51
|
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
52
|
Agalarov SC, Zheleznyakova EN, Selivanova OM, Zheleznaya LA, Matvienko NI, Vasiliev VD, Spirin AS. In vitro assembly of a ribonucleoprotein particle corresponding to the platform domain of the 30S ribosomal subunit. Proc Natl Acad Sci U S A 1998; 95:999-1003. [PMID: 9448274 PMCID: PMC18650 DOI: 10.1073/pnas.95.3.999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A fragment of the 16S RNA of Thermus thermophilus corresponding to the central domain (nucleotides 547-895) has been prepared by transcription in vitro. Incubation of this fragment with the total 30S ribosomal proteins has resulted in the formation of a compact 12S ribonucleoprotein particle. This particle contained five T. thermophilus proteins corresponding to Escherichia coli ribosomal proteins S6, S8, S11, S15, and possibly S18, all of which were previously shown to interact with the central domain of the 16S RNA and to be localized in the platform (side bulge) of the 30S ribosomal subunit. When examined by electron microscopy, isolated particles have an appearance that is similar in size and shape to the corresponding morphological features of the 30S subunit. We conclude that the central domain of the 16S RNA can independently and specifically assemble with a defined subset of ribosomal proteins into a compact ribonucleoprotein particle corresponding to the platform (side bulge) of the 30S subunit.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli
- Microscopy, Electron
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Folding
- RNA, Bacterial/chemistry
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Thermus thermophilus/genetics
- Thermus thermophilus/ultrastructure
- Transcription, Genetic
Collapse
Affiliation(s)
- S C Agalarov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142292 Russia
| | | | | | | | | | | | | |
Collapse
|
53
|
Bullard JM, van Waes MA, Bucklin DJ, Rice MJ, Hill WE. Regions of 16S ribosomal RNA proximal to transfer RNA bound at the P-site of Escherichia coli ribosomes. Biochemistry 1998; 37:1350-6. [PMID: 9477963 DOI: 10.1021/bi9720540] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unmodified uridines have been randomly replaced by 4-thiouridines in transfer RNAPhe (tRNAPhe) transcribed in a T7 RNA polymerase system. These 4-thiouridines serve as conjugation sites for attachment of the cleavage reagent 5-iodoacetamido-1,10-o-phenanthroline (IoP). In a reducing environment, when complexed with Cu2+, 1,10-o-phenanthroline causes cleavage of nearby nucleic acids. We show here that tRNA-phenanthroline (tRNA-oP) conjugates, when bound at the P-site of 70S ribosomes and 30S ribosomal subunits, caused cleavage of ribosomal RNA (rRNA) mainly in domains I and II of 16S rRNA. Some positions were cleaved only when tRNA-oP was bound to 70S ribosomes or to 30S ribosomal subunits. In domain I, most cleavage sites occurred in or near the 530 pseudoknot region. In domain II, most nucleotides cleaved were near the 690 region and the 790 region. The only positions cleaved in domain III were near the 1050 region. There were no discernible nucleotides cleaved near the 1400 (decoding) region. Our results corroborated results of others, which have shown these sites to be protected from chemical modification by tRNA binding or to be cross-linked to P-site-bound tRNA. Use of cleavage reagents tethered to tRNA provides evidence for additional regions of rRNA that may be proximal to bound tRNA.
Collapse
Affiliation(s)
- J M Bullard
- Division of Biological Science, University of Montana, Missoula 59812, USA
| | | | | | | | | |
Collapse
|
54
|
Orr JW, Hagerman PJ, Williamson JR. Protein and Mg(2+)-induced conformational changes in the S15 binding site of 16 S ribosomal RNA. J Mol Biol 1998; 275:453-64. [PMID: 9466923 DOI: 10.1006/jmbi.1997.1489] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Bacillus stearothermophilus ribosomal protein S15 binds to the central domain of the 16 S rRNA inducing a conformational change in a three-way helical junction. To understand the nature of this conformational change, extended-helical junctions were prepared to examine the effects of S15 or Mg2+ binding on the relative helical orientation using native gel electrophoretic mobility and transient electric birefringence. The free junction is planar with approximately 120 degrees interhelical angles, whereas S15 and Mg2+ yield a junction conformation that remains planar in which two helices, 21 and 22, become colinear and the third, helix 20, forms a 60 degrees angle with respect to helix 22. This conformational change is thought to be important for directing the assembly of the central domain of the 30 S ribosomal subunit.
Collapse
Affiliation(s)
- J W Orr
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
55
|
Wilson KS, Noller HF. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 1998; 92:131-9. [PMID: 9489706 DOI: 10.1016/s0092-8674(00)80905-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction of translational elongation factor EF-G with the ribosome in the posttranslocational state has been mapped by directed hydroxyl radical probing. Localized hydroxyl radicals were generated from Fe(II) tethered to 18 different sites on the surface of EF-G bound to the ribosome. Cleavages in ribosomal RNA were mapped, providing proximity relationships between specific sites of EF-G and rRNA elements of the ribosome. Collectively, these data provide a set of constraints by which EF-G can be positioned unambiguously in the ribosome at low resolution. The proximities of different domains of EF-G to well-characterized elements of rRNA have additional implications for the mechanism of protein synthesis.
Collapse
Affiliation(s)
- K S Wilson
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
56
|
Abstract
Mutants of an archaeon Halobacterium halobium, resistant to the universal inhibitor of translation, pactamycin, were isolated. Pactamycin resistance correlated with the presence of mutations in the 16 S rRNA gene of H. halobium single rRNA operon. Three types of mutations were found in pactamycin resistant cells, A694G, C795U and C796U (Escherichia coli 16 S rRNA numeration) located distantly in rRNA primary structure but probably neighboring each other in the three-dimensional structure. Pactamycin resistance mutations either overlapped (C795U) or were located in the immediate vicinity of nucleotides protected by the drug in E. coli and H. halobium 16 S rRNA indicating that corresponding rRNA sites might be directly involved in pactamycin binding. Ribosomal functions were not affected significantly either by mutation of C795 (one of the positions protected by the P-site-bound tRNA), or by mutations of A694 and C796 (which neighbor nucleotides protected by tRNA) suggesting that tRNA-dependent protections of C795 and G693 are explained by a conformational change in the ribosome induced by the P-site-bound tRNA. A novel mode of pactamycin action is proposed suggesting that pactamycin restricts structural transitions in 16 S rRNA preventing the ribosome from adopting a functional conformation induced by tRNA binding.
Collapse
Affiliation(s)
- A S Mankin
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60607-7173, USA
| |
Collapse
|
57
|
Abstract
The structure of ribosomal RNA (rRNA) in the ribosome was probed with hydroxyl radicals generated locally from iron(II) tethered to the 5' ends of anticodon stem-loop analogs (ASLs) of transfer RNA. The ASLs, ranging in length from 4 to 33 base pairs, bound to the ribosome in a messenger RNA-dependent manner and directed cleavage to specific regions of the 16S, 23S, and 5S rRNA chains. The positions and intensities of cleavage depended on whether the ASLs were bound to the ribosomal A or P site, and on the lengths of their stems. These data predict the three-dimensional locations of the rRNA targets relative to the positions of A- and P- site transfer RNAs inside the ribosome.
