitogen, HGF was later reported to have mitogenic, motogenic, morphogenic, and anti-apoptotic activities in various cell types. By promoting angiogenesis and inhibiting apoptosis, endogenous HGF may play an important role in cardioprotection as well as in the regeneration of endothelial cells and cardiomyocytes after myocardial infarction. Since serum concentration of HGF increases in the early phase of myocardial infarction and in heart failure, HGF may also play a key role as a prognostic and diagnostic biomarker of cardiovascular disease. Here we discuss the role of HGF as a biomarker and mediator in cardioprotection and cardiovascular regeneration.
Collapse
|
78
|
Mei L, He Y, Wang H, Jin Y, Wang S, Jin C. Human hepatocyte growth factor inhibits early neointima formation in rabbit abdominal aortae following ultrasound-guided balloon injury. Mol Med Rep 2017; 16:5203-5210. [PMID: 28849185 PMCID: PMC5647058 DOI: 10.3892/mmr.2017.7229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the effects of in vivo gene transfer of human hepatocyte growth factor (hHGF) on neointima formation in rabbit abdominal aortae following ultrasound‑guided balloon injury. New Zealand white rabbits were randomly divided into four groups: endothelium injury alone (EI), endothelium injury with control vector transfection (EI‑V), endothelium injury with hHGF transfection (EI‑HGF), and hHGF transfection alone without endothelium injury (HGF). Endothelial injury was established by scraping the abdominal aortic wall using a balloon catheter under the guidance of a transabdominal ultrasound. hHGF gene transfer was performed 7 days following injury. hHGF mRNA and protein expression levels were determined at 3, 7, 14 and 21 days following transfection. Neointima formation was assessed by histopathological analysis at 14 and 28 days following injury. hHGF mRNA and protein expression levels were detected in the target abdominal aortae in EI‑HGF and HGF groups with the greatest levels observed 3 days following transfection, and their levels dropped below detection limits at 21 days following transfection. hHGF was not detectable in the EI and EI‑V groups throughout the experiment. The neointimal area and the neointima to media ratio in the EI‑HGF group were significantly decreased compared with those in the EI or EI‑V group at 14 days following injury. However, no differences were observed at 28 days following injury. The present study demonstrated that in vivo hHGF gene transfer inhibits the early formation of neointima in balloon‑injured rabbit abdominal aortae.
Collapse
Affiliation(s)
- Li Mei
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yu He
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Jin
- Department of Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuai Wang
- Department of Pathology, Cancer Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
- Correspondence to: Professor Chunxiang Jin, Department of Ultrasound, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
79
|
Tong F, Zhang H. Poly (Ethylene Glycol)- Block-Brush Poly (L-Lysine) Copolymer as an Efficient Nanocarrier for Human Hepatocyte Growth Factor with Enhanced Bioavailability and Anti-Ischemia Reperfusion Injury Efficacy. Kidney Blood Press Res 2017; 42:495-508. [DOI: 10.1159/000479642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/26/2017] [Indexed: 11/19/2022] Open
|
80
|
Regulation of HGF-induced hepatocyte proliferation by the small GTPase Arf6 through the PIP 2-producing enzyme PIP5K1A. Sci Rep 2017; 7:9438. [PMID: 28842595 PMCID: PMC5572707 DOI: 10.1038/s41598-017-09633-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022] Open
Abstract
HGF and its receptor c-Met are critical molecules in various biological processes. Others and we have previously shown that the small GTPase Arf6 plays a pivotal role in HGF signaling in hepatocytes. However, the molecular mechanism of how Arf6 regulates HGF signaling is unclear. Here, we show that Arf6 plays an important role in HGF-stimulated hepatocyte proliferation and liver regeneration through the phosphatidylinositol 4,5-bisphosphate (PIP2)-producing enzyme PIP5K1A. We find that knockdown of Arf6 and PIP5K1A in HepG2 cells inhibits HGF-stimulated proliferation, Akt activation, and generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and its precursor PIP2. Interestingly, PIP5K1A is recruited to c-Met upon HGF stimulation in an Arf6 activity-dependent manner. Finally, we show that hepatocyte proliferation and liver regeneration after partial hepatectomy are suppressed in Pip5k1a knockout mice. These results provide insight into the molecular mechanism for HGF-stimulated hepatocyte proliferation and liver regeneration: Arf6 recruits PIP5K1A to c-Met and activates it upon HGF stimulation to produce PIP2 and subsequently PIP3, which in turn activates Akt to promote hepatocyte proliferation, thereby accelerating liver regeneration after liver injury.
