51
|
Gao X, Zhang X, Cui L, Chen R, Zhang C, Xue J, Zhang L, He W, Li J, Wei S, Wei M, Cui H. Ginsenoside Rb1 Promotes Motor Functional Recovery and Axonal Regeneration in Post-stroke Mice through cAMP/PKA/CREB Signaling Pathway. Brain Res Bull 2019; 154:51-60. [PMID: 31715311 DOI: 10.1016/j.brainresbull.2019.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/29/2019] [Accepted: 10/19/2019] [Indexed: 11/29/2022]
Abstract
The central nervous system (CNS) has a poor self-repairing capability after injury because of the inhibition of axonal regeneration by many myelin-associated inhibitory factors. Therefore, ischemic stroke usually leads to disability. Previous studies reported that Ginsenoside Rb1 (GRb1) plays a role in neuronal protection in acute phase after ischemic stroke, but its efficacy in post-stroke and the underlying mechanism are not clear. Recent evidences demonstrated GRb1 promotes neurotransmitter release through the cAMP-depend protein kinase A (PKA) pathway, which is related to axonal regeneration. The present study aimed to determine whether GRb1 improves long-term motor functional recovery and promotes cortical axon regeneration in post-stroke. Adult male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (dMCAO). GRb1 solution (5 mg/ml) or equal volume of normal saline was injected intraperitoneally for the first time at 24 h after surgery, and then daily injected until day 14. Day 3, 7, 14 and 28 after dMCAO were used as observation time points. Motor functional recovery was assessed with Rota-rod test and grid walking task. The expression of growth-associated protein 43 (GAP43) and biotinylated dextran amine (BDA) was measured to evaluate axonal regeneration. The levels of cyclic AMP (cAMP) and PKA were measured by Elisa, PKAc and phosphorylated cAMP response element protein (pCREB) were determined by western blot. Our results shown that GRb1 treatment improved motor function and increased the expression of GAP43 and BDA in ipsilesional and contralateral cortex. GRb1 significantly elevated cAMP and PKA, increased the protein expression of PKAc and pCREB. However, the effects of GRb1 were eliminated by H89 intervention (a PKA inhibitor). These results suggested that GRb1 improved functional recovery in post-stroke by stimulating axonal regeneration and brain repair. The underlying mechanism might be up-regulating the expression of cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China.
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jing Xue
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Weiliang He
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Jiamin Li
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Shanshan Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Mengmeng Wei
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| | - Hemei Cui
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, 050000, PR China
| |
Collapse
|
52
|
Liberia T, Martin-Lopez E, Meller SJ, Greer CA. Sequential Maturation of Olfactory Sensory Neurons in the Mature Olfactory Epithelium. eNeuro 2019; 6:ENEURO.0266-19.2019. [PMID: 31554664 PMCID: PMC6795559 DOI: 10.1523/eneuro.0266-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
Affiliation(s)
- Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
53
|
Mathot F, Rbia N, Thaler R, Bishop AT, Van Wijnen AJ, Shin AY. Gene expression profiles of differentiated and undifferentiated adipose derived mesenchymal stem cells dynamically seeded onto a processed nerve allograft. Gene 2019; 724:144151. [PMID: 31626959 DOI: 10.1016/j.gene.2019.144151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells onto processed nerve allografts may support peripheral nerve repair. The purpose of this study was to understand the biological characteristics of undifferentiated and differentiated MSCs before and after seeding onto a processed nerve allograft by comparing gene expression profiles. METHODS MSCs from Lewis rats were cultured in maintenance media or differentiated into Schwann-like cells. Both treatment groups were dynamically seeded onto decellularized nerve allografts derived from Sprague-Dawley rats. Gene expression was quantified by quantitative polymerase chain reaction (qPCR) analysis of representative biomarkers, including neurotrophic (GDNF, PTN, GAP43, PMP22), angiogenic (CD31, VEGF1), extracellular matrix (ECM) (COL1A1, COL3A1, FBLN1, LAMB2) or cell cycle (CAPS3, CCBN2) genes. Gene expression values were statistically evaluated using a 2-factor ANOVA with repeated measures. RESULTS Baseline gene expression of undifferentiated and differentiated MSCs was significantly altered upon interaction with processed nerve allografts. Interaction between processed allografts and undifferentiated MSCs enhanced expression of neurotrophic (NGF, GDNF, PMP22), ECM (FBLN1, LAMB2) and regulatory cell cycle genes (CCNB2) during a 7-day time course. Interactions of differentiated MSCs with nerve allografts enhanced expression of neurotrophic (NGF, GDNF, GAP43), angiogenic (VEGF1), ECM (FBLN1) and regulatory cell cycle genes (CASP3, CCNB2) within one week. CONCLUSIONS Dynamic seeding onto processed nerve allografts modulates temporal gene expression profiles of differentiated and undifferentiated MSCs. These changes in gene expressions may support the reparative functions of MSCs in supporting nerve regeneration in different stages of axonal growth.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Andre J Van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, MN, USA.
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
54
|
Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2019; 98:780-795. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Traumatic peripheral nerve injury represents a major clinical and public health problem that often leads to significant functional impairment and permanent disability. Despite modern diagnostic procedures and advanced microsurgical techniques, functional recovery after peripheral nerve repair is often unsatisfactory. Therefore, there is an unmet need for new therapeutic or adjunctive strategies to promote the functional recovery in nerve injury patients. In contrast to the central nervous system, Schwann cells in the peripheral nervous system play a pivotal role in several aspects of nerve repair such as degeneration, remyelination, and axonal growth. Several non-surgical approaches, including pharmacological, electrical, cell-based, and laser therapies, have been employed to promote myelination and enhance functional recovery after peripheral nerve injury. This review will succinctly discuss the potential therapeutic strategies in the context of myelination following peripheral neurotrauma.
Collapse
Affiliation(s)
- Max Modrak
- School of Medicine & Dentistry, The University of Rochester Medical Center, Rochester, New York, USA
| | - M A Hassan Talukder
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Khatuna Gurgenashvili
- Department of Neurology, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
55
|
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
56
|
Lee S, Eom T, Kim MK, Yang SG, Shim BS. Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
57
|
Hartl M, Schneider R. A Unique Family of Neuronal Signaling Proteins Implicated in Oncogenesis and Tumor Suppression. Front Oncol 2019; 9:289. [PMID: 31058089 PMCID: PMC6478813 DOI: 10.3389/fonc.2019.00289] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulated by protein kinase C-phosphorylation or by binding to the calcium sensor calmodulin (CaM). GAP43, MARCKS, and BASP1 are also expressed in non-neuronal cells, where they may have important functions to manage cytoskeleton architecture, and in case of MARCKS and BASP1 to act as cofactors in transcriptional regulation. During neoplastic cell transformation, the proteins reveal differential expression in normal vs. tumor cells, and display intrinsic tumor promoting or tumor suppressive activities. Whereas GAP43 and MARCKS are oncogenic, tumor suppressive functions have been ascribed to BASP1 and in part to MARCKS depending on the cell type. Like MARCKS, the myristoylated BASP1 protein is localized both in the cytoplasm and in the cell nucleus. Nuclear BASP1 participates in gene regulation converting the Wilms tumor transcription factor WT1 from an oncoprotein into a tumor suppressor. The BASP1 gene is downregulated in many human tumor cell lines particularly in those derived from leukemias, which display elevated levels of WT1 and of the major cancer driver MYC. BASP1 specifically inhibits MYC-induced cell transformation in cultured cells. The tumor suppressive functions of BASP1 and MARCKS could be exploited to expand the spectrum of future innovative therapeutic approaches to inhibit growth and viability of susceptible human tumors.