Collapse
MESH Headings
- Anticodon
- Base Composition
- Base Sequence
- Edetic Acid/analogs & derivatives
- Edetic Acid/metabolism
- Ferrous Compounds/metabolism
- Hydroxyl Radical
- Molecular Sequence Data
- Nucleic Acid Conformation
- Organometallic Compounds/metabolism
- RNA Probes
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- S Joseph
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
58
|
Svergun DI, Burkhardt N, Pedersen JS, Koch MH, Volkov VV, Kozin MB, Meerwink W, Stuhrmann HB, Diedrich G, Nierhaus KH. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J Mol Biol 1997; 271:602-18. [PMID: 9281428 DOI: 10.1006/jmbi.1997.1191] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selectively deuterated 70 S E. coli ribosomes and isolated 30 S and 50 S subunits were analyzed by X-ray and neutron solution scattering. The resulting contrast variation data set (42 curves in total) was proven to be consistent in describing the ribosome as a four-phase system composed of the protein and rRNA moieties of both subunits. This data set thus provides ten times more information than a single scattering curve. A solid body four-phase model of the 70 S ribosome at low resolution was built from the envelope functions of the 30 S and 50 S subunits and of those of the corresponding RNA moieties. The four envelopes were parameterized at a resolution of 3.5 nm using spherical harmonics and taking into account interface layers between the phases. The initial approximation for the envelopes of the subunits was taken from electron microscopic data presented recently by J. Frank and co-workers (Albany); the rRNA envelopes were initially approximated by spheres. The optimization and the refinement of the model proceeded by non-linear least squares minimization fitting the available experimental data. The refined envelopes of the subunits differ by about 10% from the starting approximation and the shape of the final 70 S model lies between the outer envelopes of the models by Frank and by M. von Heel & R. Brimacombe (Berlin). The rRNA moiety in the 30 S subunit is more anisometric than the subunit itself, whereas the rRNA of the 50 S subunit forms a compact core. The rRNAs protrude to the surfaces of the subunits and occupy approximately 30 to 40% of the corresponding surface areas. X-ray scattering curves of the two main functional elongation 70 S complexes (pre- and post-translocational) differ only marginally from those of the non-programmed ribosomes, suggesting that the low resolution four-phase model is also valid for the elongating 70 S ribosome.
Collapse
Affiliation(s)
- D I Svergun
- Hamburg Outstation, Notkestrasse 85, Hamburg, D-22603, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Svergun DI, Burkhardt N, Pedersen JS, Koch MH, Volkov VV, Kozin MB, Meerwink W, Stuhrmann HB, Diedrich G, Nierhaus KH. Solution scattering structural analysis of the 70 S Escherichia coli ribosome by contrast variation. I. Invariants and validation of electron microscopy models. J Mol Biol 1997; 271:588-601. [PMID: 9281427 DOI: 10.1006/jmbi.1997.1190] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solutions of selectively deuterated 70 S Escherichia coli ribosomes and of free 30 S and 50 S subunits were studied by neutron scattering using contrast variation. The integrity of the partially deuterated particles was controlled by parallel X-ray measurements. Integral parameters of the entire ribosome, of its subunits and of the protein and rRNA moieties were evaluated. The data allow an experimental validation of the two most recent electron microscopy reconstructions of the 70 S ribosome presented by the groups of J. Frank (Albany) and of M. van Heel & R. Brimacombe (Berlin). For each reconstruction, integral parameters and theoretical scattering curves from the 70 S and its subunits were calculated and compared with the experimental data. Although neither of the two models yields a comprehensive agreement with the experimental data, Frank's model provides a better fit. For the 50 S subunit of van Heel & Brimacombe's model the fit with the experimental data improves significantly when the internal channels and tunnels are filled up. The poorer fit of the latter model is thus caused by its "sponge"-like structure which may partly be due to an enhancement of high frequency contributions in some of the steps of the three-dimensional image reconstruction. It seems therefore unlikely that the ribosome has a "sponge"-like structure with a pronounced network of channels.
Collapse
Affiliation(s)
- D I Svergun
- Hamburg Outstation, EMBL, Notkestrasse 85, Hamburg, D-22603, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol 1997; 271:545-65. [PMID: 9281425 DOI: 10.1006/jmbi.1997.1211] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The map of the mass centres of the 21 proteins from the Escherichia coli 30 S ribosomal subunit, as determined by neutron scattering, was fitted to a cryoelectron microscopic (cryo-EM) model at a resolution of 20 A of 70 S ribosomes in the pre-translocational state, carrying tRNA molecules at the A and P sites. The fit to the 30 S moiety of the 70 S particles was accomplished with the help of the well-known distribution of the ribosomal proteins in the head, body and side lobe regions of the 30 S subunit, as determined by immuno electron microscopy (IEM). Most of the protein mass centres were found to lie close to the surface (or even outside) of the cryo-EM contour of the 30 S subunit, supporting the idea that the ribosomal proteins are arranged peripherally around the rRNA. The ribosomal protein distribution was then compared with the corresponding model for the 16 S rRNA, fitted to the same EM contour (described in an accompanying paper), in order to analyse the mutual compatibility of the arrangement of proteins and rRNA in terms of the available RNA-protein interaction data. The information taken into account included the hydroxyl radical and base foot-printing data from Noller's laboratory, and our own in situ cross-linking results. Proteins S1 and S14 were not considered, due to the lack of RNA-protein data. Among the 19 proteins analysed, 12 (namely S2, S4, S5, S7, S8, S9, S10, S11, S12, S15, S17 and S21) showed a fit to the rRNA model that varied from being excellent to at least acceptable. Of the remaining 7, S3 and S13 showed a rather poor fit, as did S18 (which is considered in combination with S6 in the foot-printing experiments). S16 was difficult to evaluate, as the foot-print data for this protein cover a large area of the rRNA. S19 and S20 showed a bad fit in terms of the neutron map, but their foot-print and cross-link sites were clustered into compact groups in the rRNA model in those regions of the 30 S subunit where these proteins have respectively been located by IEM studies.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|
61
|
Mueller F, Stark H, van Heel M, Rinke-Appel J, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol 1997; 271:566-87. [PMID: 9281426 DOI: 10.1006/jmbi.1997.1212] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the incoming mRNA passes through the well-defined "hole" at the head-body junction of the 30 S subunit.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | |
Collapse
|
62
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. I. Fitting the RNA to a 3D electron microscopic map at 20 A. J Mol Biol 1997; 271:524-44. [PMID: 9281424 DOI: 10.1006/jmbi.1997.1210] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently published models of the Escherichia coli 70 S ribosome at 20 A resolution, obtained by cryo-electron microscopy (cryo-EM) combined with computerized image processing techniques, exhibit two features that are directly relevant to the in situ three-dimensional folding of the rRNA molecules. First, at this level of resolution many fine structural details are visible, a number of them having dimensions comparable to those of nucleic acid helices. Second, in reconstructions of ribosomes in the pre- and post-translocational states, density can be seen that corresponds directly to the A and P site tRNAs, and to the P and E site tRNAs, respectively, thus enabling the decoding region on the 30 S subunit to be located rather precisely. Accordingly, we have refined our previous model for the 16 S rRNA, based on biochemical evidence, by fitting it to the cryo-EM contour of ribosomes carrying A and P site tRNAs. For this purpose, the most immediately relevant evidence consists of new site-directed cross-linking data in the decoding region, which define sets of contacts between the 16 S rRNA and mRNA, or between 16 S rRNA and tRNA at the A, P and E sites; these contact sites can be correlated directly with the tRNA positions in the EM structure. The model is extended to other parts of the 16 S molecule by fitting individual elements of the well-established secondary structure of the 16 S rRNA into the appropriate fine structural elements of the EM contour, at the same time taking into account other data used in the previous model, such as intra-RNA cross-links within the 16 S rRNA itself. The large body of available RNA-protein cross-linking and foot-printing data is also considered in the model, in order to correlate the rRNA folding with the known distribution of the 30 S ribosomal proteins as determined by neutron scattering and immuno-electron microscopy. The great majority of the biochemical data points involve single-stranded regions of the rRNA, and therefore, in contrast to most previous models, the single-stranded regions are included in our structure, with the help of a specially developed modelling programme, ERNA-3D. This allows the various biochemical data sets to be displayed directly, in this and in the accompanying papers, on diagrams of appropriate parts of the rRNA structure within the cryo-EM contour.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|
63
|
Kaloyanova D, Xu J, Ivanov IG, Abouhaidar MG. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:10-4. [PMID: 9310353 DOI: 10.1111/j.1432-1033.1997.00010.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-Shine-Dalgamo translational initiator is identified in Escherichia coli. The nucleotide sequence ACCUACUCGAGUUAG, designated as PL, is capable of initiating translation of pokeweed antiviral protein (PAP) and human calcitonin (hCT) mRNAs in E. coli cells. The yield of recombinant protein was double that obtained with the consensus Shine-Dalgarno-sequence-(SD)-driven translation. The PL sequence is composed of two heptanucleotides (ACCUACU, box I and GAGUUAG, box II) which are complementary to nucleotides 1434-1440 and 507-513, respectively, in 16S rRNA. Mutational analysis shows that the translation initiation efficiency with either box alone is much lower than that obtained with the entire PL sequence, indicating that the boxes interact simultaneously with both complementary regions in 16S rRNA during the translation initiation step. Based on these results, we propose that the two widely separated regions 507-513 (part of helical domain 18) and 1434-1440 (belonging to helical domain 44) are organized in close proximity to each other and to the ribosome decoding center on the surface of the E. coli 30S ribosomal subunit.
