51
|
Jin Y, Benkeser D, Kipiani M, Maranchick NF, Mikiashvili L, Barbakadze K, Avaliani Z, Alghamdi WA, Alshaer MH, Peloquin CA, Blumberg HM, Kempker RR. The effect of anti-tuberculosis drug pharmacokinetics on QTc prolongation. Int J Antimicrob Agents 2023; 62:106939. [PMID: 37517627 PMCID: PMC10538394 DOI: 10.1016/j.ijantimicag.2023.106939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Implementation of newer anti-tuberculosis (TB) drugs may prolong the QT interval, increasing the risk of arrythmias and sudden cardiac death. The potential for cardiac adverse events has prompted recommendations for frequent cardiac monitoring during treatment. However, unknowns remain, including the association between drug concentrations and QT interval. METHODS An observational prospective cohort study design was used. Patients undergoing treatment for drug-resistant TB in Georgia were assessed. Serial blood samples were collected at 4-6 weeks for pharmacokinetics. Electrocardiograms were recommended to be performed monthly. A generalized estimating equation spline model was used to investigate (1) the effect difference between bedaquiline and delamanid, (2) the cumulative effect of number of anti-TB drugs, and (3) the relationship between serum drug concentrations on QTc interval. RESULTS Among 94 patients receiving either bedaquiline (n = 64) or delamanid (n = 30)-based treatment, most were male (82%), and the mean age was 39 years. The mean maximum QTc increase during the first six months was 37.5 ms (IQR: 17.8-56.8). Bedaquiline- and delamanid-based regimens displayed similar increased mean QTc change from baseline during drug administration (P = 0.12). Increasing number of anti-TB drugs was associated with an increased QTc (P = 0.01), but participants trended back towards baseline after drug discontinuation (P = 0.25). A significant association between AUC, Cmin, Cmax, and increased QTc interval was found for bedaquiline (months 1-6) and levofloxacin (months 1-12). CONCLUSION Bedaquiline- and delamanid-based regimens and increasing number of QT prolonging agents led to modest increases in the QTc interval with minimal clinical effect.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Biostatistics and Bioinformatics, Emory Rollins School of Public Health, Atlanta, Georgia
| | - David Benkeser
- Department of Biostatistics and Bioinformatics, Emory Rollins School of Public Health, Atlanta, Georgia
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | | | - Lali Mikiashvili
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | | | - Zaza Avaliani
- National Center for Tuberculosis and Lung Disease, Tbilisi, Georgia
| | - Wael A Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | | | - Henry M Blumberg
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Russell R Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
52
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
53
|
Park KH, Choi YJ, Min WK, Lee SH, Kim J, Jeong SH, Lee JH, Choi BM, Kim S. Particulate matter induces arrhythmia-like cardiotoxicity in zebrafish embryos by altering the expression levels of cardiac development- and ion channel-related genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115201. [PMID: 37418944 DOI: 10.1016/j.ecoenv.2023.115201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Air pollution is a risk factor that increases cardiovascular morbidity and mortality. In this study, we investigated the cardiotoxicity of particulate matter (PM) exposure using a zebrafish embryo model. We found that PM exposure induced cardiotoxicity, such as arrhythmia, during cardiac development. PM exposure caused cardiotoxicity by altering the expression levels of cardiac development (T-box transcription factor 20, natriuretic peptide A, and GATA-binding protein 4)- and ion-channel (scn5lab, kcnq1, kcnh2a/b, and kcnh6a/b)-related genes. In conclusion, this study showed that PM induces the aberrant expression of cardiac development- and ion channel-related genes, leading to arrhythmia-like cardiotoxicity in zebrafish embryos. Our study provides a foundation for further research on the molecular and genetic mechanisms of cardiotoxicity induced by PM exposure.
Collapse
Affiliation(s)
- Kyu Hee Park
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Yoon Ji Choi
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Won Kee Min
- Department of Anesthesiology and Pain Medicine, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sun Hwa Lee
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Byung Min Choi
- Department of Pediatrics, Ansan Hospital, Korea University College of Medicine, Ansan 15588, the Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 04763, the Republic of Korea; Zebrafish Translational Medical Research Center, Korea University, Ansan 15588, Gyeonggi-do, the Republic of Korea.
| |
Collapse
|
54
|
Lu HR, Damiano BP, Kreir M, Rohrbacher J, van der Linde H, Saidov T, Teisman A, Gallacher DJ. The Potential Mechanisms behind Loperamide-Induced Cardiac Arrhythmias Associated with Human Abuse and Extreme Overdose. Biomolecules 2023; 13:1355. [PMID: 37759755 PMCID: PMC10527387 DOI: 10.3390/biom13091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide's inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (B.P.D.); (J.R.); (H.v.d.L.); (T.S.); (A.T.); (D.J.G.)
| | | | - Mohamed Kreir
- Global Safety Pharmacology, Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium; (B.P.D.); (J.R.); (H.v.d.L.); (T.S.); (A.T.); (D.J.G.)
| | | | | | | | | | | |
Collapse
|
55
|
Ylipää E, Chavan S, Bånkestad M, Broberg J, Glinghammar B, Norinder U, Cotgreave I. hERG-toxicity prediction using traditional machine learning and advanced deep learning techniques. Curr Res Toxicol 2023; 5:100121. [PMID: 37701072 PMCID: PMC10493507 DOI: 10.1016/j.crtox.2023.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost), deep neural network (DNN) as well as advanced deep learning techniques like gated recurrent unit-based DNN (GRU-DNN) and graph neural network (GNN), towards predicting human ether-á-go-go related gene (hERG) derived toxicity. Using the largest hERG dataset derived to date, we have utilized 203,853 and 87,366 compounds for training and testing the models, respectively. The results show that GNN, SVM, XGBoost, DNN, RF, and GRU-DNN all performed well, with validation set AUC ROC scores equals 0.96, 0.95, 0.95, 0.94, 0.94 and 0.94, respectively. The GNN was found to be the top performing model based on predictive power and generalizability. The GNN technique is free of any feature engineering steps while having a minimal human intervention. The GNN approach may serve as a basis for comprehensive automation in predictive toxicology. We believe that the models presented here may serve as a promising tool, both for academic institutes as well as pharmaceutical industries, in predicting hERG-liability in new molecular structures.
Collapse
Affiliation(s)
- Erik Ylipää
- Computer Systems Unit, Research Institutes of Sweden RISE, Kista 164 40, Sweden
| | - Swapnil Chavan
- Unit of Chemical and Pharmaceutical Toxicology, Research Institutes of Sweden RISE, Södertalje 151 36, Sweden
| | - Maria Bånkestad
- Computer Systems Unit, Research Institutes of Sweden RISE, Kista 164 40, Sweden
| | - Johan Broberg
- Computer Systems Unit, Research Institutes of Sweden RISE, Kista 164 40, Sweden
| | - Björn Glinghammar
- Preclinical Development & Translational Medicine, Swedish Orphan Biovitrum AB, Solna 171 65, Sweden
| | - Ulf Norinder
- Department of Computer and Systems Sciences, Stockholm University, Kista 164 07, Sweden
| | - Ian Cotgreave
- Unit of Chemical and Pharmaceutical Toxicology, Research Institutes of Sweden RISE, Södertalje 151 36, Sweden
| |
Collapse
|
56
|
MacIntyre CJ, Ackerman MJ. Personalized Care in Long QT Syndrome: Better Management, More Sports, and Fewer Devices. Card Electrophysiol Clin 2023; 15:285-291. [PMID: 37558299 DOI: 10.1016/j.ccep.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Long QT Syndrome (LQTS) is a potentially life-threatening yet highly treatable inherited cardiac channelopathy. When evaluating these patients, it is important to consider patient-specific as well as genotype-specific factors in order to adequately encompass the many nuances to care that exist in its management. The tendency to follow a "one-size-fits-all" approach needs to be replaced by treatment strategies that embrace the unique considerations of the individual patient in the context of their genotype. Herein, the authors aim to review the spectrum of LQTS, including the considerations when tailoring a personalized, genotype-tailored treatment program for a patient's LQTS.
Collapse
Affiliation(s)
- Ciorsti J MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA.
| | - Michael J Ackerman
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
57
|
Amarh E, Tisdale JE, Overholser BR. Prolonged Exposure to Remdesivir Inhibits the Human Ether-A-Go-Go-Related Gene Potassium Current. J Cardiovasc Pharmacol 2023; 82:212-220. [PMID: 37410999 PMCID: PMC10527785 DOI: 10.1097/fjc.0000000000001449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
ABSTRACT Remdesivir, approved for the treatment of COVID-19, has been associated with heart-rate corrected QT interval (QTc) prolongation and torsade de pointes in case reports. However, data are conflicting regarding the ability of remdesivir to inhibit the human ether-a-go-go-related gene (hERG) -related current. The objective of this study was to investigate the effects remdesivir and its primary metabolite, GS-441524, on hERG-related currents. Human embryonic kidney 293 cells stably expressing hERG were treated with various concentrations of remdesivir and GS-441524. The effects of acute and prolonged exposure on hERG-related current were assessed using whole-cell configuration of voltage-clamp protocols. Acute exposure to remdesivir and GS-441524 had no effect on hERG currents and the half-activation voltage (V 1/2 ). Prolonged treatment with 100 nM and 1 µM remdesivir significantly reduced peak tail currents and hERG current density. The propensity for remdesivir to prolong QTc intervals and induce torsade de pointes in predisposed patients warrants further investigation.
