51
|
Chateigner-Boutin AL, Ordaz-Ortiz JJ, Alvarado C, Bouchet B, Durand S, Verhertbruggen Y, Barrière Y, Saulnier L. Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. FRONTIERS IN PLANT SCIENCE 2016; 7:1476. [PMID: 27746801 PMCID: PMC5043055 DOI: 10.3389/fpls.2016.01476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/16/2016] [Indexed: 05/19/2023]
Abstract
Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding.
Collapse
Affiliation(s)
| | - José J. Ordaz-Ortiz
- BIA, INRANantes, France
- National Laboratory of Genomics for Biodiversity (Langebio-CINVESTAV), Mass Spectrometry and Metabolomics LabIrapuato, Mexico
| | | | | | | | | | | | | |
Collapse
|
52
|
Emulsifying properties of succinylated arabinoxylan-protein gum produced from corn ethanol residuals. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Robles-Ozuna L, Ochoa-Martínez L, Morales-Castro J, Gallegos-Infante J, Quintero-Ramos A, Madera-Santana T. Effect of nixtamalization conditions ultrasound assisted on some physicochemical, structural and quality characteristics in maize used for pozole. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1110201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
54
|
Caballero-Briones F, Chalé-Lara F, Zapata-Navarro A. Method to estimate crystallinity in nixtamalized corn pericarp from sequential extractions and X-ray diffraction. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Rumpagaporn P, Reuhs BL, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR. Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota. Carbohydr Polym 2015; 130:191-7. [PMID: 26076616 DOI: 10.1016/j.carbpol.2015.04.041] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon.
Collapse
Affiliation(s)
- Pinthip Rumpagaporn
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Brad L Reuhs
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Amandeep Kaur
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - John A Patterson
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL 60612, USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
56
|
Kale MS, Yadav MP, Hicks KB, Hanah K. Concentration and shear rate dependence of solution viscosity for arabinoxylans from different sources. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
57
|
Kamboj S, Singh K, Tiwary A, Rana V. Optimization of microwave assisted Maillard reaction to fabricate and evaluate corn fiber gum-chitosan IPN films. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
58
|
Zhang S, Li W, Smith CJ, Musa H. Cereal-Derived Arabinoxylans as Biological Response Modifiers: Extraction, Molecular Features, and Immune-Stimulating Properties. Crit Rev Food Sci Nutr 2015; 55:1035-52. [DOI: 10.1080/10408398.2012.705188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
59
|
Seaver SMD, Bradbury LMT, Frelin O, Zarecki R, Ruppin E, Hanson AD, Henry CS. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm. FRONTIERS IN PLANT SCIENCE 2015; 6:142. [PMID: 25806041 PMCID: PMC4354304 DOI: 10.3389/fpls.2015.00142] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/22/2015] [Indexed: 05/08/2023]
Abstract
There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.
Collapse
Affiliation(s)
- Samuel M. D. Seaver
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL, USA
- Computation Institute, The University of ChicagoChicago, IL, USA
| | - Louis M. T. Bradbury
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Department of Biology, York College, City University of New YorkNew York, NY, USA
| | - Océane Frelin
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Raphy Zarecki
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Eytan Ruppin
- Sackler Faculty of Medicine, Tel Aviv UniversityTel Aviv, Israel
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National LaboratoryArgonne, IL, USA
- Computation Institute, The University of ChicagoChicago, IL, USA
- *Correspondence: Christopher S. Henry, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
60
|
|
61
|
Extraction and modification technology of arabinoxylans from cereal by-products: A critical review. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Pedersen M, Dalsgaard S, Knudsen KB, Yu S, Lærke H. Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
63
|
Lu X, Berge ND. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks. BIORESOURCE TECHNOLOGY 2014; 166:120-31. [PMID: 24907571 DOI: 10.1016/j.biortech.2014.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 05/17/2023]
Abstract
As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties.