Collapse
MESH Headings
- Base Sequence
- Calcitonin/biosynthesis
- Calcitonin/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Humans
- Molecular Sequence Data
- N-Glycosyl Hydrolases
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Ribosome Inactivating Proteins, Type 1
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
64
|
Holmberg L, Nygård O. Mapping of nuclease-sensitive sites in native reticulocyte ribosomes--an analysis of the accessibility of ribosomal RNA to enzymatic cleavage. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:160-8. [PMID: 9249022 DOI: 10.1111/j.1432-1033.1997.00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment of ribosomes in reticulocyte lysates with low concentrations of the calcium-dependent nuclease from Staphylococcus aureus resulted in cleavage of rRNA. The positions of the cleaved phosphodiester bonds were localised by primer extension and polyacrylamide gel electrophoresis. S. aureus nuclease-induced strand scissions were found in the 5'-domain of 18S rRNA and in domains II, IV and VI of 28S rRNA. The majority of the cleavage sites were located in eukaryote-specific expansion segments and only one cleavage site was found in a region suggested to be directly involved in ribosomal function. Treatment of the reticulocyte lysate with increasing amounts of S. aureus nuclease resulted in the introduction of new cleavage sites. However, even at the highest nuclease concentration used, large parts of the rRNAs were protected from nuclease digestion. Removal of translational components, by salt wash of isolated reticulocyte polysomes, exposed additional rRNA sequences to S. aureus nuclease cleavage. These sequences were found in the 3'-major domain of 18S rRNA and in domains II, IV, and V of 28S rRNA. These sites are located at the putative translational surface of the ribosome. The translational activity of the S. aureus nuclease-treated ribosomes, determined after addition of exogenous mRNA, was directly correlated to the extent of nuclease digestion of the ribosomes. However, the decrease in translational activity observed in lysates treated with low amounts of S. aureus nuclease was not due to a preferential exclusion of damaged ribosomes from polysome formation. This suggests that the induced cleavages were not detrimental to ribosomal function but could influence the rate of ribosomal movement along the mRNA.
Collapse
Affiliation(s)
- L Holmberg
- Department of Zoological Cell Biology, The Wenner-Gren Institute, Stockholm University, Sweden
| | | |
Collapse
|
65
|
Bucklin DJ, van Waes MA, Bullard JM, Hill WE. Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Biochemistry 1997; 36:7951-7. [PMID: 9201941 DOI: 10.1021/bi9624954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cleavage of 16S rRNA was obtained through mRNA modified at position +5 with the chemical cleavage agent 1,10-o-phenanthroline. In the presence of Cu2+, and after addition of reducing agent to the modified mRNA-70S complex, cleavage of proximal nucleotides within the 16S rRNA occurred. Primer extension analysis of 16S rRNA fragments revealed that nucleotides 528-532, 1196, and 1396-1397 were cleaved. Nucleotides 1053-1055 were also cleaved but did not show the same level of specificity as the former. These results provide evidence that at some point in the translation process these regions are all within 15 A of position +5, the A-site codon, on the mRNA.
Collapse
Affiliation(s)
- D J Bucklin
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
66
|
Masquida B, Felden B, Westhof E. Context dependent RNA-RNA recognition in a three-dimensional model of the 16S rRNA core. Bioorg Med Chem 1997; 5:1021-35. [PMID: 9222495 DOI: 10.1016/s0968-0896(97)00053-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 3-D model of the core of the 16S rRNA of Escherichia coli containing 328 residues has been built in the protein map derived from neutron scattering data with the help of all the available phylogenetic, biochemical, and cross-linking data. The three pseudoknots of the 16S-core cluster, through the arrangement of complex three-, four- and five-way junctions, around the neck and at the subunit interface. The roles in assembly, initiation or elongation of the three pseudoknots in ribosomal dynamics are emphasized. The 530-loop, localized on the periphery of the 30S particle, could be built with and without a pseudoknot independently of the state of the particle. The pseudoknot of the central domain controls the dynamics of an helix connected to the subunit interface which could trigger some mechanism during translation. The process of the model construction is compatible with a folding scenario in which the 5'-terminal pseudoknot controls the assembly of the central junction and the subsequent folding of the 3'-major domain. The modelling, together with the phylogenetic analysis and the experimental data, point to several potential RNA-RNA contacts which depend on the structural and sequence context in which they occur.
Collapse
Affiliation(s)
- B Masquida
- Institut de Biologie Moléculaire et Cellulaire du CNRS-UPR 9002, Strasbourg, France
| | | | | |
Collapse
|
67
|
Bütiner K, Pich A, Neubauer P, Schmid R, Bahl H, Hecker M. Copurification of ribosomal protein S2 and DNA-dependent RNA polymerase from heat-shocked cells ofBacillus subtilis. J Basic Microbiol 1997. [DOI: 10.1002/jobm.3620370102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
68
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
69
|
Hoffman DW, Cameron CS, Davies C, White SW, Ramakrishnan V. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J Mol Biol 1996; 264:1058-71. [PMID: 9000630 DOI: 10.1006/jmbi.1996.0696] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The structure of protein L9 from the Bacillus stearothernophilus ribosome has been determined at 2.5 A resolution by refinement against single crystal X-ray diffraction data with additional constraints provided by NMR data. This highly elongated protein consists of two domains separated by a nine-turn connecting helix. Conserved aromatic and positively charged amino acid residues on the surface of each domain are likely to be directly involved in binding 23 S ribosomal RNA. The shape of the protein, with its two widely spaced RNA-binding sites, suggests that it may serve as a "molecular strut", most likely playing a role in ribosome assembly and/or maintaining the catalytically active conformation of the ribosomal RNA. The combined use of X-ray and NMR data in the refinement procedure was essential in defining the N-terminal domain of the protein, which was relatively poorly determined by the X-ray data alone. In addition to resolving the ambiguities in defining the hydrophobic core and side-chain conformations with the N-terminal domain, this combined NMR-X-ray analysis provides the first detailed and accurate view of the N-terminal RNA-binding site. NMR data also showed that the N-terminal domain is stable in solution, indicated by amide protons that are protected from solvent exchange. The lack of definition of the N-terminal domain in the X-ray structure is therefore likely due to packing disorder within the crystal rather than structural instability. This combined NMR-X-ray analysis provides a useful model as to how X-ray and NMR data can be practically and logically combined in the determination of the structure of a single protein molecule.