Collapse
Affiliation(s)
- Enoch Amarh
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - James E. Tisdale
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian R. Overholser
- Department of Pharmacy Practice, College of Pharmacy, Purdue University, West Lafayette, Indiana
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
58
|
Helliwell MV, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Inhibition of the hERG Potassium Channel by a Methanesulphonate-Free E-4031 Analogue. Pharmaceuticals (Basel) 2023; 16:1204. [PMID: 37765012 PMCID: PMC10536391 DOI: 10.3390/ph16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
hERG (human Ether-à-go-go Related Gene)-encoded potassium channels underlie the cardiac rapid delayed rectifier (IKr) potassium current, which is a major target for antiarrhythmic agents and diverse non-cardiac drugs linked to the drug-induced form of long QT syndrome. E-4031 is a high potency hERG channel inhibitor from the methanesulphonanilide drug family. This study utilized a methanesulphonate-lacking E-4031 analogue, "E-4031-17", to evaluate the role of the methanesulphonamide group in E-4031 inhibition of hERG. Whole-cell patch-clamp measurements of the hERG current (IhERG) were made at physiological temperature from HEK 293 cells expressing wild-type (WT) and mutant hERG constructs. For E-4031, WT IhERG was inhibited by a half-maximal inhibitory concentration (IC50) of 15.8 nM, whilst the comparable value for E-4031-17 was 40.3 nM. Both compounds exhibited voltage- and time-dependent inhibition, but they differed in their response to successive applications of a long (10 s) depolarisation protocol, consistent with greater dissociation of E-4031-17 than the parent compound between applied commands. Voltage-dependent inactivation was left-ward voltage shifted for E-4031 but not for E-4031-17; however, inhibition by both compounds was strongly reduced by attenuated-inactivation mutations. Mutations of S6 and S5 aromatic residues (F656V, Y652A, F557L) greatly attenuated actions of both drugs. The S624A mutation also reduced IhERG inhibition by both molecules. Overall, these results demonstrate that the lack of a methanesulphonate in E-4031-17 is not an impediment to high potency inhibition of IhERG.
Collapse
Affiliation(s)
- Matthew V. Helliwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (M.V.H.); (C.E.D.)
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Yihong Zhang
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Aziza El Harchi
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| | - Christopher E. Dempsey
- School of Biochemistry, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (M.V.H.); (C.E.D.)
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK; (Y.Z.); (A.E.H.)
| |
Collapse
|
59
|
Costa F, Ocello R, Guardiani C, Giacomello A, Masetti M. Integrated Approach Including Docking, MD Simulations, and Network Analysis Highlights the Action Mechanism of the Cardiac hERG Activator RPR260243. J Chem Inf Model 2023; 63:4888-4899. [PMID: 37504578 PMCID: PMC10428221 DOI: 10.1021/acs.jcim.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/29/2023]
Abstract
hERG is a voltage-gated potassium channel involved in the heart contraction whose defections are associated with the cardiac arrhythmia Long QT Syndrome type 2. The activator RPR260243 (RPR) represents a possible candidate to pharmacologically treat LQTS2 because it enhances the opening of the channel. However, the molecular detail of its action mechanism remains quite elusive. Here, we address the problem using a combination of docking, molecular dynamics simulations, and network analysis. We show that the drug preferably binds at the interface between the voltage sensor and the pore, enhancing the canonical activation path and determining a whole-structure rearrangement of the channel that slightly impairs inactivation.
Collapse
Affiliation(s)
- Flavio Costa
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Riccardo Ocello
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Guardiani
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
60
|
Taghvaei S, Taghvaei A, Anvar MS, Guo C, Sabouni F, Minuchehr Z. Computational study of SENP1 in cancer by novel natural compounds and ZINC database screening. Front Pharmacol 2023; 14:1144632. [PMID: 37502217 PMCID: PMC10368881 DOI: 10.3389/fphar.2023.1144632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Sentrin-specific protease 1 (SENP1) is a protein whose main function is deSUMOylation. SENP1 inhibits apoptosis, and increases angiogenesis, estrogen and androgen receptor transcription and c-Jun transcription factor, proliferation, growth, cell migration, and invasion of cancer. The in vivo and in vitro studies also demonstrated which natural compounds, especially phytochemicals, minerals, and vitamins, prevent cancer. More than 3,000 plant species have been reported in modern medicine. Natural compounds have many anti-cancerous andanti-turmeric properties such as antioxidative, antiangiogenic, antiproliferative, and pro-apoptotic properties. Methods: In this study, we investigated the interaction of some natural compounds with SENP1 to inhibit its activity. We also screened the ZINC database including natural compounds. Molecular docking was performed, and toxicity of compounds was determined; then, molecular dynamics simulation (MDS) and essential dynamics (ED) were performed on natural compounds with higher free binding energies and minimal side effects. By searching in a large library, virtual screening of the ZINC database was performed using LibDock and CDOCKER, and the final top 20 compounds were allowed for docking against SENP1. According to the docking study, the top three leading molecules were selected and further analyzed by MDS and ED. Results: The results suggest that resveratrol (from the selected compounds) and ZINC33916875 (from the ZINC database) could be more promising SENP1 inhibitory ligands. Discussion: Because these compounds can inhibit SENP1 activity, then they can be novel candidates for cancer treatment. However, wet laboratory experiments are needed to validate their efficacy as SENP1 inhibitors.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Alireza Taghvaei
- Faculty of Pharmacy, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Mohammad Saberi Anvar
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Chun Guo
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
61
|
Cheng D, Wei X, Zhang Y, Zhang Q, Xu J, Yang J, Yu J, Stalin A, Liu H, Wang J, Zhong D, Pan L, Zhao W, Chen Y. The Strength of hERG Inhibition by Erythromycin at Different Temperatures Might Be Due to Its Interacting Features with the Channels. Molecules 2023; 28:5176. [PMID: 37446837 DOI: 10.3390/molecules28135176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Erythromycin is one of the few compounds that remarkably increase ether-a-go-go-related gene (hERG) inhibition from room temperature (RT) to physiological temperature (PT). Understanding how erythromycin inhibits the hERG could help us to decide which compounds are needed for further studies. The whole-cell patch clamp technique was used to investigate the effects of erythromycin on hERG channels at different temperatures. While erythromycin caused a concentration-dependent inhibition of cardiac hERG channels, it also shifted the steady-state activation and steady-state inactivation of the channel to the left and significantly accelerated the onset of inactivation at both temperatures, although temperature itself caused a profound change in the dynamics of hERG channels. Our data also suggest that the binding pattern to S6 of the channels changes at PT. In contrast, cisapride, a well-known hERG blocker whose inhibition is not affected by temperature, does not change its critical binding sites after the temperature is raised to PT. Our data suggest that erythromycin is unique and that the shift in hERG inhibition may not apply to other compounds.
