51
|
Kunze WA, Bertrand PP, Furness JB, Bornstein JC. Influence of the mucosa on the excitability of myenteric neurons. Neuroscience 1997; 76:619-34. [PMID: 9015343 DOI: 10.1016/s0306-4522(96)00408-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intracellular microelectrodes were used to examine the active and passive membrane properties of neurons in the myenteric plexus of the guinea-pig small intestine. Neurons of two types were examined: S neurons, which have prominent fast excitatory postsynaptic potentials and in which action potentials are not followed by long-lasting afterhyperpolarizations, and AH neurons, which have long-lasting afterhyperpolarizations following soma action potentials. In preparations in which the myenteric ganglia and longitudinal muscle, but no mucosa, were present, most S neurons (59/64) responded to intracellular depolarizing current with brief bursts of action potentials. Regardless of the strength of a depolarizing current of 500-ms duration, these neurons never fired action potentials beyond the first 250 ms. S neurons in this state were called rapidly accommodating. In contrast, within 600 microm circumferential to the intact mucosa, 26/58 S neurons fired action potentials for most or all of the period of a 500-ms insightful depolarizing pulse. S neurons in this state were called slowly accommodating. Depolarization of S neurons in the rapidly accommodating state caused a rapidly developing reduction in membrane resistance (outward rectification; onset about 7 ms). This rectification was absent from S neurons in the slowly accommodating state. Tetraethylammonium blocked the early rectification and the changed neuronal state from rapidly accommodating to slowly accommodating. Application of tetrodotoxin to neurons in the slowly accommodating state revealed the early rectification, indicating that its absence from these neurons before tetrodotoxin was applied had been due to ongoing activity in axons providing synaptic input to the neurons. After the mucosa was disconnected from the other layers and laid back in its original position, all S neurons close to the mucosa were in the rapidly accommodating state (17/17). Slow excitatory postsynaptic potentials, evoked by electrical stimulation of nerve tracts, converted 17 of 43 S neurons from rapidly accommodating to slowly accommodating and eliminated the early outward rectification in these neurons. These results indicate that the action potential firing properties of S neurons can be changed by external influences, including the activity of synaptic inputs that release a slowly acting transmitter. Spontaneous antidromic action potentials were recorded in 8/62 AH neurons within 600 microm circumferential to the intact mucosa. It is concluded that, when the mucosa is intact, a background firing of sensory neurons occurs which leads to a state change in many S neurons innervated by the active sensory neurons. We conclude that this state change is caused by the block of a voltage-sensitive outward rectification.
Collapse
Affiliation(s)
- W A Kunze
- Department of Physiology, University of Melbourne, Parkville, Australia
| | | | | | | |
Collapse
|
52
|
Stebbing MJ, Bornstein JC. Electrophysiological mapping of fast excitatory synaptic inputs to morphologically and chemically characterized myenteric neurons of guinea-pig small intestine. Neuroscience 1996; 73:1017-28. [PMID: 8809821 DOI: 10.1016/0306-4522(96)00121-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurons within the myenteric plexus of the guinea-pig ileum were impaled using conventional intracellular electrodes. Points of stimulation within the surrounding ganglia and connectives which gave rise to fast excitatory synaptic potentials were mapped using a movable monopolar stimulating electrode. Cells were then injected with the intracellular marker, biocytin, and processed for multiple label immunohistochemistry to reveal their morphologies, chemical contents and, hence, their functional classes. Of 65 neurons belonging to the S electrophysiological class, 53 received fast excitatory synaptic inputs from stimulation at sites at least 2 mm away in a directly circumferential direction. These inputs almost certainly arise from stimulation of the circumferentially-directed axons of the Dogiel type II/AH-neurons, which are thought to be intrinsic sensory neurons. The majority of cells which projected anally and were immunoreactive for nitric oxide synthase (19/25), all neurons which ramified in the tertiary plexus and were identified as longitudinal muscle motor neurons (6/6) and all neurons identified as excitatory motor neurons innervating the circular muscle (12/12) received inputs from these circumferentially-directed pathways. However only one of six descending filamentous interneurons impaled received such inputs, suggesting they may be differentially innervated. The conduction velocities of circumferentially-directed axons giving rise to fast excitatory post synaptic potentials were estimated to be 0.41 +/- 0.10 m/s (mean +/- standard deviation, n = 21). The conduction velocities estimated for longitudinally-directed pathways were 0.55 +/- 0.25 m/s (n = 29). Thus, the majority of myenteric neurons receive fast excitatory synaptic input from putative intrinsic sensory neurons which project circumferentially around the intestine.
Collapse
Affiliation(s)
- M J Stebbing
- Department of Physiology, University of Melbourne, Parkville, Vic, Australia
| | | |
Collapse
|
53
|
Tonini M, Costa M, Brookes SJ, Humphreys CM. Dissociation of the ascending excitatory reflex from peristalsis in the guinea-pig small intestine. Neuroscience 1996; 73:287-97. [PMID: 8783250 DOI: 10.1016/0306-4522(96)00040-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Localized distension of the intestine evokes an ascending excitatory reflex and a descending inhibitory reflex in the circular muscle layer. The sequential activation of these two reflexes is believed to underlie the motor pattern of peristalsis, which is responsible for the co-ordinated propulsion of intestinal contents. In this study we have shown that the initiation of peristalsis involves mechanisms additional to those mediating the ascending excitatory reflex. A short length of guinea-pig small intestine was mounted in a partitioned organ bath so that the lumen was occluded by the partition, but neuronal continuity was maintained. The anal segment was distended by intraluminal fluid infusion to evoke a peristalsis; in the oral segment, an isotonic transducer was used to record circular muscle contractions due to ascending excitatory reflexes. Stepwise distension of the anal segment with 5 microliters increments at 10 s intervals, or with a large, single-step infusion, elicited both the ascending excitatory reflex and peristalsis, when carried out at 3 min intervals. The threshold volume for the ascending excitatory reflex was smaller than the threshold for peristalsis with either incremental or single-step distensions. The ascending excitatory reflex appeared with a shorter delay than peristalsis. Tetrodotoxin (0.6 microM) or hexamethonium (100 microM) added to the oral compartment abolished the ascending excitatory reflex but not peristalsis. These drugs abolished both the ascending excitatory reflex and peristalsis when added to the anal compartment. When stimuli were delivered at 1 min intervals, peristalsis failed completely after the first trial, but the ascending excitatory reflex persisted, at a slightly reduced amplitude. When the anal segment was distended to just-subthreshold volume, electrical field stimulation (0.25-0.5 ms, 1-5 Hz for 1 s), delivered at 3 min intervals, evoked ascending excitatory responses but not peristalsis. Higher frequency stimulation (10 Hz) consistently evoked both peristalsis and the ascending excitatory responses. When trains of electrical stimulation were repeated at 1 min intervals, peristalsis quickly failed, but the ascending excitatory response persisted, although reduced in amplitude. The initiation of peristalsis can be dissociated from the ascending excitatory reflex by its threshold volume, by the duration of distension or the intensity of electrical stimulation required, and by its susceptibility to fatigue with repeated mechanical or electrical stimuli. This suggests that the ascending excitatory reflex may be part of the mechanism underlying the initiation of peristalsis, but that additional mechanisms must also be involved. Peristalsis should not be regarded as a reflex response but rather as an all-or-nothing motor pattern, triggered by mechanical stimulation, similar to other co-ordinated motor patterns in vertebrates and invertebrates.