Collapse
|
81
|
Mesarosova L, Ochodnicky P, Leemans JC, Florquin S, Krenek P, Klimas J. High glucose induces HGF-independent activation of Met receptor in human renal tubular epithelium. J Recept Signal Transduct Res 2017; 37:535-542. [PMID: 28819999 DOI: 10.1080/10799893.2017.1365902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT The role of hepatocyte growth factor (HGF) in diabetic kidney damage remains controversial. OBJECTIVE To test the hypothesis that high glucose levels activate pathways related to HGF and its receptor Met and that this could participate in glucose-induced renal cell damage. MATERIALS AND METHODS HK2 cells, a human proximal tubule epithelial cell line, were stimulated with high glucose for 48 hours. Levels of pMet/Met, pEGFR/EGFR, pSTAT3/STAT3, pAkt/Akt and pERK1/2/ERK1/2 were studied by immunoblotting. Absence of HGF was verified by qRT-PCR and ELISA. RESULTS High glucose level activated Met and its downstream pathways STAT3, Akt and ERK independently of HGF. High glucose induced an integrin ligand fibronectin. HGF-independent Met phosphorylation was prevented by inhibition of integrin α5β1, Met inhibitor crizotinib, Src inhibitors PP2 and SU5565, but not by EGFR inhibitor AG1478. High glucose increased the expression of TGFβ-1, CTGF and the tubular damage marker KIM-1 and increased apoptosis of HK2 cells, effects inhibited by crizotinib. CONCLUSION High glucose activated Met receptor in HK2 cells independently of HGF, via induction of integrin α5β1 and downstream signaling. This mode of Met activation was associated with tubular cell damage and apoptosis and it may represent a novel pathogenic mechanism and a treatment target in diabetic nephropathy.
Collapse
Affiliation(s)
- Lucia Mesarosova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Ochodnicky
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jaklien C Leemans
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Sandrine Florquin
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
82
|
A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci 2017; 18:ijms18081786. [PMID: 28817103 PMCID: PMC5578174 DOI: 10.3390/ijms18081786] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a key event that governs tumor progression and metastasis. It is controlled by the complicated and coordinated actions of pro-angiogenic factors and their receptors that become upregulated during tumorigenesis. Over the past several decades, vascular endothelial growth factor (VEGF) signaling has been identified as a central axis in tumor angiogenesis. The remarkable advent of recombinant antibody technology has led to the development of bevacizumab, a humanized antibody that targets VEGF and is a leading clinical therapy to suppress tumor angiogenesis. However, despite the clinical efficacy of bevacizumab, its significant side effects and drug resistance have raised concerns necessitating the identification of novel drug targets and development of novel therapeutics to combat tumor angiogenesis. This review will highlight the role and relevance of VEGF and other potential therapeutic targets and their receptors in angiogenesis. Simultaneously, we will also cover the current status of monoclonal antibodies being developed to target these candidates for cancer therapy.