Collapse
Affiliation(s)
- D W Hoffman
- Department of Chemistry and Biochemistry, University of Texas at Austin, 78712, USA
| | | | | | | | | |
Collapse
|
70
|
Kim J, Walter AE, Turner DH. Thermodynamics of coaxially stacked helixes with GA and CC mismatches. Biochemistry 1996; 35:13753-61. [PMID: 8901517 DOI: 10.1021/bi960913z] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thermodynamics of RNA helix-helix interfaces with intervening single- and tandem-GA or single-CC mismatches were studied by UV melting experiments. The model system consists of a hairpin with a four- or five-nucleotide 5' overhang which is bound by a short oligomer, creating the helical interface. Single GA interfaces are found to have favorable free energy increments of about 2 kcal/mol. This is similar to those reported for coaxially stacked flush interfaces of AU base pairs [Walter A. E., & Turner, D. H. (1994) Biochemistry 33, 12715-12719]. The free energy increment of the GA mismatches depends little on the sequence of the closing base pairs of the helixes, whether the break in the phosphate backbone is 5' or 3' with respect to the mismatch or whether the chains are extended beyond the helix-helix interface. Surprisingly, interfaces with single-CC mismatches have favorable free energy increments similar to those of GA interfaces, even though CC mismatches in coaxial stacks occur much less frequently in known RNA secondary structures. The results provide experimental support for the assumption that a bonus free energy is required for coaxially stacked helixes with intervening GA mismatches when free energy minimization is used to predict RNA secondary structures.
Collapse
Affiliation(s)
- J Kim
- Department of Chemistry, University of Rochester, New York 14627-0216, USA
| | | | | |
Collapse
|
71
|
Abstract
Except for tRNA, the tertiary structure of RNA molecules are very little known. The many possibilities in the arrangement of different helices in space and the flexibility in the single-stranded loops that connect the helical regions make the modeling of the tertiary structure of RNA molecule a very complex task. Here, we introduce an approach to fold RNA tertiary structure based only on the information of the secondary structure and the stereochemistry of the molecule. This approach was used to construct an atomic structure of a pseudoknot (bases 500-545) in the E. coli 16S RNA. The resulting structure is a closely packed molecule that is consistent with the predicted secondary structure and stereochemically feasible. This new approach is very general and easily adaptable. Experimental data (e.g., NMR, fluorescence energy transfer, etc.), as they become available, can be incorporated directly into the approach to improve the accuracy of the modeled structure.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, NM 87545, USA.
| |
Collapse
|
72
|
Poot RA, Pleij CW, van Duin J. The central pseudoknot in 16S ribosomal RNA is needed for ribosome stability but is not essential for 30S initiation complex formation. Nucleic Acids Res 1996; 24:3670-6. [PMID: 8871543 PMCID: PMC146175 DOI: 10.1093/nar/24.19.3670] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To examine the function of the central pseudoknot in 16S rRNA, we have studied Escherichia coli 30S subunits with the A18 mutation in this structure element. Previously, this mutation, which changes the central base pair of helix 2, C18--G917, to an A18xG917 mismatch, was shown to inhibit translation in vivo and a defect in initiation was suggested. Here, we find that the mutant 30S particles are impaired in forming 70S tight couples and predominantly accumulate as free 30S subunits. Formation of a 30S initiation complex, as measured by toeprinting, was almost as efficient for mutant 30S subunits, derived from the tight couple fraction, as for the wild-type control. However, the A18 mutation has a profound effect on the overall stability of the subunit. The mutant ribosomes were inactivated by affinity chromatography and high salt treatment, due to easy loss of ribosomal proteins. Accordingly, the particles could be reactivated by partial in vitro reconstitution with 30S ribosomal proteins. Mutant 30S subunits from the free subunit fraction were already inactive upon isolation, but could also be reactivated by reconstitution. Apparently, the inactivity in initiation of these mutant 30S subunits is, at least in part, also due to the lack of essential ribosomal proteins. We conclude that disruption of helix 2 of the central pseudoknot by itself does not affect the formation of a 30S initiation complex. We suggest that the in vivo translational defect of the mutant ribosomes is caused by their inability to form 70S initiation complexes.
Collapse
Affiliation(s)
- R A Poot
- Leiden Institute of Chemistry, Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | |
Collapse
|
73
|
Heilek GM, Noller HF. Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 1996; 272:1659-62. [PMID: 8658142 DOI: 10.1126/science.272.5268.1659] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cysteine residues were introduced into three different positions distributed on the surface of ribosomal protein S5, to serve as targets for derivatization with an Fe(II)-ethyl-enediaminetetraacetic acid linker. Hydroxyl radicals generated locally from the tethered Fe(II) in intermediate ribonucleoprotein particles or in 30S ribosomal subunits reconstituted from derivatized S5 caused cleavage of the RNA, resulting in characteristically different cleavage patterns for the three different tethering positions. These findings provide constraints for the three-dimensional folding of 16S ribosomal RNA (rRNA) and for the orientation of S5 in the 30S subunit, and they further suggest that antibiotic resistance and accuracy mutations in S5 may involve perturbation of 16S rRNA.
Collapse
Affiliation(s)
- G M Heilek
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
74
|
Jaishree TN, Ramakrishnan V, White SW. Solution structure of prokaryotic ribosomal protein S17 by high-resolution NMR spectroscopy. Biochemistry 1996; 35:2845-53. [PMID: 8608120 DOI: 10.1021/bi951062i] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The solution of a primary 16S rRNA-binding ribosomal protein, S17, was investigated by two- and three-dimensional homonuclear and heteronuclear magnetic resonance spectroscopy. Almost complete chemical shift assignments for the 1H, 15N, and 13C resonances have been obtained. The NMR data have been rigorously analyzed using a combination of distance geometry, back-calculation, and simulated annealing refinement techniques, and a high-resolution three-dimensional structure has been deduced. The protein consists of a single twisted antiparallel beta-pleated sheet with Greek-key topology. The five beta-strands are connected by extended loops that are flexible compared to the beta-sheet core structure and appear not to adopt one definite conformation in solution. Two of these loops contain many of the residues that have been implicated in binding ribosomal RNA. The location and distribution of these residues and other positively charged side chains on the protein surface suggest an interaction with two distinct regions of ribosomal RNA.
Collapse
Affiliation(s)
- T N Jaishree
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
75
|
Kolchanov NA, Titov II, Vlassova IE, Vlassov VV. Chemical and computer probing of RNA structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 53:131-96. [PMID: 8650302 PMCID: PMC7133174 DOI: 10.1016/s0079-6603(08)60144-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ribonucleic acids (RNAs) are one of the most important types of biopolymers. RNAs play key roles in the storage and multiplication of genetic information. They are important in catalysis and RNA splicing and are the most important steps of translation. This chapter describes experimental methods for probing RNA structure and theoretical methods allowing the prediction of thermodynamically favorable RNA folding. These methods are complementary and together they provide a powerful approach to determine the structure of RNAs. The three-dimensional (tertiary) structure of RNA is formed by hydrogen-bonding among functional groups of nucleosides in different regions of the molecule, by coordination of polyvalent cations, and by stacking between the double-stranded regions present in the RNA. The tertiary structures of only some small RNAs have been determined by high-resolution X-ray crystallographic analysis and nuclear magnetic resonance analysis. The most widely used approach for the investigation of RNA structure is chemical and enzymatic probing, in combination with theoretical methods and phylogenetic studies allowing the prediction of variants of RNA folding. Investigations of RNA structures with different enzymatic and chemical probes can provide detailed data allowing the identification of double-stranded regions of the molecules and nucleotides involved in tertiary interactions.
Collapse
Affiliation(s)
- N A Kolchanov
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
76
|
Abstract
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.