Collapse
Affiliation(s)
- M Tonini
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, South Australia
| | | | | | | |
Collapse
|
54
|
Johnson PJ, Bornstein JC, Yuan SY, Furness JB. Analysis of contributions of acetylcholine and tachykinins to neuro-neuronal transmission in motility reflexes in the guinea-pig ileum. Br J Pharmacol 1996; 118:973-83. [PMID: 8799571 PMCID: PMC1909536 DOI: 10.1111/j.1476-5381.1996.tb15495.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The roles of acetylcholine (ACh) and tachykinins in neuro-neuronal transmission during ascending excitatory and descending inhibitory reflexes were studied by recording intracellular reflex responses of the circular muscle to physiological stimuli. Experiments were carried out in opened segments of guinea pig ileum in an organ bath that was partitioned so that three regions could be independently exposed to drugs. 2. Ascending excitatory reflexes evoked by either distension from the serosal side or compression of the mucosa were depressed by 55% and 85%, respectively, in the presence of hexamethonium (200 microM) and by 30% and 45%, respectively, by a desensitizing concentration of the selective NK3 receptor agonist, senktide (1 microM), in the chamber in which reflexes were initiated. Together, hexamethonium and senktide abolished responses to compression. A residual response to distension persisted. This was abolished by hyoscine (1 microM). 3. Hexamethonium (200 microM) abolished ascending reflexes when applied to the region between the stimulus and the recording sites, or to the recording chamber. 4. Descending reflex responses were reduced by 35% by synaptic blockade in the stimulus chamber with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+. Senktide (1 microM) in the stimulus chamber reduced distension reflexes to the same extent as synaptic blockade, whereas hexamethonium (200 microM) and hyoscine (1 microM) depressed responses by less than 20%. Responses to compression were reduced by 40% by senktide alone, while senktide and hexamethonium together reduced responses by 60%, an effect similar to synaptic blockade. Under these conditions, hyoscine in the stimulus chamber restored reflexes evoked by distension, but did not alter those evoked by mucosal compression. 5. Total synaptic blockade in the intermediate chamber, between stimulus and recording sites, reduced descending reflex responses by more than 90%. In contrast, hexamethonium (200 microM) had no effect and hyoscine (1 microM) reduced only the responses to distension (by 30%). Senktide (1 microM) depressed responses to both stimuli by approximately 80%. 6. Application of hexamethonium (200 microM) to the recording chamber depressed descending reflex responses to distension applied in the near stimulation chamber by 15%, but had no effect on responses to compression in the near chamber or to either stimulus applied in the far chamber. 7. Descending reflexes evoked by near chamber stimuli were unaffected by hyoscine (1 microM) or senktide (1 microM) applied to the recording chamber; hyoscine enhanced reflexes evoked by compression in the far chamber by 50%. 8. For the ascending excitatory reflex pathway, it is concluded that transmission from sensory neurones is mediated by ACh acting via both nicotinic and muscarinic receptors, and by tachykinins acting at NK3 receptors. Transmission from ascending interneurones appears to be predominantly via nicotinic receptors. The descending inhibitory pathways are more complex, and while transmission from sensory neurones involves nicotinic, muscarinic and NK3 receptor-dependent components, transmission from descending interneurones to inhibitory motor neurones is neither cholinergic nor due to tachykinins acting via NK3 receptors.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
55
|
Sternini C, Su D, Gamp PD, Bunnett NW. Cellular sites of expression of the neurokinin-1 receptor in the rat gastrointestinal tract. J Comp Neurol 1995; 358:531-40. [PMID: 7593747 DOI: 10.1002/cne.903580406] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the digestive system, substance P is an excitatory transmitter to muscle, a putative excitatory neuro-neuronal transmitter, a vasodilator, and a mediator in inflammatory processes. Many of the biological effects of substance P are mediated by a high-affinity interaction with the tachykinin receptor neurokinin-1. The aim of the present study was to identify the sites of expression of this receptor in the rat stomach and intestine by immunohistochemistry with a polyclonal antiserum raised to the intracellular C-terminal portion of the rat neurokinin-1 receptor. Neurokinin-1 receptor immunoreactivity is present in a large population of enteric neurons. The relative density of these neurons along the gut is colon > ileum >> stomach. In the intestine, stained neurons have a smooth cell body with processes that can be followed within and between plexuses, and make close approaches to other neuronal cells, but do not appear to project outside the plexuses, suggesting that they are interneurons. In the stomach, neurokinin-1 receptor-immunoreactive neurons are infrequent and have a poorly defined and irregular shape. Neurokinin-1 receptor immunoreactivity is also localized to numerous non-neuronal cells in the inner portion of the circular muscle layer of the small intestine, which have the appearance of small dark smooth muscle cells or interstitial cells of Cajal. These cells are postulated to form a "stretch-sensitive" system with the deep muscular plexus and thus constitute an important site of regulation of muscle activity. Double labeling immunofluorescence was used to simultaneously localize neurokinin-1 receptor and substance P/tachykinin immunoreactivities. These experiments demonstrate that in the enteric plexuses, substance P/tachykinin-immunoreactive varicose fibers encircle the cell bodies of most neurokinin-1 receptor-containing neurons, and in the inner portion of the circular muscle layer of the small intestine they lie close to neurokinin-1 receptor-immunoreactive non-neuronal cells. In addition, some enteric neurons express both neurokinin-1 receptor and substance P/tachykinin immunoreactivities. The present study provides strong evidence that the neurokinin-1 receptor is the tachykinin receptor mediating the actions of substance P on enteric neurons and smooth muscle.
Collapse
Affiliation(s)
- C Sternini
- CURE:VA/UCLA Gastroenteric Biology Center, VAMC West-Los Angeles, California 90073, USA
| | | | | | | |
Collapse
|
56
|
Furness JB, Johnson PJ, Pompolo S, Bornstein JC. Evidence that enteric motility reflexes can be initiated through entirely intrinsic mechanisms in the guinea-pig small intestine. Neurogastroenterol Motil 1995; 7:89-96. [PMID: 7621324 DOI: 10.1111/j.1365-2982.1995.tb00213.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although motility reflexes can be elicited in the intestine in vivo after all neural connections with the central nervous system are cut, or in vitro in isolated intestinal segments, it is not proven that the cell bodies of the primary sensory neurons for these reflexes are in the intestinal wall. It is feasible that the nerve cells are in dorsal root ganglia and that axon reflexes are involved in the initiation of the reflexes. We have examined reflexes in segments of guinea-pig intestine in which extrinsic denervation, 9-11 days before the intestine was removed, and isolation of the intestine in vitro were combined. The experimental segments were isolated from extrinsic inputs by severing nerves in the mesentery and those running in the gut wall that entered the segment. The effectiveness of denervation was confirmed histochemically. Ascending and descending reflexes were evoked by mucosal distortion or distension and responses were recorded by intracellular microelectrodes in the circular muscle. Reflex responses recorded after denervation were no different to those recorded from control tissue. It is concluded that, in the small intestine of the guinea-pig, cell bodies of primary sensory neurons for mucosal and probably for distension reflexes are intrinsic to the organ.
Collapse
Affiliation(s)
- J B Furness
- Department of Anatomy & Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
57
|
Pompolo S, Furness JB. Sources of inputs to longitudinal muscle motor neurons and ascending interneurons in the guinea-pig small intestine. Cell Tissue Res 1995; 280:549-60. [PMID: 7606768 DOI: 10.1007/bf00318359] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light- and electron-microscopic studies were used to investigate connections between specific subgroups of neurons in the myenteric plexus of the guinea-pig small intestine. Inputs to two classes of calretinin-immunoreactive (IR) nerve cells, longitudinal muscle motor neurons and ascending interneurons, were examined. Inputs from calbindin-IR primary sensory neurons and from three classes of descending interneurons were studied. Electron-microscopic analysis showed that calbindin-IR axons formed two types of inputs, synapses and close contacts, on calretinin-IR neurons. About 40% of inputs to the longitudinal muscle motor neurons and 70% to ascending interneurons were calbindin-IR. Approximately 50% of longitudinal muscle motor neurons were surrounded by bombesin-IR dense pericellular baskets and 40% by closely apposed varicosities. At the electron-microscope level, the bombesin-IR varicosities were found to form synapses and close contacts with the motor neurons. Dense pericellular baskets with bombesin-IR surrounded 36% of all ascending interneurons, and a further 17% had closely apposed varicosities. Somatostatin- and 5-HT-IR descending interneurons provided no dense pericellular baskets to calretinin-IR nerve cells. Thus, calretinin-IR, longitudinal muscle motor neurons and ascending interneurons receive direct synaptic inputs from intrinsic primary sensory neurons and from non-cholinergic, bombesin-IR, descending interneurons.