Collapse
Affiliation(s)
- Xiaowei Lu
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States
| | - Nicole D Berge
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States.
| |
Collapse
|
64
|
Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 2014; 426:3838-50. [PMID: 25088686 DOI: 10.1016/j.jmb.2014.07.028] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/30/2014] [Accepted: 07/23/2014] [Indexed: 12/22/2022]
Abstract
Even though there are many factors that determine the human colon microbiota composition, diet is an important one because most microorganisms in the colon obtain energy for their growth by degrading complex dietary compounds, particularly dietary fibers. While fiber carbohydrates that escape digestion in the upper gastrointestinal tract are recognized to have a range of structures, the vastness in number of chemical structures from the perspective of the bacteria is not well appreciated. In this article, we introduce the concept of "discrete structure" that is defined as a unique chemical structure, often within a fiber molecule, which aligns with encoded gene clusters in bacterial genomes. The multitude of discrete structures originates from the array of different fiber types coupled with structural variations within types due to genotype and growing environment, anatomical parts of the grain or plant, discrete regions within polymers, and size of oligosaccharides and small polysaccharides. These thousands of discrete structures conceivably could be used to favor bacteria in the competitive colon environment. A global framework needs to be developed to better understand how dietary fibers can be used to obtain predicted changes in microbiota composition for improved health. This will require a multi-disciplinary effort that includes biological scientists, clinicians, and carbohydrate specialists.
Collapse
Affiliation(s)
- Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| |
Collapse
|
65
|
|
66
|
Gorshkova TA, Kozlova LV, Mikshina PV. Spatial structure of plant cell wall polysaccharides and its functional significance. BIOCHEMISTRY (MOSCOW) 2014; 78:836-53. [PMID: 24010845 DOI: 10.1134/s0006297913070146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plant polysaccharides comprise the major portion of organic matter in the biosphere. The cell wall built on the basis of polysaccharides is the key feature of a plant organism largely determining its biology. All together, around 10 types of polysaccharide backbones, which can be decorated by different substituents giving rise to endless diversity of carbohydrate structures, are present in cell walls of higher plants. Each of the numerous cell types present in plants has cell wall with specific parameters, the features of which mostly arise from the structure of polymeric components. The structure of polysaccharides is not directly encoded by the genome and has variability in many parameters (molecular weight, length, and location of side chains, presence of modifying groups, etc.). The extent of such variability is limited by the "functional fitting" of the polymer, which is largely based on spatial organization of the polysaccharide and its ability to form supramolecular complexes of an appropriate type. Consequently, the carrier of the functional specificity is not the certain molecular structure but the certain type of the molecules having a certain degree of heterogeneity. This review summarizes the data on structural features of plant cell wall polysaccharides, considers formation of supramolecular complexes, gives examples of tissue- and stage-specific polysaccharides and functionally significant carbohydrate-carbohydrate interactions in plant cell wall, and presents approaches to analyze the spatial structure of polysaccharides and their complexes.
Collapse
Affiliation(s)
- T A Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia.
| | | | | |
Collapse
|
67
|
Appeldoorn MM, de Waard P, Kabel MA, Gruppen H, Schols HA. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation. Carbohydr Res 2013; 381:33-42. [PMID: 24056012 DOI: 10.1016/j.carres.2013.08.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
Abstract
In order to use corn fiber as a source for bioethanol production the enzymatic hydrolysis of the complex glucuronoarabinoxylans present has to be improved. Several oligosaccharides present in the supernatant of mild acid pretreated and enzymatically saccharified corn fiber that resist the current available enzymes were (semi)purified for structural analysis by NMR or ESI-MS(n). The structural features of 21 recalcitrant oligosaccharides are presented. A common feature of almost all these oligosaccharides is that they contain (part of) an α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose side chain attached to the O-3 position of the β-1-4 linked xylose backbone. Several of the identified oligosaccharides contained an ethyl group at the reducing end hypothesized to be formed during SSF. The ethyl glycosides found are far more complex than previously described structures. A new feature present in more than half of the oligosaccharides is an acetyl group attached to the O-2 position of the same xylose to which the oligomeric side chain was attached to the O-3 position. Finding enzymes attacking these large side chains and the dense substituted xylan backbone will boost the hydrolysis of corn fiber glucuronoxylan.
Collapse
Affiliation(s)
- Maaike M Appeldoorn
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
68
|
Choi WY, Kang DH, Lee HY. Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0033-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
69
|
Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. ENVIRONMENTAL TECHNOLOGY 2013; 34:1735-49. [PMID: 24350431 DOI: 10.1080/09593330.2013.809777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.
Collapse
Affiliation(s)
- Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701, USA.
