51
|
Barua CC, Hazarika S, Saikia B, Phukan A, Pathak D, Borah RS, Barua AG, Verma PK. Functional Role of Amino Acid Neurotransmitters on Spontaneous Muscular Activity of Paramphistomum cervi from Ruminants. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA SECTION B: BIOLOGICAL SCIENCES 2014; 84:927-935. [DOI: 10.1007/s40011-013-0239-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
52
|
Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors. Proc Natl Acad Sci U S A 2014; 111:17660-5. [PMID: 25422413 DOI: 10.1073/pnas.1414378111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αε (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔGB1). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔGB1 is ∼-2 kcal/mol more favorable at αγ compared with at αε and αδ. Only three of the aromatics contribute significantly to ΔGB1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔGB1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αε and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αε and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse.
Collapse
|
53
|
The evolution of pentameric ligand-gated ion-channels and the changing family of anthelmintic drug targets. Parasitology 2014; 142:303-17. [PMID: 25354656 DOI: 10.1017/s003118201400170x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY Pentameric ligand-gated ion-channels rapidly transduce synaptic neurotransmitter signals to an electrical response in post-synaptic neuronal or muscle cells and control the neuromusculature of a majority of multicellular animals. A wide range of pharmaceuticals target these receptors including ethanol, nicotine, anti-depressants and other mood regulating drugs, compounds that control pain and mobility and are targeted by a majority of anthelmintic drugs used to control parasitic infection of humans and livestock. Major advances have been made in recent years to our understanding of the structure, function, activity and the profile of compounds that can activate specific receptors. It is becoming clear that these anthelmintic drug targets are not fixed, but differ in significant details from one nematode species to another. Here we review what is known about the evolution of the pentameric ligand-gated ion-channels, paying particular attention to the nematodes, how we can infer the origins of such receptors and understand the factors that determine how they change both over time and from one species to another. Using this knowledge provides a biological framework in which to understand these important drug targets and avenues to identify new receptors and aid the search for new anthelmintic drugs.
Collapse
|
54
|
Franklin KM, Asatryan L, Jakowec MW, Trudell JR, Bell RL, Davies DL. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 2014; 8:176. [PMID: 25009459 PMCID: PMC4068020 DOI: 10.3389/fnins.2014.00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/05/2014] [Indexed: 12/19/2022] Open
Abstract
Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy for AUDs.
Collapse
Affiliation(s)
- Kelle M Franklin
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - James R Trudell
- Beckman Program for Molecular and Genetic Medicine, Department of Anesthesia, Stanford University Palo Alto, CA, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine Indianapolis, IN, USA
| | - Daryl L Davies
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
55
|
Lopes AMM, de Carvalho RA, de Azeredo-Espin AML. Glutamate-gated chloride channel subunit cDNA sequencing of Cochliomyia hominivorax (Diptera: Calliphoridae): cDNA variants and polymorphisms. INVERTEBRATE NEUROSCIENCE 2014; 14:137-46. [DOI: 10.1007/s10158-014-0172-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
56
|
What ligand-gated ion channels can tell us about the allosteric regulation of G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:291-347. [PMID: 23415097 DOI: 10.1016/b978-0-12-394587-7.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The GABA(A) receptor is the target for a number of important allosteric drugs used in medicine, including benzodiazepines and anesthetics. These modulators have variable effects on the potency and maximal response of macroscopic currents elicited by different GABA(A) receptor agonists, yet this modulation is consistent with a two-state model in which the allosteric ligand has invariant affinity constants for the active and inactive states. Analysis of the effects of an allosteric agonist, like etomidate, on the population current provides a means of estimating the gating constant of the unliganded GABA(A) receptor (∼10(-4)). In contrast, allosteric interactions at the M(2) muscarinic receptor are often inconsistent with a two-state model. Analyzing allosterism within the constraints of a two-state model, nonetheless, provides an unbiased measure of probe dependence as well as clues to the mechanism of allosteric modulation. The rather simple allosteric effect of affinity-only modulation is difficult to explain and suggests modulation of a peripheral orthosteric ligand-docking site on the M(2) muscarinic receptor.
Collapse
|
57
|
Wyatt LR, Finn DA, Khoja S, Yardley MM, Asatryan L, Alkana RL, Davies DL. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice. Neurochem Res 2014; 39:1127-39. [PMID: 24671605 DOI: 10.1007/s11064-014-1271-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/15/2014] [Accepted: 02/26/2014] [Indexed: 11/26/2022]
Abstract
P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.
Collapse
Affiliation(s)
- Letisha R Wyatt
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Gergalova G, Lykhmus O, Komisarenko S, Skok M. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int J Biochem Cell Biol 2014; 49:26-31. [PMID: 24412630 DOI: 10.1016/j.biocel.2014.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca(2+) or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca(2+)) or of Src kinase(s) (upon 0.5mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca(2+)-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- Galyna Gergalova
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Sergiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine.
| |
Collapse
|
59
|
Bautista-Barrufet A, Izquierdo-Serra M, Gorostiza P. Photoswitchable Ion Channels and Receptors. NOVEL APPROACHES FOR SINGLE MOLECULE ACTIVATION AND DETECTION 2014. [DOI: 10.1007/978-3-662-43367-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Taly A, Hénin J, Changeux JP, Cecchini M. Allosteric regulation of pentameric ligand-gated ion channels: an emerging mechanistic perspective. Channels (Austin) 2014; 8:350-60. [PMID: 25478624 PMCID: PMC4203737 DOI: 10.4161/chan.29444] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger—a neurotransmitter—into an ion flux through the postsynaptic membrane. They are oligomeric assemblies that provide prototypical examples of allosterically regulated integral membrane proteins. Here, we present an overview of the most recent advances on the signal transduction mechanism based on the X-ray structures of both prokaryotic and invertebrate eukaryotic pLGICs and atomistic Molecular Dynamics simulations. The present results suggest that ion gating involves a large structural reorganization of the molecule mediated by two distinct quaternary transitions, a global twisting and the blooming of the extracellular domain, which can be modulated by ligand binding at the topographically distinct orthosteric and allosteric sites. The emerging model of gating is consistent with a wealth of functional studies and will boost the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Antoine Taly
- Laboratoire de Biochimie Théorique; IBPC; CNRS and Université Paris Diderot; Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique; IBPC; CNRS and Université Paris Diderot; Paris, France
| | - Jean-Pierre Changeux
- CNRS; URA 2182; F-75015 & Collège de France; Paris, France
- Kavli Institute for Brain & Mind University of California; San Diego La Jolla, CA USA
| | - Marco Cecchini
- ISIS; UMR 7006 CNRS; Université de Strasbourg; F-67083 Strasbourg Cedex, France
| |
Collapse
|
61
|
Akk G, Eaton M, Li P, Zheng S, Lo J, Steinbach JH. Energetic contributions to channel gating of residues in the muscle nicotinic receptor β1 subunit. PLoS One 2013; 8:e78539. [PMID: 24194945 PMCID: PMC3806828 DOI: 10.1371/journal.pone.0078539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/19/2013] [Indexed: 12/04/2022] Open
Abstract
In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit.