Collapse
Affiliation(s)
- Markus Hartl
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
58
|
AMPA receptors are involved in prefrontal direct current stimulation effects on long-term working memory and GAP-43 expression. Behav Brain Res 2019; 362:208-212. [DOI: 10.1016/j.bbr.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/31/2023]
|
59
|
Li J, Jia Z, Xu W, Guo W, Zhang M, Bi J, Cao Y, Fan Z, Li G. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222:148-157. [PMID: 30851336 DOI: 10.1016/j.lfs.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS Identifying drugs that inhibit edema and glial scar formation and increase neuronal survival is crucial to improving outcomes after spinal cord injury (SCI). Here, we used 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a potent selective inhibitor of aquaporin 4 (AQP4), to investigate the effects of TGN-020 on SCI in Sprague-Dawley rats. MAIN METHODS We compressed the spinal cord at T10 using a sterile impounder (35 g, 5 min), to induce moderate injury. TGN-020 (100 mg/kg) or an equal volume of 10% dimethyl sulfoxide was then administered via intraperitoneal injection. Neurological function was evaluated using the Basso-Beattie-Bresnahan open-field locomotor scale 1, 3, 7, 14, 21, and 28 days after SCI. The degree of edema was assessed via determination of the precise spinal cord water content 3 days after SCI. Expression levels of AQP4, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), and growth-associated protein-43 (GAP-43) were determined via western blotting and immunofluorescence staining 3 days after SCI and 4 weeks after SCI. Numbers of surviving neurons and glial scar sizes were determined using Nissl and hematoxylin-eosin staining, respectively. KEY FINDINGS Our results showed that TGN-020 promoted functional recovery at days 3, 7, 14, 21, and 28, as well as reduced the degree of edema and inhibited the expression of AQP4, GFAP, PCNA at days 3 after SCI. Furthermore, observations 4 weeks after SCI revealed that TGN-020 inhibited the glial scar formation and upregulated GAP-43 expression. SIGNIFICANCE TGN-020 can alleviate spinal cord edema, inhibit glial scar formation, and promote axonal regeneration, conferring beneficial effects on recovery in rats.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Xu
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, China
| | - Weidong Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Mingchao Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Bi
- Department of Neurobiology, Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
60
|
Sandelius Å, Cullen NC, Källén Å, Rosengren L, Jensen C, Kostanjevecki V, Vandijck M, Zetterberg H, Blennow K. Transient increase in CSF GAP-43 concentration after ischemic stroke. BMC Neurol 2018; 18:202. [PMID: 30526557 PMCID: PMC6284302 DOI: 10.1186/s12883-018-1210-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers reflect ongoing processes in the brain. Growth-associated protein 43 (GAP-43) is highly upregulated in brain tissue shortly after experimental ischemia suggesting the CSF GAP-43 concentration may be altered in ischemic brain disorders. CSF GAP-43 concentration is elevated in Alzheimer's disease patients; however, patients suffering from stroke have not been studied previously. METHODS The concentration of GAP-43 was measured in longitudinal CSF samples from 28 stroke patients prospectively collected on days 0-1, 2-4, 7-9, 3 weeks, and 3-5 months after ischemia and cross-sectionally in 19 controls. The stroke patients were clinically evaluated using a stroke severity score system. The extent of the brain lesion, including injury size and degrees of white matter lesions and atrophy were evaluated by CT and magnetic resonance imaging. RESULTS Increased GAP-43 concentration was detected from day 7-9 to 3 weeks after stroke, compared to day 1-4 and to levels in the control group (P = 0.02 and P = 0.007). At 3-5 months after stroke GAP-43 returned to admission levels. The initial increase in GAP-43 during the nine first days was associated to stroke severity, the degree of white matter lesions and atrophy and correlated positively with infarct size (rs = 0.65, P = 0.001). CONCLUSIONS The transient increase of CSF GAP-43 is important to take into account when used as a biomarker for other neurodegenerative diseases such as Alzheimer's disease. Furthermore, GAP-43 may be a marker of neuronal responses after stroke and additional studies confirming the potential of CSF GAP-43 to reflect severity and outcome of stroke in larger cohorts are warranted.
Collapse
Affiliation(s)
- Åsa Sandelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Department of Psychiatry and Neurochemistry, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| | - Nicholas C Cullen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Åsa Källén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Rosengren
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Crister Jensen
- Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, WC1N, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. .,Department of Psychiatry and Neurochemistry, Sahlgrenska University Hospital/Mölndal, S-431 80, Mölndal, Sweden.
| |
Collapse
|
61
|
Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimers Dement 2018; 15:55-64. [PMID: 30321501 PMCID: PMC6333489 DOI: 10.1016/j.jalz.2018.08.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022]
Abstract
Introduction: The level of the presynaptic protein growth-associated protein 43 (GAP-43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer’s disease (AD) and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection. Methods: We developed an enzyme-linked immunosorbent assay for CSF GAP-43 and measured healthy controls (n = 43), patients with AD (n = 275), or patients with other neurodegenerative diseases (n = 344). In a subpopulation (n = 93), CSF GAP-43 concentrations from neuropathologically confirmed cases were related to Aβ plaques, tau, α-synuclein, and TDP-43 pathologies. Results: GAP-43 was significantly increased in AD compared to controls and most neurodegenerative diseases and correlated with the magnitude of neurofibrillary tangles and Aβ plaques in the hippocampus, amygdala, and cortex. GAP-43 was not associated to α-synuclein or TDP-43 pathology. Discussion: The presynaptic marker GAP-43 is associated with both diagnosis and neuropathology of AD and thus may be useful as a sensitive and specific biomarker for clinical research.
Collapse
|
62
|
Jia M, Travaglia A, Pollonini G, Fedele G, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex. ACTA ACUST UNITED AC 2018; 25:533-543. [PMID: 30224556 PMCID: PMC6149953 DOI: 10.1101/lm.047753.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins at different developmental ages. Specifically, we compared the mPFC of rats at postnatal day 17 (PN17), when they are still unable to express long-term contextual and spatial memories, to rat mPFC at PN24, when they have acquired the ability of long-term memory expression and finally to the mPFC of adult rats. We found that, with increased age, there are remarkable and significant decreases in markers of cell activation and significant increases in proteins that mark synaptogenesis and synapse maturation. Furthermore, we found significant changes in structural markers over the ages, suggesting that structural connectivity of the mPFC increases over time. Finally, the substantial biological difference in mPFC at different ages suggest caution in extrapolating conclusions from brain plasticity studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Gabriella Pollonini
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Giuseppe Fedele
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
63
|
Rot U, Sandelius Å, Emeršič A, Zetterberg H, Blennow K. Cerebrospinal fluid GAP-43 in early multiple sclerosis. Mult Scler J Exp Transl Clin 2018; 4:2055217318792931. [PMID: 30094057 PMCID: PMC6081760 DOI: 10.1177/2055217318792931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/09/2018] [Indexed: 01/27/2023] Open
Abstract
Background/Objective Novel biomarkers identifying and predicting disease activity in multiple sclerosis (MS) would be valuable for primary diagnosis and as outcome measures for monitoring therapeutic effects in clinical trials. Axonal loss is present from the earliest stages of MS and correlates with disability measures. Growth-associated protein 43 (GAP-43) is a presynaptic protein with induced expression during axonal growth. We hypothesized this protein could serve as a biomarker of axonal regeneration capacity in MS. Methods We developed a novel GAP-43 enzyme-linked immunosorbent assay for quantification in cerebrospinal fluid (CSF) and measured GAP-43 levels in 71 patients with clinically isolated syndrome, 139 MS patients and 51 controls. Results GAP-43 concentrations were similar in patients and controls. Nevertheless, GAP-43 levels were higher in patients with >10 T2-magnetic resonance imaging (MRI) lesions (p = 0.005). CSF GAP-43 concentrations correlated with CSF mononuclear cell counts (p = 0.031) and were inversely correlated with patient age (p = 0.038) with a trend for higher CSF GAP-43 concentrations in patients with gadolinium-enhancing MRI lesions and positive CSF oligoclonal immunoglobulin G status. Conclusion Our results suggest that axonal regeneration capacity is relatively preserved in early MS. CSF GAP-43 concentration is positively associated with markers of inflammation, suggesting possible inflammatory-driven expression of this growth-associated protein in early MS.
Collapse
Affiliation(s)
- U Rot
- Department of Neurology, University Medical Centre Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Slovenia
| | - Å Sandelius
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - A Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, United Kingdom.,UK Dementia Research Institute at UCL, United Kingdom
| | - K Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Sweden.,U.R. and Å.S. contributed equally to this work
| |
Collapse
|
64
|
Wei Y, Shin MR, Sesti F. Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease. Cell Death Dis 2018; 9:820. [PMID: 30050035 PMCID: PMC6062629 DOI: 10.1038/s41419-018-0886-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023]
Abstract
Oxidative modification of the voltage-gated K+ channel subfamily B member 1 (KCNB1, Kv2.1) is emerging as a mechanism of neuronal vulnerability potentially capable of affecting multiple conditions associated with oxidative stress, from normal aging to neurodegenerative disease. In this study we report that oxidation of KCNB1 channels is exacerbated in the post mortem brains of Alzheimer’s disease (AD) donors compared to age-matched controls. In addition, phosphorylation of Focal Adhesion kinases (FAK) and Src tyrosine kinases, two key signaling steps that follow KCNB1 oxidation, is also strengthened in AD vs. control brains. Quadruple transgenic mice expressing a non-oxidizable form of KCNB1 in the 3xTg-AD background (APPSWE, PS1M146V, and tauP301L), exhibit improved working memory along with reduced brain inflammation, protein carbonylation and intraneuronal β-amyloid (Aβ) compared to 3xTg-AD mice or mice expressing the wild type (WT) KCNB1 channel. We conclude that oxidation of KCNB1 channels is a mechanism of neuronal vulnerability that is pervasive in the vertebrate brain.