Collapse
Affiliation(s)
- Dongrong Cheng
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Xiaofeng Wei
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Yanting Zhang
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Qian Zhang
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Jianwei Xu
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Jiaxin Yang
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Junjie Yu
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610064, China
| | - Huan Liu
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Jintao Wang
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Dian Zhong
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Lanying Pan
- Shuren International Medical College, Zhejiang Shuren University, Hangzhou 310009, China
| | - Wei Zhao
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| | - Yuan Chen
- Chinese Herb Medicine Division, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou 311300, China
- The State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, 666 Wusu St, Hangzhou 311300, China
| |
Collapse
|
62
|
Oyedele AQK, Adelusi TI, Ogunlana AT, Ayoola MA, Adeyemi RO, Babalola MO, Ayorinde JB, Isong JA, Ajasa TO, Boyenle ID. Promising disruptors of p53-MDM2 dimerization from some medicinal plant phytochemicals: a molecular modeling study. J Biomol Struct Dyn 2023; 41:5817-5826. [PMID: 35822492 DOI: 10.1080/07391102.2022.2097313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/28/2022] [Indexed: 01/18/2023]
Abstract
Cancer is a major global health issue that has a high mortality rate. p53, which functions as a tumor suppressor, is critical in preventing tumor development by regulating the cell cycle and inducing apoptosis in damaged cells. However, the tumor suppressor function of p53 is effectively inhibited by its direct interaction with the hydrophobic cleft of MDM2 protein via multiple mechanisms As a result, restoring p53 activity by blocking the p53-MDM2 protein-protein interaction has been proposed as a compelling therapeutic strategy for cancer treatment. The use of molecular docking and phytochemical screening procedures are appraised to inhibit MDM2's hydrophobic cleft and disrupt the p53-MDM2 interaction. For this purpose, a library of 51 bioactive compounds from 10 medicinal plants was compiled and subjected to structure-based virtual screening. Out of these, only 3 compounds (Atalantoflavone, Cudraxanthone 1, and Ursolic acid) emerged as promising inhibitors of MDM2-p53 based on their binding affinities (-9.1 kcal/mol, -8.8 kcal/mol, and -8.8 kcal/mol respectively) when compared to the standard (-8.8 kcal/mol). Moreover, these compounds showed better pharmacokinetic and drug-like profiling than the standard inhibitor (Chromonotriazolopyrimidine 1). Finally, the 100 ns MD simulation analysis confirmed no significant perturbation in the conformational dynamics of the simulated binary complexes when compared to the standard. In particular, Ursolic acid was found to satisfy the molecular enumeration the most compared to the other inhibitors. Our overall molecular modeling finding shows why these compounds may emerge as potent arsenals for cancer therapeutics. Nonetheless, extensive experimental and clinical research is needed to augment their use in clinics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul-Quddus Kehinde Oyedele
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Temitope Isaac Adelusi
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Mojeed Ashiru Ayoola
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Science, Fountain University, Osogbo, Nigeria
| | - Rofiat Oluwabusola Adeyemi
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | | - James Babatunde Ayorinde
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Josiah Ayoola Isong
- Department of Biochemistry and Nutrition, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Toheeb Olakunle Ajasa
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ibrahim Damilare Boyenle
- Computational Biology, Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
63
|
Ma J, Wang NY, Jagani R, Wang HS. Proarrhythmic toxicity of low dose bisphenol A and its analogs in human iPSC-derived cardiomyocytes and human cardiac organoids through delay of cardiac repolarization. CHEMOSPHERE 2023; 328:138562. [PMID: 37004823 PMCID: PMC10121900 DOI: 10.1016/j.chemosphere.2023.138562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
64
|
Burgess DE, Delisle BP. Caution: merging ion channel traffic ahead. J Physiol 2023; 601:2541-2542. [PMID: 36916495 PMCID: PMC10313755 DOI: 10.1113/jp284497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Don E Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
65
|
Wang X, Feng Y, Liu S, Liu J, Pan S, Wei L, Ma Y, Liu Z, Xing Y, Wang J, Cui Q, Zhang Y, Wang T, Cai C. Hydroxychloroquine Attenuates hERG Channel by Promoting the Membrane Channel Degradation: Computational Simulation and Experimental Evidence for QT-Interval Prolongation with Hydroxychloroquine Treatment. Cardiology 2023; 148:310-323. [PMID: 37231805 DOI: 10.1159/000531132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.
Collapse
Affiliation(s)
- Xiqiang Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yunfei Feng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Senmiao Liu
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, College of Engineering, Shantou University, Shantou, China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuo Pan
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Linyan Wei
- Department of General Practice, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yanpeng Ma
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yujie Xing
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Junkui Wang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qianwei Cui
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yong Zhang
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, College of Engineering, Shantou University, Shantou, China
| |
Collapse
|
66
|
Han JL, Heinson YW, Chua CJ, Liu W, Entcheva E. CRISPRi Gene Modulation and All-Optical Electrophysiology in Post-Differentiated Human iPSC-Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539756. [PMID: 37214814 PMCID: PMC10197536 DOI: 10.1101/2023.05.07.539756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uncovering gene-phenotype relationships can be enabled by precise gene modulation in human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and follow up phenotyping using scalable all-optical electrophysiology platforms. Such efforts towards human functional genomics can be aided by recent CRISPR-derived technologies for reversible gene inhibition or activation (CRISPRi/a). We set out to characterize the performance of CRISPRi in post-differentiated iPSC-CMs, targeting key cardiac ion channel genes, KCNH2, KCNJ2, and GJA1, and providing a multiparametric quantification of the effects on cardiac repolarization, stability of the resting membrane potential and conduction properties using all-optical tools. More potent CRISPRi effectors, e.g. Zim3, and optimized viral delivery led to improved performance on par with the use of CRISPRi iPSC lines. Confirmed mild yet specific phenotype changes when CRISPRi is deployed in non-dividing differentiated heart cells is an important step towards more holistic pre-clinical cardiotoxicity testing and for future therapeutic use in vivo.
Collapse
Affiliation(s)
- Julie L. Han
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Yuli W. Heinson
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Christianne J. Chua
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Wei Liu
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
| |
Collapse
|
67
|
Lottini T, Duranti C, Iorio J, Martinelli M, Colasurdo R, D’Alessandro FN, Buonamici M, Coppola S, Devescovi V, La Vaccara V, Coppola A, Coppola R, Lastraioli E, Arcangeli A. Combination Therapy with a Bispecific Antibody Targeting the hERG1/β1 Integrin Complex and Gemcitabine in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:2013. [PMID: 37046674 PMCID: PMC10093586 DOI: 10.3390/cancers15072013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an unmet medical need. Difficult/late diagnosis as well as the poor efficacy and high toxicity of chemotherapeutic drugs result in dismal prognosis. With the aim of improving the treatment outcome of PDAC, we tested the effect of combining Gemcitabine with a novel single chain bispecific antibody (scDb) targeting the cancer-specific hERG1/β1 integrin complex. First, using the scDb (scDb-hERG1-β1) in immunohistochemistry (IHC), Western blot (WB) analysis and immunofluorescence (IF), we confirmed the presence of the hERG1/β1 integrin complex in primary PDAC samples and PDAC cell lines. Combining Gemcitabine with scDb-hERG1-β1 improved its cytotoxicity on all PDAC cells tested in vitro. We also tested the combination treatment in vivo, using an orthotopic xenograft mouse model involving ultrasound-guided injection of PDAC cells. We first demonstrated good penetration of the scDb-hERG1-β1 conjugated with indocyanine green (ICG) into tumour masses by photoacoustic (PA) imaging. Next, we tested the effects of the combination at either therapeutic or sub-optimal doses of Gemcitabine (25 or 5 mg/kg, respectively). The combination of scDb-hERG1-β1 and sub-optimal doses of Gemcitabine reduced the tumour masses to the same extent as the therapeutic doses of Gemcitabine administrated alone; yielded increased survival; and was accompanied by minimised side effects (toxicity). These data pave the way for a novel therapeutic approach to PDAC, based on the combination of low doses of a chemotherapeutic drug (to minimize adverse side effects and the onset of resistance) and the novel scDb-hERG1-β1 targeting the hERG1/β1 integrin complex as neoantigen.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Franco Nicolás D’Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Matteo Buonamici
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo La Vaccara
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | | | - Roberto Coppola
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
68
|
Farm HJ, Clerx M, Cooper F, Polonchuk L, Wang K, Gavaghan DJ, Lei CL. Importance of modelling hERG binding in predicting drug-induced action potential prolongations for drug safety assessment. Front Pharmacol 2023; 14:1110555. [PMID: 37021055 PMCID: PMC10067903 DOI: 10.3389/fphar.2023.1110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Reduction of the rapid delayed rectifier potassium current (IKr) via drug binding to the human Ether-à-go-go-Related Gene (hERG) channel is a well recognised mechanism that can contribute to an increased risk of Torsades de Pointes. Mathematical models have been created to replicate the effects of channel blockers, such as reducing the ionic conductance of the channel. Here, we study the impact of including state-dependent drug binding in a mathematical model of hERG when translating hERG inhibition to action potential changes. We show that the difference in action potential predictions when modelling drug binding of hERG using a state-dependent model versus a conductance scaling model depends not only on the properties of the drug and whether the experiment achieves steady state, but also on the experimental protocols. Furthermore, through exploring the model parameter space, we demonstrate that the state-dependent model and the conductance scaling model generally predict different action potential prolongations and are not interchangeable, while at high binding and unbinding rates, the conductance scaling model tends to predict shorter action potential prolongations. Finally, we observe that the difference in simulated action potentials between the models is determined by the binding and unbinding rate, rather than the trapping mechanism. This study demonstrates the importance of modelling drug binding and highlights the need for improved understanding of drug trapping which can have implications for the uses in drug safety assessment.