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ahmed Faik
- Environmental and Plant Biology Department, Ohio University Athens, OH 45701, USA
| |
Collapse
|
70
|
Lee CG, Kang DH, Lee DB, Lee HY. Pretreatment for simultaneous production of total lipids and fermentable sugars from marine alga, Chlorella sp. Appl Biochem Biotechnol 2013; 171:1143-58. [PMID: 23793826 DOI: 10.1007/s12010-013-0295-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/08/2013] [Indexed: 11/28/2022]
Abstract
The goal of this study was to determine the optimal pretreatment process for the extraction of lipids and reducing sugars to facilitate the simultaneous production of biodiesel and bioethanol from the marine microalga Chorella sp. With a single pretreatment process, the optimal ultrasonication pretreatment process was 10 min at 47 KHz, and extraction yields of 6.5 and 7.1 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. The optimal microwave pretreatment process was 10 min at 2,450 MHz, and extraction yields of 6.6 and 7.0 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. Lastly, the optimal high-pressure homogenization pretreatment process was two cycles at a pressure of 20,000 psi, and extraction yields of 12.5 and 12.8 (percentage, w/w) of the lipids and reducing sugars, respectively, were obtained. However, because the single pretreatment processes did not markedly improve the extraction yields compared to the results of previous studies, a combination of two pretreatment processes was applied. The yields of lipids and reducing sugars from the combined application of the high-pressure homogenization process and the microwave process were 24.4 and 24.9 % (w/w), respectively, which was up to three times greater than the yields obtained using the single pretreatment processes. Furthermore, the oleic acid content, which is a fatty acid suitable for biodiesel production, was 23.39 % of the fatty acids (w/w). The contents of glucose and xylose, which are among the fermentable sugars useful for bioethanol production, were 77.5 and 13.3 % (w/w) of the fermentable sugars, respectively, suggesting the possibility of simultaneously producing biodiesel and bioethanol. Based on the results of this study, the combined application of the high-pressure homogenization and microwave pretreatment processes is the optimal method to increase the extraction yields of lipids and reducing sugars that are essential for the simultaneous production of biodiesel and bioethanol.
Collapse
Affiliation(s)
- Choon-Geun Lee
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | |
Collapse
|
71
|
“Plant Cell Wall Structure-Pretreatment” the Critical Relationship in Biomass Conversion to Fermentable Sugars. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2013. [DOI: 10.1007/978-94-007-6052-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Jedrzejuk A, Rochala J, Zakrzewski J, Rabiza-Świder J. Identification of xylem occlusions occurring in cut clematis (Clematis L., fam. Ranunculaceae Juss.) stems during their vase life. ScientificWorldJournal 2012; 2012:749281. [PMID: 22919351 PMCID: PMC3417206 DOI: 10.1100/2012/749281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/08/2012] [Indexed: 12/03/2022] Open
Abstract
During the vase life of cut stems obstruction of xylem vessels occurs due to microbial growth, formation of tyloses, deposition of materials in the lumen of xylem vessels and the presence of air emboli in the vascular system. Such obstructions may restrict water uptake and its transport towards upwards thus lowering their ornamental value and longevity of cut flowers. Clematis is a very attractive plant material which may be used as cut flower in floral compositions. Nothing is known about the histochemical or cytological nature of xylem blockages occurring in cut stems of this plant. This study shows that in clematis, tyloses are the main source of occlusions, although bacteria and some amorphic substances may also appear inside the vessels. A preservative composed of 200 mg dm−3 8-HQC (8-hydroxyquinolin citrate) and 2% sucrose arrested bacterial development and the growth of tyloses. This information can be helpful in the development of new treatments to improve keeping qualities of cut clematis stems.
Collapse
Affiliation(s)
- Agata Jedrzejuk
- Department of Ornamental Plants, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
| | | | | | | |
Collapse
|
73
|
Vogel B, Gallaher DD, Bunzel M. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3847-3852. [PMID: 22443203 DOI: 10.1021/jf203930a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viscous dietary fibers are well established to reduce the blood glucose response to a meal. In this study, arabinoxylans, the most abundant dietary fiber in most cereals, were extracted under alkaline conditions and cross-linked by using laccase. Cross-linking of the arabinoxylans led to gel formation and increased in vitro viscosity almost 100-fold after drying and rehydration. To determine the ability of these cross-linked arabinoxylans to blunt the postprandial blood glucose curve of a meal, arabinoxylans, either native or cross-linked, and either prehydrated or not, were fed to rats as part of a meal, and blood glucose was monitored at intervals after the meal. Cellulose, a nonviscous fiber, served as a control. Cross-linked, but not native, arabinoxylans significantly reduced the area under the blood glucose time curve 5-9% relative to cellulose, indicating that they remained viscous within the gastrointestinal tract, and thus likely provide the health benefits found with other viscous fibers.