Collapse
Affiliation(s)
- Gustav Akk
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Megan Eaton
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ping Li
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Steven Zheng
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joshua Lo
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joe Henry Steinbach
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
62
|
Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E75-81. [PMID: 23266985 DOI: 10.3724/sp.j.1141.2012.e05-06e75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have begun to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.
Collapse
|
63
|
Lee BH, Choi SH, Shin TJ, Hwang SH, Kang J, Kim HJ, Kim BJ, Nah SY. Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents. J Ginseng Res 2013; 36:55-60. [PMID: 23717104 PMCID: PMC3659565 DOI: 10.5142/jgr.2012.36.1.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022] Open
Abstract
In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances γ-aminobutyric acid (GABA) receptorA (GABAA)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on GABAA receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant GABAA receptor (α1β1γ2s) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current (IGABA) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on IGABA was both concentration-dependent and reversible. The half-inhibitory concentration (IC50) values of M4 and PPD were 17.1±2.2 and 23.1±8.6 μM, respectively. The inhibition of IGABA by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of GABAA receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Freeman GM, Nakajima M, Ueda HR, Herzog ED. Picrotoxin dramatically speeds the mammalian circadian clock independent of Cys-loop receptors. J Neurophysiol 2013; 110:103-8. [PMID: 23576702 DOI: 10.1152/jn.00220.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Picrotoxin is extensively and specifically used to inhibit GABAA receptors and other members of the Cys-loop receptor superfamily. We find that picrotoxin acts independently of known Cys-loop receptors to shorten the period of the circadian clock markedly by specifically advancing the accumulation of PERIOD2 protein. We show that this mechanism is surprisingly tetrodotoxin-insensitive, and the effect is larger than any known chemical or genetic manipulation. Notably, our results indicate that the circadian target of picrotoxin is common to a variety of human and rodent cell types but not Drosophila, thereby ruling out all conserved Cys-loop receptors and known regulators of mammalian PERIOD protein stability. Given that the circadian clock modulates significant aspects of cell physiology including synaptic plasticity, these results have immediate and broad experimental implications. Furthermore, our data point to the existence of an important and novel target within the mammalian circadian timing system.
Collapse
Affiliation(s)
- G Mark Freeman
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
65
|
Lee BH, Kim HJ, Chung L, Nah SY. Ginsenoside Rg₃ regulates GABAA receptor channel activity: involvement of interaction with the γ₂ subunit. Eur J Pharmacol 2013; 705:119-25. [PMID: 23499684 DOI: 10.1016/j.ejphar.2013.02.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
Ginseng exhibits beneficial effects on GABAA receptor-related anxiety and sleep disorders. However, little is known regarding the cellular and molecular bases of the ginseng action on GABAA receptor. The present study was performed to elucidate the molecular mechanism of the ginseng effect on GABAA receptor. The effect of ginsenoside Rg₃ (Rg₃), one of the active ingredients of ginseng, on γ-aminobutyric acid (GABA)A receptor channel activity was examined in Xenopus oocytes using two-electrode voltage-clamp technique. Rg₃ itself evoked an inward current in Xenopus oocytes expressing GABAA receptor subunits (α₁β₁γ₂) and the Rg₃ itself-elicited inward current was only selective to γ₂ subunit expression ratio, since Rg₃ alone had no effects in oocytes expressing other subunits such as γ₁, γ₃, δ, or ε. Co-treatment of Rg₃ with GABA enhanced GABA receptor (α₁β₁γ₂)-mediated inward currents (IGABA) but Rg₃-mediated IGABA enhancement was independent on γ₂. Rg₃ itself-elicited inward current was blocked by GABAA receptor antagonist. The present results indicate that Rg₃-induced GABAA receptor activation via the γ₂ subunit and IGABA enhancement by Rg₃ might be one of the molecular bases of ginseng effects on GABAA receptor.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | |
Collapse
|
66
|
Rinkevich FD, Scott JG. Limitations of RNAi of α6 nicotinic acetylcholine receptor subunits for assessing the in vivo sensitivity to spinosad. INSECT SCIENCE 2013; 20:101-108. [PMID: 23955830 DOI: 10.1111/j.1744-7917.2012.01523.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Spinosad is a widely used insecticide that exerts its toxic effect primarily through interactions with the nicotinic acetylcholine receptor. The α6 nicotinic acetylcholine receptor subunit is involved in spinosad toxicity as demonstrated by the high levels of resistance observed in strains lacking α6. RNAi was performed against the Dα6 nicotinic acetylcholine receptor subunit in Drosophila melanogaster using the Gal4-UAS system to examine if RNAi would yield results similar to those of Dα6 null mutants. These Dα6-deficient flies were subject to spinosad contact bioassays to evaluate the role of the Dα6 nicotinic acetylcholine receptor subunit on spinosad sensitivity. The expression of Dα6 was reduced 60%-75% as verified by quantitative polymerase chain reaction. However, there was no change in spinosad sensitivity in D. melanogaster. We repeated RNAi experiments in Tribolium castaneum using injection of dsRNA for Tcasα6. RNAi of Tcasα6 did not result in changes in spinosad sensitivity, similar to results obtained with D. melanogaster. The lack of change in spinosad sensitivity in both D. melanogaster and T. castaneum using two routes of dsRNA administration shows that RNAi may not provide adequate conditions to study the role of nicotinic acetylcholine receptor subunits on insecticide sensitivity due to the inability to completely eliminate expression of the α6 subunit in both species. Potential causes for the lack of change in spinosad sensitivity are discussed.