Collapse
Affiliation(s)
- Hui Jia Farm
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fergus Cooper
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ken Wang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David J. Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
- *Correspondence: David J. Gavaghan, ; Chon Lok Lei,
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- *Correspondence: David J. Gavaghan, ; Chon Lok Lei,
| |
Collapse
|
69
|
Bassetto CAZ, Costa F, Guardiani C, Bezanilla F, Giacomello A. Noncanonical electromechanical coupling paths in cardiac hERG potassium channel. Nat Commun 2023; 14:1110. [PMID: 36849440 PMCID: PMC9971164 DOI: 10.1038/s41467-023-36730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Voltage-gated potassium channels are involved in many physiological processes such as nerve impulse transmission, the heartbeat, and muscle contraction. However, for many of them the molecular determinants of the gating mechanism remain elusive. Here, using a combination of theoretical and experimental approaches, we address this problem focusing on the cardiac hERG potassium channel. Network analysis of molecular dynamics trajectories reveals the presence of a kinematic chain of residues that couples the voltage sensor domain to the pore domain and involves the S4/S1 and S1/S5 subunit interfaces. Mutagenesis experiments confirm the role of these residues and interfaces in the activation and inactivation mechanisms. Our findings demonstrate the presence of an electromechanical transduction path crucial for the non-domain-swapped hERG channel gating that resembles the noncanonical path identified in domain-swapped K+ channels.
Collapse
Affiliation(s)
- Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Flavio Costa
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
70
|
Ukachukwu CU, Jimenez-Vazquez EN, Jain A, Jones DK. hERG1 channel subunit composition mediates proton inhibition of rapid delayed rectifier potassium current (I Kr) in cardiomyocytes derived from hiPSCs. J Biol Chem 2023; 299:102778. [PMID: 36496073 PMCID: PMC9867984 DOI: 10.1016/j.jbc.2022.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
The voltage-gated channel, hERG1, conducts the rapid delayed rectifier potassium current (IKr) and is critical for human cardiac repolarization. Reduced IKr causes long QT syndrome and increases the risk for cardiac arrhythmia and sudden death. At least two subunits form functional hERG1 channels, hERG1a and hERG1b. Changes in hERG1a/1b abundance modulate IKr kinetics, magnitude, and drug sensitivity. Studies from native cardiac tissue suggest that hERG1 subunit abundance is dynamically regulated, but the impact of altered subunit abundance on IKr and its response to external stressors is not well understood. Here, we used a substrate-driven human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturation model to investigate how changes in relative hERG1a/1b subunit abundance impact the response of native IKr to extracellular acidosis, a known component of ischemic heart disease and sudden infant death syndrome. IKr recorded from immatured hiPSC-CMs displays a 2-fold greater inhibition by extracellular acidosis (pH 6.3) compared with matured hiPSC-CMs. Quantitative RT-PCR and immunocytochemistry demonstrated that hERG1a subunit mRNA and protein were upregulated and hERG1b subunit mRNA and protein were downregulated in matured hiPSC-CMs compared with immatured hiPSC-CMs. The shift in subunit abundance in matured hiPSC-CMs was accompanied by increased IKr. Silencing hERG1b's impact on native IKr kinetics by overexpressing a polypeptide identical to the hERG1a N-terminal Per-Arnt-Sim domain reduced the magnitude of IKr proton inhibition in immatured hiPSC-CMs to levels comparable to those observed in matured hiPSC-CMs. These data demonstrate that hERG1 subunit abundance is dynamically regulated and determines IKr proton sensitivity in hiPSC-CMs.
Collapse
Affiliation(s)
- Chiamaka U Ukachukwu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric N Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David K Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School.
| |
Collapse
|
71
|
Wang T, Sun J, Zhao Q. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Comput Biol Med 2023; 153:106464. [PMID: 36584603 DOI: 10.1016/j.compbiomed.2022.106464] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Human ether-a-go-go-related gene (hERG) channel blockade by small molecules is a big concern during drug development in the pharmaceutical industry. Failure or inhibition of hERG channel activity caused by drug molecules can lead to prolonging QT interval, which will result in serious cardiotoxicity. Thus, evaluating the hERG blocking activity of all these small molecular compounds is technically challenging, and the relevant procedures are expensive and time-consuming. In this study, we develop a novel deep learning predictive model named DMFGAM for predicting hERG blockers. In order to characterize the molecule more comprehensively, we first consider the fusion of multiple molecular fingerprint features to characterize its final molecular fingerprint features. Then, we use the multi-head attention mechanism to extract the molecular graph features. Both molecular fingerprint features and molecular graph features are fused as the final features of the compounds to make the feature expression of compounds more comprehensive. Finally, the molecules are classified into hERG blockers or hERG non-blockers through the fully connected neural network. We conduct 5-fold cross-validation experiment to evaluate the performance of DMFGAM, and verify the robustness of DMFGAM on external validation datasets. We believe DMFGAM can serve as a powerful tool to predict hERG channel blockers in the early stages of drug discovery and development.
Collapse
Affiliation(s)
- Tianyi Wang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Jianqiang Sun
- School of Automation and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China.
| |
Collapse
|
72
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
73
|
Pettini F, Domene C, Furini S. Early Steps in C-Type Inactivation of the hERG Potassium Channel. J Chem Inf Model 2023; 63:251-258. [PMID: 36512342 PMCID: PMC9832476 DOI: 10.1021/acs.jcim.2c01028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K+-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction. Alternatively, recent experimental structures of a mutated Shaker channel revealed a widening of the extracellular portion of the selectivity filter, which might diminish conductance by interfering with the mechanism of ion permeation. Here, we performed molecular dynamics simulations of the wild-type hERG, a non-inactivating mutant (hERG-N629D), and a mutant that inactivates faster than the wild-type channel (hERG-F627Y) to find out which and if any of the two reported C-type inactivation mechanisms applies to hERG. Closure events of the selectivity filter were not observed in any of the simulated trajectories but instead, the extracellular section of the selectivity filter deviated from the canonical conductive structure of potassium channels. The degree of widening of the potassium binding sites at the extracellular entrance of the channel was directly related to the degree of inactivation with hERG-F627Y > wild-type hERG > hERG-N629D. These findings support the hypothesis that C-type inactivation in hERG entails a widening of the extracellular entrance of the channel rather than a closure of the selectivity filter.
Collapse
Affiliation(s)
- Francesco Pettini
- Department
of Medical Biotechnologies, University of
Siena, viale Mario Bracci 12, Siena 53100, Italy,Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, viale Mario Bracci 12, Siena 53100, Italy
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.,Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| | - Simone Furini
- Department
of Electrical, Electronic and Information Engineering ″Guglielmo
Marconi”, University of Bologna, via dell’Università
50, Cesena (FC) 47521, Italy,
| |
Collapse
|
74
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
75
|
Agrawal A, Wang K, Polonchuk L, Cooper J, Hendrix M, Gavaghan DJ, Mirams GR, Clerx M. Models of the cardiac L-type calcium current: A quantitative review. WIREs Mech Dis 2023; 15:e1581. [PMID: 36028219 PMCID: PMC10078428 DOI: 10.1002/wsbm.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 01/31/2023]
Abstract
The L-type calcium current (I CaL ) plays a critical role in cardiac electrophysiology, and models ofI CaL are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modelingI CaL have resulted in several competing theories (encoded in mathematical equations). However, the introduction of new models has not typically been accompanied by a data-driven critical comparison with previous work, so that it is unclear which model is best suited for any particular application. In this review, we describe and compare 73 published mammalianI CaL models and use simulated experiments to show that there is a large variability in their predictions, which is not substantially diminished when grouping by species or other categories. We provide model code for 60 models, list major data sources, and discuss experimental and modeling work that will be required to reduce this huge list of competing theories and ultimately develop a community consensus model ofI CaL . This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Aditi Agrawal
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Ken Wang
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Liudmila Polonchuk
- Pharma Research and Early Development, Innovation Center BaselF. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Jonathan Cooper
- Centre for Advanced Research ComputingUniversity College LondonLondonUK
| | - Maurice Hendrix
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
- Digital Research Service, Information SciencesUniversity of NottinghamNottinghamUK
| | - David J. Gavaghan
- Computational Biology & Health Informatics, Department of Computer ScienceUniversity of OxfordOxfordUK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| | - Michael Clerx
- Centre for Mathematical Medicine & Biology, School of Mathematical SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
76
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
77
|
Zangerl-Plessl EM, Wu W, Sanguinetti MC, Stary-Weinzinger A. Binding of RPR260243 at the intracellular side of the hERG1 channel pore domain slows closure of the helix bundle crossing gate. Front Mol Biosci 2023; 10:1137368. [PMID: 36911523 PMCID: PMC9996038 DOI: 10.3389/fmolb.2023.1137368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The opening and closing of voltage-dependent potassium channels is dependent on a tight coupling between movement of the voltage sensing S4 segments and the activation gate. A specific interaction between intracellular amino- and carboxyl-termini is required for the characteristically slow rate of channel closure (deactivation) of hERG1 channels. Compounds that increase hERG1 channel currents represent a novel approach for prevention of arrhythmia associated with prolonged ventricular repolarization. RPR260243 (RPR), a quinoline oxo-propyl piperidine derivative, inhibits inactivation and dramatically slows the rate of hERG1 channel deactivation. Here we report that similar to its effect on wild-type channels, RPR greatly slows the deactivation rate of hERG1 channels missing their amino-termini, or of split channels lacking a covalent link between the voltage sensor domain and the pore domain. By contrast, RPR did not slow deactivation of C-terminal truncated hERG1 channels or D540K hERG1 mutant channels activated by hyperpolarization. Together, these findings indicate that ability of RPR to slow deactivation requires an intact C-terminus, does not slow deactivation by stabilizing an interaction involving the amino-terminus or require a covalent link between the voltage sensor and pore domains. All-atom molecular dynamics simulations using the cryo-EM structure of the hERG1 channel revealed that RPR binds to a pocket located at the intracellular ends of helices S5 and S6 of a single subunit. The slowing of channel deactivation by RPR may be mediated by disruption of normal S5-S6 interactions.