Collapse
Affiliation(s)
- Yu Wei
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Mi Ryung Shin
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
65
|
Carelli S, Giallongo T, Gombalova Z, Merli D, Di Giulio AM, Gorio A. EPO-releasing neural precursor cells promote axonal regeneration and recovery of function in spinal cord traumatic injury. Restor Neurol Neurosci 2018; 35:583-599. [PMID: 29172009 PMCID: PMC5701768 DOI: 10.3233/rnn-170750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Spinal cord injury (SCI) is a debilitating condition characterized by a complex of neurological dysfunctions ranging from loss of sensation to partial or complete limb paralysis. Recently, we reported that intravenous administration of neural precursors physiologically releasing erythropoietin (namely Er-NPCs) enhances functional recovery in animals following contusive spinal cord injury through the counteraction of secondary degeneration. Er-NPCs reached and accumulated at the lesion edges, where they survived throughout the prolonged period of observation and differentiated mostly into cholinergic neuron-like cells. Objective: The aim of this study was to investigate the potential reparative and regenerative properties of Er-NPCs in a mouse experimental model of traumatic spinal cord injury. Methods and Results: We report that Er-NPCs favoured the preservation of axonal myelin and strongly promoted the regrowth across the lesion site of monoaminergic and chatecolaminergic fibers that reached the distal portions of the injured cord. The use of an anterograde tracer transported by the regenerating axons allowed us to assess the extent of such a process. We show that axonal fluoro-ruby labelling was practically absent in saline-treated mice, while it resulted very significant in Er-NPCs transplanted animals. Conclusion: Our study shows that Er-NPCs promoted recovery of function after spinal cord injury, and that this is accompanied by preservation of myelination and strong re-innervation of the distal cord. Thus, regenerated axons may have contributed to the enhanced recovery of function after SCI.
Collapse
Affiliation(s)
- S Carelli
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy.,Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy
| | - T Giallongo
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy
| | - Z Gombalova
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy.,Pavol Jozef Safarik University in Kosice, Faculty of Science, Institute of Biology and Ecology, Moyzesova, Kosice, Slovakia (SVK)
| | - D Merli
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy
| | - A M Di Giulio
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy.,Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, Milan, Italy
| | - A Gorio
- Department of Health Sciences, Laboratory of Pharmacology, University of Milan, via A di Rudinì, Milan, Italy
| |
Collapse
|
66
|
Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32:fj201800597R. [PMID: 29932869 PMCID: PMC6219828 DOI: 10.1096/fj.201800597r] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process. We found that HG exosomes contained high levels of miR-28, -31a, and -130a compared to exosomes derived from non-HG-stimulated Schwann cells. In vitro, treatment of distal axons with HG exosomes resulted in reduction of axonal growth, which was associated with elevation of miR-28, -31a, and -130a and reduction of their target proteins of DNA methyltransferase-3α, NUMB (an endocytic adaptor protein), synaptosome associated protein 25, and growth-associated protein-43 in axons. In vivo, administration of HG exosomes to sciatic nerves of diabetic db/db mice at 7 wk of age promoted occurrence of peripheral neuropathy characterized by impairment of nerve conduction velocity and induction of mechanic and thermal hypoesthesia, which was associated with substantial decreases in intraepidermal nerve fibers. Our findings demonstrate a functional role of exosomes derived from HG-stimulated Schwann cells in mediating development of diabetic peripheral neuropathy.-Jia, L., Chopp, M., Wang, L., Lu, X., Szalad, A., Zhang, Z. G. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Longfei Jia
- Inovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Xuerong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| |
Collapse
|
67
|
Hensel J, Wetterwald A, Temanni R, Keller I, Riether C, van der Pluijm G, Cecchini MG, Thalmann GN. Osteolytic cancer cells induce vascular/axon guidance processes in the bone/bone marrow stroma. Oncotarget 2018; 9:28877-28896. [PMID: 29988965 PMCID: PMC6034746 DOI: 10.18632/oncotarget.25608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Prostate and breast cancers frequently metastasize to bone. The physiological bone homeostasis is perturbed once cancer cells proliferate at the bone metastatic site. Tumors are complex structures consisting of cancer cells and numerous stroma cells. In this study, we show that osteolytic cancer cells (PC-3 and MDA-MB231) induce transcriptome changes in the bone/bone marrow microenvironment (stroma). This stroma transcriptome differs from the previously reported stroma transcriptome of osteoinductive cancer cells (VCaP). While the biological process “angiogenesis/vasculogenesis” is enriched in both transcriptomes, the “vascular/axon guidance” process is a unique process that characterizes the osteolytic stroma. In osteolytic bone metastasis, angiogenesis is denoted by vessel morphology and marker expression specific for arteries/arterioles. Interestingly, intra-tumoral neurite-like structures were in proximity to arteries. Additionally, we found that increased numbers of mesenchymal stem cells and vascular smooth muscle cells, expressing osteolytic cytokines and inhibitors of bone formation, contribute to the osteolytic bone phenotype. Osteoinductive and osteolytic cancer cells induce different types of vessels, representing functionally different hematopoietic stem cell niches. This finding suggests different growth requirements of osteolytic and osteoinductive cancer cells and the need for a differential anti-angiogenic strategy to inhibit tumor growth in osteolytic and osteoblastic bone metastasis.
Collapse
Affiliation(s)
- Janine Hensel
- Urology, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Antoinette Wetterwald
- Urology, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ramzi Temanni
- Biomedical Informatics Division, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Irene Keller
- Department for Biomedical Research, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Carsten Riether
- Tumor Immunology, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Marco G Cecchini
- Urology, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - George N Thalmann
- Urology, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
68
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Bergado JA. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats. Brain Res Bull 2018; 142:8-17. [PMID: 29933038 DOI: 10.1016/j.brainresbull.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses.
Collapse
Affiliation(s)
- D Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - W Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - E Alberti-Amador
- Lab. Biología Molecular, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa, Havana City, 11300, Cuba.
| | - J A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba, 4536534, Colombia.
| |
Collapse
|
69
|
Geist J, Ward CW, Kontrogianni-Konstantopoulos A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties. FASEB J 2018; 32:fj201800624R. [PMID: 29874125 PMCID: PMC6219831 DOI: 10.1096/fj.201800624r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a family of accessory proteins in skeletal muscles that bind both myosin and actin filaments. Herein, we examined the role of sMyBP-C in adult skeletal muscles using in vivo gene transfer and clustered regularly interspaced short palindromic repeats technology to knock down all known sMyBP-C variants. Our findings, confirmed in two different skeletal muscles, demonstrated efficient knockdown (KD) of sMyBP-C (>70%) resulting in notably decreased levels of thick, but not thin, filament proteins ranging from ∼50% for slow and fast myosin to ∼20% for myomesin. Consistent with this, A bands were selectively distorted, and sarcomere length was significantly reduced. Contrary to earlier in vitro studies showing that addition of recombinant sMyBP-C slows down the formation of actomyosin crossbridges, our work demonstrates that KD of sMyBP-C in intact myofibers results in decreased contraction and relaxation kinetics under no-load conditions. Similarly, KD muscles develop markedly reduced twitch and tetanic force and contraction velocity. Taken together, our results show that sMyBP-C is essential for the regular organization and maintenance of myosin filaments into A bands and that its structural role precedes its ability to regulate actomyosin crossbridges.-Geist, J., Ward, C. W., Kontrogianni-Konstantopoulos, A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties.
Collapse
Affiliation(s)
- Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher W. Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
70
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
71
|
Increased Expression of Transcription Factor SRY-box-Containing Gene 11 (Sox11) Enhances Neurite Growth by Regulating Neurotrophic Factor Responsiveness. Neuroscience 2018; 382:93-104. [PMID: 29746989 DOI: 10.1016/j.neuroscience.2018.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
Abstract
The peripherally projecting axons of dorsal root ganglion (DRG) neurons readily regenerate after damage while their centrally projecting branches do not regenerate to the same degree after injury. One important reason for this inconsistency is the lack of pro-regeneration gene expression that occurs in DRG neurons after central injury relative to peripheral damage. The transcription factor SRY-box-containing gene 11 (Sox11) may be a crucial player in the regenerative capacity of axons as previous evidence has shown that it is highly upregulated after peripheral axon damage but not after central injury. Studies have also shown that overexpression or inhibition of Sox11 after peripheral nerve damage can promote or block axon regeneration, respectively. To further understand the mechanisms of how Sox11 regulates axon growth, we artificially overexpressed Sox11 in DRG neurons in vitro to determine if increased levels of this transcription factor could enhance neurite growth. We found that Sox11 overexpression significantly enhanced neurite branching in vitro, and specifically induced the expression of glial cell line-derived neurotrophic factor (GDNF) family receptors, GFRα1 and GFRα3. The upregulation of these receptors by Sox11 overproduction altered the neurite growth patterns of DRG neurons alone and in response to growth factors GDNF and artemin; ligands for GFRα1 and GFRα3, respectively. These data support the role of Sox11 to promote neurite growth by altering responsiveness of neurotrophic factors and may provide mechanistic insight as to why peripheral axons of sensory neurons readily regenerate after injury, but the central projections do not have an extensive regenerative capacity.
Collapse
|
72
|
Zhou J, Yang WS, Suo DQ, Li Y, Peng L, Xu LX, Zeng KY, Ren T, Wang Y, Zhou Y, Zhao Y, Yang LC, Jin X. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice. Front Pharmacol 2018; 9:389. [PMID: 29740317 PMCID: PMC5928465 DOI: 10.3389/fphar.2018.00389] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/04/2018] [Indexed: 11/13/2022] Open
Abstract
The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Wu-Shuang Yang
- Department of Neurosurgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Da-Qin Suo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Lu Peng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lan-Xi Xu
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Kai-Yue Zeng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Tong Ren
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Ying Wang
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Yu Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Yun Zhao
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Li-Chao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| |
Collapse
|
73
|
Abstract
The schwann cells of the peripheral nervous system are indispensable for the formation, maintenance, and modulation of synapses over the life cycle. They not only recognize neuron-glia signaling molecules, but also secrete gliotransmitters. Through these processes, they regulate neuronal excitability and thus the release of neurotransmitters from the nerve terminal at the neuromuscular junction. Gliotransmitters strongly affect nerve communication, and their secretion is mainly triggered by synchronized Ca2+ signaling, implicating Ca2+ waves in synapse function. Reciprocally, neurotransmitters released during synaptic activity can evoke increases in intracellular Ca2+ levels. A reconsideration of the interplay between the two main types of cells in the nervous system is due, as the concept of nervous system activity comprising only neuron-neuron and neuron-muscle action has become untenable. A more precise understanding of the roles of schwann cells in nerve-muscle signaling is required.