Collapse
Affiliation(s)
- Frank D Rinkevich
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853-0901, USA
| | | |
Collapse
|
67
|
Yamamoto I, Absalom N, Carland JE, Doddareddy M, Gavande N, Johnston GAR, Hanrahan JR, Chebib M. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors. ACS Chem Neurosci 2012; 3:665-73. [PMID: 23019493 PMCID: PMC3447397 DOI: 10.1021/cn3000229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/26/2012] [Indexed: 01/20/2023] Open
Abstract
Designing potent and subtype-selective ligands with therapeutic value requires knowledge about how endogenous ligands interact with their binding site. 4-Amino-3-hydroxybutanoic acid (GABOB) is an endogenous ligand found in the central nervous system in mammals. It is a metabolic product of GABA, the major inhibitory neurotransmitter. Homology modeling of the GABA(C) ρ(1) receptor revealed a potential H-bond interaction between the hydroxyl group of GABOB and threonine 244 (T244) located on loop C of the ligand binding site of the ρ(1) subunit. Using site-directed mutagenesis, we examined the effect of mutating T244 on the efficacy and pharmacology of GABOB and various ligands. It was found that mutating T244 to amino acids that lacked a hydroxyl group in their side chains produced GABA insensitive receptors. Only by mutating ρ(1)T244 to serine (ρ(1)T244S) produced a GABA responsive receptor, albeit 39-fold less sensitive to GABA than ρ(1)wild-type. We also observed changes in the activities of the GABA(C) receptor partial agonists, muscimol and imidazole-4-acetic acid (I4AA). At the concentrations we tested, the partial agonists antagonized GABA-induced currents at ρ(1)T244S mutant receptors (Muscimol: ρ(1)wild-type, EC(50) = 1.4 μM; ρ(1)T244S, IC(50) = 32.8 μM. I4AA: ρ(1)wild-type, EC(50) = 8.6 μM; ρ(1)T244S, IC(50) = 21.4 μM). This indicates that T244 is predominantly involved in channel gating. R-(-)-GABOB and S-(+)-GABOB are full agonists at ρ(1)wild-type receptors. In contrast, R-(-)-GABOB was a weak partial agonist at ρ(1)T244S (1 mM activates 26% of the current produced by GABA EC(50) versus ρ(1)wild-type, EC(50) = 19 μM; I(max) 100%), and S-(+)-GABOB was a competitive antagonist at ρ(1)T244S receptors (ρ(1)wild-type, EC(50) = 45 μM versus ρ(1)T244S, IC(50) = 417.4 μM, K(B) = 204 μM). This highlights that the interaction of GABOB with T244 is enantioselective. In contrast, the potencies of a range of antagonists tested, 3-aminopropyl(methyl)phosphinic acid (3-APMPA), 3-aminopropylphosphonic acid (3-APA), S- and R-(3-amino-2-hydroxypropyl)methylphosphinic acid (S-(-)-CGP44532 and R-(+)-CGP44533), were not altered. This suggests that T244 is not critical for antagonist binding. Receptor gating is dynamic, and this study highlights the role of loop C in agonist-evoked receptor activation, coupling agonist binding to channel gating.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Nathan Absalom
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Jane E. Carland
- Department
of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Navnath Gavande
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | | | - Jane R. Hanrahan
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Mary Chebib
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| |
Collapse
|
68
|
Lee BH, Hwang SH, Choi SH, Shin TJ, Kang J, Kim HJ, Kim HC, Lee JH, Nah SY. Inhibitory effects of dextrorotatory morphinans on the human 5-HT(3A) receptor expressed in Xenopus oocytes: Involvement of the N-terminal domain of the 5-HT(3A) receptor. Eur J Pharmacol 2012; 686:41-9. [PMID: 22575521 DOI: 10.1016/j.ejphar.2012.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022]
Abstract
We previously developed a series of dextromethorphan (DM, 3-methoxy-17-methylmorphinan) analogs modified at positions 3 and 17 of the morphinan ring system. Recent reports have shown that DM attenuates abdominal pain caused by irritable bowel syndrome, and multidrug regimens that include DM prevent nausea/vomiting following cancer surgery. However, little is known regarding the molecular mechanisms underlying the beneficial effects of DM. Here, we investigated the effects of DM, 3 of its analogs (AM, 3-allyloxy-17-methoxymorphian; CM, 3-cyclopropyl-17-methoxymorphinan; and DF, 3-methyl-17-methylmorphinan), and 1 of its metabolites (HM, 3-methoxymorphinan) on the activity of the human 5-HT(3A) receptor channel expressed in Xenopus laevis oocytes, using the 2-microelectrode voltage clamp technique. We found that intra-oocyte injection of human 5-HT(3A) receptor cRNAs elicited an inward current (I(5-HT)) in the presence of 5-HT. Cotreatment with AM, CM, DF, DM, or HM inhibited I(5-HT) in a dose-dependent, voltage-independent, and reversible manner. The IC(50) values for AM, CM, DF, DM, and HM were 24.5±1.4, 21.5±4.2, 132.6±35.8, 181.3±23.5, and 191.3±31.5μM, respectively. The IC(50) values of AM and CM were 7-fold lower than that of DM, and mechanistic analysis revealed that DM, DF, HM, AM, and CM were competitive inhibitors of I(5-HT). Point mutations of Arg241 in the N-terminal, but not amino acids in the pore region, to other amino acid residues attenuated or abolished DM- and DM-analog-induced inhibition of I(5-HT). Together, these results demonstrated that dextrorotatory morphinans might regulate 5-HT(3A) receptor channel activity via interaction with its N-terminal domain.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dermauw W, Ilias A, Riga M, Tsagkarakou A, Grbić M, Tirry L, Van Leeuwen T, Vontas J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:455-465. [PMID: 22465149 DOI: 10.1016/j.ibmb.2012.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/27/2023]
Abstract
The cys-loop ligand-gated ion channel (cysLGIC) super family of Tetranychus urticae, the two-spotted spider mite, represents the largest arthropod cysLGIC super family described to date and the first characterised one within the group of chelicerates. Genome annotation, phylogenetic analysis and comparison of the cysLGIC subunits with their counterparts in insects reveals that the T. urticae genome encodes for a high number of glutamate- and histamine-gated chloride channel genes (GluCl and HisCl) compared to insects. Three orthologues of the insect γ-aminobutyric acid (GABA)-gated chloride channel gene Rdl were detected. Other cysLGIC groups, such as the nAChR subunits, are more conserved and have clear insect orthologues. Members of cysLGIC family mediate endogenous chemical neurotransmission and they are prime targets of insecticides. Implications for toxicology associated with the identity and specific features of T. urticae family members are discussed. We further reveal the accumulation of known and novel mutations in different GluCl channel subunits (Tu_GluCl1 and Tu_GluCl3) associated with abamectin resistance in T. urticae, and provide genetic evidence for their causality. Our study provides useful toxicological insights for the exploration of the T. urticae cysLGIC subunits as putative molecular targets for current and future chemical control strategies.