Collapse
Affiliation(s)
| | - Wei Wu
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research & Training Institute, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States
| | - Michael C Sanguinetti
- 3 Department of Internal Medicine, Division of Cardiovascular Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt LakeCity, UT, United States
| | | |
Collapse
|
78
|
Qu Y, Kirby R, Davies R, Jinat A, Stabilini S, Wu B, Yu L, Gao B, Vargas HM. Time Is a Critical Factor When Evaluating Oligonucleotide Therapeutics in Human Ether-a-Go-Go-Related Gene Assays. Nucleic Acid Ther 2022; 33:132-140. [PMID: 36576986 PMCID: PMC10066779 DOI: 10.1089/nat.2022.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In accord with International Conference on Harmonization S7B guidelines, an in vitro human ether-a-go-go-related gene (hERG) assay is one component of an integrated risk assessment for delayed ventricular repolarization. Function of hERG could be affected by direct (acute) mechanisms, or by indirect (chronic) mechanisms. Some approved oligonucleotide therapeutics had submitted hERG data to regulatory agents, which were all collected with the same protocol used for small-molecule testing (incubation time <20 min; acute), however, oligonucleotides have unique mechanisms and time courses of action (indirect). To reframe the hERG testing strategy for silencing RNA (siRNA), an investigation was performed to assess the time course for siRNA-mediated inhibition of hERG function and gene expression. Commercially available siRNAs of hERG were evaluated in a stable hERG-expressed cell line by whole-cell voltage clamp using automated electrophysiology and polymerase chain reaction. In the acute hERG study, no effects were observed after treatment with 100 nM siRNA for 20 min. The chronic effects of 100 nM siRNAs on hERG function were evaluated and recorded over 8-48 h following transfection. At 8 h there was no significant effect, whereas 77% reduction was observed at 48 h. Measurement of hERG mRNA levels demonstrated a 79% and 93% decrease of hERG mRNA at 8 and 48 h, respectively, consistent with inhibition of hERG transcription. The results indicate that an anti-hERG siRNA requires a long exposure time (48 h) in the hERG assay to produce a maximal reduction in hERG current; short exposures (20 min-8 h) had no effect. These findings imply that off-target profiling of novel oligonucleotides could benefit from using hERG protocol with long incubation times to de-risk potential off-target (indirect) effects on the hERG channel. This hERG assay modification may be important to consider if the findings are used to support an integrated nonclinical-clinical risk assessment for QTc (the duration of the QT interval adjusted for heart rate) prolongation.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Robert Kirby
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Richard Davies
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | - Ayesha Jinat
- Metrion Biosciences Ltd, Granta Center, Cambridge, United Kingdom
| | | | - Bin Wu
- Hybrid Modality Engineering, Amgen, Inc., Thousand Oaks, California, USA
| | - Longchuan Yu
- Cardiometabolic Disorders, Amgen, Inc., Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| |
Collapse
|
79
|
A deep learning method for predicting molecular properties and compound-protein interactions. J Mol Graph Model 2022; 117:108283. [PMID: 35994925 DOI: 10.1016/j.jmgm.2022.108283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 01/14/2023]
Abstract
Predicting molecular properties and compound-protein interactions (CPIs) are two important areas of drug design and discovery. They are also an essential way to discover lead compounds in virtual screening. Recently, in silico methods based on deep learning have demonstrated excellent performance in various challenges. It is imperative to develop efficient computational methods to predict accurately both molecular properties and CPIs in drug research using deep learning techniques. In this paper, we propose a deep learning method applicable to both molecular property prediction and CPI prediction based on the idea that both are generally influenced by chemical structure and sequence information of compounds and proteins. Molecular properties are inferred by integrating the molecular structure and sequence information of compounds, and CPIs are predicted by integrating protein sequence and compound structure. The method combines topological structure and sequence fingerprint information of molecules, extracts adequately raw data features, and generates highly representative features for prediction. Molecular property prediction experiments were conducted on BACE, P53 and hERG datasets, and CPI prediction experiments were conducted on Human, C. elegans and KIBA datasets. MG-S achieves outperformance in molecular property prediction on P53, the differences in AUC, Precision and MCC are 0.030, 0.050 and 0.100, respectively, over the suboptimal baseline model, and provides consistently good results on BACE and hERG.The model also achieves impressive performance in CPI prediction, the differences in AUC, Precision and MCC on KIBA are 0.141, 0.138, 0.090 and 0.082, respectively, compared with the state-of-the-art models. The comprehensive results show that the MG-S model has higher performance, better classification ability, and faster convergence. MG-S will serve as a useful method to predict compound properties and CPIs in the early stages of drug design and discovery.Our code and datasets are available at: https://github.com/happay-ending/cpi_cpp.
Collapse
|
80
|
Chioccioli Altadonna G, Montalbano A, Iorio J, Becchetti A, Arcangeli A, Duranti C. The Interaction between hERG1 and β1 Integrins Modulates hERG1 Current in Different Pathological Cell Models. MEMBRANES 2022; 12:1162. [PMID: 36422154 PMCID: PMC9698864 DOI: 10.3390/membranes12111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Ion channels are implicated in various diseases, including cancer, in which they modulate different aspects of cancer progression. In particular, potassium channels are often aberrantly expressed in cancers, a major example being provided by hERG1. The latter is generally complexed with β1 integrin in tumour cells, and such a molecular complex represents a new druggable hub. The present study focuses on the characterization of the functional consequences of the interaction between hERG1 and β1 integrins on different substrates over time. To this purpose, we studied the interplay alteration on the plasma membrane through patch clamp techniques in a cellular model consisting of human embryonic kidney (HEK) cells stably transfected with hERG1 and in a cancer cell model consisting of SH-SY5Y neuroblastoma cells, endogenously expressing the channel. Cells were seeded on different substrates known to stimulate β1 integrins, such as fibronectin (FN) for HEK-hERG1 and laminin (LMN) for SH-SY5Y. In HEK cells stably overexpressing hERG1, we observed a hERG1 current density increase accompanied by Vrest hyperpolarization after cell seeding onto FN. Notably, a similar behaviour was shown by SH-SY5Y neuroblastoma cells plated onto LMN. Interestingly, we did not observe this phenomenon when plating the cells on substrates such as Bovine Serum Albumin (BSA) or Polylysine (PL), thus suggesting a crucial involvement of ECM proteins as well as of β1 integrin activation.
Collapse
Affiliation(s)
| | - Alberto Montalbano
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Firenze, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| |
Collapse
|
81
|
Molecular Determinants for the High-Affinity Blockade of Human Ether-à-go-go-Related Gene K + Channel by Tolterodine. J Cardiovasc Pharmacol 2022; 80:679-689. [PMID: 35881423 DOI: 10.1097/fjc.0000000000001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Tolterodine is a first-line antimuscarinic drug used to treat overactive bladder. Adverse cardiac effects including tachycardia and palpitations have been observed, presumably because of its inhibition of the human ether-à-go-go-related gene (hERG) K + channel. However, the molecular mechanism of hERG channel inhibition by tolterodine is largely unclear. In this study, we performed molecular docking to identify potential binding sites of tolterodine in hERG channel, and two-microelectrode voltage-clamp to record the currents of hERG and its mutants expressed in Xenopus oocytes. The results of computational modeling demonstrated that phenylalanine at position 656 (F656) and tyrosine at position 652 (Y652) on the S6 helix of hERG channel are the most favorable binding residues of tolterodine, which was validated by electrophysiological recordings on Y652A and F656A hERG mutants. The Y652A and F656A mutations decreased inhibitory potency of tolterodine 345-fold and 126-fold, respectively. The Y652A mutation significantly altered the voltage dependence of channel inhibition by tolterodine. For both the wild-type and the mutant channels, tolterodine reduced the currents in a time-dependent manner, and the blockade occurred with the channel activated. Tolterodine did not interfere with hERG channel deactivation, whereas channel inactivation greatly impaired its blocking effect. The inhibition of hERG channel by tolterodine is independent of its action on muscarinic acetylcholine receptors. In conclusion, tolterodine is an open-state blocker of hERG K + channel with nanomolar potency. Y652 and F656, 2 aromatic residues on the inner S6 helix, are responsible for the high-affinity binding of tolterodine to hERG channel.