Collapse
Affiliation(s)
- Barbara Vogel
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, United States
| | | | | |
Collapse
|
74
|
Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 2012; 10:323-35. [PMID: 22491358 DOI: 10.1038/nrmicro2746] [Citation(s) in RCA: 1014] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Symbiotic microorganisms that reside in the human intestine are adept at foraging glycans and polysaccharides, including those in dietary plants (starch, hemicellulose and pectin), animal-derived cartilage and tissue (glycosaminoglycans and N-linked glycans), and host mucus (O-linked glycans). Fluctuations in the abundance of dietary and endogenous glycans, combined with the immense chemical variation among these molecules, create a dynamic and heterogeneous environment in which gut microorganisms proliferate. In this Review, we describe how glycans shape the composition of the gut microbiota over various periods of time, the mechanisms by which individual microorganisms degrade these glycans, and potential opportunities to intentionally influence this ecosystem for better health and nutrition.
Collapse
Affiliation(s)
- Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
75
|
Sharma UK, Sharma N, Salwan R, Kumar R, Kasana RC, Sinha AK. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:610-617. [PMID: 21919002 DOI: 10.1002/jsfa.4616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Decarboxylation of substituted cinnamic acids is a predominantly followed pathway for obtaining hydroxystyrenes-one of the most extensively explored bioactive compounds in the food and flavor industry (e.g. FEMA GRAS approved 4-vinylguaiacol). For this, mild and green strategies providing good yields with high product selectivity are needed. RESULTS Two newly isolated bacterial strains, i.e. Pantoea agglomerans KJLPB4 and P. agglomerans KJPB2, are reported for mild and effective decarboxylation of substituted cinnamic acids into corresponding hydroxystyrenes. Key operational parameters for the process, such as incubation temperature, incubation time, substrate concentration and effect of co-solvent, were optimized using ferulic acid as a model substrate. With strain KJLPB4, 1.51 g L⁻¹ 4-vinyl guaiacol (98% yield) was selectively obtained from 2 g L⁻¹ ferulic acid at 28 °C after 48 h incubation. However, KJPB2 provided vanillic acid in 85% yield after 72 h following the oxidative decarboxylation pathway. In addition, KJLPB4 was effectively exploited for the deacetylation of acetylated α-phenylcinnamic acids, providing corresponding compounds in 65-95% yields. CONCLUSION Two newly isolated microbial strains are reported for the mild and selective decarboxylation of substituted cinnamic acids into hydroxystyrenes. Preparative-scale synthesis of vinyl guaiacol and utilization of renewable feedstock (ferulic acid extracted from maize bran) have been demonstrated to enhance the practical utility of the process.
Collapse
Affiliation(s)
- Upendra K Sharma
- Natural Plant Products Division, Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur-176061, HP, India
| | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Yadav MP, Moreau RA, Hotchkiss AT, Hicks KB. A new corn fiber gum polysaccharide isolation process that preserves functional components. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.08.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
78
|
Mellinger-Silva C, Simas-Tosin FF, Schiavini DN, Werner MF, Baggio CH, Pereira IT, da Silva LM, Gorin PAJ, Iacomini M. Isolation of a gastroprotective arabinoxylan from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2011; 102:10524-10528. [PMID: 21945160 DOI: 10.1016/j.biortech.2011.08.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
After industrial processing, one-third of sugarcane culms is converted into residual bagasse. The xylan-rich hemicellulose components of the bagasse were extracted with hot aqueous alkali (AX-CRUDE). Approximately 82% of the extracted hemicelluloses was precipitated with ethanol (AX-PET). Both AX-CRUDE and AX-PET contained an arabinoxylan as confirmed by 13C NMR and methylation analysis. Fraction AX-PET was fed to female Wistar rats with ethanol-induced gastric lesions. Oral administrations of 30, 100, and 300 mg/kg reduced the gastric lesion area by over 50%, and replenished ethanol-induced depletion of glutathione. The polysaccharide also increased mucus production by over 70%, indicating its cytoprotective action on experimentally induced gastric ulcers. These findings are significant, since a biologically active compound can be extracted in high yields from an abundant, readily available residue.