Collapse
Affiliation(s)
- W Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied, Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Stober ST, Abrams CF. Enhanced meta-analysis of acetylcholine binding protein structures reveals conformational signatures of agonism in nicotinic receptors. Protein Sci 2012; 21:307-17. [PMID: 22170867 DOI: 10.1002/pro.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The soluble acetylcholine binding protein (AChBP) is the default structural proxy for pentameric ligand-gated ion channels (LGICs). Unfortunately, it is difficult to recognize conformational signatures of LGIC agonism and antagonism within the large set of AChBP crystal structures in both apo and ligand-bound states, primarily because AChBP conformations in this set are nearly superimposable (root mean square deviation < 1.5 Å). We have undertaken a systematic, alignment-free approach to elucidate conformational differences displayed by AChBP that cleanly differentiate apo/antagonist-bound from agonist-bound states. Our approach uses statistical inference based on both crystallographic states and conformations sampled during long molecular dynamics simulations to select important inter-C(α) distances and map their collective values onto functional states. We observe that binding of (nAChR) agonists to AChBP elicits clockwise rotation of the inner β-sheet with respect to the outer β-sheet, causing tilting of the cys-loop away from the five-fold axis, in a manner quite similar to that speculated for α-subunits of the heteromeric nAChR structure (Unwin, J Mol Biol 2005;346:967), making this motion potentially important in transmission of the gating signal to the transmembrane domain of a LGIC. The method is also successful at discriminating partial from full agonists and supports the hypothesis that a particularly controversial ligand, lobeline, is in fact an LGIC antagonist.
Collapse
Affiliation(s)
- Spencer T Stober
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
71
|
Yamamoto I, Carland JE, Locock K, Gavande N, Absalom N, Hanrahan JR, Allan RD, Johnston GAR, Chebib M. Structurally diverse GABA antagonists interact differently with open and closed conformational states of the ρ1 receptor. ACS Chem Neurosci 2012; 3:293-301. [PMID: 22860195 DOI: 10.1021/cn200121r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/13/2012] [Indexed: 11/29/2022] Open
Abstract
Ligands acting on receptors are considered to induce a conformational change within the ligand-binding site by interacting with specific amino acids. In this study, tyrosine 102 (Y102) located in the GABA binding site of the ρ(1) subunit of the GABA(C) receptor was mutated to alanine (ρ(1Y102A)), serine (ρ(1Y102S)), and cysteine (ρ(1Y102C)) to assess the role of this amino acid in the action of 12 known and 2 novel antagonists. Of the mutated receptors, ρ(1Y102S) was constitutively active, providing an opportunity to assess the activity of antagonists on ρ(1) receptors with a proportion of receptors existing in the open conformational state compared to those existing predominantly in the closed conformational state. It was found that the majority of antagonists studied were able to inhibit the constitutive activity displayed by ρ(1Y102S), thus displaying inverse agonist activity. The exception was (±)-4-aminocyclopent-1-enecarboxamide ((±)-4-ACPAM) (8) not exhibiting any inverse agonist activity, but acting explicitly on the closed conformational state of ρ(1) receptors (ρ(1) wild-type, ρ(1Y102C) and ρ(1Y102A)). It was also found that the GABA antagonists were more potent at the closed compared to the open conformational states of ρ(1) receptors, suggesting that they may act by stabilizing closed conformational state and thus reducing activation by agonists. Furthermore, of the antagonists tested, Y102 was found to have the greatest influence on the antagonist activity of gabazine (SR-95531 (13)) and its analogue (SR-95813 (14)). This study contributes to our understanding of the mechanism of inverse agonism. This is important, as such agents are emerging as potential therapeutics.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane E. Carland
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katherine Locock
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Navnath Gavande
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nathan Absalom
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane R. Hanrahan
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Robin D. Allan
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Graham A. R. Johnston
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mary Chebib
- Faculty
of Pharmacy and ‡Department of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
72
|
Abstract
Since the discovery of the major excitatory and inhibitory neurotransmitters and their receptors in the brain, many have deliberated over their likely structures and how these may relate to function. This was initially satisfied by the determination of the first amino acid sequences of the Cys-loop receptors that recognized acetylcholine, serotonin, GABA, and glycine, followed later by similar determinations for the glutamate receptors, comprising non-NMDA and NMDA subtypes. The last decade has seen a rapid advance resulting in the first structures of Cys-loop receptors, related bacterial and molluscan homologs, and glutamate receptors, determined down to atomic resolution. This now provides a basis for determining not just the complete structures of these important receptor classes, but also for understanding how various domains and residues interact during agonist binding, receptor activation, and channel opening, including allosteric modulation. This article reviews our current understanding of these mechanisms for the Cys-loop and glutamate receptor families.