Collapse
|
82
|
Accili E. When Is a Potassium Channel Not a Potassium Channel? FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac052. [PMID: 36325512 PMCID: PMC9614928 DOI: 10.1093/function/zqac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023]
Abstract
Ever since they were first observed in Purkinje fibers of the heart, funny channels have had close connections to potassium channels. Indeed, funny channels were initially thought to produce a potassium current in the heart called I K2. However, funny channels are completely unlike potassium channels in ways that make their contributions to the physiology of cells unique. An important difference is the greater ability for sodium to permeate funny channels. Although it does not flow through the funny channel as easily as does potassium, sodium does permeate well enough to allow for depolarization of cells following a strong hyperpolarization. This is critical for the function of funny channels in places like the heart and brain. Computational analyses using recent structures of the funny channels have provided a possible mechanism for their unusual permeation properties.
Collapse
|
83
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
New Insights into Ion Channels: Predicting hERG-Drug Interactions. Int J Mol Sci 2022; 23:ijms231810732. [PMID: 36142644 PMCID: PMC9503154 DOI: 10.3390/ijms231810732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the protein that assembles into the potassium channel responsible for the delayed rectifier current in ventricular cardiac myocytes that is often targeted by drugs associated with QT prolongation. The predictive value of this model can guide a rational drug design decision early in the drug development process and enhance NCE (New Chemical Entity) retention. Small molecule drugs containing a nitrogen that can be protonated to afford a formal +1 charge can interact with hERG to prevent the repolarization of outward rectifier currents. Low-level ab initio calculations are employed to generate electronic features of the drug molecules that are known to interact with hERG. These calculations were employed to generate structure–activity relationships (SAR) that predict whether a small molecule drug containing a protonated nitrogen has the potential to interact with and inhibit the activity of the hERG potassium channels of the heart. The model of the mechanism underlying the ion specificity of potassium channels offers predictive value toward optimizing drug design and, therefore, minimizes the effort and expense invested in compounds with the potential for life-threatening inhibitory activity of the hERG potassium channel.
Collapse
|
85
|
Iorio J, Antonuzzo L, Scarpi E, D’Amico M, Duranti C, Messerini L, Sparano C, Caputo D, Lavacchi D, Borzomati D, Antonelli A, Nibid L, Perrone G, Coppola A, Coppola R, di Costanzo F, Lastraioli E, Arcangeli A. Prognostic role of hERG1 Potassium Channels in Neuroendocrine Tumours of the Ileum and Pancreas. Int J Mol Sci 2022; 23:10623. [PMID: 36142530 PMCID: PMC9504580 DOI: 10.3390/ijms231810623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
hERG1 potassium channels are widely expressed in human cancers of different origins, where they affect several key aspects of cellular behaviour. The present study was designed to evaluate the expression and clinical relevance of hERG1 protein in cancer tissues from patients suffering from neuroendocrine tumours (NETs) of ileal (iNETs) and pancreatic (pNETs) origin, with available clinicopathological history and follow-up. The study was carried out by immunohistochemistry with an anti-hERG1 monoclonal antibody. In a subset of samples, a different antibody directed against the hERG1/β1 integrin complex was also used. The analysis showed for the first time that hERG1 is expressed in human NETs originating from either the ileum or the pancreas. hERG1 turned out to have a prognostic value in NETs, showing (i) a statistically significant positive impact on OS of patients affected by ileal NETs, regardless the TNM stage; (ii) a statistically significant positive impact on OS of patients affected by aggressive (TNM stage IV) disease, either ileal or pancreatic; (iii) a trend to a negative impact on OS of patients affected by less aggressive (TNM stage I-III) disease, either ileal or pancreatic. Moreover, in order to evaluate whether ERG1 was functionally expressed in a cellular model of pNET, the INS1E rat insulinoma cell line was used, and it emerged that blocking ERG1 with a specific inhibitor of the channel (E4031) turned out in a significant reduction in cell proliferation.
Collapse
Affiliation(s)
- Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Clotilde Sparano
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Damiano Caputo
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Lavacchi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Domenico Borzomati
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Alice Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Medical Oncology, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Lorenzo Nibid
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Giuseppe Perrone
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Pathology Unit, Campus Bio-Medico University, 00128 Rome, Italy
| | - Alessandro Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Coppola
- General Surgery, Campus Bio-Medico University, 00128 Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | | | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| |
Collapse
|
86
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
87
|
Johnson AA, Crawford TR, Trudeau MC. The N-linker region of hERG1a upregulates hERG1b potassium channels. J Biol Chem 2022; 298:102233. [PMID: 35798139 PMCID: PMC9428852 DOI: 10.1016/j.jbc.2022.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
A major physiological role of hERG1 (human Ether-á-go-go-Related Gene 1) potassium channels is to repolarize cardiac action potentials. Two isoforms, hERG1a and hERG1b, associate to form the potassium current IKr in cardiomyocytes. Inherited mutations in hERG1a or hERG1b cause prolonged cardiac repolarization, long QT syndrome, and sudden death arrhythmia. hERG1a subunits assemble with and enhance the number of hERG1b subunits at the plasma membrane, but the mechanism for the increase in hERG1b by hERG1a is not well understood. Here, we report that the hERG1a N-terminal region expressed in trans with hERG1b markedly increased hERG1b currents and increased biotin-labeled hERG1b protein at the membrane surface. hERG1b channels with a deletion of the N-terminal 1b domain did not have a measurable increase in current or biotinylated protein when coexpressed with hERG1a N-terminal regions, indicating that the 1b domain was required for the increase in hERG1b. Using a biochemical pull-down interaction assay and a FRET hybridization experiment, we detected a direct interaction between the hERG1a N-terminal region and the hERG1b N-terminal region. Using engineered deletions and alanine mutagenesis, we identified a short span of amino acids at positions 216 to 220 within the hERG1a "N-linker" region that were necessary for the upregulation of hERG1b. We propose that direct structural interactions between the hERG1a N-linker region and the hERG1b 1b domain increase hERG1b at the plasma membrane. Mechanisms regulating hERG1a and hERG1b are likely critical for cardiac function, may be disrupted by long QT syndrome mutants, and serve as potential targets for therapeutics.
Collapse
Affiliation(s)
- Ashley A Johnson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Taylor R Crawford
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew C Trudeau
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
88
|
Furutani K, Kawano R, Ichiwara M, Adachi R, Clancy CE, Sack JT, Kita S. Pore opening, not voltage sensor movement, underpins the voltage-dependence of facilitation by a hERG blocker. Mol Pharmacol 2022; 102:MOLPHARM-AR-2022-000569. [PMID: 36041862 PMCID: PMC9595204 DOI: 10.1124/molpharm.122.000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 11/07/2022] Open
Abstract
A drug that blocks the cardiac myocyte voltage-gated K+ channels encoded by the human Ether-à-go-go-Related Gene (hERG) carries a potential risk of long QT syndrome and life-threatening cardiac arrhythmia, including Torsade de Points Interestingly, certain hERG blockers can also facilitate hERG activation to increase hERG currents, which may reduce proarrhythmic potential. However, the molecular mechanism involved in the facilitation effect of hERG blockers remains unclear. The hallmark feature of the facilitation effect by hERG blockers is that a depolarizing preconditioning pulse shifts voltage-dependence of hERG activation to more negative voltages. Here we utilize a D540K hERG mutant to study the mechanism of the facilitation effect. D540K hERG is activated by not only depolarization but also hyperpolarization. This unusual gating property enables tests of the mechanism by which voltage induces facilitation of hERG by blockers. With D540K hERG, we find that nifekalant, a hERG blocker and Class III antiarrhythmic agent, blocks and facilitates not only current activation by depolarization but also current activation by hyperpolarization, suggesting a shared gating process upon depolarization and hyperpolarization. Moreover, in response to hyperpolarizing conditioning pulses, nifekalant facilitates D540K hERG currents but not wild-type currents. Our results indicate that induction of facilitation is coupled to pore opening, not voltage per se We propose that gated access to the hERG central cavity underlies the voltage-dependence of induction of facilitation. This study identifies hERG channel pore gate opening as the conformational change facilitated by nifekalant, a clinically important antiarrhythmic agent. Significance Statement Nifekalant is a clinically important antiarrhythmic agent and a hERG blocker which can also facilitate voltage-dependent activation of hERG channels after a preconditioning pulse. Here we show that the mechanism of action of the preconditioning pulse is to open a conductance gate to enable drug access to a facilitation site. Moreover, we find that facilitation increases hERG currents by altering pore dynamics, rather than acting through voltage sensors.