Collapse
Affiliation(s)
- S Pompolo
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
58
|
Young HM, Furness JB. Ultrastructural examination of the targets of serotonin-immunoreactive descending interneurons in the guinea pig small intestine. J Comp Neurol 1995; 356:101-14. [PMID: 7629305 DOI: 10.1002/cne.903560107] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Serotonin neurons are descending interneurons in the myenteric plexus of the guinea pig small intestine. Preembedding single- and double-label immunocytochemistries at the ultrastructural level were used to identify the targets of these serotonin interneurons. Serial ultrathin sections were taken through a myenteric ganglion that had been processed for serotonin immunocytochemistry. The ganglion contained the cell bodies of 69 neurons, including 2 serotonin neurons and 6 neurons with the ultrastructural features of Dogiel type II cells. For each cell body in the ganglion, the number of serotonin inputs (synapses and close contacts) was determined. About 59% of the cell bodies did not receive any serotonin inputs. The most abundant serotonin terminals were related to two targets: other serotonin descending interneurons and a population of neurons with Dogiel type I morphology, but whose neurochemistry and function is unknown. The serotonin inputs to the serotonin cell bodies were located predominantly on the lamellar dendrites. Each of the Dogiel type II neurons received 3 or fewer serotonin inputs, and none of the serotonin inputs to Dogiel type II neurons formed a synapse. Overall, about 40% of the serotonin inputs formed synapses. The serotonin inputs to neurons that received many serotonin inputs were more likely to show synaptic specializations than serotonin inputs to neurons that received few serotonin inputs. Inhibitory motor neurons contain nitric oxide synthase (NOS). At the light microscope level, serotonin nerve fibers do not form dense pericellular baskets around NOS cell bodies. To determine whether there are serotonin inputs to NOS neurons, serial ultrathin sections were taken through a myenteric ganglion that had been processed for preembedding double-label immunocytochemistry, in which the NOS neurons were labeled with peroxidase-diaminobenzidine and the serotonin neurons with silver-intensified 1 nm gold. Only 1 out of 9 NOS cells examined in serial section received more than 5 serotonin inputs. The results suggest that, in the guinea pig small intestine, the serotonin descending interneurons are not an essential element of the descending inhibitory reflex.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
59
|
Young HM, Furness JB, Povey JM. Analysis of connections between nitric oxide synthase neurons in the myenteric plexus of the guinea-pig small intestine. JOURNAL OF NEUROCYTOLOGY 1995; 24:257-63. [PMID: 7543936 DOI: 10.1007/bf01186538] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the myenteric plexus of the guinea-pig ileum, a sub-population of descending interneurons contains nitric oxide synthase. Final neurons in descending motility pathways, inhibitory circular muscle motor neurons, also contain nitric oxide synthase. In this study we used ultrastructural immunocytochemistry to determine whether nitric oxide synthase descending interneurons provide inputs to all nitric oxide synthase neurons. The presence of nitric oxide synthase inputs to 35 nitric oxide synthase nerve cells from three animals was examined. Nine nerve cells from one ganglion were studied in serial section. Every nerve cell received inputs (close contacts and synapses) from nitric oxide synthase terminals. The number of inputs to the nine serially sectioned neurons ranged from 13 to 45. The inputs were found in about equal numbers on the cell bodies and the dendrites. There was no significant correlation between the size of nitric oxide synthase neurons and the number of nitric oxide synthase inputs they received. There was also no correlation between the number of nitric oxide synthase inputs and the number of 5-hydroxytryptamine inputs (determined in a previous study) received by nitric oxide synthase neurons. Random sections through an additional 26 nitric oxide synthase neurons (seven in the same ganglion and 19 from another two myenteric ganglia from different animals) were examined and nitric oxide synthase synapses and close contacts were observed on each neuron. Nitric oxide synthase interneurons and motor neurons are morphologically indistinguishable.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
60
|
Yuan SY, Bornstein JC, Furness JB. Pharmacological evidence that nitric oxide may be a retrograde messenger in the enteric nervous system. Br J Pharmacol 1995; 114:428-32. [PMID: 7533617 PMCID: PMC1510253 DOI: 10.1111/j.1476-5381.1995.tb13244.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. The effects of inhibition of nitric oxide synthase on neuro-neuronal and neuromuscular transmission during motility reflexes in the small intestine of the guinea-pig were examined. 2. Isolated segments of intestine were secured in a three chambered organ bath so that different parts of the reflex pathways could be independently exposed to drug-containing solutions. Reflexes were evoked by distension or compression of the mucosa in two adjacent chambers and reflex responses were recorded from the circular muscle with intracellular microelectrodes in the third chamber. Thus, the actions of drugs at connections between sensory neurones and interneurones, between interneurones and other interneurones and at motor neurones could be distinguished. 3. NG-monomethyl-L-arginine (L-NMMA; 100 microM), an inhibitor of nitric oxide synthase, did not affect the ascending excitatory reflex when added to either the central stimulation chamber or the recording chamber. 4. In contrast, L-NMMA (100 microM) enhanced the descending inhibitory reflex when added to the chamber in which stimuli were applied. This effect was prevented by prior exposure to L-arginine (100 microM), which had no effect by itself. Conduction of reflexes between the stimulus chamber and the recording chamber was unaffected by the presence of L-NMMA in an intervening chamber. 5. L-NMMA (100 microM) added to the recording chamber depressed the descending inhibitory reflex, an effect that was prevented by previous exposure to L-arginine. 6. The nitric oxide donor, sodium nitroprusside (100 microM), added to the stimulus chamber, depressed both ascending excitatory and descending inhibitory reflexes. When added to the middle chamber,sodium nitroprusside had no effect on conduction of reflexes through this chamber.7. It is deduced that nitric oxide, released from the cell bodies of descending interneurones, suppresses transmission from synaptic connections made with them by enteric sensory neurones.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Vic, Australia
| | | | | |
Collapse
|
61
|
Song ZM, Brookes SJ, Costa M. All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neurosci Lett 1994; 180:219-22. [PMID: 7535407 DOI: 10.1016/0304-3940(94)90524-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The projections of Dogiel type II myenteric neurons to the mucosa of the guinea-pig ileum were quantified by combining retrograde transport of DiI, in vitro, with immunohistochemistry. After DiI application to the mucosa over an area of 1.5 x 10 mm2, virtually all (> 97%) calbindin-immunoreactive Dogiel type II neurons in the myenteric plexus underneath the mucosal DiI application site were labelled, indicating that essentially all of these neurons project to the mucosa. From cell counts, on average 5 calbindin-immunoreactive neurons project to each villus, and each calbindin-immunoreactive neuron supplies on average 10 villi. Since Dogiel type II neurons that were not immunoreactive for calbindin (19% of all labelled nerve cells) also projected to the mucosa, it is likely that all Dogiel type II neurons, which are putative sensory neurons of the gut, project to the mucosa.