Collapse
Affiliation(s)
- Caroline Mellinger-Silva
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23.020-470 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
80
|
Heinze T, Daus S. Xylan and Xylan Derivatives – Basis of Functional Polymers for the Future. RENEWABLE RESOURCES FOR FUNCTIONAL POLYMERS AND BIOMATERIALS 2011. [DOI: 10.1039/9781849733519-00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review highlights xylan and xylan derivatives. It depicts the occurrence and structural diversity of the biopolymer, followed by a presentation of different ways of isolation from biomass. The determination of characteristics, i.e., molecular weight, interaction with other polysaccharides, thermal behaviour, and the biological activity of xylan are reviewed. The application potential arising from the structural features of the unmodified xylan is pointed out. Special attention is concentrated on the possibilities of the modification of functional properties by chemical functionalization of the biopolymers in order to design advanced materials. Within this review recent results in the field are accompanied with selected results of our own work.
Collapse
Affiliation(s)
- Thomas Heinze
- Centre of Excellence for Polysaccharide Research Friedrich Schiller University of Jena, Humboldtstraße 10 D-07743 Jena Germany
| | - Stephan Daus
- Centre of Excellence for Polysaccharide Research Friedrich Schiller University of Jena, Humboldtstraße 10 D-07743 Jena Germany
| |
Collapse
|
81
|
Bischoff KM, de Rezende ST, Larson TM, Liu S, Hughes SR, Rich JO. Purification and characterization of arabinofuranosidase from the corn endophyte Acremonium zeae. Biotechnol Lett 2011; 33:2013-8. [PMID: 21671092 DOI: 10.1007/s10529-011-0658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Acremonium zeae, one of the most prevalent fungal colonists of preharvest corn, possesses a suite of hemicellulolytic activities including xylanase, xylosidase, and arabinofuranosidase. Two enzymes with arabinofuranosidase activity were purified from cell-free culture supernatants of A. zeae grown on oat spelt xylan. A 47 kDa enzyme (AF47) was optimally active at 37 °C and pH 6.0, and had a specific activity for 4-nitrophenyl-α-L-arabinofuranoside (4NPA) of 6.2 U/mg. A 30 kDa enzyme (AF30) was optimally active at 50 °C and pH 4.5, and had a specific activity for 4NPA of 12.4 U/mg. AF47 hydrolyzed 4-nitrophenyl-β-D-xylopyranoside, 4-nitrophenyl-β-D-glucopyranoside, and 4-nitrophenyl-β-D-cellobioside, as well as producing reducing sugars from corn fiber, wheat, and oat spelt arabinoxylan. AF30 had little detectable activity on the 4-nitrophenyl substrates, except for 4NPA, but activity on arabinoxylans from corn fiber, wheat, and oat spelt was at least 7-fold higher than AF47, with specific activities of 109, 358, and 153 U/mg, respectively. A combination of the two enzymes released 61 and 88% of the total arabinose from corn fiber and wheat arabinoxylans. The arabinofuranosidases produced by A. zeae may have industrial application for the enzymatic hydrolysis of recalcitrant lignocellulosic feedstocks such as corn fiber and wheat straw.
Collapse
Affiliation(s)
- Kenneth M Bischoff
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University St, Peoria, IL 61604, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Van Eylen D, van Dongen F, Kabel M, de Bont J. Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment. BIORESOURCE TECHNOLOGY 2011; 102:5995-6004. [PMID: 21392979 DOI: 10.1016/j.biortech.2011.02.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 05/11/2023]
Abstract
Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached.
Collapse
Affiliation(s)
- David Van Eylen
- Royal Nedalco, Lelyweg 29, 4612 PS, Bergen op Zoom, The Netherlands.