Collapse
Affiliation(s)
| | - Ryotaro Kawano
- Department of Pharmacology, Tokushima Bunri University, Japan
| | - Minami Ichiwara
- Department of Pharmacology, Tokushima Bunri University, Japan
| | - Ryo Adachi
- Department of Pharmacology, Tokushima Bunri University, Japan
| | | | - Jon T Sack
- UC Davis School of Medicine, United States
| | - Satomi Kita
- Department of Pharmacology, Tokushima Bunri University, Japan
| |
Collapse
|
89
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
90
|
Xue H, Li Y, Zhao Z, Ren J, Yu W, Wang F, Li X, Li J, Xia Q, Zhang Y, Li B. Deacetylation mechanism and potential reversal strategy of long QT syndrome on hERG K + channel under hypoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166487. [PMID: 35840042 DOI: 10.1016/j.bbadis.2022.166487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Clinically, hypoxia is a major risk factor for long QT syndrome (LQTS), which is associated with many diseases, such as myocardial ischemia. LQTS can be caused by the deficiency of hERG, a potassium ion channel that plays a key role in cardiac repolarization. Modifications such as acetylation of histones or non-histone proteins can affect the protein expression. In the present study, we explored the mechanism underlying hypoxia-induced LQTS and a potential reversal strategy. Experiments were performed under hypoxia to determine transcriptional and post-transcriptional expression changes. We used real-time PCR, chromatin immunoprecipitation assay, and western blotting to determine the histones acetylation in the hERG gene and the mechanism. Molecular docking, western blotting, IP, and patch -clamp assay were performed to determine the acetylation and ubiquitination levels of hERG protein and the mechanism. hERG mRNA and protein expression were found to decrease under hypoxia. The histone deacetylation level increased under hypoxia at both H3K27 and H4 of the hERG gene. HDAC1 and HDAC2 are the key enzymes for the mechanism. HDAC6 directly interacts with hERG. The acetylation level of hERG decreased and the ubiquitination level of hERG increased under hypoxia. The inhibitors of HDAC1, HDAC2, and HDAC6 could reverse the reduction of hERG mRNA and hERG protein expression under hypoxia. In conclusion, deacetylation of hERG gene-associated histones and hERG protein might be the mechanisms for LQTS in patients with hypoxia, and the inhibition of HDAC1, HDAC2, and HDAC6 might be a promising reversal strategy for reducing hERG expression under different pathological conditions.
Collapse
Affiliation(s)
- Hui Xue
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengrong Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiacheng Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xianghua Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qianqian Xia
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuxin Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
91
|
Kekenes-Huskey PM, Burgess DE, Sun B, Bartos DC, Rozmus ER, Anderson CL, January CT, Eckhardt LL, Delisle BP. Mutation-Specific Differences in Kv7.1 ( KCNQ1) and Kv11.1 ( KCNH2) Channel Dysfunction and Long QT Syndrome Phenotypes. Int J Mol Sci 2022; 23:7389. [PMID: 35806392 PMCID: PMC9266926 DOI: 10.3390/ijms23137389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The electrocardiogram (ECG) empowered clinician scientists to measure the electrical activity of the heart noninvasively to identify arrhythmias and heart disease. Shortly after the standardization of the 12-lead ECG for the diagnosis of heart disease, several families with autosomal recessive (Jervell and Lange-Nielsen Syndrome) and dominant (Romano-Ward Syndrome) forms of long QT syndrome (LQTS) were identified. An abnormally long heart rate-corrected QT-interval was established as a biomarker for the risk of sudden cardiac death. Since then, the International LQTS Registry was established; a phenotypic scoring system to identify LQTS patients was developed; the major genes that associate with typical forms of LQTS were identified; and guidelines for the successful management of patients advanced. In this review, we discuss the molecular and cellular mechanisms for LQTS associated with missense variants in KCNQ1 (LQT1) and KCNH2 (LQT2). We move beyond the "benign" to a "pathogenic" binary classification scheme for different KCNQ1 and KCNH2 missense variants and discuss gene- and mutation-specific differences in K+ channel dysfunction, which can predispose people to distinct clinical phenotypes (e.g., concealed, pleiotropic, severe, etc.). We conclude by discussing the emerging computational structural modeling strategies that will distinguish between dysfunctional subtypes of KCNQ1 and KCNH2 variants, with the goal of realizing a layered precision medicine approach focused on individuals.
Collapse
Affiliation(s)
- Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Don E. Burgess
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Bin Sun
- Department of Pharmacology, Harbin Medical University, Harbin 150081, China;
| | | | - Ezekiel R. Rozmus
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| | - Corey L. Anderson
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Craig T. January
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Lee L. Eckhardt
- Cellular and Molecular Arrythmias Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; (C.L.A.); (C.T.J.); (L.L.E.)
| | - Brian P. Delisle
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.E.B.); (E.R.R.)
| |
Collapse
|
92
|
Al Salmani MK, Tavakoli R, Zaman W, Al Harrasi A. Multiple mechanisms underlie reduced potassium conductance in the p.T1019PfsX38 variant of hERG. Physiol Rep 2022; 10:e15341. [PMID: 35854468 PMCID: PMC9296870 DOI: 10.14814/phy2.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Long QT syndrome type II (LQT2) is caused by loss-of-function mutations in the hERG K+ channel, leading to increased incidence of cardiac arrest and sudden death. Many genetic variants have been reported in the hERG gene with various consequences on channel expression, permeation, and gating. Only a small number of LQT2 causing variants has been characterized to define the underlying pathophysiological causes of the disease. We sought to determine the characteristics of the frameshift variant p.Thr1019ProfsX38 (T1019PfsX38) which affects the C-terminus of the protein. This mutation was identified in an extended Omani family of LQT2. It replaces the last 140 amino acids of hERG with 37 unique amino acids. T1019 is positioned at a distinguished region of the C-terminal tail of hERG, as predicted from the deep learning system AlphaFold v2.0. We employed the whole-cell configuration of the patch-clamp technique to study wild-type and mutant channels that were transiently expressed in human embryonic kidney 293 (HEK293) cells. Depolarizing voltages elicited slowly deactivating tail currents that appeared upon repolarization of cells that express either wild-type- or T1019PfsX38-hERG. There were no differences in the voltage and time dependencies of activation between the two variants. However, the rates of hERG channel deactivation at hyperpolarizing potentials were accelerated by T1019PfsX38. In addition, the voltage dependence of inactivation of T1019PfsX38-hERG was shifted by 20 mV in the negative direction when compared with wild-type hERG. The rates of channel inactivation were increased in the mutant channel variant. Next, we employed a step-ramp protocol to mimic membrane repolarization by the cardiac action potential. The amplitudes of outward currents and their integrals were reduced in the mutant variant when compared with the wild-type variant during repolarization. Thus, changes in the gating dynamics of hERG by the T1019PfsX38 variant contribute to the pathology seen in affected LQT2 patients.
Collapse
Affiliation(s)
| | - Rezvan Tavakoli
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Wajid Zaman
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| | - Ahmed Al Harrasi
- Natural and Medical Sciences Research CenterUniversity of NizwaNizwaOman
| |
Collapse
|
93
|
Kreifels P, Bodi I, Hornyik T, Franke G, Perez-Feliz S, Lewetag R, Moss R, Castiglione A, Ziupa D, Zehender M, Brunner M, Bode C, Odening KE. Oxytocin exerts harmful cardiac repolarization prolonging effects in drug-induced LQTS. IJC HEART & VASCULATURE 2022; 40:101001. [PMID: 35391783 PMCID: PMC8980310 DOI: 10.1016/j.ijcha.2022.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Background Oxytocin is used therapeutically in psychiatric patients. Many of these also receive anti-depressant or anti-psychotic drugs causing acquired long-QT-syndrome (LQTS) by blocking HERG/IKr. We previously identified an oxytocin-induced QT-prolongation in LQT2 rabbits, indicating potential harmful effects of combined therapy. We thus aimed to analyze the effects of dual therapy with oxytocin and fluoxetine/risperidone on cardiac repolarization. Methods Effects of risperidone, fluoxetine and oxytocin on QT/QTc, short-term variability (STV) of QT, and APD were assessed in rabbits using in vivo ECG and ex vivo monophasic AP recordings in Langendorff-perfused hearts. Underlying mechanisms were assessed using patch clamp in isolated cardiomyocytes. Results Oxytocin, fluoxetine and risperidone prolonged QTc and APD in whole hearts. The combination of fluoxetine + oxytocin resulted in further QTc- and APD-prolongation, risperidone + oxytocin tended to increase QTc and APD compared to monotherapy. Temporal QT instability, STVQTc was increased by oxytocin, fluoxetine / fluoxetine + oxytocin and risperidone / risperidone + oxytocin. Similar APD-prolonging effects were confirmed in isolated cardiomyocytes due to differential effects of the compounds on repolarizing ion currents: Oxytocin reduced IKs, fluoxetine and risperidone reduced IKr, resulting in additive effects on IKtotal-tail. In addition, oxytocin reduced IK1, further reducing the repolarization reserve. Conclusion Oxytocin, risperidone and fluoxetine prolong QTc / APD. Combined treatment further prolongs QTc/APD due to differential effects on IKs and IK1 (block by oxytocin) and IKr (block by risperidone and fluoxetine), leading to pronounced impairment of repolarization reserve. Oxytocin should be used with caution in patients in the context of acquired LQTS.