Collapse
Affiliation(s)
- Z M Song
- Department of Human Physiology, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
62
|
Yuan SY, Bornstein JC, Furness JB. Investigation of the role of 5-HT3 and 5-HT4 receptors in ascending and descending reflexes to the circular muscle of guinea-pig small intestine. Br J Pharmacol 1994; 112:1095-100. [PMID: 7952869 PMCID: PMC1910247 DOI: 10.1111/j.1476-5381.1994.tb13196.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1. The present study was undertaken to ascertain whether 5-hydroxytryptamine (5-HT) acting at either 5-HT3 or 5-HT4 receptors plays a significant role in motility reflexes in the guinea-pig small intestine. 2. An isolated segment of small intestine was opened along its mesenteric border and pinned, mucosa uppermost, in a three chambered organ bath so that the oral, middle and anal regions of a single preparation could be separately superfused. 3. Conventional intracellular recording methods were used to monitor the responses of the circular muscle in the oral or the anal end chambers when distension was applied in either of the other two chambers or the mucosal villi were compressed in the middle chamber. Drugs were added to the middle chamber. 4. 5-HT3 receptor antagonists (tropisetron, 0.1-10 microM; granisetron, 1 microM and BRL 46470, 1 microM) depressed the ascending excitatory reflex evoked by these stimuli but had no effect on the descending inhibitory reflex. The depression of the excitatory reflex was observed whether the reflex was evoked from the chamber containing the drug or was simply conducted, via interneurones, through this chamber. 5. The 5-HT4 receptor antagonist, SDZ 205-557 (1 microM), had no significant effect on either the ascending or descending reflex pathways. However, 5-HT4 receptors were present as cisapride (0.1 microM) significantly enhanced the ascending excitation without affecting the descending inhibition. This effect of cisapride was converted to a significant depression of the ascending reflex by SDZ 205-557. 6. The results suggest that 5-HT3, but not 5-HT4, receptors play an important role in the ascending excitatory reflex and that these receptors may be on interneurones in the reflex pathway.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
63
|
Bornstein JC. Local neural control of intestinal motility: nerve circuits deduced for the guinea-pig small intestine. Clin Exp Pharmacol Physiol 1994; 21:441-52. [PMID: 7982274 DOI: 10.1111/j.1440-1681.1994.tb02540.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Propulsion of digesta along the intestine appears to occur by the action of a series of local reflexes which cause contraction oral to the digesta and relaxation of circular muscle on the anal side. 2. There is now substantial evidence available about the identities of the enteric neurons that mediate these reflexes. 3. The motor neurons and interneurons of the reflex pathways lie within the myenteric plexus. These neurons can be classified electrophysiologically as S-neurons and have distinctive projections and neurochemistries. 4. The sensory neurons may lie in the myenteric plexus, but there is some evidence for sensory neurons in the submucous plexus. A contribution from extrinsic sensory neurons to local motility reflexes cannot be ruled out. Intrinsic sensory neurons are probably AH-neurons and are large multi-axonal cells.
Collapse
Affiliation(s)
- J C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
64
|
Neya T, Mizutani M, Yamasato T. Role of 5-HT3 receptors in peristaltic reflex elicited by stroking the mucosa in the canine jejunum. J Physiol 1993; 471:159-73. [PMID: 7907142 PMCID: PMC1143956 DOI: 10.1113/jphysiol.1993.sp019895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The role played by the 5-HT3 receptor, a serotonin subtype receptor, in peristaltic reflexes was studied in dogs first given ketamine, then anaesthetized with urethane (1.0 g kg-1, I.V.) and alpha-chloralose (100 mg kg-1, I.V.). The jejunal loop was partitioned into two segments with respect to blood supply. Drugs were infused intra-arterially into each segment. 2. Stroking of the mucosa of the aboral and oral segments elicited an ascending contraction and a descending relaxation, respectively. 3. The ascending contraction was concentration-dependently inhibited by treatment of the aboral segment with the 5-HT3 receptor antagonists ICS 205-930 and ondansetron (1.4 pmol min-1 to 14 nmol min-1 for both). The maximal inhibition was 49.5 and 69.3%, respectively. The response was not affected by treatment of the oral segment with these drugs. The descending relaxation was inhibited by 51.4 and 60.8%, respectively, by treatment of the oral segment with ICS 205-930 and ondansetron (1.4 nmol min-1 for both). 4. The ascending contraction was markedly inhibited by treatment of either segment with hexamethonium (140 nmol min-1). The response was abolished by treating both segments with hexamethonium and by treating the oral segment with atropine (14 nmol min-1). 5. These results suggest firstly that, in the canine jejunum, enteric neurons with 5-HT3 receptors play a role as sensory neurons or interneurons in the ascending excitatory and the descending inhibitory pathways of the peristaltic reflex elicited by stroking the mucosa, and secondly, that the ascending limb is composed of cholinergic interneurons and motoneurons.
Collapse
Affiliation(s)
- T Neya
- Department of Physiology, Okayama University Medical School, Japan
| | | | | |
Collapse
|
65
|
Jodal M, Holmgren S, Lundgren O, Sjöqvist A. Involvement of the myenteric plexus in the cholera toxin-induced net fluid secretion in the rat small intestine. Gastroenterology 1993; 105:1286-93. [PMID: 7693539 DOI: 10.1016/0016-5085(93)90130-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The enteric nervous system is responsible in vivo for most of the change in fluid transport induced by cholera toxin. The aim of the present study was to investigate the importance of the myenteric plexus in the Intramural reflex responsible for this secretion. METHODS Long-term ablation of the myenteric plexus was achieved by serosal application of benzalkonium chloride on jejunal segments in rats. RESULTS The treated segments without functioning myenteric plexus showed a normal net fluid absorption. Cholera toxin in this segment only induced a reduction of fluid absorption, whereas in a nontreated ileal segment it concomitantly induced a conspicuous net fluid secretion. Intravenous hexamethonium did not change the cholera toxin response in the treated jejunal segments, whereas vasoactive intestinal polypeptide elicited a marked secretion. CONCLUSIONS Benzalkonium chloride treatment eliminated the ability of cholera toxin to induce intestinal secretion. Thus, all afferent fibers in the intramural secretory reflex activated by cholera toxin are probably conveyed via the myenteric plexus, which functions as the integrating center in the enteric nervous system. The Ussing chamber technique using stripped intestinal preparations cannot be used when studying effects of luminal secretagogues.
Collapse
Affiliation(s)
- M Jodal
- Department of Physiology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
66
|
Kunze WA, Furness JB, Bornstein JC. Simultaneous intracellular recordings from enteric neurons reveal that myenteric AH neurons transmit via slow excitatory postsynaptic potentials. Neuroscience 1993; 55:685-94. [PMID: 8413931 DOI: 10.1016/0306-4522(93)90434-h] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Simultaneous intracellular electrical recordings were made from pairs of neurons separated circumferentially by 100-200 microns of the myenteric plexus of the guinea-pig ileum in vitro. The recording electrodes were filled with the dye neurobiotin which was injected into impaled nerve cells, and later revealed histochemically. Intracellular current pulses were used to evoke action potentials via the recording electrode in one type of myenteric neuron, in most cases an AH neuron, while a second electrode was used to record from a simultaneously impaled S neuron or AH neuron. AH neurons are thought to be primary sensory neurons, whereas S neurons are interneurons and motor neurons. Ninety pairs of neurons were adequately tested for interaction. From these, 17 S neurons and three AH neurons that responded to AH neuron stimulation were detected. In each case, the response was a slow depolarization that was seen only in response to a train of stimuli at 10 Hz. The slow depolarizations were enhanced by passing depolarizing current and diminished by hyperpolarization. Responses were also diminished by lowering external Ca.2+ and elevating Mg2+. In all cases in which intracellular recording indicated communication between neurons, morphological evidence of connection was seen. In no case was there communication without connection, but in four instances, morphological connections appeared to exist, although no physiological evidence of communication was obtained.