Collapse
Affiliation(s)
- Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom.
| | | |
Collapse
|
73
|
Lee BH, Hwang SH, Choi SH, Shin TJ, Kang J, Lee SM, Nah SY. Resveratrol enhances 5-hydroxytryptamine type 3A receptor-mediated ion currents: the role of arginine 222 residue in pre-transmembrane domain I. Biol Pharm Bull 2011; 34:523-7. [PMID: 21467640 DOI: 10.1248/bpb.34.523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Resveratrol, which is found in grapes, red wine, and berries, has many beneficial health effects, such as anti-cancer, neuro-protective, anti-inflammatory, and life-prolonging effects. However, the cellular mechanisms by which resveratrol acts are relatively unknown, especially in terms of possible regulation of receptors involved in synaptic transmission. 5-Hydroxytryptamine type 3A (5-HT(3A)) receptor is one of several ligand-gated ion channels involved in fast synaptic transmission. In the present study, we investigated the effect of resveratrol on mouse 5-HT(3A) receptor channel activity. 5-HT(3A) receptor was expressed in Xenopus oocytes, and the current was measured using a two-electrode voltage clamp technique. Treatment of resveratrol itself had no effect on the oocytes injected with H(2)O as well as on the oocytes injected with 5-HT(3A) receptor cRNA. In the oocytes injected with 5-HT(3A) receptor cRNA, co- or pre-treatment of resveratrol with 5-HT potentiated 5-HT-induced inward peak current (I(5-HT)) with concentration-, reversible, and voltage-independent manners. The EC(50) of resveratrol was 28.0±2.4 µM. The presence of resveratrol caused a leftward shift of 5-HT concentration-response curve. Protein kinase C (PKC) activator or inhibitor had no effect on resveratrol action on I(5-HT). Site-directed mutations of pre-transmembrane domain 1 (pre-TM1) such as R222A, R222D, R222E, R222K, and R222T abolished or attenuated resveratrol-induced enhancement of I(5-HT), indicating that resveratrol might interact with pre-TM1 of 5-HT(3A) receptor. These results indicate that resveratrol might regulate 5-HT(3A) receptor channel activity via interaction with the N-terminal domain and these results further show that resveratrol-mediated regulation of 5-HT(3A) receptor channel activity might be one of cellular mechanisms of resveratrol action.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
74
|
Structural determinants of imidacloprid-based nicotinic acetylcholine receptor inhibitors identified using 3D-QSAR, docking and molecular dynamics. J Mol Model 2011; 18:2279-89. [DOI: 10.1007/s00894-011-1293-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
75
|
Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed Engl 2011; 50:12156-82. [DOI: 10.1002/anie.201103236] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 11/09/2022]
|
76
|
|
77
|
Shan Q, Han L, Lynch JW. β Subunit M2-M3 loop conformational changes are uncoupled from α1 β glycine receptor channel gating: implications for human hereditary hyperekplexia. PLoS One 2011; 6:e28105. [PMID: 22132222 PMCID: PMC3222680 DOI: 10.1371/journal.pone.0028105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/01/2011] [Indexed: 01/30/2023] Open
Abstract
Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit.
Collapse
Affiliation(s)
- Qiang Shan
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
78
|
Araud T, Graw S, Berger R, Lee M, Neveu E, Bertrand D, Leonard S. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function. Biochem Pharmacol 2011; 82:904-14. [PMID: 21718690 PMCID: PMC3162115 DOI: 10.1016/j.bcp.2011.06.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 12/11/2022]
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is a candidate gene for schizophrenia and an important drug target for cognitive deficits in the disorder. Activation of the α7*nAChR, results in opening of the channel and entry of mono- and divalent cations, including Ca(2+), that presynaptically participates to neurotransmitter release and postsynaptically to down-stream changes in gene expression. Schizophrenic patients have low levels of α7*nAChR, as measured by binding of the ligand [(125)I]-α-bungarotoxin (I-BTX). The structure of the gene, CHRNA7, is complex. During evolution, CHRNA7 was partially duplicated as a chimeric gene (CHRFAM7A), which is expressed in the human brain and elsewhere in the body. The association between a 2bp deletion in CHRFAM7A and schizophrenia suggested that this duplicate gene might contribute to cognitive impairment. To examine the putative contribution of CHRFAM7A on receptor function, co-expression of α7 and the duplicate genes was carried out in cell lines and Xenopus oocytes. Expression of the duplicate alone yielded protein expression but no functional receptor and co-expression with α7 caused a significant reduction of the amplitude of the ACh-evoked currents. Reduced current amplitude was not correlated with a reduction of I-BTX binding, suggesting the presence of non-functional (ACh-silent) receptors. This hypothesis is supported by a larger increase of the ACh-evoked current by the allosteric modulator 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea (PNU-120596) in cells expressing the duplicate than in the control. These results suggest that CHRFAM7A acts as a dominant negative modulator of CHRNA7 function and is critical for receptor regulation in humans.
Collapse
Affiliation(s)
- Tanguy Araud
- Department of Neurosciences Medical Faculty, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
79
|
Krasowski MD, Hopfinger AJ. The discovery of new anesthetics by targeting GABAAreceptors. Expert Opin Drug Discov 2011; 6:1187-201. [DOI: 10.1517/17460441.2011.627324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
80
|
Müller CP, Pum ME, Amato D, Schüttler J, Huston JP, De Souza Silva MA. The in vivo neurochemistry of the brain during general anesthesia. J Neurochem 2011; 119:419-46. [DOI: 10.1111/j.1471-4159.2011.07445.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
81
|
de Souza CAM, Teixeira PCN, Faria RX, Krylova O, Pohl P, Alves LA. A consensus segment in the M2 domain of the hP2X(7) receptor shows ion channel activity in planar lipid bilayers and in biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:64-71. [PMID: 21958668 DOI: 10.1016/j.bbamem.2011.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/02/2011] [Accepted: 09/13/2011] [Indexed: 11/28/2022]
Abstract
The P2X(7) receptor (P2X(7)R) is an ATP-gated, cation-selective channel permeable to Na(+), K(+) and Ca(2+). This channel has also been associated with the opening of a non-selective pore that allows the flow of large organic ions. However, the biophysical properties of the P2X(7)R have yet to be characterized unequivocally. We investigated a region named ADSEG, which is conserved among all subtypes of P2X receptors (P2XRs). It is located in the M2 domain of hP2X(7)R, which aligns with the H5 signature sequence of potassium channels. We investigated the channel forming ability of ADSEG in artificial planar lipid bilayers and in biological membranes using the cell-attached patch-clamp techniques. ADSEG forms channels, which exhibit a preference for cations. They are voltage independent and show long-term stability in planar lipid bilayers as well as under patch-clamping conditions. The open probability of the ADSEG was similar to that of native P2X(7)R. The conserved part of the M2 domain of P2X(7)R forms ionic channels in planar lipid bilayers and in biological membranes. Its electrophysiological characteristics are similar to those of the whole receptor. Conserved and hydrophobic part of the M2 domain forms ion channels.