Collapse
|
83
|
Hamoen KE, Morgan JR. Transient Hyperproliferation of a Transgenic Human Epidermis Expressing Hepatocyte Growth Factor. Cell Transplant 2017. [DOI: 10.3727/000000002783985819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a fibroblast-derived protein that affects the growth, motility, and differentiation of epithelial cells including epidermal keratinocytes. To investigate the role of HGF in cutaneous biology and to explore the possibility of using it in a tissue engineering approach, we used retroviral-mediated gene transfer to introduce the gene encoding human HGF into diploid human keratinocytes. Modified cells synthesized and secreted significant levels of HGF in vitro and the proliferation of keratinocytes expressing HGF was enhanced compared with control unmodified cells. To investigate the effects of HGF in vivo, we grafted modified keratinocytes expressing HGF onto athymic mice using acellular dermis as a substrate. When compared with controls, HGF-expressing keratinocytes formed a hyperproliferative epidermis. The epidermis was thicker, had more cells per length of basement membrane, and had increased numbers of Ki-67-positive proliferating cells, many of which were suprabasal in location. Hyperproliferation subsided and the epidermis was equivalent to controls by 2 weeks, a time frame that coincides with healing of the graft. Transient hyperproliferation may be linked to the loss of factors present in the wound that activate HGF. These data suggest that genetically modified skin substitutes secreting HGF may have applications in wound closure and the promotion of wound healing.
Collapse
Affiliation(s)
- Karen E. Hamoen
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Shriners Hospital for Children, Boston, MA
| | - Jeffrey R. Morgan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Shriners Hospital for Children, Boston, MA
| |
Collapse
|
84
|
Naik S, Trenkler D, Santangini H, Pan J, Jauregui HO. Isolation and Culture of Porcine Hepatocytes for Artificial Liver Support. Cell Transplant 2017; 5:107-15. [PMID: 8665071 DOI: 10.1177/096368979600500115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The primary requirement of cells in a liver support system is the preservation of the in vivo metabolic functions that prevent or decrease the progress of hepatic encephalopathy (HE) by providing interim support to liver failure patients. While rodent hepatocytes offer a model for liver assist device (LAD) research, their limited number per animal prohibits direct scale up to human devices. Healthy human liver cells are seldom available in adequate numbers to support clinical LAD use; consequently, a large animal source of liver cells is needed. The study presented here explored the potential of porcine hepatocytes to proliferate and maintain metabolic function in vitro. Porcine hepatocytes were isolated from ~12 kg swine by a modification of Seglen's method. Hepatocytes cultured up to 10 days were shown to metabolize ammonia and maintain both Phase I and II detoxification functions. In addition, the cultures showed proliferative activity both as an increase in total protein content and by thymidine incorporation. Immunocytochemical staining identified cell proliferation through Day 4 to be primarily hepatocytes while Days 6 and 10 showed nonparenchymal cells to be increasing. The detoxification functions measured showed peak activity on Day 4 and gradually declined through Day 10. The ability of porcine hepatocytes to proliferate and maintain a diversity of hepatic functions in culture strongly suggests their potential for use as the biological component of artificial LADs.