Collapse
Affiliation(s)
- Sujin Hyung
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
- BK21 Plus Transformative Training Program for Creative Mechanical and Aerospace Engineers, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| | - Kyuhwan Jung
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung-Rae Cho
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50-1 Yonsei Ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
74
|
Gong Y, Hewett JA. Maintenance of the Innate Seizure Threshold by Cyclooxygenase-2 is Not Influenced by the Translational Silencer, T-cell Intracellular Antigen-1. Neuroscience 2018; 373:37-51. [PMID: 29337236 DOI: 10.1016/j.neuroscience.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Activity of neuronal cyclooxygenase-2 (COX-2), a primary source of PG synthesis in the normal brain, is enhanced by excitatory neurotransmission and this is thought to be involved in seizure suppression. Results herein showing that the incidence of pentylenetetrazole (PTZ)-induced convulsions is suppressed in transgenic mice overexpressing COX-2 in neurons support this notion. T-cell intracellular antigen-1 (TIA-1) is an mRNA binding protein that is known to bind to COX-2 mRNA and repress its translation in non-neuronal cell types. An examination of the expression profile of TIA-1 protein in the normal brain indicated that it is expressed broadly by neurons, including those that express COX-2. However, whether TIA-1 regulates COX-2 protein levels in neurons is not known. The purpose of this study was to test the possibility that deletion of TIA-1 increases basal COX-2 expression in neurons and consequently raises the seizure threshold. Results demonstrate that neither the basal nor seizure-induced expression profiles of COX-2 were altered in mice lacking a functional TIA-1 gene suggesting that TIA-1 does not contribute to regulation of COX-2 protein expression in neurons. The acute PTZ-induced seizure threshold was also unchanged in mice lacking TIA-1 protein, indicating that this RNA binding protein does not influence the innate seizure threshold. Nevertheless, the results raise the possibility that the level of neuronal COX-2 expression may be a determinant of the innate seizure threshold and suggest that a better understanding of the regulation of COX-2 expression in the brain could provide new insight into the molecular mechanisms that suppress seizure induction.
Collapse
Affiliation(s)
- Yifan Gong
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - James A Hewett
- Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
75
|
Yu TS, Wang X, Zhang HD, Bai RF, Zhao R, Guan DW. Evaluation of specific neural marker GAP-43 and TH combined with Masson-trichrome staining for forensic autopsy cases with old myocardial infarction. Int J Legal Med 2018; 132:187-195. [PMID: 28401305 DOI: 10.1007/s00414-017-1590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
It has been a puzzling forensic task to determine the cause of death as a result of old myocardial infarction (OMI) in the absence of recognizable acute myocardial infarction. Recent studies indicated that the heterogeneous cardiac nerve sprouting and sympathetic hyperinnervation at border zones of the infarcted site played important roles in sudden cardiac death (SCD). So, the present study explored the value of growth associated protein-43 (GAP-43) and tyrosine hydroxylase (TH) as objective and specific neural biomarkers combined with Masson-trichrome staining for forensic autopsy cases. Myocardium of left ventricle of 58 medicolegal autopsy cases, 12 OMI cases, 12 acute/OMI cases, and 34 control cases, were immunostained with anti-GAP-43 and anti-TH antibodies. Immunoreactivity of GAP-43 and TH identified nerve fibers and vascular wall in OMI cases and acute/OMI cases. Specifically, TH-positive nerve fibers were abundant at border zones of the infarcted site. There were a few GAP-43 and TH expressions in the control cases. With Masson-trichrome staining, collagen fibers were blue and cardiac muscle fibers were pink in marked contrast with the surrounding tissue, which improved the location of nerve fibers. Thus, these findings suggest that immunohistochemical detection of GAP-43 and TH combined with Masson-trichrome staining can provide the evidence for the medicolegal expertise of SCD due to OMI, and further demonstrate a close relationship between sympathetic hyperinnervation and SCD.
Collapse
Affiliation(s)
- Tian-Shui Yu
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, Shanghai, People's Republic of China
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China
- Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing, 100088, China
| | - Xu Wang
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China
- Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing, 100088, China
| | - Hai-Dong Zhang
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China
- Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing, 100088, China
| | - Ru-Feng Bai
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, China
- Key Laboratory of Evidence Science, Ministry of Education, China University of Political Science and Law, Beijing, 100088, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77, Puhe Road, Shenbeixin District, Shenyang, 110122, Liaoning Province, People's Republic of China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, No. 77, Puhe Road, Shenbeixin District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
76
|
Delcourt V, Franck J, Quanico J, Gimeno JP, Wisztorski M, Raffo-Romero A, Kobeissy F, Roucou X, Salzet M, Fournier I. Spatially-Resolved Top-down Proteomics Bridged to MALDI MS Imaging Reveals the Molecular Physiome of Brain Regions. Mol Cell Proteomics 2017; 17:357-372. [PMID: 29122912 PMCID: PMC5795397 DOI: 10.1074/mcp.m116.065755] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Tissue spatially-resolved proteomics was performed on 3 brain regions, leading to the characterization of 123 reference proteins. Moreover, 8 alternative proteins from alternative open reading frames (AltORF) were identified. Some proteins display specific post-translational modification profiles or truncation linked to the brain regions and their functions. Systems biology analysis performed on the proteome identified in each region allowed to associate sub-networks with the functional physiology of each brain region. Back correlation of the proteins identified by spatially-resolved proteomics at a given tissue localization with the MALDI MS imaging data, was then performed. As an example, mapping of the distribution of the matrix metallopeptidase 3-cleaved C-terminal fragment of α-synuclein (aa 95–140) identified its specific distribution along the hippocampal dentate gyrus. Taken together, we established the molecular physiome of 3 rat brain regions through reference and hidden proteome characterization.
Collapse
Affiliation(s)
- Vivian Delcourt
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France.,§Département de Biochimie Lab. Z8-2001, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Julien Franck
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Jusal Quanico
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Jean-Pascal Gimeno
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Maxence Wisztorski
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Antonella Raffo-Romero
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France
| | - Firas Kobeissy
- ¶Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Xavier Roucou
- §Département de Biochimie Lab. Z8-2001, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Michel Salzet
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France;
| | - Isabelle Fournier
- From the ‡Laboratoire Proteomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM) - INSERM U1192, Université Lille 1, Bât SN3, 1 étage, Cité Scientifique, F-59655 Villeneuve d'Ascq Cedex, France;
| |
Collapse
|
77
|
Regensburger M, Schreglmann SR, Stoll S, Rockenstein E, Loskarn S, Xiang W, Masliah E, Winner B. Oligomer-prone E57K-mutant alpha-synuclein exacerbates integration deficit of adult hippocampal newborn neurons in transgenic mice. Brain Struct Funct 2017; 223:1357-1368. [PMID: 29124353 PMCID: PMC5869938 DOI: 10.1007/s00429-017-1561-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022]
Abstract
In the adult mammalian hippocampus, new neurons are constantly added to the dentate gyrus. Adult neurogenesis is impaired in several neurodegenerative mouse models including α-synuclein (a-syn) transgenic mice. Among different a-syn species, a-syn oligomers were reported to be the most toxic species for neurons. Here, we studied the impact of wild-type vs. oligomer-prone a-syn on neurogenesis. We compared the wild-type a-syn transgenic mouse model (Thy1-WTS) to its equivalent transgenic for oligomer-prone E57K-mutant a-syn (Thy1-E57K). Transgenic a-syn was highly expressed within the hippocampus of both models, but was not present within adult neural stem cells and neuroblasts. Proliferation and survival of newly generated neurons were unchanged in both transgenic models. Thy1-WTS showed a minor integration deficit regarding mushroom spine density of newborn neurons, whereas Thy1-E57K exhibited a severe reduction of all spines. We conclude that cell-extrinsic a-syn impairs mushroom spine formation of adult newborn neurons and that oligomer-prone a-syn exacerbates this integration deficit. Moreover, our data suggest that a-syn reduces the survival of newborn neurons by a cell-intrinsic mechanism during the early neuroblast development. The finding of increased spine pathology in Thy1-E57K is a new pathogenic function of oligomeric a-syn and precedes overt neurodegeneration. Thus, it may constitute a readout for therapeutic approaches.