Collapse
Affiliation(s)
- Cristina Alves Magalhães de Souza
- Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Laboratory of Cellular Communication, Av. Brazil 4365, 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
82
|
Maksay G. Allostery in pharmacology: Thermodynamics, evolution and design. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:463-73. [DOI: 10.1016/j.pbiomolbio.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/13/2022]
|
83
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
84
|
Morlock EV, Czajkowski C. Different residues in the GABAA receptor benzodiazepine binding pocket mediate benzodiazepine efficacy and binding. Mol Pharmacol 2011; 80:14-22. [PMID: 21447642 PMCID: PMC3127544 DOI: 10.1124/mol.110.069542] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/29/2011] [Indexed: 01/08/2023] Open
Abstract
Benzodiazepines (BZDs) exert their therapeutic actions by binding to the GABA(A) receptor (GABA(A)R) and allosterically modulating GABA-induced chloride currents (I(GABA)). A variety of ligands with divergent structures bind to the BZD site, and the structural mechanisms that couple their binding to potentiation of I(GABA) are not well understood. In this study, we measured the effects of individually mutating 22 residues throughout the BZD binding pocket on the abilities of eszopiclone, zolpidem, and flurazepam to potentiate I(GABA). Wild-type and mutant α(1)β(2)γ(2) GABA(A)Rs were expressed in Xenopus laevis oocytes and analyzed using a two-electrode voltage clamp. GABA EC(50), BZD EC(50), and BZD maximal potentiation were measured. These data, combined with previous radioligand binding data describing the mutations' effects on BZD apparent binding affinities (J Neurosci 28:3490-3499, 2008; J Med Chem 51:7243-7252, 2008), were used to distinguish residues within the BZD pocket that contribute to BZD efficacy and BZD binding. We identified six residues whose mutation altered BZD maximal potentiation of I(GABA) (BZD efficacy) without altering BZD binding apparent affinity, three residues whose mutation altered binding but had no effect on BZD efficacy, and four residues whose mutation affected both binding and efficacy. Moreover, depending on the BZD ligand, the effects of some mutations were different, indicating that the structural mechanisms underlying the ability of BZD ligands with divergent structures to potentiate I(GABA) are distinct.
Collapse
Affiliation(s)
- Elaine V Morlock
- University of Wisconsin at Madison, 601 Science Drive, Madison, WI 53711, USA
| | | |
Collapse
|
85
|
Williams DK, Wang J, Papke RL. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 2011; 82:915-30. [PMID: 21575610 DOI: 10.1016/j.bcp.2011.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 11/16/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.
Collapse
Affiliation(s)
- Dustin K Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL Neurocypres, United States
| | | | | |
Collapse
|
86
|
Zheng G, Zhang Z, Dowell C, Wala E, Dwoskin LP, Holtman JR, McIntosh JM, Crooks PA. Discovery of non-peptide, small molecule antagonists of α9α10 nicotinic acetylcholine receptors as novel analgesics for the treatment of neuropathic and tonic inflammatory pain. Bioorg Med Chem Lett 2011; 21:2476-9. [PMID: 21397497 DOI: 10.1016/j.bmcl.2011.02.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
A series of azaaromatic quaternary ammonium analogs has been discovered as potent and selective α9α10 nicotinic acetylcholine receptor (nAChR) antagonists. The preliminary structure-activity relationships of these analogs suggest that increased rigidity in the linker units results in higher potency in inhibition of α9α10 nAChRs and greater selectivity over α7 nAChRs. These analogs represent a new class of analgesic for the treatment of neuropathic and tonic inflammatory pain.
Collapse
Affiliation(s)
- Guangrong Zheng
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536 0082, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Bregestovski PD. Architecture of receptor-operated ion channels of biological membranes. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911010064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
88
|
Dederer H, Werr M, Ilg T. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:51-61. [PMID: 20933086 DOI: 10.1016/j.ibmb.2010.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/22/2010] [Accepted: 09/29/2010] [Indexed: 05/30/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC₅₀s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.
Collapse
Affiliation(s)
- Helene Dederer
- Intervet Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | | | | |
Collapse
|
89
|
McCracken ML, Borghese CM, Trudell JR, Harris RA. A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics. J Pharmacol Exp Ther 2010; 335:600-6. [PMID: 20826568 PMCID: PMC2993559 DOI: 10.1124/jpet.110.170472] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/02/2010] [Indexed: 01/27/2023] Open
Abstract
Alcohols and inhaled anesthetics enhance the function of GABA(A) receptors containing α, β, and γ subunits. Molecular analysis has focused on the role of the α subunits; however, there is evidence that the β subunits may also be important. The goal of our study was to determine whether Asn265, which is homologous to the site implicated in the α subunit (Ser270), contributes to an alcohol and volatile anesthetic binding site in the GABA(A) receptor β(2) subunit. We substituted cysteine for Asn265 and exposed the mutant to the sulfhydryl-specific reagent octyl methanethiosulfonate (OMTS). We used two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes and found that, after OMTS application, GABA-induced currents were irreversibly potentiated in mutant α(1)β(2)(N265C)γ(2S) receptors [but not α(1)β(2)(I264C)γ(2S)], presumably because of the covalent linking of octanethiol to the thiol group in the substituted cysteine. It is noteworthy that this effect was blocked when OMTS was applied in the presence of octanol. We found that potentiation by butanol, octanol, or isoflurane in the N265C mutant was nearly abolished after the application of OMTS, suggesting that an alcohol and volatile anesthetic binding site at position 265 of the β(2) subunit was irreversibly occupied by octanethiol and consequently prevented butanol or isoflurane from binding and producing their effects. OMTS did not affect modulation or direct activation by pentobarbital, but there was a partial reduction of allosteric modulation by flunitrazepam and alphaxalone in mutant α(1)β(2)(N265C)γ(2S) receptors after OMTS was applied. Our findings provide evidence that Asn265 may contribute to an alcohol and anesthetic binding site.