| | | | | | | |
Collapse
|
83
|
Agger J, Johansen KS, Meyer AS. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation. N Biotechnol 2011; 28:125-35. [DOI: 10.1016/j.nbt.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 09/23/2010] [Accepted: 09/29/2010] [Indexed: 11/16/2022]
|
84
|
Ji XJ, Huang H, Nie ZK, Qu L, Xu Q, Tsao GT. Fuels and chemicals from hemicellulose sugars. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 128:199-224. [PMID: 22249365 DOI: 10.1007/10_2011_124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Industrial processes of lignocellulosic material have made use of only the hexose component of the cellulose fraction. Pentoses and some minor hexoses present in the hemicellulose fraction, which may represent as much as 40% of lignocellulosic biomass, have in most cases been wasted. The lack of good methods for utilization of hemicellulose sugars is a key obstacle hindering the development of lignocellulose-based ethanol and other biofuels. In this chapter, we focus on the utilization of hemicellulose sugars, the structure of hemicellulose and its hydrolysis, and the biochemistry and process technology involved in their conversion to valuable fuels and chemicals.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Rd., Nanjing, 210009, China
| | | | | | | | | | | |
Collapse
|
85
|
Thévenin J, Pollet B, Letarnec B, Saulnier L, Gissot L, Maia-Grondard A, Lapierre C, Jouanin L. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. MOLECULAR PLANT 2011; 4:70-82. [PMID: 20829305 DOI: 10.1093/mp/ssq045] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc, was obtained. This mutant displays a severe dwarf phenotype and male sterility. The lignin content in ccc mature stems is reduced to 50% of the wild-type level. In addition, stem lignin structure is severely affected, as shown by the dramatic enrichment in resistant inter-unit bonds and incorporation into the polymer of monolignol precursors such as coniferaldehyde, sinapaldehyde, and ferulic acid. Male sterility is due to the lack of lignification in the anther endothecium, which causes the failure of anther dehiscence and of pollen release. The ccc hypolignified stems accumulate higher amounts of flavonol glycosides, sinapoyl malate and feruloyl malate, which suggests a redirection of the phenolic pathway. Therefore, the absence of CAD and CCR, key enzymes of the monolignol pathway, has more severe consequences on the phenotype than the individual absence of each of them. Induction of another CCR (CCR2, At1g80820) and another CAD (CAD1, At4g39330) does not compensate the absence of the main CCR and CAD activities. This lack of CCR and CAD activities not only impacts lignification, but also severely affects the development of the plants. These consequences must be carefully considered when trying to reduce the lignin content of plants in order to facilitate the lignocellulose-to-bioethanol conversion process.
Collapse
Affiliation(s)
- Johanne Thévenin
- Institut Jean Pierre Bourgin (IJPB), INRA-AgroParisTech, UMR1318, 78026 Versailles Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Guillon F, Bouchet B, Jamme F, Robert P, Quéméner B, Barron C, Larré C, Dumas P, Saulnier L. Brachypodium distachyon grain: characterization of endosperm cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1001-15. [PMID: 21062963 DOI: 10.1093/jxb/erq332] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-β-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-β-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.
Collapse
Affiliation(s)
- Fabienne Guillon
- INRA UR1268 Biopolymers, Interactions Assemblies, F-44316 Nantes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Hu YB, Fu XJ, Zhang FX, Ma FM, Wang Z, Xu SY. Hypolipidemic study of xylanase-modified corn bran fibre in rats. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
88
|
Appeldoorn MM, Kabel MA, Van Eylen D, Gruppen H, Schols HA. Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11294-301. [PMID: 20942461 DOI: 10.1021/jf102849x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Corn fiber, a byproduct from the corn industry, would be a good source for bioethanol production if the hemicellulose, consisting of polymeric glucoronoarabinoxylans, can be degraded into fermentable sugars. Structural knowledge of the hemicellulose is needed to improve the enzymatic hydrolyses of corn fiber. Oligosaccharides that resisted a mild acid pretreatment and subsequent enzymatic hydrolysis, representing 50% of the starting material, were fractionated on reversed phase and size exclusion material and characterized. The oligosaccharides within each fraction were highly substituted by various compounds. Oligosaccharides containing uronic acid were accumulated in two polar fractions unless also a feruloyl group was present. Feruloylated oligosaccharides, containing mono- and/or diferulic acid, were accumulated within four more apolar fractions. All fractions contained high amounts of acetyl substituents. The data show that complex xylan oligomers are present in which ferulic acid, diferulates, acetic acid, galactose, arabinose, and uronic acids were combined within an oligomer. Hypothetical structures are discussed, demonstrating which enzyme activities are lacking to fully degrade corn glucuronoarabinoxylans.