Collapse
Affiliation(s)
- M E Harris
- Department of Biology, Indiana University, Bloomington 47402, USA
| | | |
Collapse
|
77
|
Osswald M, Döring T, Brimacombe R. The ribosomal neighbourhood of the central fold of tRNA: cross-links from position 47 of tRNA located at the A, P or E site. Nucleic Acids Res 1995; 23:4635-41. [PMID: 8524654 PMCID: PMC307437 DOI: 10.1093/nar/23.22.4635] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The naturally occurring nucleotide 3-(3-amino-3-carboxy-propyl)uridine (acp3U) at position 47 of tRNA(Phe) from Escherichia coli was modified with a diazirine derivative and bound to ribosomes in the presence of suitable mRNA analogues under conditions specific for the ribosomal A, P or E sites. After photo-activation at 350 nm the cross-links to ribosomal proteins and RNA were identified by our standard procedures. In the 30S subunit protein S19 (and weakly S9 and S13) was the target of cross-linking from tRNA at the A site, S7, S9 and S13 from the P site and S7 from the E site. Similarly, in the 50S subunit L16 and L27 were cross-linked from the A site, L1, L5, L16, L27 and L33 from the P site and L1 and L33 from the E site. Corresponding cross-links to rRNA were localized by RNase H digestion to the following areas: in 16S rRNA between positions 687 and 727 from the P and E sites, positions 1318 and 1350 (P site) and 1350 and 1387 (E site); in the 23S rRNA between positions 865 and 910 from the A site, 1845 and 1892 (P site), 1892 and 1945 (A site), 2282 and 2358 (P site), 2242 and 2461 (P and E sites), 2461 and 2488 (A site), 2488 and 2539 (all three sites) and 2572 and 2603 (A and P sites). In most (but not all) cases, more precise localizations of the cross-link sites could be made by primer extension analysis.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cross-Linking Reagents
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli/ultrastructure
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/isolation & purification
- RNA, Transfer, Phe/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- M Osswald
- Max-Planck-Institut fuer Molekulare Genetik (AG Ribosomen), Berlin (Dahlem), Germany
| | | | | |
Collapse
|
78
|
Ramakrishnan V, Davies C, Gerchman SE, Golden BL, Hoffmann DW, Jaishree TN, Kyila JH, Porter S, White SW. Structures of prokaryotic ribosomal proteins: implications for RNA binding and evolution. Biochem Cell Biol 1995; 73:979-86. [PMID: 8722013 DOI: 10.1139/o95-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
After a long hiatus, the pace of determination of the structures of ribosomal proteins has accelerated dramatically. We discuss here the structures of five ribosomal proteins from Bacillus stearothermophilus: S5, S17, L6, L9, and L14. These structures represent several new motifs. Each of these structures has revealed new insights, and we have developed criteria for recognizing RNA-binding regions of each protein and correlating the structures with such properties as antibiotic resistance. The information here should also prove invaluable in an eventual high-resolution picture of the intact ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Considering the size and complexity of the ribosome and the growing body of data from a wide range of experiments on ribosomal structure, it is becoming increasingly important to develop tools that facilitate the development of reliable models for the ribosome. We use a combination of manual and computer-based approaches for building and refining models of the ribosome and other RNA-protein complexes. Our methods are aimed at determining the range of models compatible with the data, making quantitative statements about the positional uncertainties (resolution) of different regions, identifying conflicts in the data, establishing which regions of the ribosome need further experimental exploration, and, where possible, predicting the outcome of future experiments. Our previous low-resolution model for the small subunit of the Escherichia coli ribosome is briefly reviewed, along with progress on atomic resolution modeling of the mRNA-tRNA complex and its interaction with the decoding site of the 16S RNA.
Collapse
Affiliation(s)
- T R Easterwood
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
80
|
Mueller F, Döring T, Erdemir T, Greuer B, Jünke N, Osswald M, Rinke-Appel J, Stade K, Thamm S, Brimacombe R. Getting closer to an understanding of the three-dimensional structure of ribosomal RNA. Biochem Cell Biol 1995; 73:767-73. [PMID: 8721993 DOI: 10.1139/o95-085] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two experimentally unrelated approaches are converging to give a first low-resolution solution to the question of the three-dimensional organization of the ribosomal RNA from Escherichia coli. The first of these is the continued use of biochemical techniques, such as cross-linking, that provide information on the relative locations of different regions of the RNA. In particular, recent data identifying RNA regions that are juxtaposed to functional ligands such as mRNA or tRNA have been used to construct improved topographical models for the 16S and 23S RNA. The second approach is the application of high-resolution reconstruction techniques from electron micrographs of ribosomes in vitreous ice. These methods have reached a level of resolution at which individual helical elements of the ribosomal RNA begin to be discernible. The electron microscopic data are currently being used in our laboratory to refine the biochemically derived topographical RNA models.
Collapse
Affiliation(s)
- F Mueller
- Max-Planck-Institut für Molekuiare Genetik, AG Ribosomen, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bischof O, Urlaub H, Kruft V, Wittmann-Liebold B. Peptide environment of the peptidyl transferase center from Escherichia coli 70 S ribosomes as determined by thermoaffinity labeling with dihydrospiramycin. J Biol Chem 1995; 270:23060-4. [PMID: 7559446 DOI: 10.1074/jbc.270.39.23060] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In an attempt to gain information about the peptidyl transferase center at the peptide level we cross-linked the spiramycin derivative dihydrospiramycin to its functional binding site in the 70 S ribosome of Escherichia coli. In this manner ribosomal proteins S12, S14, L17, L18, L27 and L35 were found specifically affinity-labeled. Proteolytic fragmentation of these proteins, separation by C18 reversed-phase high performance liquid chromatography of the peptide mixtures, and subsequent sequence analysis of labeled peptides revealed peptide regions at positions Ala1-Lys9 and Tyr116-Lys119 of S12, Leu47-Asp53 of protein S14, Ser6-Lys35 of protein L17, Ala57-Lys63 of protein L18, Ala5-Lys18 and Val66-Lys71 of protein L27, and Thr5-Lys11 of protein L35. This approach is a valuable tool to characterize the binding site of spiramycin as well as the peptidyl transferase center at the molecular level.
Collapse
Affiliation(s)
- O Bischof
- Max-Delbrück-Centrum für Molekulare Medizin, Abteilung Proteinchemie, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
82
|
Lustig B, Lin NH, Smith SM, Jernigan RL, Jeang KT. A small modified hammerhead ribozyme and its conformational characteristics determined by mutagenesis and lattice calculation. Nucleic Acids Res 1995; 23:3531-8. [PMID: 7567466 PMCID: PMC307234 DOI: 10.1093/nar/23.17.3531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A prototypic hammerhead ribozyme has three helices that surround an asymmetrical central core loop. We have mutagenized a hammerhead type ribozyme. In agreement with previous studies, progressive removal of stem-loop II from a three stemmed ribozyme showed that this region is not absolutely critical for catalysis. However, complete elimination of stem II and its loop did reduce, but did not eliminate, function. In a stem-loop II-deleted ribozyme, activity was best preserved when a purine, preferably a G, was present at position 10.1. This G contributed to catalysis irregardless of its role as either one part of a canonical pair with a C residue at 11.1 or a lone nucleotide with C (11.1) deleted. Computational methods using lattices generated 87 million three-dimensional chain forms for a stem-loop II-deleted RNA complex that preserved one potential G.C base pair at positions 10.1 and 11.1. This exhaustive set of chain forms included one major class of structures with G(10.1) being spatially proximal to the GUCX cleavage site of the substrate strand. Strong correlations were observed between colinear arrangement of stems I and III, constraints of base-pairing in the central core loop, and one particular placement of G(10.1) relative to the cleavage site. Our calculations of a stem-loop II-deleted ribozyme indicate that without needing to invoke any other constraints, the inherent asymmetry in the lengths of the two loop strands (3 nt in one and 7 nt in the other) that compose the core and flank G10.1-C11.1 stipulated strongly this particular G placement. This suggests that the hammerhead ribozyme maintains an asymmetry in its internal loop for a necessary structure/function reason.