Collapse
Affiliation(s)
- W A Kunze
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
67
|
Pompolo S, Furness JB. Origins of synaptic inputs to calretinin immunoreactive neurons in the guinea-pig small intestine. JOURNAL OF NEUROCYTOLOGY 1993; 22:531-46. [PMID: 8410075 DOI: 10.1007/bf01189041] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Calretinin immunoreactivity is almost completely confined to two classes of neuron in the myenteric plexus of the guinea-pig small intestine, longitudinal muscle motor neurons and ascending interneurons. Nerve cell bodies of the two classes can be readily identified by their sizes and positions in ganglia. The motor neurons, which are small Dogiel type I neurons, are about 20% and the interneurons, which are medium-sized Dogiel type I neurons, are about 5% of myenteric neurons. In the present work, we have also discovered a minor population (0.1%) of small filamentous neurons. In unoperated regions of intestine, at the light microscopic level, numerous calretinin immunoreactive nerve fibres were found in the tertiary plexus that innervates the longitudinal muscle and a medium density of varicose fibres formed pericellular endings in the myenteric ganglia. After double myotomy operations, in areas of plexus 0.5 to 1.5 mm wide which were isolated from ascending and descending inputs, calretinin-immunoreactive fibres of the tertiary plexus were unchanged, but the pericellular endings in the ganglia disappeared. Both the ascending interneurons and the longitudinal muscle motor neurons received ultrastructurally identified synapses and close axonal contacts that were calretinin-immunoreactive. These were counted in semi-serial sections from normal intestine and from regions between myotomy operations. In unoperated intestine, the proportions of calretinin-immunoreactive synapses on small, calretinin-immunoreactive, Dogiel type I nerve cells and small filamentous nerve cells were 30% and 0.1% respectively and on medium-sized Dogiel type I cells the proportion was 28%. Electron microscopy revealed an almost complete loss of immunoreactive inputs to the small Dogiel type I cells between double myotomies, but the number of unreactive inputs was the same as in normal intestine. This work demonstrates that the ascending calretinin-immunoreactive interneurons connect with one another to form ascending chains in the myenteric plexus and that they also provide about 1/3 of the inputs received by calretinin-immunoreactive longitudinal muscle motor neurons. Many of the remaining inputs to these motor neurons are local; we have deduced that these are mainly from primary sensory neurons.
Collapse
Affiliation(s)
- S Pompolo
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
68
|
Yuan SY, Furness JB, Bornstein JC. Post-stimulus depression of reflex changes in circular muscle activity in the guinea pig small intestine. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1992; 40:171-80. [PMID: 1460230 DOI: 10.1016/0165-1838(92)90198-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extent and time course of depression of successive reflex responses recorded with intracellular microelectrodes from the circular smooth muscle of the guinea pig small intestine were determined. Two stimuli were used, distension and distortion of the mucosa by compression; these were applied either at the same or at different sites. Excitatory responses oral and inhibitory responses anal to the stimuli were recorded. Post-stimulus depression of both ascending excitatory and descending inhibitory reflexes occurred, but the extent of depression was slightly less for the descending inhibition. A conditioning distension lasting 9 s depressed the excitatory response to a test distension applied 2 s later at the same site by 90%. After 30 s the depression was 50% and test responses were normal if inter-stimulus intervals were increased to 2 min. Increasing the duration of the conditioning stimulus increased the depression. Post-stimulus depression was less for compression stimuli than for distension stimuli and prior mucosal compression had almost no effect on responses to subsequent distension. The post-stimulus depression was greater if conditioning and test stimuli were at the same rather than different sites. For different sites, conditioning stimuli at 15 mm from the recording site (near) depressed responses to stimuli at 30 mm (far) to a greater extent than far stimuli depressed responses to near stimuli. If the conditioning stimulus at 15 mm was maintained until after the far test stimulus was applied, depression of the test response did not occur. It is concluded that the major sites of post-stimulus depression are at the synapses between primary sensory neurons and the first interneurons of reflex pathways, and that post-stimulus depression also occurs at other places in the pathway, presumably at synapses between interneurons or between interneurons and motor neurons.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
69
|
Bartho L, Santicioli P, Patacchini R, Maggi CA. Tachykininergic transmission to the circular muscle of the guinea-pig ileum: evidence for the involvement of NK2 receptors. Br J Pharmacol 1992; 105:805-10. [PMID: 1380373 PMCID: PMC1908693 DOI: 10.1111/j.1476-5381.1992.tb09061.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The effect of newly developed, receptor-selective tachykinin antagonists (GR 71,251 for NK1 receptors, MEN 10,376 and L 659,877 for NK2 receptors) on noncholinergic transmission to the circular muscle of the guinea-pig ileum has been investigated. 2. In circular muscle strips of the ileum, electrical field stimulation in the presence of atropine (2 microM) and apamin (0.1 microM) evoked a complex motor response. The tonic primary contraction in this response was reduced by GR 71,251 (10 microM) and MEN 10,376 (3-10 microM) but not by L 659,877 (up to 10 microM). The presence of apamin was necessary in this experimental arrangement to unmask an atropine-resistant primary contraction, sensitive to tachykinin antagonists. The motor response was abolished by tetrodotoxin. 3. In circular strips of the ileum GR 71,251 (10 microM) inhibited the tonic contraction produced by [Sar9] substance P sulphone, a selective NK1 receptor agonist but not that produced by [beta Ala8] neurokinin A (4-10), a selective NK2 receptor agonist. By contrast, MEN 10,376 antagonized the effect of the NK2 agonist while leaving the response to the NK1 agonist unaffected. 4. In whole segments of the ileum, distension of the gut wall by an intraluminal balloon placed at about 1 cm from the point of recording of mechanical activity of the circular muscle produced atropine-sensitive phasic contractions (ascending enteric reflex). In the presence of atropine (2 microM), a noncholinergic response was elicited, which required larger volumes of distension that the cholinergic one. The atropine-resistant ascending enteric reflex was enhanced by apamin (0.1 microM) and abolished by tetrodotoxin, either in the presence or absence of apamin.5. MEN 10,376 (3-lOmicroM) inhibited the atropine-resistant ascending enteric reflex in the presence of apamin while GR 71,251 or L 659,877 (10 microM each) were ineffective. MEN 10,376 inhibited the atropine-resistant ascending enteric reflex to a larger extent in the absence than in the presence of apamin and also slightly inhibited the ascending enteric reflex in the absence of atropine.6. These findings provide evidence for an involvement of NK2 tachykinin receptors in excitatory transmission to the circular muscle of the guinea-pig ileum. NK2 receptors are also involved in the physiological-like circular muscle activation produced by stimulation of intramural neuronal pathways which subserve the atropine-resistant ascending enteric reflex.
Collapse
Affiliation(s)
- L Bartho
- Department of Pharmacology, University Medical School of Pecs, Hungary
| | | | | | | |
Collapse
|
70
|
Crist JR, He XD, Goyal RK. Both ATP and the peptide VIP are inhibitory neurotransmitters in guinea-pig ileum circular muscle. J Physiol 1992; 447:119-31. [PMID: 1593443 PMCID: PMC1176028 DOI: 10.1113/jphysiol.1992.sp018994] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Intracellular membrane potential recordings were made from circular smooth muscle cells of the guinea-pig ileum in the presence of atropine (1 microM) and nifedipine (0.1 microM) at 30 degrees C. 2. Perfusion with adenosine triphospate (ATP, 100 microM) and vasoactive intestinal peptide (VIP, 2 microM) resulted in membrane hyperpolarizations of 6.4 +/- 0.3 and 6.8 +/- 0.3 mV, respectively. Picospritzes of ATP (10 mM in pipette) and VIP (100 microM in pipette) resulted in membrane hyperpolarizations of 6.9 +/- 0.4 and 6.3 +/- 0.4 mV, respectively. 3. The ATP-induced hyperpolarizations were antagonized by alpha, beta-methylene ATP desensitization (100 microM for 30 min) and the ATP antagonist Reactive Blue 2 (200 microM), but were unaffected by the VIP antagonist VIP 10-28 (1 microM). 4. The VIP-induced hyperpolarizations were antagonized by VIP 10-28, but unaffected by alpha, beta-methylene ATP desensitization and Reactive Blue 2. 5. A single pulse of transmural nerve stimulation (2 ms, 15 mA) resulted in an inhibitory junction potential (IJP) that reached a maximal amplitude of 12.9 +/- 0.5 mV at 378 +/- 20 ms from the stimulus. This fast IJP was abolished by apamin (2 microM) or tetrodotoxin (1 microM), antagonized by alpha, beta-methylene ATP desensitization or Reactive Blue 2, but unaffected by VIP 10-28. 6. In the presence of apamin (1 microM), four pulses of transmural stimulation (2 ms, 20 Hz, 15 mA) resulted in an IJP that reached a maximal amplitude of 4.8 +/- 0.2 mV at 1.4 +/- 0.1 s from the stimulus. This slow IJP was antagonized by tetrodotoxin (1 microM) or VIP 10-28 (1 microM), augmented by Reactive Blue 2 (200 microM), and unaffected by alpha, beta-methylene ATP desensitization. 7. These findings provide evidence that both ATP and VIP are inhibitory neurotransmitters in the circular muscle layer of the ileum and that ATP may be the neurotransmitter responsible for the fast IJP and VIP the neurotransmitter responsible for the slow IJP.