Collapse
Affiliation(s)
- Maaike M Appeldoorn
- Laboratory of Food Chemistry, Wageningen University, Bomenweg 2, 6700 EV Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
89
|
Yoshida T, Tsubaki S, Teramoto Y, Azuma JI. Optimization of microwave-assisted extraction of carbohydrates from industrial waste of corn starch production using response surface methodology. BIORESOURCE TECHNOLOGY 2010; 101:7820-7826. [PMID: 20542685 DOI: 10.1016/j.biortech.2010.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
Microwave-assisted extraction (MAE) was applied for production of carbohydrates mainly consisting of arabinoxylan from corn pericarp which is an industrial waste of corn starch production by using hot compressed water as a solvent. The solubilization rate increased with increase in heating temperature and reached 75.2% at 220 °C. The main extracted materials were carbohydrates consist of glucose, xylose and arabinose indicating solubilization of starch and hemicellulose, while residues were composed of cellulose. Four independent variables (heating temperature, come-up time, heating time and solid to liquid ratio) were optimized for maximizing the carbohydrates yield using the response surface methodology including fractional factorial design, the path of steepest ascent and central composite design. The optimized condition was as follows; heating temperature 176.5 °C, come-up time 2 min, heating time 16 min and solid to liquid ratio 1/20 (g/mL), respectively. The maximal yield attained 70.8% of carbohydrates with predominant production of xylo-oligosaccharides.
Collapse
Affiliation(s)
- Tomoki Yoshida
- Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
90
|
Rose DJ, Inglett GE, Liu SX. Utilisation of corn (Zea mays) bran and corn fiber in the production of food components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:915-924. [PMID: 20355130 DOI: 10.1002/jsfa.3915] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The milling of corn for the production of food constituents results in a number of low-value co-products. Two of the major co-products produced by this operation are corn bran and corn fiber, which currently have low commercial value. This review focuses on current and prospective research surrounding the utilization of corn fiber and corn bran in the production of potentially higher-value food components. Corn bran and corn fiber contain potentially useful components that may be harvested through physical, chemical or enzymatic means for the production of food ingredients or additives, including corn fiber oil, corn fiber gum, cellulosic fiber gels, xylo-oligosaccharides and ferulic acid. Components of corn bran and corn fiber may also be converted to food chemicals such as vanillin and xylitol. Commercialization of processes for the isolation or production of food products from corn bran or corn fiber has been met with numerous technical challenges, therefore further research that improves the production of these components from corn bran or corn fiber is needed.
Collapse
Affiliation(s)
- Devin J Rose
- Functional Foods Research Unit, National Center for Agricultural Utilization Research, USDA, ARS, 1815 N University Street, Peoria, IL 61604, USA
| | | | | |
Collapse
|
91
|
A Method for the Determination of Soluble Arabinoxylan Released from Insoluble Substrates by Xylanases. FOOD ANAL METHOD 2010. [DOI: 10.1007/s12161-009-9121-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
92
|
Rose DJ, Patterson JA, Hamaker BR. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:493-9. [PMID: 20000566 DOI: 10.1021/jf9020416] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Human fecal fermentation profiles of maize, rice, and wheat bran and their dietary fiber fractions released by alkaline-hydrogen peroxide treatment (principally arabinoxylan) were obtained with the aim of identifying and characterizing fractions associated with high production of short chain fatty acids and a linear fermentation profile for possible application as a slowly fermentable dietary fiber. The alkali-soluble fraction from maize bran resulted in the highest short chain fatty acid production among all samples tested, and was linear over the 24 h fermentation period. Size-exclusion chromatography and (1)H NMR suggested that higher molecular weight and uniquely substituted arabinose side chains may contribute to these properties. Monosaccharide disappearance data suggest that maize and rice bran arabinoxylans are fermented by a debranching mechanism, while wheat bran arabinoxylans likely contain large unsubstituted xylose regions that are fermented preferentially, followed by poor fermentation of the remaining, highly branched oligosaccharides.