Collapse
Affiliation(s)
- Mandy L McCracken
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
90
|
Expression of GABAergic receptors in mouse taste receptor cells. PLoS One 2010; 5:e13639. [PMID: 21049022 PMCID: PMC2964312 DOI: 10.1371/journal.pone.0013639] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/04/2010] [Indexed: 12/05/2022] Open
Abstract
Background Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD) for gamma-aminobutyric acid (GABA) is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABAA and GABAC) or metabotropic receptors (GABAB) while it is terminated by the re-uptake of GABA through transporters (GATs). Methodology/Principal Findings Using reverse transcriptase-PCR (RT-PCR) analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs) in the circumvallate papillae express multiple subunits of the GABAA and GABAB receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABAA-and GABAB- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP) in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. Conclusions/Significance The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.
Collapse
|
91
|
Youn UJ, Lee JH, Lee YJ, Nam JW, Bae H, Seo EK. Regulation of the 5-HT3A receptor-mediated current by alkyl 4-hydroxybenzoates isolated from the seeds of Nelumbo nucifera. Chem Biodivers 2010; 7:2296-302. [PMID: 20860031 DOI: 10.1002/cbdv.200900393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Four known alkyl 4-hydroxybenzoates, i.e., methyl 4-hydroxybenzoate (1), ethyl 4-hydroxybenzoate (2), propyl 4-hydroxybenzoate (3), and butyl 4-hydroxybenzoate (4), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D- and 2D-NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5-HT-stimulated inward current (I(5-HT)) mediated by the human 5-HT(3)A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I(5-HT), but 4 reduced it. These results indicate that 4 is an inhibitor of the 5-HT(3)A receptors expressed in Xenopus oocytes.
Collapse
Affiliation(s)
- Ui Joung Youn
- The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
92
|
Mechanism of Allosteric Modulation of the Cys-loop Receptors. Pharmaceuticals (Basel) 2010; 3:2592-2609. [PMID: 27713368 PMCID: PMC4033940 DOI: 10.3390/ph3082592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/30/2010] [Accepted: 08/09/2010] [Indexed: 11/18/2022] Open
Abstract
The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric modulation by many pharmaceutical agents and endogenous modulators. By binding to a site of the receptor distinct from the neurotransmitter binding site, allosteric modulators alter the response of the receptors to their agonists. The mechanism of allosteric modulation is traditionally believed to be that allosteric modulators directly change the binding affinity of receptors for their agonists. More recent studies support the notion that these allosteric modulators are very weak agonists or antagonists by themselves. They directly alter channel gating, and thus change the distribution of the receptor across multiple different affinity states, indirectly influencing receptors’ sensitivity to agonists. There are two major locations of allosteric modulator binding sites. One is in subunit interfaces of the amino-terminal domain. The other is in the transmembrane domain close to the channel gating machinery. In this review, we also give some examples of well characterized allosteric binding pockets.
Collapse
|
93
|
Yuan G, Gao W, Yang Y, Wu Y. Molecular cloning, genomic structure, and genetic mapping of two Rdl-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:81-90. [PMID: 20513056 DOI: 10.1002/arch.20361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Resistance to dieldrin (Rdl) gene encodes a subunit of the insect gamma-aminobutyric acid (GABA) receptor. Cyclodiene resistance in many insects is associated with replacement of a single amino acid (alanine at position 302) with either a serine or a glycine in the Rdl gene. Two Rdl-orthologous genes of GABA receptors (PxGABARalpha1 and PxGABARalpha2) were cloned and sequenced from a susceptible strain (Roth) of Plutella xylostella. PxGABARalpha1 and PxGABARalpha2 showed 84% and 77% identity with the Rdl gene of Drosophila melanogaster at an amino acid level, respectively. The coding regions of PxGABARalpha1 and PxGABARalpha2 both comprise ten exons, with two alternative RNA-splicing forms in exon 3 of both genes. At the orthologous position of alanine-302 in D. melanogaster Rdl, PxGABARalpha1 has a conserved alanine at position 282. PxGABARalpha2 has a serine instead of an alanine at the equivalent position. With two informative DNA markers, both PxGABARalpha1 and PxGABARalpha2 were mapped onto the Z chromosome of P. xylostella.
Collapse
Affiliation(s)
- Guorui Yuan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects (Ministry of Agriculture of China), Nanjing, China
| | | | | | | |
Collapse
|
94
|
Tipps ME, Lawshe JE, Ellington AD, Mihic SJ. Identification of novel specific allosteric modulators of the glycine receptor using phage display. J Biol Chem 2010; 285:22840-5. [PMID: 20501662 DOI: 10.1074/jbc.m110.130815] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The glycine receptor (GlyR) is a member of the Cys-loop superfamily of ligand-gated ion channels and the major mediator of inhibitory neurotransmission in the spinal cord and brainstem. Many allosteric modulators affect the functioning of members of this superfamily, with some such as benzodiazepines showing great specificity and others such as zinc, alcohols, and volatile anesthetics acting on multiple members. To date, no potent and efficacious allosteric modulator acting specifically at the GlyR has been identified, hindering both experimental characterization of the receptor and development of GlyR-related therapeutics. We used phage display to identify novel peptides that specifically modulate GlyR function. Peptide D12-116 markedly enhanced GlyR currents at low micromolar concentrations but had no effects on the closely related gamma-aminobutyric acid type A receptors. This approach can readily be adapted for use with other channels that currently lack specific allosteric modulators.
Collapse
Affiliation(s)
- Megan E Tipps
- Section of Neurobiology, University of Texas, A4800, 2500 Speedway, MBB 1.148, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
95
|
Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol Ther 2010; 127:53-65. [PMID: 20399807 DOI: 10.1016/j.pharmthera.2010.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/23/2022]
Abstract
Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed.