Collapse
Affiliation(s)
- S Naik
- Department of pathology, Rhode Island Hospital, Providence 02903, USA
| | | | | | | | | |
Collapse
|
85
|
Bielinski SJ, Berardi C, Decker PA, Larson NB, Bell EJ, Pankow JS, Sale MM, Tang W, Hanson NQ, Wassel CL, de Andrade M, Budoff MJ, Polak JF, Sicotte H, Tsai MY. Hepatocyte growth factor demonstrates racial heterogeneity as a biomarker for coronary heart disease. Heart 2017; 103:1185-1193. [PMID: 28572400 DOI: 10.1136/heartjnl-2016-310450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To determine if hepatocyte growth factor (HGF), a promising biomarker of coronary heart disease (CHD) given its release into circulation in response to endothelial damage, is associated with subclinical and clinical CHD in a racial/ethnic diverse population. METHODS HGF was measured in 6738 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Highest mean HGF values (pg/mL) were observed in Hispanic, followed by African, non-Hispanic white, then Chinese Americans. RESULTS In all races/ethnicities, HGF levels were associated with older age, higher systolic blood pressure (SBP) and body mass index, lower high-density lipoprotein, diabetes and current smoking. In fully adjusted models, each SD higher HGF was associated with an average increase in coronary artery calcium (CAC) of 55 Agatston units for non-Hispanic whites (p<0.001) and 51 Agatston units for African-Americans (p=0.007) but was not in the other race/ethnic groups (interaction p=0.02). There were 529 incident CHD events, and CHD risk was 41% higher in African (p<0.001), 17% in non-Hispanic white (p=0.026) and Chinese (p=0.36), and 6% in Hispanic Americans (p=0.56) per SD increase in HGF. CONCLUSION In a large and diverse population-based cohort, we report that HGF is associated with subclinical and incident CHD. We demonstrate evidence of racial/ethnic heterogeneity within these associations, as the results are most compelling in African-Americans and non-Hispanic white Americans. We provide evidence that HGF is a biomarker of atherosclerotic disease that is independent of traditional risk factors.
Collapse
Affiliation(s)
- Suzette J Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Cecilia Berardi
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.,Department of Internal Medicine, Albert Einstein College of Medicine, and Montefiore Medical Center, Bronx, New York, USA
| | - Paul A Decker
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth J Bell
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michele M Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Q Hanson
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christina L Wassel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester, Vermont, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J Budoff
- Los Angeles Biomedical Research Institute, Harbor-UCLA, Torrance, California, USA
| | - Joseph F Polak
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Y Tsai
- Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
86
|
Ulmer TF, Fragoulis A, Dohmeier H, Kroh A, Andert A, Stoppe C, Alizai H, Klink C, Coburn M, Neumann UP. Argon Delays Initiation of Liver Regeneration after Partial Hepatectomy in Rats. Eur Surg Res 2017; 58:204-215. [PMID: 28433997 DOI: 10.1159/000466690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/28/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The liver can heal up to restitutio ad integrum following damage resulting from various causes. Different studies have demonstrated the protective effect of argon on various cells and organs. To the best of our knowledge, the organ-protective effects of the noble gas argon on the liver have not yet been investigated, although argon appears to influence signal paths that are well-known mediators of liver regeneration. We hypothesized that argon inhalation prior to partial hepatectomy (70%) has a positive effect on the initiation of liver regeneration in rats. METHODS Partial hepatectomy (70%) with or without inhaled argon (50 vol%) was performed for 1 h. Liver tissue was harvested after 3, 36, and 96 h to analyze the mRNA and protein expression of hepatocyte growth factor (HGF), interleukin-6 (IL-6), tumor necrosis factor-α, and extracellular signal-regulated kinase 1/2. Histological tissue samples were prepared for immunohistochemistry (bromodeoxyuridine [BrdU], Ki-67, and TUNEL) and blood was analyzed regarding the effects of argon on liver function. Statistical analyses were performed using 1-way ANOVA followed by the post hoc Tukey-Kramer test. RESULTS After 3 h, the primary outcome parameter of hepatocyte proliferation was significantly reduced with argon 50 vol% inhalation in comparison to nitrogen inhalation (BrdU: 15.7 ± 9.7 vs. 7.7 ± 3.1 positive cells/1,000 hepatocytes, p = 0.013; Ki-67: 17.6 ± 13.3 vs. 4.7 ± 5.4 positive cells/1,000 hepatocytes, p = 0.006). This was most likely mediated by significant downregulation of HGF (after 3 h: 5.2 ± 3.2 vs. 2.3 ± 1.0 fold, p = 0.032; after 96 h: 2.1 ± 0.5 vs. 1.3 ± 0.3 fold, p = 0.029) and IL-6 (after 3 h: 43.7 ± 39.6 vs. 8.5 ± 9.2 fold, p = 0.032). Nevertheless, we could detect no significant effect on the weight of the residual liver, liver-body weight ratio, or liver blood test results after argon inhalation. CONCLUSION Impairment of liver regeneration was apparent after argon 50 vol% inhalation that was most probably mediated by downregulation of HGF and IL-6 in the initial phase. However, the present study was not adequately powered to prove that argon has detrimental effects on the liver. Further studies are needed to evaluate the effects of argon on livers with preexisting conditions as well as on ischemia-reperfusion models.