Collapse
Affiliation(s)
- Devin J Rose
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47906, USA
| | | | | |
Collapse
|
93
|
Microstructural changes in the maize kernel pericarp during cooking stage in nixtamalization process. J Cereal Sci 2010. [DOI: 10.1016/j.jcs.2009.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
94
|
Pastell H, Virkki L, Harju E, Tuomainen P, Tenkanen M. Presence of 1→3-linked 2-O-β-d-xylopyranosyl-α-l-arabinofuranosyl side chains in cereal arabinoxylans. Carbohydr Res 2009; 344:2480-8. [DOI: 10.1016/j.carres.2009.09.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
|
95
|
Yadav MP, Johnston DB, Hicks KB. Corn fiber gum: New structure/function relationships for this potential beverage flavor stabilizer. Food Hydrocoll 2009. [DOI: 10.1016/j.foodhyd.2008.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
96
|
Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 2009. [DOI: 10.1016/j.foodchem.2009.01.059] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Kim JW, Mazza G. Extraction and separation of carbohydrates and phenolic compounds in flax shives with pH-controlled pressurized low polarity water. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1805-1813. [PMID: 19209905 DOI: 10.1021/jf803467y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A bench-scale pressurized low polarity water (PLPW) extractor was used for the extraction and separation of hemicellulose, cellulose, lignin, and other phenolic compounds in flax shives. In the first part of this research, the key PLPW extraction process variables of temperature, pH, and flow rate, were optimized using central composite design (CCD). Temperature and pH of water had a significant affect on the fractionation of carbohydrates (cellulose and hemicellulose), lignin, and other phenolics. The optimal extraction conditions for the separation of hemicellulose and lignin, determined by the optimization using CCD, were 170 degrees C, pH 3.0, and a flow rate of 2.5 mL/min. Under these extraction conditions, 39.3% of the initial biomass or feed, 70.1% of the hemicellulose, 35.3% of the lignin, and 5.3% of the cellulose were extracted from the flax shives. In order to improve the purity and yield of the cellulose, a two-stage PLPW extraction was examined. The first stage was designed to remove hemicellulose by water at 170 degrees C and the second stage was intended for delignification by a pH 12 buffer at 220 degrees C. The two-stage PLPW extraction effectively removed 63.2% of the feed, 97.3% of hemicellulose, and 86.3% of lignin, while solubilizing 23.9% of cellulose; resulting in a solid residue containing 0.7 g of hemicellulose, 3.5 g of lignin, and 27.3 g of cellulose/100 g of DFS. The PLPW extraction is able to extract and separate components in flax shives by changing pH and temperature. The best case occurs between pH 9.5 and 12, resulting in maximum solubilization of hemicellulose and lignin.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 4200 Hwy 97 Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
98
|
Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driguez H, O'Donohue MJ. A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls. Aust J Chem 2009. [DOI: 10.1071/ch08458] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The one-letter code system proposed here is a simple method to accurately describe structurally diverse oligosaccharides derived from heteroxylans. Substitutions or ‘molecular decoration(s)’ of main-chain d-xylosyl moieties are designated by unique letters. Hence, an oligosaccharide is described by a series of single letters, beginning with the non-reducing d-xylosyl unit. Superscripted numbers are used to indicate the linkage position(s) of main-chain substitution(s) and, where necessary, superscripted lowercase letter(s) indicate the nature of non-glycosidic groups (e.g., methyl, acetyl, or phenolic derivative moieties) that can be present on the substituents. Although relatively simple and practical to use, this abbreviated system lends itself to the naming of a large number of different combinations of structural building blocks and substituents. In its present state, this system is, therefore, adequate to name and differentiate all currently known complex oligosaccharides derived from heteroxylans and is sufficiently flexible to accommodate new structures as they become available.
Collapse
|
99
|
|
100
|
Tilay A, Bule M, Kishenkumar J, Annapure U. Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7644-8. [PMID: 18707110 DOI: 10.1021/jf801536t] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferulic acid (FA) is a phenolic antioxidant present in plants, which is widely used in the food and cosmetic industry. In the present study, various agricultural wastes such as maize bran, rice bran, wheat bran, wheat straw, sugar cane baggasse, pineapple peels, orange peels, and pomegranate peels were screened for the presence of esterified FA (EFA). Among the sources screened, maize bran was found to contain the highest amount of EFA. Pineapple peels, orange peels, and pomegranate peels were also found to contain traces of EFA. Alkaline extraction of EFA from maize bran was carried out using 2 M NaOH. Response surface methodology (RSM) was used for optimization of EFA extraction, which resulted in a 1.3-fold increase as compared to the unoptimized conventional extraction technique. FA was analyzed by means of high-performance liquid chromatography (HPLC). Purification was carried out by adsorption chromatography using Amberlite XAD-16 followed by preparative high-performance thin-layer chromatography (HPTLC). The recovery of Amberlite XAD-16 purified FA was up to 57.97% with HPLC purity 50.89%. The fold purity achieved was 1.35. After preparative HPTLC, the maximum HPLC purity obtained was 95.35% along with an increase in fold purity up to 2.53.
Collapse
Affiliation(s)
- Ashwini Tilay
- Food Engineering and Technology Department, Institute of Chemical Technology (UICT), University of Mumbai, Matunga, Mumbai 400 019, India
| | | | | | | |
Collapse
|