Collapse
|
96
|
Liu GY, Miao W, Ju XL. Mechanisms of imidacloprid resistance in Nilaparvata lugens by molecular modeling. CHINESE CHEM LETT 2010. [DOI: 10.1016/j.cclet.2009.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
97
|
Ogawa M, Nishiyama S, Tsukada H, Hatano K, Fuchigami T, Yamaguchi H, Matsushima Y, Ito K, Magata Y. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype. Nucl Med Biol 2010; 37:347-355. [PMID: 20346874 DOI: 10.1016/j.nucmedbio.2009.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/06/2009] [Accepted: 11/25/2009] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The nicotinic acetylcholine receptor (nAChR) alpha7 subtype (alpha(7) nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled alpha(7) nAChR ligands, (R)-2-[(11)C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([(11)C](R)-MeQAA) and its isomer (S)-[(11)C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[(11)C]MeQAA for in vivo imaging of alpha(7) nAChR in the brain was evaluated in mice and monkeys. METHODS The binding affinity for alpha(7) nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. RESULTS The affinity for alpha(7) nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([(11)C](R)-MeQAA: 7.68 and [(11)C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [(11)C](R)-MeQAA was slow in the hippocampus (alpha(7) nAChR-rich region) but was rapid in the cerebellum (alpha(7) nAChR-poor region). On the other hand, the clearance was fast for [(11)C](S)-MeQAA in all regions. The brain uptake of [(11)C](R)-MeQAA was decreased by methyllycaconitine (alpha(7) nAChR antagonist) treatment. In monkeys, alpha(7) nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [(11)C](R)-MeQAA, while the uptake was rather homogeneous for [(11)C](S)-MeQAA. CONCLUSIONS [(11)C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for alpha(7) nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain alpha(7) nAChRs in vivo.
Collapse
Affiliation(s)
- Mikako Ogawa
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lee JH, Lee YJ, Kang SW, Kim Y, Shin M, Hong M, Seo EK, Kim SH, Nah SY, Bae H. Effects of protostane-type triterpenoids on the 5-HT3A receptor-mediated ion current in Xenopus oocytes. Brain Res 2010; 1331:20-7. [PMID: 20307506 DOI: 10.1016/j.brainres.2010.03.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/12/2010] [Accepted: 03/14/2010] [Indexed: 11/28/2022]
Abstract
Alisol derivatives are unique protostane-type triterpenoid compounds that are isolated from Alismatis rhizoma, which is a well-known traditional medicine in East Asia. In the present study, we investigated the effects of protostane-type triterpenoids (AA, Alisol A; AB, Alisol B; AB-ac, Alisol B 23-acetate; AC-ac, Alisol C 23-aceteate) on 5-HT-induced currents mediated by the human 5-HT(3)A receptor expressed in Xenopus laevis oocytes. Co-treatment with triterpenoids regulated the 5-HT-induced inward peak current in a concentration-dependent and reversible manner. In addition, regulation of I(5-HT) by triterpenoids occurred in a non-competitive manner. Taken together, these results indicate that triterpenoids may regulate the 5-HT(3)A receptors that are expressed in Xenopus oocytes. Furthermore, this regulation of the ligand-gated ion channel activity by triterpenoids may be one of the pharmacological actions of Alismatis rhizoma.
Collapse
Affiliation(s)
- Jun-Ho Lee
- College of Oriental Medicine, Kyung-Hee University, Hoegi-Dong, Dongdaemun-Ku, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bush E, Foreman R, Walker RJ, Holden-Dye L. The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes. INVERTEBRATE NEUROSCIENCE 2010; 9:175-84. [PMID: 20224918 DOI: 10.1007/s10158-010-0096-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/22/2010] [Indexed: 11/30/2022]
Abstract
The pharmacology of Caenorhabditis elegans glutamate-gated chloride (GluCl) channels was determined by making intracellular voltage-clamp recordings from Xenopus oocytes expressing GluCl subunits. As previously reported (Cully et al. 1994), GluClalpha1beta responded to glutamate (in a picrotoxin sensitive manner) and ivermectin, while GluClbeta responded only to glutamate and GluClalpha1 only to ivermectin. This assay was used to further investigate the action of chloride channel compounds. The arylaminobenzoate, NPPB, reduced the action of glutamate on the heteromeric GluClalpha1beta channel (IC(50) 6.03 +/- 0.81 microM). The disulphonate stilbene, DNDS, blocked the effect of both glutamate and ivermectin on GluClalpha1beta channels, the action of glutamate on GluClbeta subunits, and the effect of ivermectin on GluClalpha1 subunits (IC(50)s 1.58-3.83 microM). Surprisingly, amobarbital and pentobarbital, otherwise known as positive allosteric modulators of ligand-gated chloride channels, acted as antagonists. Both compounds reduced the action of glutamate on the GluClalpha1beta heteromer (IC(50)s of 2.04 +/- 0.5 and 17.56 +/- 2.16 microM, respectively). Pentobarbital reduced the action of glutamate on the GluClbeta homomeric subunit with an IC(50) of 0.59 +/- 0.09 microM, while reducing the responses to ivermectin on both GluClalpha1beta and GluClalpha1 with IC(50)s of 8.7 +/- 0.5 and 12.9 +/- 2.5 microM, respectively. For all the antagonists, the mechanism is apparently non-competitive. The benzodiazepine, flurazepam had no apparent effect on these glutamate- and ivermectin-gated chloride channel subunits. Thus, arylaminobenzoates, disulphonate stilbenes, and barbiturates are non-competitive antagonists of C. elegans GluCl channels.
Collapse
Affiliation(s)
- Elizabeth Bush
- School of Biological Sciences, Bassett Crescent East, University of Southampton, Southampton, UK
| | | | | | | |
Collapse
|
100
|
Nishimura K, Unemura K, Tsushima J, Yamauchi Y, Otomo J, Taniguchi T, Kaneko S, Agata K, Kitamura Y. Identification of a novel planarian G-protein-coupled receptor that responds to serotonin in Xenopus laevis oocytes. Biol Pharm Bull 2010; 32:1672-7. [PMID: 19801826 DOI: 10.1248/bpb.32.1672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Planarians are useful animals for regenerative and neuroscience research at the molecular level. Previously, we have reported the distribution and function of neurotransmitter-synthesizing neurons in the planarian central nervous system. In order to understand the neural projections and connections, it is important to understand the distribution of neurotransmitter receptors. In this study, we isolated a serotonin receptor gene and named it DjSER-7 (Dugesia japonica serotonin receptor type 7). DjSER-7-expressing cells were distributed in the planarian brain. According to electrophysiological analysis using Xenopus oocytes, current response was detected upon exposure to serotonin, but not other neurotransmitters in oocytes that were co-injected with mRNAs of both DjSER-7 and Galpha chimera B-2, which can interact with either Gq-, Gs- or Gi-coupled receptor. In contrast, current response was not detected after exposure to neurotransmitters in oocytes injected with only DjSER-7 mRNA. Our results indicated that DjSER-7 responds to serotonin, as indicated by electrophysiological analysis using Xenopus oocytes.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Department of Neurobiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|