Collapse
Affiliation(s)
- Tom Florian Ulmer
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
88
|
Szturz P, Raymond E, Abitbol C, Albert S, de Gramont A, Faivre S. Understanding c-MET signalling in squamous cell carcinoma of the head & neck. Crit Rev Oncol Hematol 2017; 111:39-51. [DOI: 10.1016/j.critrevonc.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/28/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
|
89
|
Hass R, Jennek S, Yang Y, Friedrich K. c-Met expression and activity in urogenital cancers - novel aspects of signal transduction and medical implications. Cell Commun Signal 2017; 15:10. [PMID: 28212658 PMCID: PMC5316205 DOI: 10.1186/s12964-017-0165-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/10/2022] Open
Abstract
C-Met is a receptor tyrosine kinase with multiple functions throughout embryonic development, organogenesis and wound healing and is expressed in various epithelia. The ligand of c-Met is Hepatocyte Growth Factor (HGF) which is secreted among others by mesenchymal stroma/stem (MSC) cells.Physiological c-Met functions are centred around processes that underly cellular motility and invasive growth. Aberrant c-Met expression and activity is observed in numerous cancers and makes major contributions to cell malignancy. Importantly, HGF/c-Met signaling is crucial in the context of communication between cancer cells and the the tumor stroma.Here, we review recent findings on roles of dysregulated c-Met in urogenital tumors such as cancers of the urinary bladder, prostate, and ovary. We put emphasis on novel aspects of cancer-associated c-Met expression regulation on both, HGF-dependent and HGF-independent non-canonical mechanisms. Moreover, this review focusses on c-Met-triggered signalling with potential relevance for urogenital oncogenesis, and on strategies to specifically inhibit c-Met activity.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Susanne Jennek
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743 Jena, Germany
| | - Yuanyuan Yang
- Biochemistry and Tumor Biology Lab, Department of Gynecology, Hannover Medical School, Hannover, Germany
| | - Karlheinz Friedrich
- Institute of Biochemistry II, University Hospital Jena, Nonnenplan 2-4, D-07743 Jena, Germany
| |
Collapse
|
90
|
Ha X, Peng J, Zhao H, Deng Z, Dong J, Fan H, Zhao Y, Li B, Feng Q, Yang Z. Enhancement of Gastric Ulcer Healing and Angiogenesis by Hepatocyte Growth Factor Gene Mediated by Attenuated Salmonella in Rats. J Korean Med Sci 2017; 32:186-194. [PMID: 28049228 PMCID: PMC5219983 DOI: 10.3346/jkms.2017.32.2.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/15/2016] [Indexed: 01/21/2023] Open
Abstract
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.
Collapse
Affiliation(s)
- Xiaoqin Ha
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China.