Collapse
Affiliation(s)
- J R Crist
- Harvard-Thorndike Laboratory, Charles A. Dana Research Institute, Department of Medicine, Beth Israel Hospital, Boston, MA
| | | | | |
Collapse
|
71
|
Bornstein JC, Hendriks R, Furness JB, Trussell DC. Ramifications of the axons of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the guinea pig small intestine. J Comp Neurol 1991; 314:437-51. [PMID: 1814972 DOI: 10.1002/cne.903140303] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The projections and terminal ramifications of electrophysiologically characterized myenteric neurons of the guinea pig small intestine were studied after intracellular injection of the marker substance biocytin. Myenteric neurons were impaled with microelectrodes containing 4% biocytin in 2 M KCl (pH 7.4) and characterized electrophysiologically as either AH-neurons or S-neurons. AH-neurons were neurons in which action potentials were followed by prolonged after-hyperpolarizations (lasting greater than 4 seconds). S-neurons were neurons in which such hyperpolarizations were not seen. Electrical stimulation of internodal strands evoked prominent fast excitatory synaptic potentials in S-neurons, but not in AH-neurons. Biocytin was injected electrophoretically into the impaled AH-neurons by passage of hyperpolarizing current (0.6-0.8 nA for 5-15 minutes) through the recording electrode. The preparation was then fixed in Zamboni's fixative, dehydrated, and exposed to avidin coupled to horseradish peroxidase which allowed the injected biocytin to be visualised via a diaminobenzidine reaction. In many cases, the injected biocytin appeared to fill all the processes of injected AH-neurons that ramified within the myenteric plexus. The filled processes included axons running up to 4 mm within the plexus and profuse varicose terminals ramifying within both the ganglion containing the injected cell body and nearby ganglia. Most (90%) cell bodies of the injected AH-neurons had the morphology of Dogiel type II neurons; large, mostly smooth cell bodies with few short processes and several long processes. The other 10% of the AH-neurons had similar cell bodies and long processes but also had prominent short filamentous processes. This population was termed dendritic AH-neurons. The projections and terminals of 28 AH/Dogiel type II neurons and 7 dendritic AH-neurons were analysed in detail. Both types of neurons project circumferentially to provide terminals to nearby ganglia, but the AH/Dogiel type II neurons also provide terminals to their own ganglia while the dendritic AH-neurons typically do not. Although many of the injected AH-neurons had projections orally or anally along the intestine no evidence for a preferential direction of projection was obtained. Analysis of the areas and distributions of the terminal fields of the AH/Dogiel type II neurons suggests that each may contact several other myenteric neurons and that each myenteric neuron may receive input from about ten AH/Dogiel type II neurons.
Collapse
Affiliation(s)
- J C Bornstein
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | | | | | | |
Collapse
|
72
|
Schemann M, Kayser H. Effects of tachykinins on myenteric neurones of the guinea-pig gastric corpus: involvement of NK-3 receptors. Pflugers Arch 1991; 419:566-71. [PMID: 1724075 DOI: 10.1007/bf00370296] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Responses of gastric myenteric neurones evoked by the mammalian tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were investigated using conventional intracellular recording methods. Application of the tachykinins caused a long lasting depolarization of the membrane potential which was associated with increased spike discharge and augmented excitability of the cells. The responses slowly desensitized. Additionally, cross desensitization occurred between SP, NKA and NKB. Both the NK-1 receptor agonist [Sar9,MetO2(11)]SP and the NK-2 receptor agonist [beta-Ala8]NKA(4-10) had no effect on the electrical properties of the neurones. Only the NK-3 receptor agonist [MePhe7]NKB mimicked the excitatory response observed during SP, NKA and NKB applications. [MePhe7]NKB-induced desensitization abolished the response to SP, NKA and NKB. However, long lasting applications of [Sar9,MetO2(11)]SP or [beta-Ala8]NKA(4-10) had no effect on the SP, NKA or NKB responses. The excitatory effect of SP, NKA and NKB remained unchanged during application of the tachykinin analogues [D-Arg1,D-Trp7,9,Leu11]SP and [Tyr5,D-Trp6,8,9,Arg10]NKA(4-10). The results indicate that SP, NKA and NKB act as excitatory neuromodulators within the enteric nervous system of the stomach. The effects of SP, NKA and NKB appeared to be mediated by activation of NK-3 receptors.
Collapse
Affiliation(s)
- M Schemann
- Institute of Zoophysiology, University of Hohenheim, Stuttgart, Federal Republic of Germany
| | | |
Collapse
|
73
|
Yuan SY, Furness JB, Bornstein JC, Smith TK. Mucosal distortion by compression elicits polarized reflexes and enhances responses of the circular muscle to distension in the small intestine. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1991; 35:219-26. [PMID: 1744379 DOI: 10.1016/0165-1838(91)90100-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The possibility that distortion of the mucosa by compression might be a sufficient stimulus to evoke reflex responses in intestinal muscle, and that such reflexes might summate with distension-evoked (stretch) reflexes, was tested in isolated segments of guinea pig small intestine. Opened segments of intestine were pinned flat in an organ bath with, or without, distending balloons embedded in its base. Intracellular microelectrode recordings were taken from the circular muscle oral and anal to sites of application of sensory stimuli. Pressure against the mucosa, which distorts the villi without the wall being stretched, evoked polarized reflex responses in the circular muscle, consisting of excitatory junction potentials oral and inhibitory junction potentials anal to the stimulus. Distension stimuli applied by 6-mm diameter balloons that pushed against either the serosal or the mucosal surface also evoked excitatory junction potentials in the muscle oral to the stimulus and inhibitory junction potentials at anal sites. Response amplitudes were 20% greater when the distending balloon pushed against the mucosal surface. Responses to distension from the serosal side were of 20% greater amplitude when combined with mucosal distortion by compression than without such compression. It is concluded that peristaltic movements that are commonly studied in the small intestine can be consequences of reflexes elicited at the same time from mucosal distortion receptors and from stretch receptors.
Collapse
Affiliation(s)
- S Y Yuan
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
74
|
Song ZM, Brookes SJ, Costa M. Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. Neurosci Lett 1991; 129:294-8. [PMID: 1720880 DOI: 10.1016/0304-3940(91)90484-b] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myenteric neurons which innervate the mucosa of the guinea-pig ileum were characterized by combining retrograde transport of DiI in vitro with immunohistochemistry. Of DiI-labelled myenteric neurons, 43% were immunoreactive for calbindin and substance P, 25% were immunoreactive for calbindin alone, and 18% were immunoreactive for substance P alone. These 3 classes of neurons had Dogiel Type II morphology and are probably sensory neurons. Two classes of probable secretomotor neurons were characterized by immunoreactivity for neuropeptide Y (4%) and vasoactive intestinal peptide (2%). These 5 classes of myenteric neurons represent over 90% of the retrogradely labelled myenteric neurons that project to the mucosa.