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- IZKF Junior Research Group III, and BMBF Research Group Neuroscience, FAU, Erlangen, Germany
- Department of Neurology, FAU, Erlangen, Germany
| | - Sebastian R Schreglmann
- School of Medicine, University of Regensburg, Regensburg, Germany
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, UCL, London, UK
| | - Svenja Stoll
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- IZKF Junior Research Group III, and BMBF Research Group Neuroscience, FAU, Erlangen, Germany
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- IZKF Junior Research Group III, and BMBF Research Group Neuroscience, FAU, Erlangen, Germany
- Department of Neurology, FAU, Erlangen, Germany
| | - Wei Xiang
- Institute of Biochemistry, FAU, Erlangen, Germany
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- IZKF Junior Research Group III, and BMBF Research Group Neuroscience, FAU, Erlangen, Germany.
| |
Collapse
|
78
|
Holahan MR. A Shift from a Pivotal to Supporting Role for the Growth-Associated Protein (GAP-43) in the Coordination of Axonal Structural and Functional Plasticity. Front Cell Neurosci 2017; 11:266. [PMID: 28912688 PMCID: PMC5583208 DOI: 10.3389/fncel.2017.00266] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
In a number of animal species, the growth-associated protein (GAP), GAP-43 (aka: F1, neuromodulin, B-50, G50, pp46), has been implicated in the regulation of presynaptic vesicular function and axonal growth and plasticity via its own biochemical properties and interactions with a number of other presynaptic proteins. Changes in the expression of GAP-43 mRNA or distribution of the protein coincide with axonal outgrowth as a consequence of neuronal damage and presynaptic rearrangement that would occur following instances of elevated patterned neural activity including memory formation and development. While functional enhancement in GAP-43 mRNA and/or protein activity has historically been hypothesized as a central mediator of axonal neuroplastic and regenerative responses in the central nervous system, it does not appear to be the crucial substrate sufficient for driving these responses. This review explores the historical discovery of GAP-43 (and associated monikers), its transcriptional, post-transcriptional and post-translational regulation and current understanding of protein interactions and regulation with respect to its role in axonal function. While GAP-43 itself appears to have moved from a pivotal to a supporting factor, there is no doubt that investigations into its functions have provided a clearer understanding of the biochemical underpinnings of axonal plasticity.
Collapse
|
79
|
Jiang B, Zhang Y, Zhao J, She C, Zhou X, Dong Q, Wang P. Effects of Localized X-Ray Irradiation on Peripheral Nerve Regeneration in Transected Sciatic Nerve in Rats. Radiat Res 2017; 188:455-462. [PMID: 28796579 DOI: 10.1667/rr14799.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Low-dose radiation has been used in clinical and experimental models for the prevention of scarring and for fracture healing. There is evidence that low-dose radiation improves the hormesis of various cell types but little is known about its effects on peripheral nerve tissue. In this study, we investigated the beneficial effects of low-dose radiation on the regeneration of transectional peripheral nerve injury in an experimental rat model. Seventy-two male Sprague-Dawley rats received transection injury to the left sciatic nerves, and the nerves were subsequently sutured by epineurium end-to-end anastomosis to restore continuity. Animals were randomly assigned to one of two treatment groups (n = 36/group): 1 Gy X-ray irradiation or control (sham irradiation). Gait analysis, electrophysiological examination and morphological investigations were performed. In addition, Western blot and qRT-PCR were performed to determine the level of vascular endothelial growth factor (VEGF) and growth-associated protein-43 (GAP-43). Content of VEGF and GAP-43 in the regenerated sciatic nerve of the irradiated group was higher than the control group. At 4 to 12 weeks after surgery, the irradiated animals exhibited a significantly improved functional recovery relative to controls. At 12 weeks after surgery, amplitude and conduction velocity of the irradiated group were higher than the control group (P < 0.05). The number of nerve fibers, diameter of axons and morphological structure of the myelin sheath in the irradiated group were superior to those of the control group. These results suggest that low-dose radiation contributed to regeneration and functional recovery after transverse peripheral nerve injury by inducing increased production of VEGF and GAP-43, which promote the axonal regeneration and myelination.
Collapse
Affiliation(s)
- Bo Jiang
- a Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Yong Zhang
- a Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Jiaju Zhao
- a Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Chang She
- b Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Xiaozhong Zhou
- b Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Qirong Dong
- b Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| | - Peiji Wang
- a Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P. R. China
| |
Collapse
|
80
|
Chen S, Bennet L, McGregor AL. Delayed Varenicline Administration Reduces Inflammation and Improves Forelimb Use Following Experimental Stroke. J Stroke Cerebrovasc Dis 2017; 26:2778-2787. [PMID: 28797614 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/21/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pharmacological activation of the cholinergic anti-inflammatory pathway (CAP), specifically by activating α7 nicotinic acetylcholine receptors, has been shown to confer short-term improvements in outcome. Most studies have investigated administration within 24 hours of stroke, and few have investigated drugs approved for use in human patients. We investigated whether delayed administration of varenicline, a high-affinity agonist at α7 nicotinic receptors and an established therapy for nicotine addiction, decreased brain inflammation and improved functional performance in a mouse model of experimental stroke. METHODS CSF-1R-EGFP (MacGreen) mice were subjected to transient middle cerebral artery occlusion and administered varenicline (2.5 mg/kg/d for 7 days) or saline (n = 10 per group) 3 days after stroke. Forelimb asymmetry was assessed in the Cylinder test every 2 days after surgery, and structural lesions were quantified at day 10. Enhanced green fluorescent protein (EGFP) and growth associated protein 43 (GAP43) immunohistochemistry were used to evaluate the effect of varenicline on inflammation and axonal regeneration, respectively. RESULTS Varenicline-treated animals showed a significant increase in impaired forelimb use compared with saline-treated animals 10 days after stroke. Varenicline treatment was associated with reduced EGFP expression and increased GAP43 expression in the striatum of MacGreen mice. CONCLUSION Our results show that delayed administration of varenicline promotes recovery of function following experimental stroke. Motor function improvements were accompanied by decreased brain inflammation and increased axonal regeneration in nonpenumbral areas. These results suggest that the administration of an exogenous nicotinic agonist in the subacute phase following stroke may be a viable therapeutic strategy for stroke patients.
Collapse
Affiliation(s)
- Siyi Chen
- School of Pharmacy, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ailsa L McGregor
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Division of Health Sciences, School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
81
|
Shah AM, Ishizaka S, Cheng MY, Wang EH, Bautista AR, Levy S, Smerin D, Sun G, Steinberg GK. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci Rep 2017; 7:46612. [PMID: 28569261 PMCID: PMC5451884 DOI: 10.1038/srep46612] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Stroke induces network-wide changes in the brain, affecting the excitability in both nearby and remotely connected regions. Brain stimulation is a promising neurorestorative technique that has been shown to improve stroke recovery by altering neuronal activity of the target area. However, it is unclear whether the beneficial effect of stimulation is a result of neuronal or non-neuronal activation, as existing stimulation techniques nonspecifically activate/inhibit all cell types (neurons, glia, endothelial cells, oligodendrocytes) in the stimulated area. Furthermore, which brain circuit is efficacious for brain stimulation is unknown. Here we use the optogenetics approach to selectively stimulate neurons in the lateral cerebellar nucleus (LCN), a deep cerebellar nucleus that sends major excitatory output to multiple motor and sensory areas in the forebrain. Repeated LCN stimulations resulted in a robust and persistent recovery on the rotating beam test, even after cessation of stimulations for 2 weeks. Furthermore, western blot analysis demonstrated that LCN stimulations significantly increased the axonal growth protein GAP43 in the ipsilesional somatosensory cortex. Our results demonstrate that pan-neuronal stimulations of the LCN is sufficient to promote robust and persistent recovery after stroke, and thus is a promising target for brain stimulation.
Collapse
Affiliation(s)
- Aatman M Shah
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shunsuke Ishizaka
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Y Cheng
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric H Wang
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex R Bautista
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabrina Levy
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Smerin
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guohua Sun
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary K Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
82
|
Vaquero L, Cámara E, Sampedro F, Pérez de los Cobos J, Batlle F, Fabregas JM, Sales JA, Cervantes M, Ferrer X, Lazcano G, Rodríguez-Fornells A, Riba J. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit. Addict Biol 2017; 22:844-856. [PMID: 26786150 DOI: 10.1111/adb.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction.
Collapse
Affiliation(s)
- Lucía Vaquero
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
- Department of Basic Psychology; University of Barcelona; Spain
| | - Estela Cámara
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
| | | | - José Pérez de los Cobos
- Addictive Behaviors Unit, Department of Psychiatry; Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau); Spain
- Department of Psychiatry and Legal Medicine; Autonomous University of Barcelona; Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM; Spain
| | - Francesca Batlle
- Addictive Behaviors Unit, Department of Psychiatry; Hospital de la Santa Creu i Sant Pau, Sant Pau Biomedical Research Institute (IIB Sant Pau); Spain
- Department of Psychiatry and Legal Medicine; Autonomous University of Barcelona; Spain
| | | | | | | | - Xavier Ferrer
- Fundació Salut i Comunitat; Spain
- Addiction postgraduate course, School of Psychology; University of Barcelona; Spain
| | | | - Antoni Rodríguez-Fornells
- Cognition and Brain Plasticity Group (Bellvitge Biomedical Research Institute) IDIBELL; L'Hospitalet de Llobregat; Spain
- Department of Basic Psychology; University of Barcelona; Spain
- Catalan Institution for Research and Advanced Studies; ICREA; Spain
| | - Jordi Riba
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM; Spain
- Human Neuropsychopharmacology Group; Sant Pau Institute of Biomedical Research (IIB-Sant Pau); Spain
- Centre d'Investigació de Medicaments, Servei de Farmacologia Clínica; Hospital de la Santa Creu i Sant Pau; Spain
- Departament de Farmacologia i Terapèutica; Universitat Autònoma de Barcelona; Spain
| |
Collapse
|
83
|
A 3D-engineered porous conduit for peripheral nerve repair. Sci Rep 2017; 7:46038. [PMID: 28401914 PMCID: PMC5388843 DOI: 10.1038/srep46038] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy.