| | - Junhua Peng
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Hongbin Zhao
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Zhiyun Deng
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Juzi Dong
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Hongyan Fan
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Yong Zhao
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Bing Li
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Qiangsheng Feng
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| | - Zhihua Yang
- Department of Clinical Laboratory Medicine, Lanzhou General Hospital of Lanzhou Military Region, People's Liberation Army, Key Laboratory of Stem Cell and Gene Drug in Gansu Province, Lanzhou, China
| |
Collapse
|
91
|
Perioperative hepatocyte growth factor (HGF) infusions improve hepatic regeneration following portal branch ligation (PBL) in rodents. Surg Endosc 2016; 31:2789-2797. [PMID: 27752816 DOI: 10.1007/s00464-016-5288-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND As hepatic surgery has become safer and more commonly performed, the extent of hepatic resections has increased. When there is not enough expected hepatic reserve to facilitate primary resection of hepatic tumors, a clinical adjunct to facilitating primary resection is portal vein embolization (PVE). PVE allows the hepatic remnant to increase to an appropriate size prior to resection via hepatocyte regeneration; however, PVE is not always successful in facilitating adequate regeneration. One of the strongest trophic factors for hepatocyte regeneration is hepatocyte growth factor (HGF). The purpose of this study was to improve hepatic regeneration with perioperative HGF infusions in an animal model that mimics PVE. METHODS Portal branch ligation (PBL) in rodents is equivalent to PVE in humans. We performed left-sided PBL in Sprague-Dawley rodents with the experimental group receiving perioperative HGF infusions. Baseline and postoperative liver volumetrics were obtained with CT scanning methods as performed in clinical practice. Baseline and postoperative liver functions were assessed via indocyanine green (ICG) elimination testing. RESULTS HGF infused rodents had statistically significant increase in all postoperative liver volumetrics. Most clinically relevant were increased right liver volumes (RLV), 14.10 versus 7.85 cm3 (p value 0.0001), and increased degree of hypertrophy (DH %), 159.23 versus 47.11 % (p value 0.0079). HGF infused rodents also had a quick return to baseline liver function, 2.38 days compared to 6.13 days (p value 0.0001). CONCLUSION Perioperative HGF infusions significantly increase hepatic regeneration following PBL in rodents. Perioperative HGF infusions following PVE are a possible adjunct to increase the amount of patients able to successfully undergo primary resection for hepatic tumors. Further basic science is warranted in examining the use of HGF infusions to increase hepatic regeneration and translating that basic science work to clinical practice.
Collapse
|
92
|
Devesa J, Almengló C, Devesa P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes 2016; 9:47-71. [PMID: 27773998 PMCID: PMC5063841 DOI: 10.4137/cmed.s38201] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Teo, Spain
| | | | - Pablo Devesa
- Research and Development, Medical Center Foltra, 15886-Teo, Spain
| |
Collapse
|
93
|
Somerset DA, Jauniaux E, Strain AJ, Afford S, Kilby MD. Hepatocyte Growth Factor Concentration in Maternal and Umbilical Cord Blood Samples and Expression in Fetal Liver. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | | | - Simon Afford
- Division of Reproductive and Child Health and School of Biochemistry, University of Birmingham, Birmingham; Department of Obstetrics and Gynaecology, UCL Medical School, London, United Kingdom
| | - Mark D. Kilby
- Division of Reproductive and Child Health and School of Biochemistry, University of Birmingham, Birmingham; Department of Obstetrics and Gynaecology, UCL Medical School, London, United Kingdom
| |
Collapse
|
94
|
Powell RJ, Dormandy J, Simons M, Morishita R, Annex BH. Therapeutic angiogenesis for critical limb ischemia: design of the hepatocyte growth factor therapeutic angiogenesis clinical trial. Vasc Med 2016; 9:193-8. [PMID: 15675184 DOI: 10.1191/1358863x04vm557oa] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of the HGF-STAT clinical trial is to determine whether perfusion can be improved by gene transfer with a plasmid DNA containing hepatocyte growth factor (HGF) in the affected limb of patients with unreconstructable critical limb ischemia (CLI). CLI results in a high rate of limb loss and impaired quality of life. The current therapeutic strategies, including bypass surgery and percutaneous interventions, are only successful in treating a subset of patients. Therapeutic angiogenesis is an investigational method that seeks to favorably impact tissue per-fusion in CLI. HGF-STAT is a double-blind, parallel-group, placebo-controlled, dose response study in 100 patients with unreconstructable CLI. Eligible subjects will be randomized 1:1:1:1 to receive saline placebo or one of three dose/regimens of HGF plasmid DNA. The selection of outcome measures, including the primary endpoint, and changes in transcutaneous oxygen pressure (TcPO2) from baseline to 3 months will be discussed. In conclusion, this study will help to determine whether therapeutic angiogenesis with HGF is a viable option in the treatment of patients with CLI.