Collapse
Affiliation(s)
- B Lustig
- Laboratory of Mathematical Biology, NCI, NIAID, NIH, Bethesda, MD 20892-0460, USA
| | | | | | | | | |
Collapse
|
83
|
Stark H, Mueller F, Orlova EV, Schatz M, Dube P, Erdemir T, Zemlin F, Brimacombe R, van Heel M. The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure 1995; 3:815-21. [PMID: 7582898 DOI: 10.1016/s0969-2126(01)00216-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The ribosome--essential for protein synthesis in all organisms--has been an evasive target for structural studies. The best available structures for the 70S Escherichia coli ribosome or its 30S and 50S subunits are based on electron microscopical tilt experiments and are limited in resolution to 28-55 A. The angular reconstitution approach, which exploits the random orientations of particles within a vitreous ice matrix, can be used in conjunction with cryo-electron microscopy to yield a higher-resolution structure. RESULTS Our 23 A resolution map of the 70S ribosome elucidates many structural details, such as an extensive system of channels within the 50S subunit and an intersubunit gap ideally shaped to accommodate two transfer RNA molecules. The resolution achieved is sufficient to allow the preliminary fitting of double-helical regions of an earlier three-dimensional ribosomal RNA model. CONCLUSIONS Although we are still a long way from attaining an atomic-resolution structure of the ribosome, cryo-electron microscopy, in combination with angular reconstitution, is likely to yield three-dimensional maps with gradually increasing resolution. As exemplified by our current 23 A reconstruction, these maps will lead to progressive refinement of models of the ribosomal RNA.
Collapse
Affiliation(s)
- H Stark
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Pinard R, Payant C, Brakier-Gingras L. Mutations at positions 13 and/or 914 in Escherichia coli 16S ribosomal RNA interfere with the initiation of protein synthesis. Biochemistry 1995; 34:9611-6. [PMID: 7626629 DOI: 10.1021/bi00029a038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutations at positions 13 (U-->A) and/or 914 (A-->U) of Escherichia coli 16S rRNA severely affect cell growth and protein synthesis, when expressed in vivo in a vector encoding an rrn operon under control of an inducible promoter. In vitro assays using extension inhibition indicate that the mutations interfere with the formation of the 30S translational initiation complex, which can account for their effect on cell growth. The two mutations destabilize an adjacent pseudoknot helix in which bases 17-19 pair to bases 916-918. This was shown by the increased binding of an oligodeoxyribonucleotide probe complementary to one strand of the pseudoknot helix, and by the increased reactivity to kethoxal of base G917 within this helix. These observations suggest that this pseudoknot helix participates in the formation of the 30S translational initiation complex.
Collapse
MESH Headings
- Adenine
- Aldehydes/pharmacology
- Bacterial Proteins/biosynthesis
- Base Sequence
- Butanones
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Kinetics
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Point Mutation
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Spectinomycin/pharmacology
- Uracil
Collapse
Affiliation(s)
- R Pinard
- Département de Biochimie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
85
|
Beniac DR, Harauz G. Structures of small subunit ribosomal RNAs in situ from Escherichia coli and Thermomyces lanuginosus. Mol Cell Biochem 1995; 148:165-81. [PMID: 8594421 DOI: 10.1007/bf00928154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Small ribosomal subunits from the prokaryote Escherichia coli and the eukaryote Thermomyces lanuginosus were imaged electron spectroscopically, and single particle analysis used to yield three-dimensional reconstructions of the net phosphorus distribution representing the nucleic acid (RNA) backbone. This direct approach showed both ribosomal RNAs to have a three domain structure and other characteristic morphological features. The eukaryotic small ribosomal subunit had a prominent bill present in the head domain, while the prokaryotic subunit had a small vestigial bill. Both ribosomal subunits contained a thick 'collar' central domain which correlates to the site of the evolutionarily conserved ribosomal RNA core, and the location of the majority of ribosomal RNA bases that have been implicated in translation. The reconstruction of the prokaryotic subunit had a prominent protrusion extending from the collar, forming a channel approximately 1.5 nm wide and potentially representing a 'bridge' to the large subunit in the intact monosome. The basal domain of the prokaryotic ribosomal subunit was protein free. In this region of the eukaryotic subunit, there were two basal lobes composed of ribosomal RNA, consistent with previous hypotheses that this is a site for the 'non-conserved core' ribosomal RNA.
Collapse
Affiliation(s)
- D R Beniac
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
86
|
|
87
|
Juzumiene DI, Shapkina TG, Wollenzien P. Distribution of cross-links between mRNA analogues and 16 S rRNA in Escherichia coli 70 S ribosomes made under equilibrium conditions and their response to tRNA binding. J Biol Chem 1995; 270:12794-800. [PMID: 7759534 DOI: 10.1074/jbc.270.21.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction between mRNA and Escherichia coli ribosomes has been studied by photochemical cross-linking using mRNA analogues that contain 4-thiouridine (s4U) or s4U modified with azidophenylacyl bromide (APAB), either two nucleotides upstream or eight nucleotides downstream from the nucleotide sequence ACC, the codon for tRNA(Thr). The sequences of the mRNA analogues were described earlier (Stade, K., Rinke-Appel, J., and Brimacombe, R. (1989) Nucleic Acids Res. 17, 9889-9908; Rinke-Appel, J., Stade, K., and Brimacombe, R. (1991) EMBO J. 10, 2195-2202). Under equilibrium conditions, both of these mRNA analogues bind and cross-link to 70 S ribosomes without the presence of tRNA(Thr); however, there are significant increases both in binding and particularly in cross-linking in the presence of the tRNA(Thr). Four regions contain cross-linking sites that increase in the presence of tRNA, C1395, A532, A1196 (and minor sites around these three positions), and C1533/U1532. Three other cross-linking sites, U723, A845, and U1381, show very little change in extent of cross-linking when tRNA is present. A conformational change in the 30 S subunit allowing additional accessibility to the 16 S rRNA by the mRNA analogues upon tRNA binding best explains the behavior of the tRNA-dependent and tRNA-independent mRNA-16 S rRNA cross-linking sites.
Collapse
Affiliation(s)
- D I Juzumiene
- Department of Biochemistry, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
88
|
Ogata H, Akiyama Y, Kanehisa M. A genetic algorithm based molecular modeling technique for RNA stem-loop structures. Nucleic Acids Res 1995; 23:419-26. [PMID: 7533901 PMCID: PMC306692 DOI: 10.1093/nar/23.3.419] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new modeling technique for arriving at the three dimensional (3-D) structure of an RNA stem-loop has been developed based on a conformational search by a genetic algorithm and the following refinement by energy minimization. The genetic algorithm simultaneously optimizes a population of conformations in the predefined conformational space and generates 3-D models of RNA. The fitness function to be optimized by the algorithm has been defined to reflect the satisfaction of known conformational constraints. In addition to a term for distance constraints, the fitness function contains a term to constrain each local conformation near to a prepared template conformation. The technique has been applied to the two loops of tRNA, the anticodon loop and the T-loop, and has found good models with small root mean square deviations from the crystal structure. Slightly different models have also been found for the anticodon loop. The analysis of a collection of alternative models obtained has revealed statistical features of local variations at each base position.