Collapse
Affiliation(s)
- Z M Song
- Department of Human Physiology, Centre for Neuroscience, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
75
|
Smith TK, Bornstein JC, Furness JB. Interactions between reflexes evoked by distension and mucosal stimulation: electrophysiological studies of guinea-pig ileum. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1991; 34:69-75. [PMID: 1940018 DOI: 10.1016/0165-1838(91)90009-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular recording methods were used to examine stereotyped reflexes evoked in the circular muscle of guinea-pig small intestine by distension or repetitive deformation of the mucosal villi, in vitro. Both stimuli evoked compound excitatory junction potentials (EJPs) on the oral side of the site of stimulation and compound inhibitory junction potentials (IJPs) on the anal side. Stimulation of the mucosa by application of 10 microliters of 0.5 M HCl evoked similar reflex responses in the circular muscle. The compound EJPs evoked by mucosal stimulation were depressed, but not abolished, by 1 microM hyoscine, indicating that these responses were partially mediated by release of acetylcholine, as are the equivalent responses evoked by distension. The compound EJPs and the compound IJPs evoked by maintained distension or by repeated mechanical stimulation of the mucosa were transient, lasting in most cases for 3-5 s before the membrane potential returned to resting level. This decline (rundown) occurred in part of the circuit close to the site of stimulation as stimuli applied elsewhere during the period of rundown evoked normal EJPs and IJPs. Mechanical stimuli (brush strokes that deformed the mucosal villi) applied to the mucosa at the site of a maintained distension evoked responses of normal amplitude during the period when the response to the distension had declined to zero. In contrast, during the period when the responses to repetitive mechanical stimulation of the mucosa had disappeared, the reflex responses evoked by distension at the same site were substantially augmented. Chemical stimulation of the mucosa with acid also enhanced the responses to distension.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T K Smith
- Centre for Neuroscience, Flinders Medical Centre, Bedford Park, SA, Australia
| | | | | |
Collapse
|
76
|
Bornstein J, Furness J, Smith T. Identification of neurones involved in intestinal reflexes. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0165-1838(91)90208-k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
77
|
Crist JR, He XD, Goyal RK. The nature of noncholinergic membrane potential responses to transmural stimulation in guinea pig ileum. Gastroenterology 1991; 100:1006-15. [PMID: 1705906 DOI: 10.1016/0016-5085(91)90276-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of substance P antagonism on membrane potential responses to transmural nerve stimulation in the presence of atropine was examined in circular smooth muscle of the guinea pig ileum. Intracellular recordings of membrane potential responses recorded 3-5 mm oral to the transmural stimulus consisted of an inhibitory junction potential followed by two distinct depolarizations referred to as early and late excitatory junction potentials. Substance P antagonism was achieved by desensitization with high doses of substance P or use of the antagonist Spantide (Sigma Chemical Co., St. Louis, MO). Substance P antagonism had no effect on the amplitude of the inhibitory junction potential, caused an increase in the latter portion of the early excitatory junction potential, and abolished the late excitatory junction potential. The excitatory junction potential potentiated by substance P receptor antagonism was associated with a decrease in membrane resistance, increased in amplitude with conditioning hyperpolarizations to the estimated equilibrium potential for K+, and was blocked by the Cl-/HCO3- exchange inhibitor DIDS or prolonged perfusion with low-chloride solution. These studies suggest that a noncholinergic, non-substance P neurotransmitter is released from enteric motoneurons that produces excitation through an increase in smooth muscle chloride conductance.
Collapse
Affiliation(s)
- J R Crist
- Harvard-Thorndike Laboratory, Charles A. Dana Research Institute, Department of Medicine, Beth Israel Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
78
|
Brookes SJ, Steele PA, Costa M. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res 1991; 263:471-81. [PMID: 1715238 DOI: 10.1007/bf00327280] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunoreactivity for calretinin, a calcium-binding protein, was studied in neurones in the guinea-pig small intestine. 26 +/- 1% of myenteric neurones and 12 +/- 3% of submucous neurones were immunoreactive for calretinin. All calretinin-immunoreactive neurones were also immunoreactive for choline acetyltransferase and hence are likely to be cholinergic. In the myenteric plexus, two subtypes of Dogiel type-I calretinin-immunoreactive neurones could be distinguished from their projections and neurochemical coding. Some calretinin-immunoreactive myenteric neurones had short projections to the tertiary plexus, and hence are likely to be cholinergic motor neurones to the longitudinal muscle. Some of these cells were also immunoreactive for substance P. The remaining myenteric neurones, immunoreactive for calretinin, enkephalin, neurofilament protein triplet and substance P, are likely to be orad-projecting, cholinergic interneurones. Calretinin immunoreactivity was also found in cholinergic neurones in the submucosa, which project to the submucosal vasculature and mucosal glands, and which are likely to mediate vasodilation. Thus, calretinin immunoreactivity in the guinea-pig small intestine is confined to three functional classes of cholinergic neurones. It is possible, for the first time, to distinguish these classes of cells from other enteric neurones.
Collapse
Affiliation(s)
- S J Brookes
- Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, Australia
| | | | | |
Collapse
|
79
|
Brookes SJ, Steele PA, Costa M. Identification and immunohistochemistry of cholinergic and non-cholinergic circular muscle motor neurons in the guinea-pig small intestine. Neuroscience 1991; 42:863-78. [PMID: 1720229 DOI: 10.1016/0306-4522(91)90050-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Motor neurons which innervate the circular muscle layer of the guinea-pig small intestine were retrogradely labelled, in vitro, with the carbocyanine dye, DiI, applied to the deep muscular plexus. By combining retrograde tracing and immunohistochemistry, the chemical coding of motor neurons was investigated. Five classes of neuron could be distinguished on the basis of the co-localization of immunoreactivity for the different antigens; the five classes were also characterized by different lengths and polarities of their axonal projections and by their cell body shapes. Two classes with local or orally directed axons were immunoreactive for choline acetyltransferase and substance P and are likely to be cholinergic excitatory motor neurons. Two other classes had anally directed axons; they were immunoreactive for vasoactive intestinal polypeptide and are likely to be inhibitory motor neurons. A small proportion of neurons with short projections to the circular muscle were immunoreactive for neither substance P nor for vasoactive intestinal polypeptide, but are likely to be cholinergic. The morphological and histochemical identification of excitatory and inhibitory motor neurons provides a neuroanatomical basis for the final motor pathways involved in the polarized reflex motor activity of the gut.
Collapse
Affiliation(s)
- S J Brookes
- Department of Physiology, Flinders University of South Australia, Adelaide
| | | | | |
Collapse
|
80
|
Maggi CA, Patacchini R, Giachetti A, Meli A. Tachykinin receptors in the circular muscle of the guinea-pig ileum. Br J Pharmacol 1990; 101:996-1000. [PMID: 1707710 PMCID: PMC1917831 DOI: 10.1111/j.1476-5381.1990.tb14195.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. We have studied the mechanical response of circular strips of the guinea-pig ileum to tachykinins and characterized the receptors involved by means of receptor-selective agonists. 2. The strips responded to both substance P (SP) and neurokinin A (NKA), as well as to [Pro9]-SP sulphone (selective NK1-receptor agonist), [beta Ala8]-NKA(4-10) (selective NK2-receptor agonist) and [MePhe7]-neurokinin B (selective NK3-receptor agonist). The ED50s of the various peptides (calculated as the concentration of agonist which produced 50% of the response to 10 microM carbachol) were similar, in the range of 40-200 nM, i.e. no clearcut rank order of potency was evident. 3. The response to a submaximal (10 nM) concentration of SP or NKA was unaffected in the presence of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 4. The response to the NK1-agonist was totally atropine-resistant, but was reduced (about 30% inhibition) by tetrodotoxin. The response to the NK3-receptor agonist was halved by atropine and abolished by tetrodotoxin. The response to the NK2-agonist was unaffected by either atropine or tetrodotoxin. 5. The response to the selective NK2-agonist was unchanged after desensitization of NK1- or NK3-receptors. 6. The response to the NK2-selective agonist was strongly inhibited by [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10) (MEN 10,207) a selective NK2-receptor antagonist which did not modify the response to the NK1-selective agonist. 7. Our findings indicate that all the three known types of tachykinin receptors mediate the contractile response of the circular muscle of the guinea-pig ileum to peptides of this family. The response to activation of NK3-receptors is totally neurogenic and partially mediated by endogenous acetylcholine, the response to activation of NK1-receptors is partly neurogenic and largely myogenic and the response to activation of NK2-receptors is totally myogenic.