Collapse
Affiliation(s)
- Richard J Powell
- Division of Vascular Surgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | | | | | | | | |
Collapse
|
95
|
Yamamoto M, Iimuro Y, Mogaki M, Kachi K, Fujii H, Matsumoto Y. Prediction of Recurrence after HCC Resection. Acta Radiol 2016. [DOI: 10.1177/028418519403500404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In trying to clarify the high recurrence rate after removal of small hepatocellular carcinoma (HCC), we assessed the postoperative evolution of minute hepatic Lipiodol deposits which had been diagnosed as artifacts on the preoperative Lipiodol-CT. Of 27 patients with solitary HCC less than 5 cm in diameter, 14 had such Lipiodol deposits in the preoperative CT and 9 of them (64%) developed recurrent tumors. On the other hand, 6 of the 13 patients without deposits (46%) suffered recurrence, but in 5 of these 6 patients the HCC was metachronous multicentric. The cumulative survival rate of the non-deposit group was better than that of the deposit group (p < 0.1). The present study suggested that, even in patients with small HCC, minute concomitant tumors invisible by conventional imaging techniques may exist at the time of surgery. Some of these lesions without sufficient tumor vasculature showing a hypervascular blush on angiography appear to retain small, vague Lipiodol deposits.
Collapse
|
96
|
Chhokar V, Tucker AL. Angiogenesis: Basic Mechanisms and Clinical Applications. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development and maintenance of an adequate vascular supply is critical for the viability of normal and neoplastic tissues. Angiogenesis, the development of new blood vessels from preexisting capillary networks, plays an important role in a number of physiologic and pathologic processes, including reproduction, wound repair, inflammatory diseases, and tumor growth. Angiogenesis involves sequential steps that are triggered in response to angiogenic growth factors released by inflammatory, mesenchymal, or tumor cells that act as ligands for endothelial cell receptor tyrosine kinases. Stimulated endothelial cells detach from neighboring cells and migrate, proliferate, and form tubes. The immature tubes are subsequently invested and stabilized by pericytes or smooth muscle cells. Angiogenesis depends upon complex interactions among various classes of molecules, including adhesion molecules, proteases, structural proteins, cell surface receptors, and growth factors. The therapeutic manipulation of angiogenesis targeted against ischemic and neoplastic diseases has been investigated in preclinical animal models and in clinical trials. Proangiogenic trials that have stimulated vessel growth in ischemic coronary or peripheral tissues through expression, delivery, or stimulated release of growth factors have shown efficacy in animal models and mixed results in human clinical trials. Antiangiogenic trials have used strategies to block the function of molecules critical for new vessel growth or maturation in the treatment of a variety of malignancies, mostly with results less encouraging than those seen in preclinical models. Pro-and antiangiogenic clinical trials demonstrate that strategies for optimal drug delivery, dosing schedules, patient selection, and endpoint measurements need further investigation and refinement before the therapeutic manipulation of angiogenesis will realize its full clinical potential.