Collapse
|
94
|
Downregulation of hERG Channel Expression By Tyrosine Kinase Inhibitors Nilotinib And Vandetanib Predominantly Contributes To Arrhythmogenesis. Toxicol Lett 2022; 365:11-23. [DOI: 10.1016/j.toxlet.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
95
|
Sanchez-Conde FG, Jimenez-Vazquez EN, Auerbach DS, Jones DK. The ERG1 K+ Channel and Its Role in Neuronal Health and Disease. Front Mol Neurosci 2022; 15:890368. [PMID: 35600076 PMCID: PMC9113952 DOI: 10.3389/fnmol.2022.890368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
The ERG1 potassium channel, encoded by KCNH2, has long been associated with cardiac electrical excitability. Yet, a growing body of work suggests that ERG1 mediates physiology throughout the human body, including the brain. ERG1 is a regulator of neuronal excitability, ERG1 variants are associated with neuronal diseases (e.g., epilepsy and schizophrenia), and ERG1 serves as a potential therapeutic target for neuronal pathophysiology. This review summarizes the current state-of-the-field regarding the ERG1 channel structure and function, ERG1’s relationship to the mammalian brain and highlights key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Eric N. Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - David S. Auerbach
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY, United States
- *Correspondence: David S. Auerbach,
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- David K. Jones,
| |
Collapse
|
96
|
Abramochkin DV, Haworth TE, Kuzmin VS, Dzhumaniiazova I, Pustovit KB, Gacoin M, Shiels HA. Adrenergic prolongation of action potential duration in rainbow trout myocardium via inhibition of the delayed rectifier potassium current, I Kr. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111161. [PMID: 35143950 DOI: 10.1016/j.cbpa.2022.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/19/2022]
Abstract
Catecholamines mediate the 'fight or flight' response in a wide variety of vertebrates. The endogenous catecholamine adrenaline increases heart rate and contractile strength to raise cardiac output. The increase in contractile force is driven in large part by an increase in myocyte Ca2+ influx on the L-type Ca current (ICaL) during the cardiac action potential (AP). Here, we report a K+- based mechanism that prolongs AP duration (APD) in fish hearts following adrenergic stimulation. We show that adrenergic stimulation inhibits the delayed rectifier K+ current (IKr) in rainbow trout (Oncorhynchus mykiss) cardiomyocytes. This slows repolarization and prolongs APD which may contribute to positive inotropy following adrenergic stimulation in fish hearts. The endogenous ligand, adrenaline (1 μM), which activates both α- and β-ARs reduced maximal IKr tail current to 61.4 ± 3.9% of control in atrial and ventricular myocytes resulting in an APD prolongation of ~20% at both 50 and 90% repolarization. This effect was reproduced by the α-specific adrenergic agonist, phenylephrine (1 μM), but not the β-specific adrenergic agonist isoproterenol (1 μM). Adrenaline (1 μM) in the presence of β1 and β2-blockers (1 μM atenolol and 1 μM ICI-118551, respectively) also inhibited IKr. Thus, IKr suppression following α-adrenergic stimulation leads to APD prolongation in the rainbow trout heart. This is the first time this mechanism has been identified in fish and may act in unison with the well-known enhancement of ICaL following adrenergic stimulation to prolong APD and increase cardiac inotropy.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - T Eliot Haworth
- Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Vladislav S Kuzmin
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Ksenia B Pustovit
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Maeva Gacoin
- Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester M13 9NT, UK; Institut des Sciences Cognitives Marc Jeannerod, UMR5229 CNRS, Université de Lyon, 67 Boulevard Pinel, 69675 Bron Cedex, France
| | - Holly A Shiels
- Faculty of Biological, Medical and Human Sciences, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
97
|
Becchetti A, Duranti C, Arcangeli A. Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. Am J Physiol Cell Physiol 2022; 322:C1138-C1150. [PMID: 35442831 DOI: 10.1152/ajpcell.00107.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cellular functions are regulated by a complex interplay of diffuse and local signals. Experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multi-enzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulate the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response is essential in growth and development and has innumerable pathological implications. The process involves bidirectional signal transduction by complex supra-molecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements and other regulatory elements. The dynamics of such complexes is only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to re-assume functions, such as controlling cell proliferation/differentiation, apoptosis and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| |
Collapse
|
98
|
Zhang X, Mao J, Wei M, Qi Y, Zhang JZH. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models. J Chem Inf Model 2022; 62:1830-1839. [DOI: 10.1021/acs.jcim.2c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xudong Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai 200062, China
| | - Jun Mao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai 200062, China
| | - Min Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai 200062, China
| | - Yifei Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai 200062, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU, Shanghai 200062, China
| |
Collapse
|
99
|
Lorca R, Junco-Vicente A, Pérez-Pérez A, Pascual I, Persia-Paulino YR, González-Urbistondo F, Cuesta-Llavona E, Fernández-Barrio BC, Morís C, Rubín JM, Coto E, Gómez J, Reguero JJR. KCNH2 p.Gly262AlafsTer98: A New Threatening Variant Associated with Long QT Syndrome in a Spanish Cohort. Life (Basel) 2022; 12:life12040556. [PMID: 35455047 PMCID: PMC9024605 DOI: 10.3390/life12040556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited (autosomal dominant) channelopathy associated with susceptibility to ventricular arrhythmias due to malfunction of ion channels in cardiomyocytes, that could lead to sudden death (SD). Most pathogenic variants are in the main 3 genes: KCNQ1 (LQT1), KCNH2 (LQT2) and SCN5A (LQT3). Efforts to improve the understanding of the genotype-phenotype relationship are essential to improve the medical clinical practice. In this study, we identified all index patients referred for NGS genetic sequencing due to LQTS, in a Spanish cohort, who were carriers of a new pathogenic variant (KCNH2 p.Gly262AlafsTer98). Genetic and clinical family screening was performed in order to describe its phenotypic characteristics. We identified 22 relatives of Romani ethnicity, who were carriers of the variant. Penetrance reached a 100% and adherence to medical treatment was low. There was a high rate of clinical events, particularly arrhythmic events and SD (1 in every 4 patients presented syncope, 1 presented an aborted SD, 2 obligated carriers suffered SD before the age of 40 and 4 out of 6 carriers of an implantable cardioverter-defibrillator (ICD) had appropriate ICD therapies. Correct adherence to medical treatment in all carriers should be specially encouraged in this population. ICD implantation decision in non-compliant patients, and refusing left cardiac sympathetic denervation, should be carefully outweighed.
Collapse
Affiliation(s)
- Rebeca Lorca
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro Junco-Vicente
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
| | - Alicia Pérez-Pérez
- Pediatric Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.P.-P.); (B.C.F.-B.)
| | - Isaac Pascual
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence:
| | - Yvan Rafael Persia-Paulino
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
| | | | - Elías Cuesta-Llavona
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - César Morís
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - José Manuel Rubín
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Eliecer Coto
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Gómez
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| | - José Julián Rodríguez Reguero
- Unidad de Referencia de Cardiopatías Familiares-HUCA, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (R.L.); (E.C.-L.); (C.M.); (J.M.R.); (E.C.); (J.G.); (J.J.R.R.)
- Heart Area, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (A.J.-V.); (Y.R.P.-P.); (F.G.-U.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
100
|
Jones DK. Hysteretic hERG channel gating current recorded at physiological temperature. Sci Rep 2022; 12:5950. [PMID: 35396394 PMCID: PMC8993916 DOI: 10.1038/s41598-022-10003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiac hERG channels comprise at least two subunits, hERG 1a and hERG 1b, and drive cardiac action potential repolarization. hERG 1a subunits contain a cytoplasmic PAS domain that is absent in hERG 1b. The hERG 1a PAS domain regulates voltage sensor domain (VSD) movement, but hERG VSD behavior and its regulation by the hERG 1a PAS domain have not been studied at physiological temperatures. We recorded gating charge from homomeric hERG 1a and heteromeric hERG 1a/1b channels at near physiological temperatures (36 ± 1 °C) using pulse durations comparable in length to the human ventricular action potential. The voltage dependence of deactivation was hyperpolarized relative to activation, reflecting VSD relaxation at positive potentials. These data suggest that relaxation (hysteresis) works to delay pore closure during repolarization. Interestingly, hERG 1a VSD deactivation displayed a double Boltzmann distribution, but hERG 1a/1b deactivation displayed a single Boltzmann. Disabling the hERG 1a PAS domain using a PAS-targeting antibody similarly transformed hERG 1a deactivation from a double to a single Boltzmann, highlighting the contribution of the PAS in regulating VSD movement. These data represent, to our knowledge, the first recordings of hERG gating charge at physiological temperature and demonstrate that VSD relaxation (hysteresis) is present in hERG channels at physiological temperature.
Collapse
Affiliation(s)
- David K Jones
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA. .,Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|