Collapse
Affiliation(s)
- H Ogata
- Institute for Chemical Research, Kyoto University, Japan
| | | | | |
Collapse
|
89
|
Venema J, Dirks-Mulder A, Faber AW, Raué HA. Development and application of an in vivo system to study yeast ribosomal RNA biogenesis and function. Yeast 1995; 11:145-56. [PMID: 7732724 DOI: 10.1002/yea.320110206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a system for mutational analysis of Saccharomyces cerevisiae ribosomal RNA in vivo in which yeast cells can be made completely dependent on mutant rRNA and ribosomes by a simple switch in carbon source. The system is based on a yeast strain defective in RNA polymerase I (Pol I) transcription [Nogi et al. (1991) Proc. Natl. Acad. Sci. USA 88, 3962-3966]. This normally inviable strain was rescued by integration of multiple copies of the complete 37S pre-rRNA operon under control of the inducible, Pol II-transcribed GAL7 promoter into the rDNA repeat on chromosome XII. The resulting YJV100 strain can only grow on medium containing galactose as the carbon source. A second, episomal vector was constructed in which the rDNA unit was placed under control of the constitutive PGK1 promoter. YJV100 cells transformed with this vector are now also able to grow on glucose-based medium making the cells completely dependent on plasmid-encoded rRNA. We show that the Pol II-transcribed pre-rRNA is processed and assembled similarly to authentic Pol I-synthesised pre-rRNA, making this 'in vivo Pol II system' suitable for the detailed analysis of rRNA mutations, even highly deleterious ones, affecting ribosome biogenesis or function. A clear demonstration of this is our finding that an insertion into variable region V8 in 17S rRNA, previously judged to be neutral with respect to processing of 17S rRNA, its assembly into 40S subunits and the polysomal distribution of these subunits [Musters et al. (1989), Mol. Cell. Biol. 9, 551-559], is in fact a lethal mutation.
Collapse
Affiliation(s)
- J Venema
- Department of Biochemistry & Molecular Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
90
|
von Ahsen U, Noller HF. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science 1995; 267:234-7. [PMID: 7528943 DOI: 10.1126/science.7528943] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies suggest that the mechanism of action of the ribosome in translation involves crucial transfer RNA (tRNA)-ribosomal RNA (rRNA) interactions. Here, a selection scheme was developed to identify bases in 16S rRNA that are essential for tRNA binding to the P site of the small (30S) ribosomal subunit. Modification of the N-1 and N-2 positions of 2-methylguanine 966 and of the N-7 position of guanine 1401 interfered with messenger RNA (mRNA)-dependent binding of tRNA to the P site. Modification of the same positions as well as of the N-1 and N-2 positions of guanine 926 interfered with mRNA-independent binding of tRNA at high magnesium ion concentration. These results suggest that these three bases are involved in intermolecular contacts between ribosomes and tRNA.
Collapse
MESH Headings
- Aldehydes/pharmacology
- Base Composition
- Binding Sites
- Butanones
- CME-Carbodiimide/analogs & derivatives
- CME-Carbodiimide/pharmacology
- Codon
- Guanine/chemistry
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Phe/metabolism
- Ribosomes/metabolism
- Sulfides/pharmacology
Collapse
Affiliation(s)
- U von Ahsen
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
91
|
Ribosome-catalyzed Pep tide-bond Formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995. [DOI: 10.1016/s0079-6603(08)60809-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
92
|
Carbone I, Anderson JB, Kohn LM. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum. Curr Genet 1995; 27:166-76. [PMID: 7788720 DOI: 10.1007/bf00313431] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 1,380-bp intervening sequence within the mitochondrial small subunit ribosomal RNA (mt SSU rRNA) gene of the fungus Sclerotinia sclerotiorum has been sequenced and identified as a group-I intron. This is the first report of an intron in the mt SSU rRNA gene. The intron shows close similarity in secondary structure to the subgroup-IC2 introns from Podospora (ND3i1, ND5i2, and COIi5) and Neurospora (ND5i1). The intron has an open reading frame (ORF) that encodes a putative protein of 420 amino acids which contains two copies of the LAGLI-DADG motif. The ORF belongs to a family of ORFs identified in Podospora (ND3i1, ND4Li1, ND4Li2, ND5i2, and COIi5) and Neurospora (ND5i1). The putative 420-aa polypeptide is also similar to a site-specific endonuclease in the chloroplast large subunit ribosomal RNA (LSU rRNA) gene of the green alga Chlamydomonas eugametos. In each clone of S. sclerotiorum examined, including several clones which were sampled over a 3-year period from geographically separated sites, all isolates either had the intron or lacked the intron within the mt SSU rRNA gene. Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi.
Collapse
Affiliation(s)
- I Carbone
- Department of Botany, University of Toronto, Erindale College, Mississauga, Ontario, Canada
| | | | | |
Collapse
|
93
|
Okimoto R, Macfarlane JL, Wolstenholme DR. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 1994; 39:598-613. [PMID: 7528811 DOI: 10.1007/bf00160405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The small- and large-subunit mitochondrial ribosomal RNA genes (mt-s-rRNA and mt-l-rRNA) of the nematode worms Caenorhabditis elegans and Ascaris suum encode the smallest rRNAs so far reported for metazoa. These size reductions correlate with the previously described, smaller, structurally anomalous mt-tRNAs of C. elegans and A. suum. Using primer extension analysis, the 5' end nucleotides of the mt-s-rRNA and mt-l-rRNA genes were determined to be adjacent to the 3' end nucleotides of the tRNA(Glu) and tRNA(His) genes, respectively. Detailed, consensus secondary-structure models were constructed for the mt-s-rRNA genes and the 3' 64% of mt-l-rRNA genes of the two nematodes. The mt-s-rRNA secondary-structure model bears a remarkable resemblance to the previously defined universal core structure of E. coli 16S rRNA: most of the nucleotides that have been classified as variable or semiconserved in the E. coli model appear to have been eliminated from the C. elegans and A. suum sequences. Also, the secondary structure model constructed for the 3' 64% of the mt-l-rRNA is similar to the corresponding portion of the previously defined E. coli 23S rRNA core secondary structure. The proposed C. elegans/A. suum mt-s-rRNA and mt-l-rRNA models include all of the secondary-structure element-forming sequences that in E. coli rRNAs contain nucleotides important for A-site and P-site (but not E-site) interactions with tRNAs. Sets of apparently homologous sequences within the mt-s-rRNA and mt-l-rRNA core structures, derived by alignment of the C. elegans and A. suum mt-rRNAs to the corresponding mt-rRNAs of other eukaryotes, and E. coli rRNAs were used in maximum-likelihood analyses. The patterns of divergence of metazoan phyla obtained show considerable agreement with the most prevalent metazoan divergence patterns derived from more classical, morphological, and developmental data.
Collapse
Affiliation(s)
- R Okimoto
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
94
|
Serra MJ, Axenson TJ, Turner DH. A model for the stabilities of RNA hairpins based on a study of the sequence dependence of stability for hairpins of six nucleotides. Biochemistry 1994; 33:14289-96. [PMID: 7524674 DOI: 10.1021/bi00251a042] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGCXUAAUYGCC, where XY is the set of 10 possible mismatch base pairs. A nearest neighbor analysis of the data indicates the free energy for loop formation at 37 C varies from 2.9 to 4.5 kcal/mol. Thermodynamic parameters are also reported for hairpin formation by RNA sequences of the type GGXGUAAUAYCC (where XY are CG, GC, AU, UA, GU, and UG), with the common naturally occurring GA first mismatch (45% of small and large subunit rRNA loops of six). These results allow the development of a model to predict the stability of RNA hairpin loops. The model includes the size of the loop, the identity of the closing base pair, the free energy increment (delta G zero 37MM) for interaction of the closing base pair with the first mismatch, and an additional stabilization term for GA and UU first mismatches. delta G zero 37L(n) = delta G zero 37i(n) + delta G zero 37MM + 0.4 (if closed by AU or UA) -0.7 (if first mismatch is GA or UU). Here delta G zero 37i(n) is the free energy for initiating a loop of n nucleotides. delta G zero 37i(n) for n = 4-9 is 4.9, 4.4, 5.0, 5.0, 5.1, and 5.2 kcal/mol, respectively. The delta G zero 37MM is derived from measurements of model duplexes with terminal mismatches. The model gives good agreement when tested against four naturally occurring hairpin sequences.