Collapse
|
84
|
Fernández-Calle R, Vicente-Rodríguez M, Gramage E, Pita J, Pérez-García C, Ferrer-Alcón M, Uribarri M, Ramos MP, Herradón G. Pleiotrophin regulates microglia-mediated neuroinflammation. J Neuroinflammation 2017; 14:46. [PMID: 28259175 PMCID: PMC5336633 DOI: 10.1186/s12974-017-0823-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
Background Pleiotrophin (PTN) is a cytokine found highly upregulated in the brain in different disorders characterized by overt neuroinflammation such as neurodegenerative diseases, drug addiction, traumatic injury, and ischemia. In the present work, we have explored whether PTN modulates neuroinflammation and if Toll-like receptor 4 (TLR4), crucial in the initiation of an immune response, is involved. Methods In immunohistochemistry assays, we studied lipopolysaccharide (LPS, 7.5 mg/kg i.p.)-induced changes in glial fibrillary acidic protein (GFAP, astrocyte marker) and ionized calcium-binding adaptor molecule 1 (Iba1, microglia marker) expression in the prefrontal cortex (PFC) and striatum of mice with transgenic PTN overexpression in the brain (PTN-Tg) and in wild-type (WT) mice. Cytokine protein levels were assessed in the PFC by X-MAP technology. The influence of TLR4 signaling in LPS effects in both genotypes was assessed by pretreatment with the TLR4 antagonist (TAK-242, 3.0 mg/kg i.p.). Murine BV2 microglial cells were treated with PTN (0.5 μg/ml) and LPS (1.0 μg/ml) and assessed for the release of nitric oxide (NO). Results We found that LPS-induced microglial activation is significantly increased in the PFC of PTN-Tg mice compared to that of WT mice. The levels of TNF-α, IL-6, and MCP-1 in response to LPS were significantly increased in the PFC of PTN-Tg mice compared to that of WT mice. Pretreatment with TAK-242 efficiently blocked increases in cytokine contents in a similar manner in both genotypes. Concomitant incubation of BV2 cells with LPS and PTN significantly potentiated the production of NO compared to cells only treated with LPS. Conclusions Our findings identify for the first time that PTN is a novel and potent regulator of neuroinflammation. Pleiotrophin potentiates LPS-stimulated microglia activation. Our results suggest that regulation of the PTN signaling pathways may constitute new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN cerebral levels and neuroinflammation.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Pharmacology Lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Marta Vicente-Rodríguez
- Pharmacology Lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Esther Gramage
- Pharmacology Lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | - Jimena Pita
- Biochemistry and Molecular Biology lab, Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Carmen Pérez-García
- Pharmacology Lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain
| | | | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Vizcaya, Spain
| | - María P Ramos
- Biochemistry and Molecular Biology lab, Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Gonzalo Herradón
- Pharmacology Lab, Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Urb. Montepríncipe, 28668, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
85
|
Saal K, Galter D, Roeber S, Bähr M, Tönges L, Lingor P. Altered Expression of Growth Associated Protein-43 and Rho Kinase in Human Patients with Parkinson's Disease. Brain Pathol 2017; 27:13-25. [PMID: 26748453 PMCID: PMC8029215 DOI: 10.1111/bpa.12346] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Causative treatment strategies for Parkinson's disease (PD) will have to address multiple underlying pathomechanisms to attenuate neurodegeneration. Additionally, the intrinsic regenerative capacity of the central nervous system is also an important factor contributing to restoration. Extracellular cues can limit sprouting and regrowth of adult neurons, but even aged neurons have a low intrinsic regeneration capacity. Whether this capacity has been lost or if growth inhibitory cues are increased during PD progression has not been resolved yet. In this study, we assessed the regenerative potential in the nigrostriatal system in post-mortem brain sections of PD patients compared to age-matched and young controls. Investigation of the expression pattern of the regeneration-associated protein GAP-43 suggested a lower regenerative capacity in nigral dopaminergic neurons of PD patients. Furthermore, the increase in protein expression of the growth-inhibitory protein ROCK2 in astrocytes and a similar trend in microglia, suggests an important role for ROCK2 in glial PD pathology, which is initiated already in normal aging. Considering the role of astro- and microglia in PD pathogenesis as well as beneficial effects of ROCK inhibition on neuronal survival and regeneration in neurodegenerative disease models, our data strengthens the importance of the ROCK pathway as a therapeutic target in PD.
Collapse
Affiliation(s)
- Kim‐Ann Saal
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
| | - Dagmar Galter
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Sigrun Roeber
- Department of NeuropathologyLudwig‐Maximilians‐UniversityMunichGermany
| | - Mathias Bähr
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Lars Tönges
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| | - Paul Lingor
- Department of NeurologyUniversity Medicine GöttingenGöttingenGermany
- DFG‐Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)GöttingenGermany
| |
Collapse
|
86
|
Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol 2017; 37:5-16. [PMID: 26910247 PMCID: PMC11482112 DOI: 10.1007/s10571-016-0348-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.
Collapse
Affiliation(s)
- Jingjing Nie
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China
| | - Xiaosu Yang
- Department of Neurology, Xiang Ya Hospital, Central South University, Xiang Ya Road 87, Changsha, 410008, Hunan, China.
| |
Collapse
|
87
|
Chang IA, Lim HD, Kim KJ, Shin H, Namgung U. Enhanced axonal regeneration of the injured sciatic nerve by administration of Buyang Huanwu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:626-634. [PMID: 27771455 DOI: 10.1016/j.jep.2016.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/26/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu decoction (BYHWD) has been used in the traditional Chinese medicine for the treatment of cardiovascular and neurological symptoms, and recent experimental studies have begun to provide evidence showing its protective effects on neural cells. Yet, its function for the regenerative responses of axons in the peripheral nerve after injury is not known. AIM OF THE STUDY The primary objective of the present study was to explore that BYHWD is involved in growth-promoting activity of the peripheral nerve axons after injury. We further examined whether the effect of BYHWD exerted directly on regrowing axons or Schwann cells. MATERIALS AND METHODS Sciatic nerves in rats were given crush injury, and BYHWD was injected by oral administration. Sciatic nerves or DRG tissues were prepared for immunofluorescence staining and western blot analysis. Levels of axonal regeneration were quantified by retrograde tracing technique. Cultured DRG sensory neurons and Schwann cells were prepared from rats and used to examine the effects of BYHWD on the neurite outgrowth. Behavioral analysis on functional recovery after nerve injury was assessed in mice by pin prick test, adhesive removal test, and toe-spreading reflex. RESULTS Immunofluorescence and retrograde tracing analyses showed that the distal extension of the sciatic nerve axons was significantly improved by BYHWD treatment. Levels of axonal growth-associated protein GAP-43 were upregulated by BYHWD treatment in the sciatic nerve after injury and in the neurites of cultured DRG neurons. In vivo administration of BYHWD in rats upregulated the induction level of cell division cycle 2 (Cdc2) and its phosphorylation of vimentin in Schwann cells from injured sciatic nerve. Coculture of DRG neurons with Schwann cells prepared from preinjured sciatic nerves in animals administered with BYHWD led to the enhancement in neurite outgrowth. Behavioral tests in mice given sciatic nerve injury showed a significant improvement in sensorimotor activity by BYHWD administration. CONCLUSIONS Our results suggest that BYHWD administration into animals given sciatic nerve injury facilitates axonal regeneration by acting on both the axons undergoing regeneration and neighboring Schwann cells and improves functional recovery.
Collapse
Affiliation(s)
- In Ae Chang
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, South Korea
| | - Hee Don Lim
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, South Korea
| | - Ki Joong Kim
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, South Korea
| | - Hwachul Shin
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon 300-716, South Korea.
| |
Collapse
|
88
|
Osswald M, Solecki G, Wick W, Winkler F. A malignant cellular network in gliomas: potential clinical implications. Neuro Oncol 2016; 18:479-85. [PMID: 26995789 DOI: 10.1093/neuonc/now014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The recent discovery of distinct, ultra-long, and highly functional membrane protrusions in gliomas, particularly in astrocytomas, extends our understanding of how these tumors progress in the brain and how they resist therapies. In this article, we will focus on ideas on how to target these membrane protrusions, for which we have suggested the term "tumor microtubes" (TMs), and the malignant multicellular network they form. First, we discuss TM-specific features and their differential biological functions known so far. Second, the connection between 1p/19q codeletion and the inability to form functional TMs via certain neurodevelopmental pathways is presented; this could provide an explanation for the distinct clinical features of oligodendrogliomas. Third, the role of TMs for primary and potentially also adaptive resistance to cytotoxic therapies is highlighted. Fourth, avenues for therapeutic approaches to inhibit TM formation and/or function are discussed, with a focus on disruption (or exploitation) of network functionality. Finally, we propose ideas on how to use TMs as a biomarker in glioma patients. An increasing understanding of TMs in clinical and preclinical settings will show us whether they really are a long-sought-after Achilles' heel of treatment-resistant gliomas.