Collapse
Affiliation(s)
- C A Maggi
- Pharmacology Department, A. Menarini Pharmaceuticals, Florence, Italy
| | | | | | | |
Collapse
|
81
|
Furness JB, Trussell DC, Pompolo S, Bornstein JC, Smith TK. Calbindin neurons of the guinea-pig small intestine: quantitative analysis of their numbers and projections. Cell Tissue Res 1990; 260:261-72. [PMID: 2357722 DOI: 10.1007/bf00318629] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The distribution of nerve cells with immunoreactivity for the calcium-binding protein, calbindin, has been studied in the small intestine of the guinea-pig, and the projections of these neurons have been analysed by tracing their processes and by examining the consequences of nerve lesions. The immunoreactive neurons were numerous in the myenteric ganglia; there were 3500 +/- 100 reactive nerve cells per cm2 of undistended intestine, which is 30% of all nerve cells. In contrast, reactive nerve cells were extremely rare in submucous ganglia. The myenteric nerve cells were oval in outline and gave rise to several long processes; this morphology corresponds to Dogiel's type-II classification. Processes from the cell bodies were traced through the circular muscle in perforating nerve fibre bundles. Other processes ran circumferentially in the myenteric plexus. Removal of the myenteric plexus, allowing time for subsequent fibre degeneration, showed that reactive nerve fibres in the submucous ganglia and mucosa came from the myenteric cell bodies. Operations to sever longitudinal or circumferential pathways in the myenteric plexus indicated that most reactive nerve terminals in myenteric ganglia arise from myenteric cell bodies whose processes run circumferentially for 1.5 mm, on average. It is deduced that the calbindin-reactive neurons are multipolar sensory neurons, with the sensitive processes in the mucosa and with other processes innervating neurons of the myenteric plexus.
Collapse
Affiliation(s)
- J B Furness
- Centre for Neuroscience, Flinders University, Bedford Park, Australia
| | | | | | | | | |
Collapse
|
82
|
Hendriks R, Bornstein JC, Furness JB. An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea pig ileum. Neurosci Lett 1990; 110:286-90. [PMID: 2325901 DOI: 10.1016/0304-3940(90)90861-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conduction of action potentials in the processes of AH (afterhyperpolarizing) neurons has been examined in the myenteric plexus of the guinea-pig small intestine. AH neurons are a morphologically distinct class of myenteric neurons in which the action potentials are followed by long lasting afterhyperpolarizations and which usually lack fast synaptic inputs. These neurons have large smooth cell bodies and several long processes. We have used electrophysiological methods, combined with intracellular injection of the fluorescent dye 5(6)-carboxyfluorescein, to examine the directions of projection and lengths of axons of AH neurons. AH neurons of the myenteric plexus projected circumferentially in both directions from the cell soma for electrophysiologically determined average distances of 0.74 +/- 0.05 mm. Thus, the neurons span about 1.5 mm of the circumference of the intestine. About one quarter of the AH neurons had one, or rarely two, processes that ran anally after initially projecting circumferentially. All processes conducted action potentials, with average conduction velocities of 0.23 +/- 0.02 ms-1.
Collapse
Affiliation(s)
- R Hendriks
- Department of Physiology, Flinders University of South Australia, Bedford Park
| | | | | |
Collapse
|
83
|
Smith TK, Bornstein JC, Furness JB. Distension-evoked ascending and descending reflexes in the circular muscle of guinea-pig ileum: an intracellular study. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1990; 29:203-17. [PMID: 1971288 DOI: 10.1016/0165-1838(90)90146-a] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reflex responses evoked by distension of the guinea-pig small intestine were recorded from the circular muscle with intracellular microelectrodes. For this purpose a mechanically stable preparation that allowed the intestinal wall to be distended within 9 mm of the recording site was developed. A segment of intestine was opened along the mesenteric border and pinned mucosa uppermost over a balloon set in the base of an organ bath, so that inflation of the balloon could distend the intestinal wall without simultaneously pushing against the mucosa. Compound excitatory junction potentials (EJPs) and compound inhibitory junction potentials (IJPs) were recorded at sites up to 40 mm oral and anal to the distending stimulus, respectively. The compound EJPs recorded orally had amplitudes of up to 24 mV and declined to baseline during distensions that exceeded 10-15 s. Distensions at intervals of less than 20 s evoked successively smaller oral compound EJPs; after four distensions in 30 the amplitude of the compound EJP had fallen to less than 10%. The amplitude of the oral compound EJP was reduced by hyoscine (1 microM), but the extent of the reduction depended on the degree of distension; responses to mild stimuli were blocked, whereas those to strong stimuli were only slightly reduced. The amplitude of the hyoscine-resistant component of the compound EJP was markedly reduced by antagonists of substance P receptors in the muscle. In the presence of muscarinic and substance P receptor antagonists, a transient compound IJP could be detected on the oral side of the stimulus. The compound IJPs recorded anal to the distension had amplitudes up to 22 mV but the potential returned to baseline during prolonged distension. In the presence of hyoscine (1 microM) some inhibitory activity continued throughout prolonged stimuli. Compound IJP amplitudes were not significantly reduced by repeated distensions separated by more than 6 s. At anal sites a transient depolarization (off-response) was recorded immediately following the termination of a distension in some preparations. The off-response was unaffected by hyoscine and was more readily observed after the further addition of substance P antagonists. The compound IJPs were almost completely blocked by apamin (0.2 microM). The compound EJPs and IJPs recorded orally were blocked by hexamethonium (100 microM), but the amplitudes of compound IJPs recorded anally were significantly reduced by hexamethonium (100-200 microM) only at recording sites greater than 15 mm from the centre of the balloon. The off-response was reduced by hexamethonium at all sites.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T K Smith
- Department of Anatomy & Histology, Medical School, Flinders University, Bedford Park, S.A
| | | | | |
Collapse
|
84
|
Smith TK. Spontaneous junction potentials and slow waves in the circular muscle of isolated segments of guinea-pig ileum. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1989; 27:147-54. [PMID: 2778267 DOI: 10.1016/0165-1838(89)90096-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spontaneous electrical activity was recorded with intracellular microelectrodes from cells within the circular muscle of isolated, 2 cm long, intact segments of guinea-pig ileum that were unstretched, and in segments that had been slit open along the entire length of either their mesenteric or antimesenteric border and pinned flat under a minimum of tension. Intact segments usually exhibited fast spontaneous irregular oscillations in membrane potential (mean 1.6 Hz) which were unaffected by hyoscine (0.5 microM), the substance P antagonist D-Arg1, D-Pro2, D-Trp7.9, Leu11-substance P (10 microM), hexamethonium (100 microM), propranolol (1 microM) or phentolamine (1 microM) but were blocked by tetrodotoxin (0.4 microM) or apamin (0.4 microM). This irregular spontaneous activity is deduced to be due to ongoing firing of inhibitory motor neurons. After blockade with apamin or tetrodotoxin, a slow wave-like activity with a mean frequency of 16.4 cycles/min and maximum amplitude 2-14 mV was observed in 47% of intact segments. The amplitude of slow waves waxed and waned with a mean frequency of 0.9 cycles/min. Spontaneous cholinergic (hyoscine-sensitive) excitatory junction potentials were observed in some preparations. In contrast, in the majority of opened segments the resting membrane potential was quite stable, although slow waves that were similar to those in intact segments were observed in 14% of preparations. These studies indicate that spontaneous inhibitory junction potentials and slow waves can be recorded in intact segments of guinea-pig ileum. Their relative absence in opened segments suggests their normal expression is facilitated by the circumferential integrity of the intestine.
Collapse
Affiliation(s)
- T K Smith
- Department of Anatomy & Histology, Medical School, Flinders University, Bedford Park, S.A
| |
Collapse
|