Collapse
Affiliation(s)
- M J Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335
| | | | | |
Collapse
|
95
|
Vila A, Viril-Farley J, Tapprich WE. Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation. Proc Natl Acad Sci U S A 1994; 91:11148-52. [PMID: 7526390 PMCID: PMC45184 DOI: 10.1073/pnas.91.23.11148] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Phylogenetic comparison of rRNA sequences has suggested that a pseudoknot structure exists in the central domain of small-subunit rRNA. In Escherichia coli 16S rRNA, this pseudoknot would form when positions 570 and 571 pair with positions 865 and 866. Mutations were introduced into this pseudoknot at the phylogenetically invariant nucleotides U571 and A865. Single mutations of U to A at 571 or A to U at 865 dramatically altered the structural stability of the 30S subunit and also impaired the function of the subunit in translation. When the mutations were combined to create a compensatory pairing, the normal structure of the 30S subunit was restored, and the function of the mutant subunit in translation returned to wild-type levels. These results demonstrate the existence of a higher order structure in rRNA that directly affects the folding of the 30S subunit. Given the position of this structure in the three-dimensional model of the small subunit and the additional interactions that are likely to form in the same rRNA region, the central domain pseudoknot appears to contribute to a complex structure of rRNA that controls the conformational state of the ribosome.
Collapse
Affiliation(s)
- A Vila
- Biology Department, University of Nebraska at Omaha 68182
| | | | | |
Collapse
|
96
|
Abstract
Finding answers to the many open questions concerning the mechanism and control of prokaryotic translation remains one of the central challenges of molecular biology. In fact, recent experimental data even force us to reconsider aspects that were previously thought to be established fact. Here, we attempt a synthesis of new and not-so-new information, which leads to a revised and testable working hypothesis for translational initiation.
Collapse
Affiliation(s)
- J E McCarthy
- Department of Gene Expression, Gesellschaft Für Biotechnologische Forschung, Braunschweig, Germany
| | | |
Collapse
|
97
|
Alexander RW, Muralikrishna P, Cooperman BS. Ribosomal components neighboring the conserved 518-533 loop of 16S rRNA in 30S subunits. Biochemistry 1994; 33:12109-18. [PMID: 7918432 DOI: 10.1021/bi00206a014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe complementary to 16S rRNA nucleotides 518-526 and its exploitation in identifying 30S ribosomal subunit components neighboring its target site in 16S rRNA. Nucleotides 518-526 lie within an almost universally conserved single-stranded loop that has been linked to the decoding region of Escherichia coli ribosomes. On photolysis in the presence of activated 30S ribosomes, the probe site-specifically incorporates into proteins S3, S4, S7, and S12 (identified by SDS-PAGE, RP-HPLC, and immunological analysis); nucleotides C525, C526, and G527 adjacent to its target binding site; and the 3'-terminus of 16S rRNA. When the probe is photoincorporated into 30S subunits subjected to brief cold inactivation (SI subunits), S7 labeling is increased compared to activated subunit incorporation, while S3, S4, and S12 labeling is decreased, as is labeling to nucleotides C525, C526, and G527; labeling at the 16S rRNA 3'-terminus appears unchanged. Longer cold inactivation of the 30S subunits (LI subunits) leads to decreases in the labeling of all components. These results provide clear evidence that C526 lies within 24 A (the distance between C526 and the photogenerated nitrene) of proteins S3, S4, S7, and S12 and the 3'-terminus of 16S rRNA. The identity of the tryptic digestion patterns of S7 labeled with the probe complementary to 16S rRNA nucleotides 518-526 and with a probe complementary to nucleotides 1397-1405 [Muralikrishna, P., & Cooperman, B. S. (1994) Biochemistry 33, 1392-1398] also provides evidence for proximity between C526 and G1405. Our results support the conclusion of Dontsova et al. [Dontsova, O., et al. (1992) EMBO J. 11, 3105-3116] in placing the 530 loop in close proximity to the decoding center of the 30S subunit but are apparently inconsistent with some protein-protein distances determined by neutron diffraction [Capel, M. S., et al. (1988) J. Mol. Biol. 200, 65-87]. This inconsistency suggests that a multistate model of subunit conformation may be required to account for the totality of results pertaining to the internal structure of the 30S subunit.
Collapse
Affiliation(s)
- R W Alexander
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323
| | | | | |
Collapse
|
98
|
Han H, Schepartz A, Pellegrini M, Dervan PB. Mapping RNA regions in eukaryotic ribosomes that are accessible to methidiumpropyl-EDTA.Fe(II) and EDTA.Fe(II). Biochemistry 1994; 33:9831-44. [PMID: 8060991 DOI: 10.1021/bi00199a004] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and EDTA.Fe(II) were used to investigate the structure of Drosophila melanogaster ribosomes. Cleavage reactions were performed on intact ribosomes in cell lysates in vitro and analyzed by primer extension with reverse transcriptase using oligodeoxynucleotide primers. Regions of 18S and 28S ribosomal RNAs (rRNAs) which are accessible to MPE.Fe(II) and EDTA.Fe(II) are located almost exclusively within expansion segments. The accessibility of these regions to cleavage indicates that they are likely exposed on the surface of eukaryotic ribosomes. These results provide information about the overall tertiary structure of rRNA in ribosomes.
Collapse
Affiliation(s)
- H Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
99
|
Samaha RR, O'Brien B, O'Brien TW, Noller HF. Independent in vitro assembly of a ribonucleoprotein particle containing the 3' domain of 16S rRNA. Proc Natl Acad Sci U S A 1994; 91:7884-8. [PMID: 8058729 PMCID: PMC44508 DOI: 10.1073/pnas.91.17.7884] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Small (30S) subunits of Escherichia coli ribosomes are composed of 21 proteins and a 1542-nucleotide 16S rRNA, whose secondary structure is divided into three domains. An in vitro transcript of the 3' domain of 16S rRNA (residues 923-1542), assembles efficiently with 30S ribosomal proteins to form a compact ribonucleoprotein (RNP) particle. Isolated particles examined under the electron microscope have a globular appearance, similar in size and shape to the head of the 30S ribosomal subunit. Two-dimensional gel analysis of the particles indicates the presence of proteins S3, S7, S9, S10, S13, S14, and S19 and smaller amounts of S2, all of which have been localized to the head of the 30S subunit by immunoelectron microscopy and neutron diffraction and belong to the S7 assembly family. Interestingly, protein S4, which is believed to interact exclusively with the 5' domain, is also reproducibly found associated with the particles in significant amounts. Chemical probing of the RNA in the assembled particle reveals characteristic cleavage protection patterns, showing that the proteins assemble with the 3'-domain RNA similarly to the way in which they assemble with 16S rRNA, although some of the later steps of assembly appear to be incomplete. These results show that the 3' domain of 16S rRNA can indeed assemble independently of the rest of the 30S subunit into a particle that resembles its structure in the ribosome. In addition, the assembled particles are able to bind spectinomycin with an affinity comparable to that of 30S subunits.
Collapse
MESH Headings
- Base Sequence
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli/metabolism
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- RNA, Ribosomal, 16S/biosynthesis
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/ultrastructure
- Ribonucleoproteins/biosynthesis
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/ultrastructure
- Ribosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- R R Samaha
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
100
|
Abstract
The folding pathways of large, highly structured RNA molecules are largely unexplored. Insight into both the kinetics of folding and the presence of intermediates was provided in a study of the Mg(2+)-induced folding of the Tetrahymena ribozyme by hybridization of complementary oligodeoxynucleotide probes. This RNA folds via a complex mechanism involving both Mg(2+)-dependent and Mg(2+)-independent steps. A hierarchical model for the folding pathway is proposed in which formation of one helical domain (P4-P6) precedes that of a second helical domain (P3-P7). The overall rate-limiting step is formation of P3-P7, and takes place with an observed rate constant of 0.72 +/- 0.14 minute-1. The folding mechanism of large RNAs appears similar to that of many multidomain proteins in that formation of independently stable substructures precedes their association into the final conformation.
Collapse
Affiliation(s)
- P P Zarrinkar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|