Collapse
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (M.O., G.S., W.W., F.W.); Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (M.O., G.S., W.W., F.W.)
| | - Gergely Solecki
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (M.O., G.S., W.W., F.W.); Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (M.O., G.S., W.W., F.W.)
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (M.O., G.S., W.W., F.W.); Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (M.O., G.S., W.W., F.W.)
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany (M.O., G.S., W.W., F.W.); Clinical Cooperation Unit Neuro-oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany (M.O., G.S., W.W., F.W.)
| |
Collapse
|
89
|
Pleiotrophin overexpression regulates amphetamine-induced reward and striatal dopaminergic denervation without changing the expression of dopamine D1 and D2 receptors: Implications for neuroinflammation. Eur Neuropsychopharmacol 2016; 26:1794-1805. [PMID: 27642078 DOI: 10.1016/j.euroneuro.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/02/2016] [Accepted: 09/01/2016] [Indexed: 12/22/2022]
Abstract
It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice.
Collapse
|
90
|
Yu W, Parakramaweera R, Teng S, Gowda M, Sharad Y, Thakker-Varia S, Alder J, Sesti F. Oxidation of KCNB1 Potassium Channels Causes Neurotoxicity and Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Neurosci 2016; 36:11084-11096. [PMID: 27798188 PMCID: PMC5098843 DOI: 10.1523/jneurosci.2273-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023] Open
Abstract
The delayed rectifier potassium (K+) channel KCNB1 (Kv2.1), which conducts a major somatodendritic current in cortex and hippocampus, is known to undergo oxidation in the brain, but whether this can cause neurodegeneration and cognitive impairment is not known. Here, we used transgenic mice harboring human KCNB1 wild-type (Tg-WT) or a nonoxidable C73A mutant (Tg-C73A) in cortex and hippocampus to determine whether oxidized KCNB1 channels affect brain function. Animals were subjected to moderate traumatic brain injury (TBI), a condition characterized by extensive oxidative stress. Dasatinib, a Food and Drug Administration-approved inhibitor of Src tyrosine kinases, was used to impinge on the proapoptotic signaling pathway activated by oxidized KCNB1 channels. Thus, typical lesions of brain injury, namely, inflammation (astrocytosis), neurodegeneration, and cell death, were markedly reduced in Tg-C73A and dasatinib-treated non-Tg animals. Accordingly, Tg-C73A mice and non-Tg mice treated with dasatinib exhibited improved behavioral outcomes in motor (rotarod) and cognitive (Morris water maze) assays compared to controls. Moreover, the activity of Src kinases, along with oxidative stress, were significantly diminished in Tg-C73A brains. Together, these data demonstrate that oxidation of KCNB1 channels is a contributing mechanism to cellular and behavioral deficits in vertebrates and suggest a new therapeutic approach to TBI. SIGNIFICANCE STATEMENT This study provides the first experimental evidence that oxidation of a K+ channel constitutes a mechanism of neuronal and cognitive impairment in vertebrates. Specifically, the interaction of KCNB1 channels with reactive oxygen species plays a major role in the etiology of mouse model of traumatic brain injury (TBI), a condition associated with extensive oxidative stress. In addition, a Food and Drug Administration-approved drug ameliorates the outcome of TBI in mouse, by directly impinging on the toxic pathway activated in response to oxidation of the KCNB1 channel. These findings elucidate a basic mechanism of neurotoxicity in vertebrates and might lead to a new therapeutic approach to TBI in humans, which, despite significant efforts, is a condition that remains without effective pharmacological treatments.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Randika Parakramaweera
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Manasa Gowda
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Yashsavi Sharad
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
91
|
Zhang Q, Zhang ZJ, Wang XH, Ma J, Song YH, Liang M, Lin SX, Zhao J, Zhang AZ, Li F, Hua Q. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:369. [PMID: 27646829 PMCID: PMC5029060 DOI: 10.1186/s12906-016-1339-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/05/2016] [Indexed: 11/28/2022]
Abstract
Background Shenghui soup is a traditional Chinese herbal medicine used in clinic for the treatment of forgetfulness. In order to understanding the prescription principle, the effects of “tonifying qi and strengthening spleen” group (TQSS) including Poria cocos (Schw.) Wolf. and Panax ginseng C.A.Mey and “eliminating phlegm and strengthening intelligence” group (EPSI) composed of Polygala tenuifolia Willd., Acorus calamus L. and Sinapis alba L from the herb complex on neurite growth in PC12 cells, two disassembled prescriptions derived from Shenghui soup and their molecular mechanisms were investigated. Methods Firstly, CCK-8 kit was used to detect the impact of the two prescriptions on PC12 cell viability; and Flow cytometry was performed to measure the cell apoptosis when PC12 cells were treated with these drugs. Secondly, the effect of the two prescriptions on the differentiation of PC12 cells was observed. Finally, the mRNA and protein expression levels of GAP-43 were analyzed by RT-PCR and western blot, respectively. Results “Tonifying qi and strengthening spleen” prescription decreased cell viability in a dose-dependent manner, but had no significant effect on cell apoptosis. Meanwhile, it could improve neurite growth and elevate the mRNA and protein expression level of GAP-43. “Eliminating phlegm and strengthening intelligence” prescription also exerted the similar effects on cell viability and apoptosis. Furthermore, it could also enhance cell neurite growth, with a higher expression level of GAP-43 mRNA and protein. Conclusion “Tonifying qi and strengthening spleen” and “eliminating phlegm and strengthening intelligence” prescriptions from Shenghui soup have a positive effect on neurite growth. Their effects are related to the up-regulating expression of GAP-43. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1339-y) contains supplementary material, which is available to authorized users.
Collapse
|
92
|
Developmental changes in plasticity, synaptic, glia and connectivity protein levels in rat dorsal hippocampus. Neurobiol Learn Mem 2016; 135:125-138. [PMID: 27523749 DOI: 10.1016/j.nlm.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 11/24/2022]
Abstract
Thus far the identification and functional characterization of the molecular mechanisms underlying synaptic plasticity, learning, and memory have not been particularly dissociated from the contribution of developmental changes. Brain plasticity mechanisms have been largely identified and studied using in vitro systems mainly derived from early developmental ages, yet they are considered to be general plasticity mechanisms underlying functions -such as long-term memory- that occurs in the adult brain. Although it is possible that part of the plasticity mechanisms recruited during development is then re-recruited in plasticity responses in adulthood, systematic investigations about whether and how activity-dependent molecular responses differ over development are sparse. Notably, hippocampal-dependent memories are expressed relatively late in development, and the hippocampus undergoes and extended developmental post-natal structural and functional maturation, suggesting that the molecular mechanisms underlying hippocampal neuroplasticity may actually significantly change over development. Here we quantified the relative basal expression levels of sets of plasticity, synaptic, glia and connectivity proteins in rat dorsal hippocampus, a region that is critical for the formation of long-term explicit memories, at two developmental ages, postnatal day 17 (PN17) and PN24, which correspond to a period of relative functional immaturity and maturity, respectively, and compared them to adult age. We found that the levels of numerous proteins and/or their phosphorylation, known to be critical for synaptic plasticity underlying memory formation, including immediate early genes (IEGs), kinases, transcription factors and AMPA receptor subunits, peak at PN17 when the hippocampus is not yet able to express long-term memory. It remains to be established if these changes result from developmental basal activity or infantile learning. Conversely, among all markers investigated, the phosphorylation of calcium calmodulin kinase II α (CamKII α and of extracellular signal-regulated kinases 2 (ERK-2), and the levels of GluA1 and GluA2 significantly increase from PN17 to PN24 and then remain similar in adulthood, thus representing correlates paralleling long-term memory expression ability.
Collapse
|
93
|
Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. J Neurosci 2016; 36:3811-20. [PMID: 27030765 DOI: 10.1523/jneurosci.2396-15.2016] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. SIGNIFICANCE STATEMENT The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization, thus contributing to axon degeneration, muscle denervation, and motor neuron cell death in SMA.
Collapse
|
94
|
Gao R, Li X, Xi S, Wang H, Zhang H, Zhu J, Shan L, Song X, Luo X, Yang L, Huang J. Exogenous Neuritin Promotes Nerve Regeneration After Acute Spinal Cord Injury in Rats. Hum Gene Ther 2016; 27:544-54. [DOI: 10.1089/hum.2015.159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rui Gao
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xingyi Li
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Shaosong Xi
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Haiyan Wang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zhang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Liya Shan
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaoming Song
- School of Medicine & Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xing Luo
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lei Yang
- School of Medicine & Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic & Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
95
|
Tamura R, Ohta H, Satoh Y, Nonoyama S, Nishida Y, Nibuya M. Neuroprotective effects of adenosine deaminase in the striatum. J Cereb Blood Flow Metab 2016; 36:709-20. [PMID: 26746865 PMCID: PMC4821026 DOI: 10.1177/0271678x15625077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/09/2015] [Indexed: 01/08/2023]
Abstract
Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum.