Collapse
Affiliation(s)
- Vikram Chhokar
- Department of Internal Medicine, Salem VA Health System, Roanoke, Virginia
| | - Amy L. Tucker
- Department of Internal Medicine, Cardiovascular Division; Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
97
|
Kakisaka K, Kataoka K, Suzuki Y, Okada Y, Yoshida Y, Kuroda H, Takikawa Y. Necrotic cell death and suppression of T-cell immunity characterized acute liver failure due to drug-induced liver injury. Cytokine 2016; 86:21-28. [PMID: 27442007 DOI: 10.1016/j.cyto.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/05/2016] [Accepted: 07/09/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS The aim of this study was to investigate the clinical characteristics and pathophysiology of drug-induced liver injury (DILI) - acute liver failure (ALF). METHODS The patients with acute liver injury (ALI) including ALF from 2009 to 2014 were analyzed. The hepatic encephalopathy (HE) development rate was compared with the findings from a national survey in Japan. The serum cytokines levels and the findings of a liver function test were evaluated in the DILI patients. RESULTS The HE development rate substantially decreased for autoimmune hepatitis (AIH) - and undetermined cause-induced ALI owing to the early prediction system, but not in DILI-ALI. Among the DILI-ALF and AIH-ALF cases, the CK-18 fragment (1480.1U/L, 3945.4U/L), IL-8 (82.9pg/mL, 207.5pg/mL), IP-10 (1379.6pg/mL, 3731.2pg/mL) and MIP-1β (1017.7pg/mL, 2273.3pg/mL) levels were lower in the DILI-ALF cases. Among the DILI-ALI and DILI-ALF cases, IL-4 (19.8pg/mL, 25.4pg/mL) and RANTES (14028.0pg/mL, 17804.7pg/mL) were higher in DILI-ALI, and HMGB-1 (397.1pg/μL, 326.2pg/μL) and HGF (2.41ng/mL, 0.55ng/mL) were higher in DILI-ALF. We observed that HGF independently associated with DLI-ALF development. CONCLUSIONS Despite the low grade apoptosis and inflammation, DILI patients progressed to ALF comparable with that of the AIH patients.
Collapse
Affiliation(s)
- Keisuke Kakisaka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan.
| | - Kojiro Kataoka
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yuji Suzuki
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yohei Okada
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yuichi Yoshida
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| | - Yasuhiro Takikawa
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, Japan
| |
Collapse
|
98
|
Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)–MET receptor tyrosine kinase signaling pathway: Diverse roles in modulating immune cell functions. Cytokine 2016; 82:125-39. [PMID: 26822708 DOI: 10.1016/j.cyto.2015.12.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/14/2022]
|
99
|
Hayashi H, Takagi N. Endogenous Neuroprotective Molecules and Their Mechanisms in the Central Nervous System. Biol Pharm Bull 2016; 38:1104-8. [PMID: 26235573 DOI: 10.1248/bpb.b15-00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functions of the central nervous system (CNS) are based on a complex neural network. It is believed that the CNS has several neuroprotective mechanisms operated by neurons, glia and other types of cells against various types of neuronal damage. Since mature, differentiated neurons are not able to divide, it is important to protect neurons from damage prior to death. The neuroprotective effects of a number of pharmaceutical agents and natural products against necrosis and apoptosis of the CNS neurons have been reported, thus this review will mainly discuss several endogenous neuroprotectants and their mechanisms.
Collapse
Affiliation(s)
- Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
100
|
Fajardo-Puerta AB, Mato Prado M, Frampton AE, Jiao LR. Gene of the month: HGF. J Clin Pathol 2016; 69:575-9. [DOI: 10.1136/jclinpath-2015-203575] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Hepatocyte growth factor (HGF) is a multifunctional cytokine with important roles in cell proliferation, survival, motility and morphogenesis. Secreted by cells of mesenchymal origin, HGF is the specific ligand for the tyrosine-kinase receptor c-MET (cellular mesenchymal-epithelial transition), also called MET, which is expressed in different types of epithelial, endothelial and haematopoietic progenitor cells. The HGF/MET axis is involved in several biological processes, such as embryogenesis, organogenesis, adult tissue regeneration (including wound healing and liver regeneration) and carcinogenesis, for both solid and haematological malignancies.1 2 HGF and its particular interaction with the MET receptor have been extensively investigated in the last decades and remain the focus of numerous clinical trials.3–8 This short review focuses on HGF structure and function, as well as its roles in liver regeneration and different types of tumours.
Collapse
|