Collapse
Affiliation(s)
- Risa Tamura
- Department of Physiology, National Defense Medical College, Saitama, Japan Department of Physical Medicine and Rehabilitation, National Defense Medical College, Saitama, Japan
| | - Hiroyuki Ohta
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | - Yasushi Satoh
- Department of Anesthesiology, National Defense Medical College, Saitama, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Yasuhiro Nishida
- Department of Physiology, National Defense Medical College, Saitama, Japan
| | - Masashi Nibuya
- Department of Psychiatry, National Defense Medical College, Saitama, Japan
| |
Collapse
|
96
|
Tsai SW, Tung YT, Chen HL, Yang SH, Liu CY, Lu M, Pai HJ, Lin CC, Chen CM. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation. Life Sci 2016; 146:15-23. [DOI: 10.1016/j.lfs.2015.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 12/31/2015] [Indexed: 12/16/2022]
|
97
|
Williams KR, McAninch DS, Stefanovic S, Xing L, Allen M, Li W, Feng Y, Mihailescu MR, Bassell GJ. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation. Mol Biol Cell 2015; 27:518-34. [PMID: 26658614 PMCID: PMC4751602 DOI: 10.1091/mbc.e15-07-0504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 11/11/2022] Open
Abstract
A novel posttranscriptional mechanism for regulating the neuronal protein GAP-43 is reported. The mRNA-binding protein hnRNP-Q1 represses Gap-43 mRNA translation by a mechanism involving a 5′ untranslated region G-quadruplex structure, which affects GAP-43 function, as demonstrated by a GAP-43–dependent increase in neurite length and number with hnRNP-Q1 knockdown. Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.
Collapse
Affiliation(s)
- Kathryn R Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Damian S McAninch
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Snezana Stefanovic
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Megan Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Wenqi Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Yue Feng
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
98
|
Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar. J Neurosci 2015; 35:11068-80. [PMID: 26245968 DOI: 10.1523/jneurosci.0719-15.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED After a spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to: (1) the presence of inhibitory molecules, e.g., chondroitin sulfate proteoglycans (CSPG), in the glial scar at the lesion; and (2) the diminished growth capacity of adult neurons. We sought to determine whether expressing a constitutively active form of the GTPase Rheb (caRheb) in adult neurons after a complete SCI in rats improves intrinsic growth potential to result in axon regeneration out of a growth-supportive peripheral nerve grafted (PNG) into the SCI cavity. We also hypothesized that treating the glial scar with chondroitinase ABC (ChABC), which digests CSPG, would further allow caRheb-transduced neurons to extend axons across the distal graft interface. We found that targeting this pathway at a clinically relevant post-SCI time point improves both sprouting and regeneration of axons. CaRheb increased the number of axons, but not the number of neurons, that projected into the PNG, indicative of augmented sprouting. We also saw that caRheb enhanced sprouting far rostral to the injury. CaRheb not only increased growth rostral and into the graft, it also resulted in significantly more regrowth of axons across a ChABC-treated scar into caudal spinal cord. CaRheb(+) neurons had higher levels of growth-associated-43, suggestive of a newly identified mechanism for mTOR-mediated enhancement of regeneration. Thus, we demonstrate for the first time that simultaneously addressing intrinsic and scar-associated, extrinsic impediments to regeneration results in significant regrowth beyond an extremely challenging, complete SCI site. SIGNIFICANCE STATEMENT After spinal cord injury (SCI), CNS axons fail to regenerate, resulting in permanent deficits. This is due to the diminished growth capacity of adult neurons and the presence of inhibitory molecules in the scar at the lesion. We sought to simultaneously counter both of these obstacles to achieve more robust regeneration after complete SCI. We transduced neurons postinjury to express a constitutively active Rheb to enhance their intrinsic growth potential, transplanted a growth supporting peripheral nerve graft into the lesion cavity, and enzymatically modulated the inhibitory glial scar distal to the graft. We demonstrate, for the first time, that simultaneously addressing neuron-related, intrinsic deficits in axon regrowth and extrinsic, scar-associated impediments to regeneration results in significant regeneration after SCI.
Collapse
|
99
|
Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, Huang L, Ratliff M, Karimian Jazi K, Kurz FT, Schmenger T, Lemke D, Gömmel M, Pauli M, Liao Y, Häring P, Pusch S, Herl V, Steinhäuser C, Krunic D, Jarahian M, Miletic H, Berghoff AS, Griesbeck O, Kalamakis G, Garaschuk O, Preusser M, Weiss S, Liu H, Heiland S, Platten M, Huber PE, Kuner T, von Deimling A, Wick W, Winkler F. Brain tumour cells interconnect to a functional and resistant network. Nature 2015; 528:93-8. [PMID: 26536111 DOI: 10.1038/nature16071] [Citation(s) in RCA: 757] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/09/2015] [Indexed: 12/23/2022]
Abstract
Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.
Collapse
Affiliation(s)
- Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, INF 224, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), INF 224, 69120 Heidelberg, Germany
| | - Gergely Solecki
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Jonas Blaes
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sophie Weil
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Heinz Horstmann
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Benedikt Wiestler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Mustafa Syed
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lulu Huang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Neurosurgery Clinic, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Kianush Karimian Jazi
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Torsten Schmenger
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Lemke
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Miriam Gömmel
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martin Pauli
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| | - Yunxiang Liao
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Häring
- Department of Medical Physics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, INF 224, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), INF 224, 69120 Heidelberg, Germany
| | - Verena Herl
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mostafa Jarahian
- Department of Translational Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anna S Berghoff
- Institute of Neurology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Griesbeck
- Tools For Bio-Imaging, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany
| | - Georgios Kalamakis
- Institute of Physiology II, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology II, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Matthias Preusser
- Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, CNS Unit, Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Weiss
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,Clark Smith Brain Tumor Research Centre, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Haikun Liu
- Helmholtz Young Investigator Group, Normal and Neoplastic CNS Stem Cells, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Michael Platten
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter E Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, INF 307, 69120 Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, INF 224, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), INF 224, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
100
|
Jochmann E, Boettger MK, Anand P, Schaible HG. Antigen-induced arthritis in rats is associated with increased growth-associated protein 43-positive intraepidermal nerve fibres remote from the joint. Arthritis Res Ther 2015; 17:299. [PMID: 26503622 PMCID: PMC4621858 DOI: 10.1186/s13075-015-0818-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/12/2015] [Indexed: 12/02/2022] Open
Abstract
Introduction Pain in arthritis may be experienced in regions outside the affected joint, and hyperalgesia may even be widespread. The spread of pain is usually attributed to mechanisms in the central nervous system. We investigated whether rats with antigen-induced arthritis (AIA) exhibit peripheral changes in skin innervation remote from the inflamed joint. Methods After immunization, unilateral AIA in the knee joint was induced in rats. Intraepidermal nerve fibre density was determined by immunohistochemical staining for protein gene product 9.5 (PGP 9.5) and for nerve fibres expressing calcitonin gene–related peptide (CGRP), substance P (SP), transient receptor potential vanilloid 1 (TRPV1; the heat and capsaicin receptor), β-tubulin, and growth-associated protein 43 (GAP-43; a marker of regenerating nerve fibres) in paw pad skin and back skin. Cluster of differentiation 11b (CD11b)-positive macrophages and CD3-positive T cells were quantified in skin, and macrophages were quantified in the lumbar dorsal root ganglia. In addition, pain-related behaviour was assessed. Results Intraepidermal nerve fibre density (PGP 9.5) and the numbers of fibres expressing CGRP, SP, TRPV1, or β-tubulin did not show a significant change in the acute (3 days) or chronic phase (21 days) of AIA compared with control rats that were only immunized. However, paw skin and back skin revealed a significantly higher number of nerve fibres expressing GAP-43 at both the acute and chronic stages of AIA. The skin of arthritic rats in these regions did not contain a greater density of CD11b and CD3 immune cells than the skin of control rats. Enhanced expression of GAP-43 in nerve fibres of the skin was not related to hyperalgesia in the joint, but it accompanied persistent secondary cutaneous hyperalgesia in the skin remote from the inflamed joint. Conclusions Although the innervation of the skin remote from the joint did not show significant abnormalities of the other nerve fibre markers, the rapid and persistent increase of GAP-43 expression is conspicuous. The data suggest that immune-mediated arthritis is associated with changes in skin innervation remote from the inflamed joint, although the skin is not inflamed, which may contribute to symptoms in nonarticular tissue remote from the affected joint.
Collapse
Affiliation(s)
- Elisabeth Jochmann
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich Schiller University, Teichgraben 8, 07743, Jena, Germany. .,Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Michael Karl Boettger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich Schiller University, Teichgraben 8, 07743, Jena, Germany. .,Present address: Bayer HealthCare AG, 42096, Wuppertal, Germany.
| | - Praveen Anand
- Peripheral Neuropathy Unit, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich Schiller University, Teichgraben 8, 07743, Jena, Germany.
| |
Collapse
|